WO2019207827A1 - Tension adjusting device and wire winding device - Google Patents

Tension adjusting device and wire winding device Download PDF

Info

Publication number
WO2019207827A1
WO2019207827A1 PCT/JP2018/040298 JP2018040298W WO2019207827A1 WO 2019207827 A1 WO2019207827 A1 WO 2019207827A1 JP 2018040298 W JP2018040298 W JP 2018040298W WO 2019207827 A1 WO2019207827 A1 WO 2019207827A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
tension
dancer roller
winding
workpiece
Prior art date
Application number
PCT/JP2018/040298
Other languages
French (fr)
Japanese (ja)
Inventor
恭輔 山口
北野 修一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020516009A priority Critical patent/JP6906695B2/en
Priority to CN201880091255.XA priority patent/CN111971244B/en
Priority to TW108105840A priority patent/TWI678714B/en
Publication of WO2019207827A1 publication Critical patent/WO2019207827A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H59/00Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators
    • B65H59/10Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators by devices acting on running material and not associated with supply or take-up devices
    • B65H59/18Driven rotary elements

Definitions

  • the present application relates to a tension adjusting device that adjusts the tension of a wire when the wire is wound around a workpiece, and a winding device including the tension adjusting device.
  • a winding device includes a flyer that pulls in, and a tension adjustment mechanism that is disposed between the tension pulley and the flyer (see, for example, Patent Document 1).
  • the tension adjusting mechanism of the winding device includes a first pulley disposed on the upstream side, a second pulley disposed on the downstream side, and a third pulley disposed between the first pulley and the second pulley. have.
  • the first pulley and the second pulley are rotatably fixed and function as a fixed pulley, while the third pulley is configured to function as a swinging pulley that swings around a column. ing.
  • the first pulley is disposed between the tension pulley and the swing pulley
  • the second pulley is disposed between the swing pulley and the flyer.
  • the tension adjusting mechanism and the winding device are increased in size.
  • many pulleys that bend the wire are arranged on the path through which the wire passes, there is a problem that the wire is stretched by many pulleys and the winding quality of the coil is deteriorated.
  • the present application discloses a technique for solving the above-described problems, and a tension adjusting device and a winding device that can be reduced in size and improve the winding quality as compared with the prior art.
  • the purpose is to provide.
  • the tension adjusting device disclosed in the present application is a tension adjusting device that guides a wire rod fed from a bobbin to a winding portion that winds the wire rod around a workpiece, and adjusts the tension of the wire rod, A tension pulley portion for applying tension to the wire rod fed from the bobbin; The wire rod delivered from the tension pulley portion is wound, and the wire rod is guided to the winding portion, and a dancer roller is provided so as to be swingable.
  • a tension arm portion that rotatably supports the dancer roller, and defines a swing of the dancer roller around a fulcrum provided at a position different from a rotation axis of the dancer roller;
  • a biasing part that biases the tension arm part in a direction in which the dancer roller moves away from the winding part in a circumferential direction around the fulcrum;
  • the wire that has left the dancer roller is linearly directed from the dancer roller to the winding portion.
  • the winding device disclosed in the present application includes the tension adjusting device and the winding unit.
  • the size can be reduced and the winding quality can be improved.
  • FIG. 1 is a diagram illustrating a configuration of a winding device according to a first embodiment.
  • 1 is a perspective view of a tension adjusting device according to Embodiment 1.
  • FIG. FIG. 2 is a perspective view of a tension pulley and a servo motor in the first embodiment.
  • 2 is a plan view of a back tensioner according to Embodiment 1.
  • FIG. 3 is a side view of the back tensioner according to Embodiment 1 as viewed from the upstream side.
  • FIG. 3 is a front view of the dancer roller in the first embodiment. It is a front view of the fryer apparatus in Embodiment 1.
  • FIG. It is sectional drawing of the fryer apparatus in Embodiment 1.
  • Embodiment 3 is a cross-sectional view showing the position of a flyer nozzle when a wire is wound around a workpiece in the first embodiment.
  • it is a figure showing the relationship between the angle of the flyer arm part with respect to a workpiece
  • it is a figure showing a mode that a tension pulley part provides tension
  • Embodiment 1 it is a figure showing the mode of a tension pulley and a dancer roller when the tension
  • FIG. 6 is a diagram illustrating a configuration of a winding device according to a third embodiment.
  • FIG. 10 is a diagram illustrating a workpiece and a drive path of a nozzle driven along a side surface of the workpiece in the winding device according to the third embodiment. It is a figure showing the structure of the winding apparatus by Embodiment 4.
  • FIG. 1 is a diagram illustrating a configuration of a winding device 1 according to the first embodiment.
  • the winding device 1 includes a flyer device 2 as a winding portion and a tension adjusting device 3.
  • the flyer device 2 includes a flyer arm unit 4 and a flyer rotating unit 5.
  • the flyer arm unit 4 sends the wire 11 to the workpiece 6.
  • the flyer rotating unit 5 rotates the flyer arm unit 4.
  • the tension adjusting device 3 guides the wire 11 delivered from the bobbin 12 to the winding part and adjusts the tension of the wire 11.
  • the winding part winds the wire 11 around the workpiece 6.
  • the tension adjusting device 3 includes a tension pulley section 13, a dancer roller 14, a tension arm section 15, and a tension coil spring 16 as an urging section.
  • the tension pulley unit 13 applies tension to the wire 11 delivered from the bobbin 12.
  • the dancer roller 14 is provided so that the wire 11 delivered from the tension pulley portion 13 is wound around, and the wire 11 is guided to the winding portion and swingable.
  • the tension arm unit 15 supports the dancer roller 14 in a rotatable manner.
  • the tension arm 15 regulates the swing of the dancer roller 14 around the fulcrum 17.
  • the fulcrum 17 is provided at a position different from the rotational axis of the dancer roller 14.
  • the swinging direction Dr in which the dancer roller 14 swings around the fulcrum 17 is approximately parallel to the direction Dr2 of the wire 11 from the dancer roller 14 toward the winding portion, whereby the wire 11 that has left the dancer roller 14 is moved to the dancer roller 14.
  • the urging portion urges the tension arm portion 15 in a direction in which the dancer roller 14 moves away from the winding portion.
  • the direction of the wire 11 from the tension pulley portion 13 toward the dancer roller 14 is perpendicular to the direction of the wire 11 from the dancer roller 14 toward the winding portion.
  • “vertical” does not necessarily mean only 90 degrees, but the swing of the dancer roller 14 causes the direction of the wire 11 from the tension pulley portion 13 to the dancer roller 14 and from the dancer roller 14 to the winding portion.
  • the direction of the wire 11 that heads may change about 90 degrees.
  • the wire 11 is wound around the dancer roller 14 around the rotation axis of the dancer roller 14.
  • the workpiece 6 is a stator or a rotor of a rotating electric machine.
  • the outer peripheral surface around which the wire 11 is wound in the workpiece 6 is not circular but rectangular.
  • the wire 11 wound around the workpiece 6 by the winding portion is supplied to the winding device 1 while being wound around the bobbin 12.
  • the side closer to the bobbin 12 may be referred to as the upstream side and the side closer to the workpiece 6 may be referred to as the downstream side.
  • the wire 11 wound around the bobbin 12 is supplied to the tension pulley portion 13 of the tension adjusting device 3 via the first pulley 21.
  • the tension pulley unit 13 includes a tension pulley 22, a back tensioner 23, and the control unit 7.
  • the wire 11 supplied from the bobbin 12 to the winding device 1 via the first pulley 21 passes through the back tensioner 23, is wound around the tension pulley 22, and travels toward the dancer roller 14.
  • the wire 11 is wound around the outer peripheral surface of the dancer roller 14 having a central angle in the range of about 270 degrees around the rotation axis of the dancer roller 14.
  • winding angle the range in which the wire 11 is wound around the outer peripheral surface of the pulley and is in contact with the pulley is represented by a central angle with the rotation axis of the pulley as the center, and this is hereinafter referred to as “winding angle”.
  • the wire 11 is wound around the dancer roller 14 at a winding angle of about 270 degrees, and then travels to the flyer device 2 provided on the downstream side of the dancer roller 14.
  • the flyer device 2 includes a flyer arm unit 4 and a flyer rotating unit 5.
  • the flyer arm portion 4 is a portion that feeds the wire 11 to the workpiece 6. Details of the fryer device 2 will be described later.
  • FIG. 2 is a perspective view of the tension adjusting device 3 according to the first embodiment.
  • FIG. 3 is a perspective view of the tension pulley 22 and the servo motor 25 in the first embodiment.
  • the wire 11 wound around the bobbin 12 passes through the first eyelet 26, the first pulley 21, the second eyelet 31, the felt part 32, and the back tensioner 23 from the upstream side. It is wound around the tension pulley 22.
  • the first eyelet 26 protects the film covering the wire 11.
  • the first pulley 21 bends the wire 11 from the first eyelet 26 toward the back tensioner 23.
  • the second eyelet 31 adjusts the position of the wire 11 from the second pulley to the felt part 32.
  • the felt part 32 adjusts the amount of wax on the surface of the wire 11 by sandwiching the wire 11 with felt.
  • the wire 11 is sandwiched between a plurality of sapphire plates 33, and a dynamic friction force is applied to the passing wire 11 to press it from both sides. Details of the back tensioner 23 will be described later.
  • the wire 11 is wound around the tension pulley 22 positioned downstream of the back tensioner 23 by a predetermined number of turns.
  • the rotation shaft of the tension pulley 22 is connected to the servomotor 25 and is rotationally driven by the servomotor 25 in a state where feedback control is performed so that the rotational torque of the servomotor 25 is constant.
  • the rotation shaft of the tension pulley 22 is rotatably supported by the tension pulley base 34.
  • the servo motor 25 is fixed to the tension pulley base 34. Feedback control of the servo motor 25 is performed by the control unit 7 of the tension adjusting device 3.
  • the pulley guide part 35 which the wire 11 contacts is formed in the outer peripheral surface located outside the tension pulley 22 centering on the rotation axis.
  • the pulley guide portion 35 is formed of a material such as nitrile rubber or urethane resin that the wire 11 is difficult to slip.
  • a static frictional force acts between the wire 11 and the outer peripheral surface of the tension pulley 22 that contacts the wire 11, and the wire 11 is sent from the upstream side to the downstream side by the rotation of the tension pulley 22.
  • the dynamic friction force applied to the wire 11 in the back tensioner 23 is set to a magnitude that does not cause the wire 11 to slip in the tension pulley 22. While the wire 11 moves, the tension acting on the wire 11 is mainly determined by the rotational torque of the tension pulley 22 and the magnitude of the static friction force.
  • the wire 11 that has left the tension pulley 22 is wound around the dancer roller 14 located on the downstream side of the tension pulley 22 and advances in contact with the outer peripheral surface of the dancer roller 14.
  • the dancer roller 14 suppresses a change in the moving speed generated in the wire 11 by being wound around the workpiece 6.
  • the wire 11 that has left the dancer roller 14 passes through the third eyelet 36 toward the flyer device 2.
  • the position of the third eyelet 36 may be shifted in a direction parallel to the rotation axis of the dancer roller 14.
  • FIG. 4 is a plan view of the back tensioner 23 according to the first embodiment.
  • FIG. 5 is a side view of the back tensioner 23 according to Embodiment 1 as viewed from the upstream side.
  • the back tensioner 23 includes a plurality of sapphire plates 33, a plurality of cylinders 41 that adjust the pressing force applied to the wire 11 by the plurality of sapphire plates 33, and a rod 42 that transmits power from each cylinder 41 to each sapphire plate 33.
  • Each of the sapphire plates 33 includes a plurality of pressing linear guides 43 that define the moving direction of the sapphire plates 33, and a back tensioner base 44 that fixes and supports the housing portions of the plurality of cylinders 41 and the plurality of pressing linear guides 43.
  • the pair of sapphire plates 33 press the wire 11 from both sides in the horizontal direction and are arranged side by side in three pairs from the upstream side to the downstream side.
  • a fourth eyelet 45 that positions the wire 11 is fixed to the back tensioner base 44.
  • the pressing linear guide 43 has a plurality of rails fixed to the back tensioner base 44, and a pair of sapphire plates 33 and a rod of the cylinder 41 on each rail corresponding to each pair of sapphire plates 33. 42 is connected.
  • the housing portion of the cylinder 41 is fixed to the back tensioner base 44.
  • the wire 11 is pressed when the rod 42 of each cylinder 41 is out of each cylinder 41, and the wire 11 is released while the rod 42 is retracted into each cylinder 41. Since the wire 11 is positioned by the fourth eyelet 45, the wire 11 does not deviate from the path positioned between the three pairs of sapphire plates 33.
  • the rods 42 of the respective cylinders 41 at the time of winding are in a state of coming out of the respective cylinders 41 and pressing the wire 11 with a certain amount of pressing force.
  • FIG. 6 is a front view of the dancer roller 14 according to the first embodiment.
  • the dancer roller 14 is rotatably attached to one end portion 53 of the tension arm portion 15 via a first ball bearing 46.
  • the tension arm portion 15 is rotatably attached to the dancer roller base 52 via the second ball bearing 51 at any one of intermediate portions excluding both longitudinal ends of the tension arm portion 15.
  • the point where the tension arm portion 15 is attached to the dancer roller base 52 is a fulcrum 17 related to the swinging of the dancer roller 14 and the tension arm portion 15.
  • the tension coil spring 16 expands and contracts by swinging the dancer roller 14 and the tension arm portion 15 about the fulcrum 17.
  • the swinging direction Dr of the dancer roller 14, that is, the tangential direction at the position of the dancer roller 14 around the fulcrum 17 is set approximately parallel to the direction of the wire 11 from the dancer roller 14 toward the flyer device 2.
  • the wire 11 that has left the dancer roller 14 is linearly directed from the dancer roller 14 to the fryer device 2.
  • the tension coil spring 16 Since the other end portion of the tension coil spring 16 is attached to the dancer roller base 52 via the self-aligning seat 55, the tension coil spring 16 is moved in a direction other than the expansion / contraction direction by the swing of the dancer roller 14 and the tension arm portion 15. Even if the angle is changed, the self-aligning seat 55 is inclined according to the angle of the tension coil spring 16. Thereby, it is possible to prevent a force in a direction other than expansion and contraction from acting on the tension coil spring 16.
  • the angle of the tension arm 15 around the fulcrum 17 is measured by a laser displacement meter 57 as shown in FIG.
  • the measurement result is sent to the control unit 7 and used for torque control of the servo motor 25 that rotates the tension pulley 22.
  • the measurement result may be used for adjusting the pressing force of the sapphire plate 33 by the plurality of cylinders 41 of the back tensioner 23.
  • FIG. 7 is a front view of the fryer apparatus 2 according to the first embodiment.
  • FIG. 8 is a cross-sectional view of the fryer apparatus 2 according to the first embodiment.
  • a work holding unit 56 that holds the work 6 is provided on the downstream side of the fryer apparatus 2.
  • the workpiece 6 is held in a stationary state by the workpiece holding unit 56, and the wire 11 delivered from the flyer nozzle 24 is wound around the outer peripheral surface of the workpiece 6 by the rotation of the flyer arm unit 4.
  • the fryer nozzle 24 is provided on the most downstream side in the fryer device 2.
  • the flyer device 2 includes a fixed portion 61 and a movable portion 62.
  • the fixing unit 61 includes a base plate 63, a moving linear guide 64, and a linear stator 67.
  • a movable portion 62 is placed above the base plate 63.
  • the movable portion 62 is provided so as to be movable in a direction parallel to the rotation axis of the flyer arm portion 4, and includes the flyer arm portion 4, the rotation member 65, the shaft portion 66, the shaft bearing 71, the moving base 72, the mover 73, and the like. is doing.
  • first direction X a direction parallel to the rotational axis of the flyer arm portion 4
  • first direction one X1 a direction approaching the workpiece 6
  • first direction one X1 a direction approaching the workpiece 6
  • first direction one X1 an upstream side. That is, the direction away from the workpiece 6 is referred to as “the other in the first direction X2”.
  • the moving table 72 is connected to the shaft bearing 71 and placed on the moving linear guide 64.
  • a pair of moving linear guides 64 are provided in parallel with the first direction X on the upper surface of the base plate 63.
  • the moving table 72 is driven by the linear motor 74 in the first direction X1 and the first direction other X2 with respect to the base plate 63 and the moving linear guide 64.
  • the linear motor 74 is provided between the moving base 72 and the base plate 63 and has a linear stator 67 and a movable element 73.
  • the linear stator 67 is attached to the base plate 63, and the mover 73 is attached to the moving base 72.
  • the linear stator 67 and the movable element 73 are installed facing each other.
  • a linear position detector 75 is provided between the moving base 72 and the base plate 63 in order to detect the position in the first direction X with respect to the fixed part 61 of the movable part 62.
  • the linear position detector 75 includes a slider 76 and a scale 81, and the slider 76 is attached to the moving base 72 and the scale 81 is attached to the base plate 63 to detect a change in the relative position of the slider 76 with respect to the scale 81.
  • a moving mechanism of the movable portion 62 relative to the fixed portion 61 is constituted by the base plate 63, the moving linear guide 64, the moving base 72, the linear motor 74, and the linear position detector 75.
  • the shaft bearing 71 is fixedly provided on the upper surface of the movable table 72.
  • the shaft bearing 71 supports the shaft portion 66, moves with the shaft portion 66 in the first direction X, and allows the shaft portion 66 to rotate around the central axis of the shaft bearing 71.
  • the central axis of the shaft bearing 71 coincides with the rotational axis of the flyer arm portion 4. Further, the rotation axis of the flyer arm 4 coincides with the center axis of the workpiece 6.
  • the shaft portion 66 is formed with an internal hole penetrating in the first direction X along the central axis of the shaft bearing 71, and the wire 11 passes through the inside of the internal hole.
  • the flyer device 2 further includes a ball spline shaft 82, a spline holder 83, and a spline outer cylinder 84, of which the spline outer cylinder 84 is included in the fixing portion 61.
  • the spline holder 83 and the spline outer cylinder 84 do not move in the first direction X.
  • the spline outer cylinder 84 supports the spline holder 83 and allows the ball spline shaft 82 and the spline holder 83 to rotate around the rotation axis of the spline outer cylinder 84.
  • the center axis of the spline outer cylinder 84 coincides with the rotation axis of the flyer arm portion 4 and the center axis of the shaft bearing 71.
  • the ball spline shaft 82 is formed with an inner hole penetrating in the first direction X along the central axis of the spline outer cylinder 84, and the wire 11 passes through the inner hole.
  • the most downstream end of the ball spline shaft 82 and the most upstream end of the shaft portion 66 are connected by a coupling member 86.
  • the shaft portion 66 and the ball spline shaft 82 move together in the first direction X and around each central axis.
  • the spline outer cylinder 84 is fixed in the first direction X and is also fixed around the central axis. Therefore, the shaft portion 66 and the ball spline shaft 82 can move in the first direction X with respect to the spline outer cylinder 84 and can rotate around the central axis.
  • a ball spline pulley 85 is attached to the upstream end of the spline holder 83 with the same rotational axis.
  • the spline holder 83 and the ball spline side pulley 85 are fixedly connected to each other.
  • the ball spline side pulley 85 is a toothed pulley.
  • the shaft portion 66 and the ball spline shaft 82 are connected to each other by the coupling member 86, but the shaft portion 66 and the ball spline shaft 82 may be integrally formed.
  • a rotating member 65 is connected to the downstream side of the shaft portion 66.
  • the rotating member 65 is formed in a cylindrical shape having an axis perpendicular to the central axis of the shaft portion 66.
  • the cavity 91 inside the rotating member 65 is open on both sides in the axial direction of the cylindrical shape forming the rotating member 65.
  • a communication hole 92 is formed along the central axis of the shaft portion 66 at a connection portion with the shaft portion 66 of the rotating member 65. Accordingly, the cavity 91 inside the rotating member 65 communicates with the inner hole of the shaft portion 66 along the central axis of the shaft portion 66.
  • the portion of the rotating member 65 opposite to the connecting portion with the shaft portion 66 in the first direction X is connected to the flyer arm portion 4.
  • the flyer arm 4 rotates about the central axis of the workpiece 6.
  • a first guide roller 93 is provided inside the cavity 91 of the rotating member 65. The rotation axis of the first guide roller 93 is set perpendicular to both the center axis of the shaft portion 66 and the axis of the rotation member 65.
  • the first guide roller 93 is disposed in the vicinity of one end portion of both end portions where the cavity 91 of the rotating member 65 is open. As a result, the first guide roller 93 is positioned closer to one end of the rotating member 65 than the extension of the central axis of the shaft portion 66.
  • a direction perpendicular to the central axis of the shaft portion 66 and parallel to the cylindrical axis forming the rotating member 65 is referred to as a “second direction Y”.
  • second direction one Y1 the direction from the central axis of the shaft portion 66 toward the first guide roller 93
  • second direction other Y2 the direction opposite to the second direction one Y1
  • the wire 11 that has passed through the inner hole of the shaft portion 66 is guided by the first guide roller 93 in the cavity 91 of the rotating member 65, and from the opening 94 at the end of the rotating member 65 in the second direction one Y1. , Goes out of the rotating member 65. Since the first guide roller 93 is provided on the rotating member 65, when the rotating member 65 rotates around the central axis of the shaft, the first guide roller 93 moves around the central axis of the shaft together with the rotating member 65. Therefore, when the rotating member 65 rotates around the central axis of the shaft, the second direction Y rotates with respect to the fixed portion 61 of the flyer device 2.
  • the longitudinal direction of the flyer arm 4 coincides with the second direction Y.
  • a swivel plate 96 is provided at the end of the flyer arm portion 4 in the second direction one Y1.
  • the thickness direction of the swivel plate 96 coincides with the second direction Y.
  • the second guide roller 95 is attached to the turning plate 96.
  • the second guide roller 95 is rotatable around a rotation axis perpendicular to both the first direction X and the second direction Y.
  • the spline pulley 85 is rotationally driven by the motor 101.
  • the motor 101 is provided on the motor stand 102, and the motor stand 102 is fixed to the base plate 63 of the fixing unit 61.
  • a motor-side pulley 103 is attached to the output shaft 97 that outputs the rotational force of the motor 101 with the same rotational axis.
  • the motor side pulley 103 is a toothed pulley.
  • a toothed belt 104 is wound around the motor side pulley 103 and the above-described ball spline side pulley 85, and the rotational force of the output shaft 97 of the motor 101 is applied to the motor side pulley 103, the toothed belt 104, and the ball spline side pulley. 85.
  • These motor 101, motor side pulley 103, toothed belt 104, and ball spline side pulley 85 constitute a flyer rotating unit 5.
  • the rotational driving force of the motor 101 is transmitted to the flyer arm unit 4 with the motor-side pulley 103 serving as a driving wheel.
  • the moving mechanism of the movable part 62 with respect to the fixed part 61 described above can be driven in the first direction X independently of the rotational drive while the rotational driving force from the motor 101 is transmitted.
  • FIG. 9 is a cross-sectional view showing the position of the fryer nozzle 24 when the wire 11 is wound around the workpiece 6 in the first embodiment.
  • FIG. 10 is a diagram illustrating the relationship between the angle of the flyer arm unit 4 with respect to the workpiece 6 and the linear acceleration of the wire 11 delivered from the flyer nozzle 24 in the first embodiment.
  • the angle of the flyer arm portion 4 is referred to as “flyer angle”.
  • the angle of the flyer arm portion 4 is in the vertical direction, and the flyer angle when the flyer nozzle 24 is positioned directly above the workpiece 6 is expressed as zero degrees and 360 degrees.
  • the linear acceleration of the wire 11 before and after the flyer nozzle 24 passes through the position of the point P1 shown in FIG. 9 will be described.
  • the direction in which the flyer nozzle 24 rotates is indicated by an arrow U.
  • the flyer nozzle 24 is positioned at the point P0, that is, before reaching the point P1
  • the wire 11 is in contact with the corners C and D of the workpiece 6, but the corner A is not touched. There is no contact. Therefore, the wire 11 is not in contact with the winding surface AD of the workpiece 6.
  • the point where the wire 11 is in contact with the workpiece 6, in this case, the distance between the corner portion D and the flyer nozzle 24 is referred to as the “drawing length” of the wire 11.
  • the drawing length of the wire 11 immediately before the flyer nozzle 24 passes through the point P1 is represented by L44.
  • the wire 11 is in contact with the corner A of the workpiece 6, and is in contact with the winding surface AD of the workpiece 6.
  • the drawing length of the wire 11 is the distance between the corner A and the flyer nozzle 24.
  • a position at which the winding surface of the workpiece 6 in contact with the wire 11 is switched like this point P1 is referred to as a “switching position”.
  • the drawing length of the wire 11 immediately after the flyer nozzle 24 passes the switching position P1 is represented by L1.
  • the drawing length of the wire 11 is steeply shortened from L22 to L3, so that the linear acceleration at which the wire 11 is sent out sharply increases.
  • the drawing length of the wire 11 gradually extends from L3 to L33, and therefore the linear acceleration of the wire 11 gradually decreases.
  • the drawing length of the wire 11 is from L33 to L4. Therefore, when the flyer nozzle 24 passes through the switching position P4, the linear acceleration of the wire 11 increases steeply as compared with the time when the flyer nozzle 24 moves from the switching position P3 to the switching position P4.
  • the change from the switching position P3 to the switching position P1 is the same as the change from the switching position P1 to the switching position P3 described above.
  • FIG. 11 is a diagram illustrating a state in which the tension pulley portion 13 applies tension to the wire 11 in the first embodiment.
  • T2 is represented by the following equation (3).
  • ⁇ (d / dt) ⁇ 2 ⁇ ⁇ is the rotational angular acceleration of the tension pulley 22.
  • T2> Ts the wire 11 does not slide on the outer peripheral surface of the tension pulley 22.
  • control is performed while satisfying T2> Ts based on the conditional expressions shown in the expressions (2) and (3).
  • FIG. 12 is a diagram illustrating a state of the tension pulley 22 and the dancer roller 14 in the first embodiment when the linear velocity does not increase steeply.
  • FIG. 13 is a diagram illustrating the state of the tension pulley 22 and the dancer roller 14 when the tension of the wire 11 is increased due to a steep increase in the linear velocity in the first embodiment.
  • the distance between the most downstream contact of the tension pulley 22 and the wire 11 and the most upstream contact of the dancer roller 14 and the wire 11 Is La1. Further, the distance between the dancer roller 14 and the most downstream contact point of the wire 11 and the third eyelet 36 at this time is Lb1.
  • the tension pulley 22 and the contact point on the most downstream side of the wire 11 La2 is the distance between the dancer roller 14 and the most upstream contact of the wire 11.
  • the distance between the dancer roller 14 and the most downstream contact of the wire 11 and the third eyelet 36 at this time is Lb2.
  • the radius of the dancer roller 14 is R1
  • the radius of the tension pulley 22 is R2
  • the distance from the fulcrum 17 to the rotation axis of the tension pulley 22 is Lc
  • the distance from the fulcrum 17 to the rotation axis of the dancer roller 14 is Ld.
  • the radius of the tension pulley 22 is larger than the radius of the dancer roller 14 (R2> R1). Since the radius of the tension pulley 22 is set sufficiently large to secure the frictional force between the tension pulley 22 and the wire, the swing of the dancer roller 14 has almost no influence on the frictional force between the tension pulley 22 and the wire 11. do not do.
  • the rotation axis of the fulcrum 17 is positioned below the rotation axis of the tension pulley 22 in the vertical direction.
  • the dancer roller 14 swings at a position between the tension pulley 22 and the fulcrum 17.
  • the connection point between the tension coil spring 16 and the tension arm portion 15 is located on the opposite side of the dancer roller 14 with respect to the fulcrum 17 and swings further downward in the vertical direction of the fulcrum 17. This connection point swings in a direction opposite to the direction in which the dancer roller 14 swings.
  • the distance from the fulcrum 17 to the rotation axis of the tension pulley 22 is set to be larger than the sum of the radius of the tension pulley 22, the radius of the dancer roller 14, and the distance from the fulcrum 17 to the rotation axis of the dancer roller 14 (Lc> Ld + R1 + R2). Therefore, even if the dancer roller 14 swings below the tension pulley 22, the dancer roller 14 does not contact the tension pulley 22.
  • the swing direction Dr of the dancer roller 14 around the fulcrum 17 is completely the same as the direction Dr2 of the wire 11 moving away from the dancer roller 14. Does not match.
  • the swinging direction Dr of the dancer roller 14 is approximately parallel to the direction Dr2 in which the wire 11 moving away from the dancer roller 14 travels, so that the dancer roller 14 can swing due to a sharp increase in the linear velocity of the wire 11. Accordingly, the dancer roller 14 feeds the wire 11 by swinging and suppresses the increase in the linear acceleration of the wire 11 from affecting the tension pulley 22.
  • the path length of the wire 11 from the bobbin 12 to the tension pulley 22 does not change, and the rotational angular acceleration of the tension pulley 22 shown in Equation (3), ⁇ (d / dt) ⁇ 2 ⁇ ⁇ , is zero or close to zero. Can be a value. Therefore, the tension of the wire 11 in the tension pulley portion 13 can be made constant or close to constant.
  • the natural frequency related to the swing of the dancer roller 14 and the tension arm portion 15 is set to be twice or more the rotational speed of the flyer nozzle 24. This is for the following reason. If the natural frequency of the swing of the dancer roller 14 is smaller than twice the number of rotations of the flyer nozzle 24, the dancer roller according to the fluctuation of the drawing length when the wire 11 is wound around the workpiece 6 described in FIG. This is because the swing of 14 is delayed and the change in linear acceleration cannot be absorbed by the swing of dancer roller 14.
  • the dancer roller 14 is wound with the wire 11 delivered from the tension pulley portion 13 and guides the wire 11 to the winding portion, so that the pulley is interposed between the tension pulley portion 13 and the dancer roller 14. No pulley is required between the dancer roller 14 and the winding portion. Therefore, the tension adjusting device 3 can be miniaturized. Moreover, since it is not necessary to bend the wire 11 in many places with many pulleys, elongation does not arise in the wire 11 and winding quality can be improved. Further, the direction in which the dancer roller 14 swings around the fulcrum 17 is parallel to the direction of the wire 11 from the dancer roller 14 toward the winding portion. Therefore, when the linear acceleration of the wire 11 sharply increases, the dancer roller 14 swings. The wire 11 can be sent out according to the linear acceleration by movement.
  • the direction of the wire 11 from the tension pulley portion 13 toward the dancer roller 14 is perpendicular to the direction of the wire 11 from the dancer roller 14 toward the winding portion. Even if the wire 11 is sent out by approaching the portion, the influence of the swing of the dancer roller 14 on the tension pulley portion 13 can be suppressed.
  • the wire 11 is wound around the dancer roller 14 over a half circumference around the rotation axis of the dancer roller 14, so that the dancer roller 14 and the dancer roller 14 have a smaller winding angle than the dancer roller 14.
  • the frictional force with the wire 11 can be kept large. Therefore, the influence which the tension
  • the winding device 1 since the number of pulleys on the path used for the tension adjusting device 3 can be reduced, the winding device 1 can be miniaturized. Moreover, since the frequency
  • the natural frequency related to the swing of the dancer roller 14 is more than twice the number of rotations of the flyer arm portion 4, and therefore follows the change in linear acceleration that occurs when the wire 11 is wound around the workpiece 6.
  • the dancer roller 14 can be swung, and the steep increase in linear acceleration can be absorbed by the swing of the dancer roller 14.
  • the path length of the wire 11 from the dancer roller 14 to the winding portion is shortened. Therefore, the change in the linear acceleration of the wire 11 generated in the winding portion is reduced. 14 can be absorbed.
  • the back tensioner 23 in the first embodiment. Any structure that can apply tension to the wire 11 to the extent that the wire 11 does not slip on the outer peripheral surface of the tension pulley 22 such as a spring type or an electromagnetic brake type may be used.
  • the linear motor 74, the ball spline shaft 82, the toothed belt 104, and the like are used as the moving mechanism.
  • the present invention is not limited to such a configuration.
  • FIG. 14 is a diagram illustrating a positional relationship among the tension pulley 22, the dancer roller 14, the tension arm unit 15, and the urging unit when the linear acceleration is not increased in the modification of the first embodiment.
  • FIG. 15 is a diagram illustrating a positional relationship among the tension pulley 22, the dancer roller 14, the tension arm unit 15, and the urging unit when the linear acceleration increases in the modification of the first embodiment.
  • the fulcrum 17 is positioned below the rotation axis of the tension pulley 22 in the vertical direction.
  • the dancer roller 14 swings further vertically below the fulcrum 17.
  • the connection point between the compression coil spring 105 that is the urging portion and the tension arm portion 15 is located on the opposite side of the dancer roller 14 with respect to the fulcrum 17, and swings between the fulcrum 17 and the tension pulley 22. This connection point swings in a direction opposite to the direction in which the dancer roller 14 swings.
  • the urging portion that urges the tension arm portion 15 in one of the circumferential directions around the fulcrum 17 is the tension coil spring 16, but the tension arm portion 15 is urged by elasticity. If possible, it is not limited to the tension coil spring 16.
  • the biasing portion may be realized by a compression coil spring 105.
  • the swing direction Dr of the dancer roller 14 around the fulcrum 17 may be approximately parallel to the direction Dr2 of the wire 11 from the dancer roller 14 toward the flyer device 2.
  • the tension pulley 22 may be positioned so long as the direction of the wire 11 from the tension pulley 22 toward the dancer roller 14 is perpendicular to the swinging direction Dr of the dancer roller 14.
  • the positional relationship between the tension pulley 22 and the flyer device 2 with respect to the dancer roller 14 may be any arrangement as long as the winding angle of the dancer roller 14 is 180 degrees or more, ideally 270 degrees.
  • FIG. 16 is a diagram illustrating a configuration of a winding device 1B according to the second embodiment.
  • the workpiece 6 in the second embodiment is rotated by the spindle device 106.
  • the winding part has a spindle nozzle 107, and sends the wire 11 from the spindle nozzle 107 toward the workpiece 6.
  • the spindle device 106 aligns the spindle axis line with the center axis line of the workpiece 6 and rotates the workpiece 6 around the spindle axis line.
  • the wire 11 delivered from the spindle nozzle 107 is wound around the rotating workpiece 6. Also in this case, since the outer peripheral surface of the work 6 around which the wire 11 is wound is not circular around the center axis of the work 6, linear acceleration of the wire 11 occurs, and the tension of the wire 11 delivered from the spindle nozzle 107 is reduced. Change occurs.
  • the dancer roller 14 and the tension arm portion 15 swing as the tension of the wire 11 increases as in the first embodiment. The influence of the increase in the tension of the wire 11 on the tension pulley 13 is suppressed by the frictional force between the dancer roller 14 and the wire 11 and the deformation energy of the urging portion.
  • the pulley at the midpoint from the tension pulley 22 to the dancer roller 14 and the dancer roller 14 A pulley at an intermediate position up to the winding portion can be omitted, and the influence of the linear acceleration of the wire 11 due to the winding of the wire 11 around the workpiece 6 can be suppressed from being applied to the tension pulley portion 13.
  • the number of pulleys provided in the tension adjusting device 3 can be reduced as compared with the prior art, and the tension adjusting device 3 can be downsized.
  • the winding device 1B including the tension adjusting device 3 can be downsized.
  • the number of times of bending the wire 11 from the bobbin 12 to the workpiece 6 can be reduced by reducing the number of pulleys. Therefore, it is possible to prevent the winding quality from deteriorating. Furthermore, even if linear acceleration occurs in the wire 11 when the wire 11 is wound around the workpiece 6, fluctuations in tension are suppressed by the swing of the dancer roller 14, so that winding defects due to fluctuations in the tension of the wire 11 are prevented. Can be prevented.
  • FIG. 17 is a diagram illustrating a configuration of a winding device according to the third embodiment.
  • FIG. 18 is a diagram illustrating the workpiece 6 and the drive path of the nozzle unit 108 driven along the side surface of the workpiece 6 in the winding device according to the third embodiment.
  • a winding device 1C shown in FIGS. 17 and 18 is a type of winding device called a nozzle winding machine to which a workpiece 6 is fixed.
  • the workpiece 6 is formed in a rectangular shape as viewed from the tension adjusting device 3 side.
  • the nozzle part 108 moves along the side surface of the workpiece 6 around the central axis line from the workpiece 6 toward the tension adjusting device 3.
  • the nozzle unit 108 is driven by the nozzle driving unit 109 and moves around the workpiece 6.
  • the wire 11 is delivered from the nozzle portion 108, and the delivered wire 11 is wound around the rectangular workpiece 6.
  • the shape of the workpiece 6 is not circular but rectangular when viewed from the tension adjusting device 3 side, if the nozzle portion 108 moves at a constant speed when the wire 11 is wound around the workpiece 6, the workpiece 6 is sent out from the nozzle portion 108.
  • a linear acceleration is generated in the wire 11 to be applied.
  • the nozzle portion 108 moves along the side surface of the workpiece 6 in the third embodiment, it is different from the first embodiment in which the flyer nozzle 24 is rotated and the second embodiment in which the workpiece 6 is rotated by the spindle device 106.
  • the linear acceleration generated in the third embodiment is small.
  • linear acceleration is generated although it is small as compared with the first and second embodiments.
  • the linear acceleration generated during winding is absorbed by the swing of the dancer roller 14 and the tension arm portion 15.
  • the dancer roller 14 and the tension arm portion 15 swing according to the increase in the linear acceleration of the wire 11 as in the first embodiment, and the wire 11 is fed out by this swing.
  • produces in the wire 11 is suppressed.
  • the friction between the dancer roller 14 and the wire 11 and the deformation of the tension coil spring 16 suppress the influence of the increase in the tension of the wire 11 on the tension pulley portion 13.
  • the tension pulley 22 is connected to the dancer roller 14.
  • the pulley on the way to the end and the pulley on the way from the dancer roller 14 to the winding portion can be omitted, and the influence of the linear acceleration of the wire 11 due to the winding of the wire 11 around the work 6 is affected by the tension pulley portion. 13 can be suppressed. Since the number of pulleys provided in the tension adjusting device 3 can be reduced as compared with the prior art, the tension adjusting device 3 can be made smaller than before. Therefore, the winding device 1C including the tension adjusting device 3 can also be reduced in size.
  • the number of times the wire 11 is bent from the bobbin 12 to the workpiece 6 can be reduced. Therefore, it is possible to prevent a decrease in winding quality. Furthermore, even if linear acceleration occurs in the wire 11 when the wire 11 is wound around the workpiece 6, fluctuations in tension are suppressed by the swing of the dancer roller 14, so that winding defects due to fluctuations in the tension of the wire 11 are prevented. Can be prevented.
  • FIG. 19 is a diagram illustrating a configuration of winding device 1D in the fourth embodiment.
  • the servo motor 25 is feedback controlled, and a constant torque is generated in the tension pulley 22 by this feedback control.
  • the torque Q is constant, if the rotational angular acceleration ⁇ (d / dt) ⁇ 2 ⁇ ⁇ of the tension pulley 22 can be made zero, the tension for winding generated in the wire 11 T2 is constant.
  • the rotational angular acceleration ⁇ (d / dt) ⁇ 2 ⁇ ⁇ of the tension pulley 22 is likely to fluctuate and may not be zero.
  • the rotational angular acceleration ⁇ ( d / dt) ⁇ 2 ⁇ ⁇ is measured.
  • the measurement unit 110 can be realized by at least one of an encoder and an acceleration pickup.
  • the current torque Q2 is expressed by the following equation (5) as a value obtained by multiplying the measurement result of the rotational angular acceleration ⁇ (d / dt) ⁇ 2 ⁇ ⁇ by the moment of inertia I.
  • Q2 I ⁇ (d / dt) ⁇ 2 ⁇ ⁇ (5)
  • the rotational angular acceleration ⁇ (d / dt) ⁇ 2 ⁇ ⁇ is obtained and the angular data measured by the encoder or the like is differentiated twice, if the calculation speed of the control unit 7 is slow, the winding device 1D In some cases, it is difficult to obtain the rotational angular acceleration in real time during operation.
  • the rotational angular acceleration ⁇ (d / dt) ⁇ 2 ⁇ ⁇ is a function of the rotational position ⁇ of the flyer nozzle 24 prior to the operation of the winding device 1C.
  • the term of I ⁇ (d / dt) ⁇ 2 ⁇ ⁇ among the torque Q3 represented by the equation (6) may be given by feedforward control.
  • Such a torque control of the servo motor 25 that obtains a function of rotational angular acceleration in advance and performs feedforward control based on this function is performed by the nozzle winding machine of the third embodiment and the fourth embodiment.
  • the present invention can be applied to both the winding device 1D.
  • the rotational angular acceleration ⁇ (d / dt) ⁇ 2 ⁇ ⁇ is obtained in advance as a function of the rotational position ⁇ of the nozzle unit 108.
  • the rotational position ⁇ is a value indicating which position of the flyer nozzle 24 or the nozzle unit 108 is 360 degrees with respect to the rotation of the flyer nozzle 24 or the nozzle unit 108.
  • the rotational angular acceleration ⁇ (d / dt) ⁇ 2 ⁇ ⁇ of the servo motor of the tension device is given with only the torque to be generated on the tension pulley. Is obtained as a function of the rotational position ⁇ of the flyer nozzle 24 or the rotational position ⁇ of the nozzle unit 108. At this time, the time derivative of the rotational position ⁇ is kept constant.
  • the rotational position ⁇ of the flyer nozzle 24 or the rotational position ⁇ of the nozzle unit 108 is detected, and the rotation is performed based on the rotation angular acceleration function acquired in advance according to the detected rotational position ⁇ .
  • the angular acceleration ⁇ (d / dt) ⁇ 2 ⁇ ⁇ is obtained, and the torque Q3 to be applied is obtained based on the equation (6).
  • the rotational angular acceleration can be detected in real time using an acceleration pickup or the like, and when the calculation speed of the control unit 7 is sufficiently fast and the rotational angular acceleration can be measured in real time while the winding device 1D is in operation, Using the rotational angular acceleration ⁇ (d / dt) ⁇ 2 ⁇ ⁇ detected or measured in real time, feedback control based on the equation (6) is performed based on the rotational angular acceleration function obtained in advance. This is preferable because control can be performed with higher accuracy.
  • the rotational angular acceleration of the tension pulley 22 is measured by the measurement unit 110, and the torque applied from the servo motor 25 to the tension pulley 22 is controlled based on the measurement result of the measurement unit 110. Variations in tension generated in the wire 11 can be suppressed, and occurrence of winding defects can be prevented.
  • the shape of the workpiece 6 is a rectangle when viewed along the central axis, the shape of the workpiece 6 is not limited to a rectangle. If the shape of the workpiece 6 when viewed along the central axis is a polygon, the linear acceleration of the wire 11 varies, and the variation can be suppressed by the swing of the dancer roller 14 to prevent the occurrence of winding defects. Can be prevented.

Landscapes

  • Tension Adjustment In Filamentary Materials (AREA)
  • Coil Winding Methods And Apparatuses (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

A tension adjusting device (3) conducts a wire material (11), which is delivered from a bobbin (12), to a wire winding unit (2) and adjusts the tension of the wire material (11). The tension adjusting device 3 is provided with a tension pulley (13), a dancer roller (14), a tension arm (15), and a biasing unit (16). The tension pulley (13) applies tension to the wire material (11) delivered from the bobbin (12). The tension arm (15) rotatably supports the dancer roller (14) and defines the pivoting of the dancer roller (14) about a fulcrum (17). The biasing unit (16) biases the tension arm (15) in a circular direction about the fulcrum (17) so that the dancer roller (14) moves away from the wire winding unit (2). The wire material (11) leaving the dancer roller (14) moves rectilinearly toward the wire winding unit (2) from the dancer roller (14).

Description

張力調整装置および巻線装置Tension adjusting device and winding device
 本願は、線材をワークに巻回するときに線材の張力を調整する張力調整装置およびこれを備える巻線装置に関する。 The present application relates to a tension adjusting device that adjusts the tension of a wire when the wire is wound around a workpiece, and a winding device including the tension adjusting device.
 線材を、回転子または固定子などのワークに巻回する装置の従来技術として、上流側に配置されているボビンと、ボビンの巻線を送出するテンションプーリと、下流側に配置され巻線を引き込むフライヤと、テンションプーリおよびフライヤの間に配置されているテンション調整機構とを備える巻線装置が開示されている(例えば特許文献1参照)。この巻線装置のテンション調整機構は、上流側に配置された第一プーリと、下流側に配置された第二プーリと、これら第一プーリおよび第二プーリの間に配置された第三プーリとを有している。第一プーリと第二プーリとは、回転可能に固定され、固定プーリとして機能しているのに対し、第三プーリは、支柱を中心にして揺動する揺動プーリとして機能するように構成されている。 As a prior art of an apparatus for winding a wire around a work such as a rotor or a stator, a bobbin disposed on the upstream side, a tension pulley for sending the bobbin winding, and a winding disposed on the downstream side A winding device is disclosed that includes a flyer that pulls in, and a tension adjustment mechanism that is disposed between the tension pulley and the flyer (see, for example, Patent Document 1). The tension adjusting mechanism of the winding device includes a first pulley disposed on the upstream side, a second pulley disposed on the downstream side, and a third pulley disposed between the first pulley and the second pulley. have. The first pulley and the second pulley are rotatably fixed and function as a fixed pulley, while the third pulley is configured to function as a swinging pulley that swings around a column. ing.
特開2010-118452号公報JP 2010-118452 A
 特許文献1に開示される従来技術では、テンションプーリと揺動プーリとの間に第一プーリが配置され、揺動プーリとフライヤとの間に第二プーリが配置されているので、滑車が多く存在し、テンション調整機構および巻線装置が大形化するという問題点がある。また線材が通過する経路上に線材を曲げる多くの滑車が配置されるので、多くの滑車によって線材に伸びが生じ、コイルの巻線品質を悪化させるという問題点がある。 In the prior art disclosed in Patent Document 1, the first pulley is disposed between the tension pulley and the swing pulley, and the second pulley is disposed between the swing pulley and the flyer. There is a problem that the tension adjusting mechanism and the winding device are increased in size. In addition, since many pulleys that bend the wire are arranged on the path through which the wire passes, there is a problem that the wire is stretched by many pulleys and the winding quality of the coil is deteriorated.
 本願は、上記のような課題を解決するための技術を開示するものであり、従来技術に比べて小形化することができ、また巻線品質を向上させることのできる張力調整装置および巻線装置を提供することを目的とする。 The present application discloses a technique for solving the above-described problems, and a tension adjusting device and a winding device that can be reduced in size and improve the winding quality as compared with the prior art. The purpose is to provide.
 本願に開示される張力調整装置は、ボビンから送出される線材を、ワークに対して前記線材の巻回を行う巻線部に導き、前記線材の張力を調整する張力調整装置であって、
前記ボビンから送出される前記線材に張力を付与するテンションプーリ部と、
前記テンションプーリ部から送出される前記線材が巻掛けられ、前記線材を前記巻線部に導くとともに、揺動可能に設けられるダンサローラと、
前記ダンサローラを回転自在に支持し、前記ダンサローラの回転軸とは異なる位置に設けられる支点を中心として、前記ダンサローラの揺動を規定するテンションアーム部と、
前記支点を中心とした周方向のうち、前記ダンサローラが前記巻線部から遠ざかる向きに、前記テンションアーム部を付勢する付勢部とを備え、
前記ダンサローラを離れた線材は、前記ダンサローラから直線的に前記巻線部に向かう。
The tension adjusting device disclosed in the present application is a tension adjusting device that guides a wire rod fed from a bobbin to a winding portion that winds the wire rod around a workpiece, and adjusts the tension of the wire rod,
A tension pulley portion for applying tension to the wire rod fed from the bobbin;
The wire rod delivered from the tension pulley portion is wound, and the wire rod is guided to the winding portion, and a dancer roller is provided so as to be swingable.
A tension arm portion that rotatably supports the dancer roller, and defines a swing of the dancer roller around a fulcrum provided at a position different from a rotation axis of the dancer roller;
A biasing part that biases the tension arm part in a direction in which the dancer roller moves away from the winding part in a circumferential direction around the fulcrum;
The wire that has left the dancer roller is linearly directed from the dancer roller to the winding portion.
 また本願に開示される巻線装置は、前記張力調整装置と、前記巻線部とを備える。 The winding device disclosed in the present application includes the tension adjusting device and the winding unit.
 本願に開示される張力調整装置および巻線装置によれば、小形化することができ、また巻線品質を向上させることができる。 According to the tension adjusting device and the winding device disclosed in the present application, the size can be reduced and the winding quality can be improved.
実施の形態1による巻線装置の構成を表す図である。1 is a diagram illustrating a configuration of a winding device according to a first embodiment. 実施の形態1による張力調整装置の斜視図である。1 is a perspective view of a tension adjusting device according to Embodiment 1. FIG. 実施の形態1におけるテンションプーリおよびサーボモータの斜視図である。FIG. 2 is a perspective view of a tension pulley and a servo motor in the first embodiment. 実施の形態1におけるバックテンショナの平面図である。2 is a plan view of a back tensioner according to Embodiment 1. FIG. 実施の形態1におけるバックテンショナを上流側から見た側面図である。FIG. 3 is a side view of the back tensioner according to Embodiment 1 as viewed from the upstream side. 実施の形態1におけるダンサローラの正面図である。FIG. 3 is a front view of the dancer roller in the first embodiment. 実施の形態1におけるフライヤ装置の正面図である。It is a front view of the fryer apparatus in Embodiment 1. FIG. 実施の形態1におけるフライヤ装置の断面図である。It is sectional drawing of the fryer apparatus in Embodiment 1. FIG. 実施の形態1におけるワークに線材を巻回するときの、フライヤノズルの位置を表す断面図である。FIG. 3 is a cross-sectional view showing the position of a flyer nozzle when a wire is wound around a workpiece in the first embodiment. 実施の形態1において、ワークに対するフライヤアーム部の角度と、フライヤノズルから送出される線材の線加速度との関係を表す図である。In Embodiment 1, it is a figure showing the relationship between the angle of the flyer arm part with respect to a workpiece | work, and the linear acceleration of the wire rod sent from a flyer nozzle. 実施の形態1において、テンションプーリ部が線材に張力を付与する様子を表す図である。In Embodiment 1, it is a figure showing a mode that a tension pulley part provides tension | tensile_strength to a wire. 実施の形態1において、線速度が急峻に増大していないときの、テンションプーリおよびダンサローラの様子を表す図である。In Embodiment 1, it is a figure showing the mode of a tension pulley and a dancer roller when the linear velocity is not increasing steeply. 実施の形態1において、線速度の急峻な増大によって線材の張力が増大しているときの、テンションプーリおよびダンサローラの様子を表す図である。In Embodiment 1, it is a figure showing the mode of a tension pulley and a dancer roller when the tension | tensile_strength of a wire is increasing by the steep increase of a linear velocity. 実施の形態1の変形例において、線加速度が増大していないときの、テンションプーリ、ダンサローラ、テンションアームおよび付勢部の位置関係を表す図である。In the modification of Embodiment 1, it is a figure showing the positional relationship of a tension pulley, a dancer roller, a tension arm, and an urging | biasing part when the linear acceleration is not increasing. 実施の形態1の変形例において、線加速度が増大したときの、テンションプーリ、ダンサローラ、テンションアームおよび付勢部の位置関係を表す図である。In the modification of Embodiment 1, it is a figure showing the positional relationship of a tension pulley, a dancer roller, a tension arm, and an urging | biasing part when a linear acceleration increases. 実施の形態2による巻線装置の構成を表す図である。It is a figure showing the structure of the winding apparatus by Embodiment 2. FIG. 実施の形態3による巻線装置の構成を表す図である。FIG. 6 is a diagram illustrating a configuration of a winding device according to a third embodiment. 実施の形態3による巻線装置において、ワークと、ワークの側面に沿って駆動されるノズルの駆動経路とを表す図である。FIG. 10 is a diagram illustrating a workpiece and a drive path of a nozzle driven along a side surface of the workpiece in the winding device according to the third embodiment. 実施の形態4による巻線装置の構成を表す図である。It is a figure showing the structure of the winding apparatus by Embodiment 4.
 以下、図面を参照しながら複数の実施の形態について説明する。以下の説明においては、各形態に先行する形態ですでに説明している事項に対応している部分には同一の参照符を付し、重複する説明を略す場合がある。構成の一部のみを説明している場合、構成の他の部分は、先行して説明している形態と同様とする。 Hereinafter, a plurality of embodiments will be described with reference to the drawings. In the following description, parts corresponding to items already described in the forms preceding each form may be denoted by the same reference numerals, and overlapping descriptions may be omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in the preceding section.
実施の形態1.
 図1は、実施の形態1による巻線装置1の構成を表す図である。巻線装置1は、巻線部としてのフライヤ装置2と、張力調整装置3とを備える。フライヤ装置2は、フライヤアーム部4とフライヤ回転部5とを備える。フライヤアーム部4は、ワーク6に対して線材11を送出する。フライヤ回転部5は、フライヤアーム部4を回転させる。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration of a winding device 1 according to the first embodiment. The winding device 1 includes a flyer device 2 as a winding portion and a tension adjusting device 3. The flyer device 2 includes a flyer arm unit 4 and a flyer rotating unit 5. The flyer arm unit 4 sends the wire 11 to the workpiece 6. The flyer rotating unit 5 rotates the flyer arm unit 4.
 張力調整装置3は、ボビン12から送出される線材11を、巻線部に導き、線材11の張力を調整する。巻線部は、ワーク6に対して線材11の巻回を行う。張力調整装置3は、テンションプーリ部13と、ダンサローラ14と、テンションアーム部15と、付勢部としての引張コイルばね16を備える。テンションプーリ部13は、ボビン12から送出される線材11に張力を付与する。ダンサローラ14は、テンションプーリ部13から送出される線材11が巻掛けられ、線材11を巻線部に導くとともに、揺動可能に設けられる。 The tension adjusting device 3 guides the wire 11 delivered from the bobbin 12 to the winding part and adjusts the tension of the wire 11. The winding part winds the wire 11 around the workpiece 6. The tension adjusting device 3 includes a tension pulley section 13, a dancer roller 14, a tension arm section 15, and a tension coil spring 16 as an urging section. The tension pulley unit 13 applies tension to the wire 11 delivered from the bobbin 12. The dancer roller 14 is provided so that the wire 11 delivered from the tension pulley portion 13 is wound around, and the wire 11 is guided to the winding portion and swingable.
 テンションアーム部15は、ダンサローラ14を回転自在に支持する。またテンションアーム部15は、支点17を中心として、ダンサローラ14の揺動を規定する。支点17は、ダンサローラ14の回転軸とは異なる位置に設けられる。支点17を中心としてダンサローラ14が揺動する揺動方向Drは、ダンサローラ14から巻線部に向かう線材11の方向Dr2におよそ平行であり、これによって、ダンサローラ14を離れた線材11は、ダンサローラ14から直線的にフライヤ装置2に向かう。付勢部は、テンションアーム部15を、ダンサローラ14が巻線部から遠ざかる向きに付勢する。 The tension arm unit 15 supports the dancer roller 14 in a rotatable manner. The tension arm 15 regulates the swing of the dancer roller 14 around the fulcrum 17. The fulcrum 17 is provided at a position different from the rotational axis of the dancer roller 14. The swinging direction Dr in which the dancer roller 14 swings around the fulcrum 17 is approximately parallel to the direction Dr2 of the wire 11 from the dancer roller 14 toward the winding portion, whereby the wire 11 that has left the dancer roller 14 is moved to the dancer roller 14. To the flyer device 2 in a straight line. The urging portion urges the tension arm portion 15 in a direction in which the dancer roller 14 moves away from the winding portion.
 テンションプーリ部13からダンサローラ14に向かう線材11の方向は、ダンサローラ14から巻線部に向かう線材11の方向に対し、垂直である。本実施の形態において「垂直」は、必ずしも90度のみを意味するものではなく、ダンサローラ14の揺動によって、テンションプーリ部13からダンサローラ14に向かう線材11の方向、およびダンサローラ14から巻線部に向かう線材11の方向は、およそ90度を中心として変化しても良い。ダンサローラ14において線材11は、ダンサローラ14の回転軸線を中心としてダンサローラ14に巻掛けられる。 The direction of the wire 11 from the tension pulley portion 13 toward the dancer roller 14 is perpendicular to the direction of the wire 11 from the dancer roller 14 toward the winding portion. In the present embodiment, “vertical” does not necessarily mean only 90 degrees, but the swing of the dancer roller 14 causes the direction of the wire 11 from the tension pulley portion 13 to the dancer roller 14 and from the dancer roller 14 to the winding portion. The direction of the wire 11 that heads may change about 90 degrees. In the dancer roller 14, the wire 11 is wound around the dancer roller 14 around the rotation axis of the dancer roller 14.
 本実施の形態においてワーク6は、回転電機の固定子または回転子である。ワーク6において線材11が巻回される外周面は、円形ではなく、長方形の形状である。巻線部によってワーク6に巻回される線材11は、ボビン12に巻き取られた状態で、巻線装置1に供給される。線材11が通過する経路において、ボビン12に近いほうを上流側、ワーク6に近いほうを下流側と称することがある。 In the present embodiment, the workpiece 6 is a stator or a rotor of a rotating electric machine. The outer peripheral surface around which the wire 11 is wound in the workpiece 6 is not circular but rectangular. The wire 11 wound around the workpiece 6 by the winding portion is supplied to the winding device 1 while being wound around the bobbin 12. In the path through which the wire 11 passes, the side closer to the bobbin 12 may be referred to as the upstream side and the side closer to the workpiece 6 may be referred to as the downstream side.
 図1に示すように、ボビン12に巻回された線材11は、第1滑車21を介して張力調整装置3のテンションプーリ部13に供給される。テンションプーリ部13は、テンションプーリ22、バックテンショナ23、および制御部7を備える。ボビン12から、第1滑車21を経由して巻線装置1に供給された線材11は、バックテンショナ23を通過し、テンションプーリ22に巻掛けられ、ダンサローラ14に向かう。ダンサローラ14において線材11は、ダンサローラ14の回転軸線を中心として、中心角がおよそ270度の範囲のダンサローラ14の外周面に巻掛けられる。このように、滑車の外周面に対して線材11が巻掛けられ、滑車と接触する範囲を、滑車の回転軸線を中心とする中心角で表し、これを以下「巻き付け角度」と称する。 As shown in FIG. 1, the wire 11 wound around the bobbin 12 is supplied to the tension pulley portion 13 of the tension adjusting device 3 via the first pulley 21. The tension pulley unit 13 includes a tension pulley 22, a back tensioner 23, and the control unit 7. The wire 11 supplied from the bobbin 12 to the winding device 1 via the first pulley 21 passes through the back tensioner 23, is wound around the tension pulley 22, and travels toward the dancer roller 14. In the dancer roller 14, the wire 11 is wound around the outer peripheral surface of the dancer roller 14 having a central angle in the range of about 270 degrees around the rotation axis of the dancer roller 14. Thus, the range in which the wire 11 is wound around the outer peripheral surface of the pulley and is in contact with the pulley is represented by a central angle with the rotation axis of the pulley as the center, and this is hereinafter referred to as “winding angle”.
 ダンサローラ14において線材11は、およそ270度の巻き付け角度で巻掛けられた後、ダンサローラ14よりも下流側に設けられるフライヤ装置2に向かう。フライヤ装置2は、フライヤアーム部4と、フライヤ回転部5とを備える。フライヤアーム部4は、ワーク6に対して線材11を繰り出す部分である。フライヤ装置2についての詳細は、後述する。 The wire 11 is wound around the dancer roller 14 at a winding angle of about 270 degrees, and then travels to the flyer device 2 provided on the downstream side of the dancer roller 14. The flyer device 2 includes a flyer arm unit 4 and a flyer rotating unit 5. The flyer arm portion 4 is a portion that feeds the wire 11 to the workpiece 6. Details of the fryer device 2 will be described later.
 次に、図2および図3を参照しながら、張力調整装置3において定められる線材11の経路、およびテンションプーリ部13について説明する。図2は、実施の形態1による張力調整装置3の斜視図である。図3は、実施の形態1におけるテンションプーリ22およびサーボモータ25の斜視図である。図2に示すように、ボビン12に巻回されている線材11は、上流側から、第1アイレット26、第1滑車21、第2アイレット31、フェルト部32、バックテンショナ23を経由して、テンションプーリ22に巻掛けられる。 Next, the path of the wire 11 defined in the tension adjusting device 3 and the tension pulley portion 13 will be described with reference to FIGS. FIG. 2 is a perspective view of the tension adjusting device 3 according to the first embodiment. FIG. 3 is a perspective view of the tension pulley 22 and the servo motor 25 in the first embodiment. As shown in FIG. 2, the wire 11 wound around the bobbin 12 passes through the first eyelet 26, the first pulley 21, the second eyelet 31, the felt part 32, and the back tensioner 23 from the upstream side. It is wound around the tension pulley 22.
 第1アイレット26は、線材11を被覆している皮膜を保護する。第1滑車21は、第1アイレット26からの線材11を、バックテンショナ23に向けて屈曲させる。第2アイレット31は、第2滑車からフェルト部32に至る線材11の位置を調整する。フェルト部32は、線材11をフェルトによって挟むことによって、線材11の表面のワックス量を調整する。バックテンショナ23では線材11を複数のサファイヤ板33で挟み、通過する線材11に対して動摩擦力を付与して両側から押圧する。バックテンショナ23について詳しくは後述する。 The first eyelet 26 protects the film covering the wire 11. The first pulley 21 bends the wire 11 from the first eyelet 26 toward the back tensioner 23. The second eyelet 31 adjusts the position of the wire 11 from the second pulley to the felt part 32. The felt part 32 adjusts the amount of wax on the surface of the wire 11 by sandwiching the wire 11 with felt. In the back tensioner 23, the wire 11 is sandwiched between a plurality of sapphire plates 33, and a dynamic friction force is applied to the passing wire 11 to press it from both sides. Details of the back tensioner 23 will be described later.
 バックテンショナ23の下流側に位置するテンションプーリ22には、線材11が所定の巻数、巻回される。図3に示すように、テンションプーリ22の回転軸は、サーボモータ25に接続され、サーボモータ25の回転トルクが一定となるようにフィードバック制御された状態で、サーボモータ25によって回転駆動される。テンションプーリ22の回転軸は、テンションプーリ台34に回転自在に支持される。サーボモータ25は、テンションプーリ台34に固定される。サーボモータ25のフィードバック制御は、張力調整装置3の制御部7によって行われる。 The wire 11 is wound around the tension pulley 22 positioned downstream of the back tensioner 23 by a predetermined number of turns. As shown in FIG. 3, the rotation shaft of the tension pulley 22 is connected to the servomotor 25 and is rotationally driven by the servomotor 25 in a state where feedback control is performed so that the rotational torque of the servomotor 25 is constant. The rotation shaft of the tension pulley 22 is rotatably supported by the tension pulley base 34. The servo motor 25 is fixed to the tension pulley base 34. Feedback control of the servo motor 25 is performed by the control unit 7 of the tension adjusting device 3.
 テンションプーリ22のうち、回転軸線を中心として外側に位置する外周面には、線材11が接触するプーリガイド部35が形成されている。プーリガイド部35は、ニトリルゴムまたはウレタン樹脂等、線材11が滑りにくい素材によって形成される。これによって、線材11と、線材11に接触するテンションプーリ22の外周面との間には静止摩擦力が働き、テンションプーリ22の回転によって線材11は上流側から下流側に送出される。バックテンショナ23において線材11に付与される動摩擦力は、テンションプーリ22において線材11が滑らない程度の大きさに設定される。線材11が移動する中で、線材11に働く張力は、主にテンションプーリ22の回転トルクと静止摩擦力の大きさとによって決定される。 The pulley guide part 35 which the wire 11 contacts is formed in the outer peripheral surface located outside the tension pulley 22 centering on the rotation axis. The pulley guide portion 35 is formed of a material such as nitrile rubber or urethane resin that the wire 11 is difficult to slip. As a result, a static frictional force acts between the wire 11 and the outer peripheral surface of the tension pulley 22 that contacts the wire 11, and the wire 11 is sent from the upstream side to the downstream side by the rotation of the tension pulley 22. The dynamic friction force applied to the wire 11 in the back tensioner 23 is set to a magnitude that does not cause the wire 11 to slip in the tension pulley 22. While the wire 11 moves, the tension acting on the wire 11 is mainly determined by the rotational torque of the tension pulley 22 and the magnitude of the static friction force.
 テンションプーリ22を離れた線材11は、テンションプーリ22の下流側に位置するダンサローラ14に巻掛けられ、ダンサローラ14の外周面に接触して進む。ダンサローラ14は、ワーク6に巻回されることによって線材11に発生する移動速度の変化を抑制する。ダンサローラ14を離れた線材11は、第3アイレット36を通ってフライヤ装置2に向かう。 The wire 11 that has left the tension pulley 22 is wound around the dancer roller 14 located on the downstream side of the tension pulley 22 and advances in contact with the outer peripheral surface of the dancer roller 14. The dancer roller 14 suppresses a change in the moving speed generated in the wire 11 by being wound around the workpiece 6. The wire 11 that has left the dancer roller 14 passes through the third eyelet 36 toward the flyer device 2.
 ダンサローラ14よりも上流側に位置する線材11と、ダンサローラ14よりも下流側に位置する線材11とは、互いに接触する可能性があっても、巻線品質に悪影響は生じない。また、ダンサローラ14の上流側と下流側とで線材11どうしが接触することを防止する場合には、第3アイレット36の位置をダンサローラ14の回転軸線に平行な方向にずらす構成とすれば良い。 Even if there is a possibility that the wire 11 located on the upstream side of the dancer roller 14 and the wire 11 located on the downstream side of the dancer roller 14 may contact each other, the winding quality is not adversely affected. In order to prevent the wires 11 from contacting each other on the upstream side and the downstream side of the dancer roller 14, the position of the third eyelet 36 may be shifted in a direction parallel to the rotation axis of the dancer roller 14.
 次に、図4および図5を参照しながら、バックテンショナ23の構成について説明する。図4は、実施の形態1におけるバックテンショナ23の平面図である。図5は、実施の形態1におけるバックテンショナ23を上流側から見た側面図である。バックテンショナ23は、複数のサファイヤ板33と、複数のサファイヤ板33による線材11への押圧力を調整する複数のシリンダ41と、各シリンダ41からの動力を各サファイヤ板33に伝達するロッド42と、各サファイヤ板33の移動方向を規定する複数の押圧リニアガイド43と、複数のシリンダ41のハウジング部分および複数の押圧リニアガイド43を固定し支持するバックテンショナ台44とを有している。 Next, the configuration of the back tensioner 23 will be described with reference to FIGS. 4 and 5. FIG. 4 is a plan view of the back tensioner 23 according to the first embodiment. FIG. 5 is a side view of the back tensioner 23 according to Embodiment 1 as viewed from the upstream side. The back tensioner 23 includes a plurality of sapphire plates 33, a plurality of cylinders 41 that adjust the pressing force applied to the wire 11 by the plurality of sapphire plates 33, and a rod 42 that transmits power from each cylinder 41 to each sapphire plate 33. Each of the sapphire plates 33 includes a plurality of pressing linear guides 43 that define the moving direction of the sapphire plates 33, and a back tensioner base 44 that fixes and supports the housing portions of the plurality of cylinders 41 and the plurality of pressing linear guides 43.
 一対のサファイヤ板33は、線材11を水平方向の両側から押圧し、上流側から下流側に3対、並んで配置される。3対のサファイヤ板33の上流側には、線材11の位置決めを行う第4アイレット45がバックテンショナ台44に固定されて設けられる。 The pair of sapphire plates 33 press the wire 11 from both sides in the horizontal direction and are arranged side by side in three pairs from the upstream side to the downstream side. On the upstream side of the three pairs of sapphire plates 33, a fourth eyelet 45 that positions the wire 11 is fixed to the back tensioner base 44.
 押圧リニアガイド43は、バックテンショナ台44に固定される複数のレールを有しており、対を成すサファイヤ板33のそれぞれに対応する各レール上に、一対のサファイヤ板33と、シリンダ41のロッド42が接続されている。シリンダ41のハウジング部分は、バックテンショナ台44に固定されている。各シリンダ41のロッド42が各シリンダ41から出た状態のときに線材11を押圧し、ロッド42が各シリンダ41内に引っ込んだ状態で線材11を開放する。線材11は、第4アイレット45によって位置決めされているので、3対のサファイヤ板33の間に位置する経路から外れることはない。本実施の形態において、巻線時の各シリンダ41のロッド42は、各シリンダ41から出た状態であり、一定の大きさの押圧力で線材11を押圧している。 The pressing linear guide 43 has a plurality of rails fixed to the back tensioner base 44, and a pair of sapphire plates 33 and a rod of the cylinder 41 on each rail corresponding to each pair of sapphire plates 33. 42 is connected. The housing portion of the cylinder 41 is fixed to the back tensioner base 44. The wire 11 is pressed when the rod 42 of each cylinder 41 is out of each cylinder 41, and the wire 11 is released while the rod 42 is retracted into each cylinder 41. Since the wire 11 is positioned by the fourth eyelet 45, the wire 11 does not deviate from the path positioned between the three pairs of sapphire plates 33. In the present embodiment, the rods 42 of the respective cylinders 41 at the time of winding are in a state of coming out of the respective cylinders 41 and pressing the wire 11 with a certain amount of pressing force.
 次に、図6を参照しながら、ダンサローラ14について説明する。図6は、実施の形態1におけるダンサローラ14の正面図である。ダンサローラ14は、第1ボールベアリング46を介してテンションアーム部15の一端部53に回転自在に取り付けられている。テンションアーム部15は、テンションアーム部15の長手方向両端部を除く中間部のいずれか1箇所において、第2ボールベアリング51を介してダンサローラ台52に回転可能に取り付けられている。テンションアーム部15がダンサローラ台52に取り付けられている点が、ダンサローラ14およびテンションアーム部15の揺動に関する支点17となる。 Next, the dancer roller 14 will be described with reference to FIG. FIG. 6 is a front view of the dancer roller 14 according to the first embodiment. The dancer roller 14 is rotatably attached to one end portion 53 of the tension arm portion 15 via a first ball bearing 46. The tension arm portion 15 is rotatably attached to the dancer roller base 52 via the second ball bearing 51 at any one of intermediate portions excluding both longitudinal ends of the tension arm portion 15. The point where the tension arm portion 15 is attached to the dancer roller base 52 is a fulcrum 17 related to the swinging of the dancer roller 14 and the tension arm portion 15.
 テンションアーム部15のうち、ダンサローラ14が取り付けられている一端部53とは反対側の他端部54には、引張コイルばね16の一端部が取り付けられている。引張コイルばね16の他端部は、自動調心座55を介してダンサローラ台52に固定されている。引張コイルばね16は、ダンサローラ14およびテンションアーム部15の、支点17を中心とする揺動によって伸縮する。ダンサローラ14の揺動方向Dr、すなわち支点17を中心とした円周の、ダンサローラ14の位置における接線方向は、ダンサローラ14からフライヤ装置2に向かう線材11の方向におよそ平行に設定されている。これによって、ダンサローラ14を離れた線材11は、ダンサローラ14から直線的にフライヤ装置2に向かう。ダンサローラ14が、下流側のフライヤ装置2に近づくときに、引張コイルばね16は伸長し、引張コイルばね16が自然状態に戻ると、ダンサローラ14はフライヤ装置2から遠ざかる。 One end of the tension coil spring 16 is attached to the other end 54 of the tension arm 15 opposite to the one end 53 to which the dancer roller 14 is attached. The other end of the tension coil spring 16 is fixed to the dancer roller base 52 via a self-aligning seat 55. The tension coil spring 16 expands and contracts by swinging the dancer roller 14 and the tension arm portion 15 about the fulcrum 17. The swinging direction Dr of the dancer roller 14, that is, the tangential direction at the position of the dancer roller 14 around the fulcrum 17 is set approximately parallel to the direction of the wire 11 from the dancer roller 14 toward the flyer device 2. As a result, the wire 11 that has left the dancer roller 14 is linearly directed from the dancer roller 14 to the fryer device 2. When the dancer roller 14 approaches the downstream flyer device 2, the tension coil spring 16 extends, and when the tension coil spring 16 returns to the natural state, the dancer roller 14 moves away from the flyer device 2.
 引張コイルばね16の他端部は、自動調心座55を介してダンサローラ台52に取り付けられているので、ダンサローラ14およびテンションアーム部15の揺動によって引張コイルばね16が伸縮方向以外の方向に変角しても、自動調心座55が引張コイルばね16の変角に応じて傾く。これによって、引張コイルばね16には、伸縮以外の方向の力が作用することは防がれる。 Since the other end portion of the tension coil spring 16 is attached to the dancer roller base 52 via the self-aligning seat 55, the tension coil spring 16 is moved in a direction other than the expansion / contraction direction by the swing of the dancer roller 14 and the tension arm portion 15. Even if the angle is changed, the self-aligning seat 55 is inclined according to the angle of the tension coil spring 16. Thereby, it is possible to prevent a force in a direction other than expansion and contraction from acting on the tension coil spring 16.
 支点17を中心としたテンションアーム部15の角度は、図6に示すように、レーザ変位計57によって測定する。この測定結果は、制御部7に送られ、テンションプーリ22を回転させるサーボモータ25のトルク制御に利用される。またこの測定結果は、バックテンショナ23の複数のシリンダ41によるサファイヤ板33の押圧力の調整に利用しても良い。 The angle of the tension arm 15 around the fulcrum 17 is measured by a laser displacement meter 57 as shown in FIG. The measurement result is sent to the control unit 7 and used for torque control of the servo motor 25 that rotates the tension pulley 22. The measurement result may be used for adjusting the pressing force of the sapphire plate 33 by the plurality of cylinders 41 of the back tensioner 23.
 次に、図7および図8を参照して、フライヤ装置2について説明する。図7は、実施の形態1におけるフライヤ装置2の正面図である。図8は、実施の形態1におけるフライヤ装置2の断面図である。フライヤ装置2の下流側には、ワーク6を保持するワーク保持部56が設けられる。ワーク6は、ワーク保持部56に静止した状態で保持され、フライヤノズル24から送出される線材11が、フライヤアーム部4の回転によってワーク6の外周面に巻回される。フライヤノズル24は、フライヤ装置2のうち、最も下流側に設けられる。 Next, the flyer device 2 will be described with reference to FIGS. FIG. 7 is a front view of the fryer apparatus 2 according to the first embodiment. FIG. 8 is a cross-sectional view of the fryer apparatus 2 according to the first embodiment. A work holding unit 56 that holds the work 6 is provided on the downstream side of the fryer apparatus 2. The workpiece 6 is held in a stationary state by the workpiece holding unit 56, and the wire 11 delivered from the flyer nozzle 24 is wound around the outer peripheral surface of the workpiece 6 by the rotation of the flyer arm unit 4. The fryer nozzle 24 is provided on the most downstream side in the fryer device 2.
 フライヤ装置2は、固定部61と可動部62とを備えている。固定部61は、台板63と、移動リニアガイド64と、リニア固定子67とを有している。台板63の上方には、可動部62が載置される。可動部62は、フライヤアーム部4の回転軸線に平行な方向に移動可能に設けられ、フライヤアーム部4、回転部材65、シャフト部66、シャフト軸受71、移動台72、可動子73などを有している。以下、フライヤアーム部4の回転軸線に平行な方向を「第1方向X」と称し、第1方向Xのうち、下流側、すなわちワーク6に近づく向きを「第1方向一方X1」、上流側、すなわちワーク6から遠ざかる向きを「第1方向他方X2」と称する。 The flyer device 2 includes a fixed portion 61 and a movable portion 62. The fixing unit 61 includes a base plate 63, a moving linear guide 64, and a linear stator 67. A movable portion 62 is placed above the base plate 63. The movable portion 62 is provided so as to be movable in a direction parallel to the rotation axis of the flyer arm portion 4, and includes the flyer arm portion 4, the rotation member 65, the shaft portion 66, the shaft bearing 71, the moving base 72, the mover 73, and the like. is doing. Hereinafter, a direction parallel to the rotational axis of the flyer arm portion 4 is referred to as a “first direction X”, and a downstream side of the first direction X, that is, a direction approaching the workpiece 6 is a “first direction one X1”, an upstream side. That is, the direction away from the workpiece 6 is referred to as “the other in the first direction X2”.
 移動台72は、シャフト軸受71と接続されており、移動リニアガイド64に載置される。移動リニアガイド64は、台板63の上面部に一対、第1方向Xに平行に設けられる。移動台72は、台板63および移動リニアガイド64に対して、リニアモータ74によって第1方向一方X1および第1方向他方X2に駆動される。リニアモータ74は、移動台72と台板63との間に設けられ、リニア固定子67と可動子73とを有している。リニア固定子67は、台板63に取り付けられ、可動子73は移動台72に取り付けられる。リニア固定子67と可動子73とは、互いに対向して設置されている。 The moving table 72 is connected to the shaft bearing 71 and placed on the moving linear guide 64. A pair of moving linear guides 64 are provided in parallel with the first direction X on the upper surface of the base plate 63. The moving table 72 is driven by the linear motor 74 in the first direction X1 and the first direction other X2 with respect to the base plate 63 and the moving linear guide 64. The linear motor 74 is provided between the moving base 72 and the base plate 63 and has a linear stator 67 and a movable element 73. The linear stator 67 is attached to the base plate 63, and the mover 73 is attached to the moving base 72. The linear stator 67 and the movable element 73 are installed facing each other.
 移動台72と台板63との間には、可動部62の固定部61に対する第1方向Xにおける位置を検出するために、リニア位置検出器75が設けられる。リニア位置検出器75は、スライダ76およびスケール81を有しており、スライダ76を移動台72に、スケール81を台板63に取付け、スケール81に対するスライダ76の相対的な位置の変化を検出することによって、可動部62の固定部61に対する位置を検出する。可動部62の固定部61に対する移動機構は、これら台板63、移動リニアガイド64、移動台72、リニアモータ74およびリニア位置検出器75によって構成される。 A linear position detector 75 is provided between the moving base 72 and the base plate 63 in order to detect the position in the first direction X with respect to the fixed part 61 of the movable part 62. The linear position detector 75 includes a slider 76 and a scale 81, and the slider 76 is attached to the moving base 72 and the scale 81 is attached to the base plate 63 to detect a change in the relative position of the slider 76 with respect to the scale 81. Thus, the position of the movable part 62 relative to the fixed part 61 is detected. A moving mechanism of the movable portion 62 relative to the fixed portion 61 is constituted by the base plate 63, the moving linear guide 64, the moving base 72, the linear motor 74, and the linear position detector 75.
 シャフト軸受71は、移動台72の上面部に固定して設けられる。シャフト軸受71はシャフト部66を支持し、第1方向Xにはシャフト部66とともに移動し、シャフト部66がシャフト軸受71の中心軸線周りに回転することを許容する。シャフト軸受71の中心軸線は、フライヤアーム部4の回転軸線に一致する。またフライヤアーム部4の回転軸線は、ワーク6の中心軸線に一致する。シャフト部66には、シャフト軸受71の中心軸線に沿って第1方向Xに貫通する内部孔が形成されており、線材11はこの内部孔の内側を通る。 The shaft bearing 71 is fixedly provided on the upper surface of the movable table 72. The shaft bearing 71 supports the shaft portion 66, moves with the shaft portion 66 in the first direction X, and allows the shaft portion 66 to rotate around the central axis of the shaft bearing 71. The central axis of the shaft bearing 71 coincides with the rotational axis of the flyer arm portion 4. Further, the rotation axis of the flyer arm 4 coincides with the center axis of the workpiece 6. The shaft portion 66 is formed with an internal hole penetrating in the first direction X along the central axis of the shaft bearing 71, and the wire 11 passes through the inside of the internal hole.
 フライヤ装置2はさらに、ボールスプラインシャフト82、スプライン保持体83、およびスプライン外筒体84を備え、これらのうちスプライン外筒体84は、固定部61に含まれる。スプライン保持体83、およびスプライン外筒体84は、第1方向Xには移動しない。スプライン外筒体84は、スプライン保持体83を支持し、ボールスプラインシャフト82およびスプライン保持体83がスプライン外筒体84の回転軸線周りに回転することを許容する。スプライン外筒体84の中心軸線は、フライヤアーム部4の回転軸線、およびシャフト軸受71の中心軸線に一致する。 The flyer device 2 further includes a ball spline shaft 82, a spline holder 83, and a spline outer cylinder 84, of which the spline outer cylinder 84 is included in the fixing portion 61. The spline holder 83 and the spline outer cylinder 84 do not move in the first direction X. The spline outer cylinder 84 supports the spline holder 83 and allows the ball spline shaft 82 and the spline holder 83 to rotate around the rotation axis of the spline outer cylinder 84. The center axis of the spline outer cylinder 84 coincides with the rotation axis of the flyer arm portion 4 and the center axis of the shaft bearing 71.
 ボールスプラインシャフト82には、スプライン外筒体84の中心軸線に沿って第1方向Xに貫通する内部孔が形成されており、線材11はこの内部孔の内側を通る。ボールスプラインシャフト82の最も下流側の端部と、シャフト部66の最も上流側の端部とは、カップリング部材86によって接続されている。シャフト部66およびボールスプラインシャフト82は、第1方向Xおよび各中心軸線周りに共に動く。これに対し、スプライン外筒体84は第1方向Xに固定されており、かつ中心軸線周りにも固定されている。したがってシャフト部66およびボールスプラインシャフト82は、スプライン外筒体84に対して第1方向Xに移動可能であり、かつ中心軸線周りに回転可能である。 The ball spline shaft 82 is formed with an inner hole penetrating in the first direction X along the central axis of the spline outer cylinder 84, and the wire 11 passes through the inner hole. The most downstream end of the ball spline shaft 82 and the most upstream end of the shaft portion 66 are connected by a coupling member 86. The shaft portion 66 and the ball spline shaft 82 move together in the first direction X and around each central axis. On the other hand, the spline outer cylinder 84 is fixed in the first direction X and is also fixed around the central axis. Therefore, the shaft portion 66 and the ball spline shaft 82 can move in the first direction X with respect to the spline outer cylinder 84 and can rotate around the central axis.
 スプライン保持体83の上流側の端部には、ボールスプライン側プーリ85が回転軸線を同じくして取り付けられる。スプライン保持体83とボールスプライン側プーリ85とは、互いに固定して接続されている。これによって、ボールスプライン側プーリ85がボールスプラインの中心軸線周りに回転すると、スプライン保持体83、ボールスプラインシャフト82、カップリング部材86、およびシャフト部66は、シャフト部66の中心軸線周りに回転する。ボールスプライン側プーリ85は、歯付き滑車である。なお、本実施の形態においてシャフト部66およびボールスプラインシャフト82は、カップリング部材86によって互いに連結されているけれども、シャフト部66およびボールスプラインシャフト82とは、一体に形成されても良い。 A ball spline pulley 85 is attached to the upstream end of the spline holder 83 with the same rotational axis. The spline holder 83 and the ball spline side pulley 85 are fixedly connected to each other. As a result, when the ball spline pulley 85 rotates around the center axis of the ball spline, the spline holder 83, the ball spline shaft 82, the coupling member 86, and the shaft portion 66 rotate around the center axis of the shaft portion 66. . The ball spline side pulley 85 is a toothed pulley. In the present embodiment, the shaft portion 66 and the ball spline shaft 82 are connected to each other by the coupling member 86, but the shaft portion 66 and the ball spline shaft 82 may be integrally formed.
 シャフト部66の下流側には、回転部材65が接続されている。回転部材65は、シャフト部66の中心軸線に垂直な軸線を有する円筒形状に形成される。回転部材65の内部の空洞91は、回転部材65を成す円筒形状の軸線方向の両側に開放されている。回転部材65のうち、シャフト部66との接続部には、シャフト部66の中心軸線に沿って連通孔92が形成されている。これによって回転部材65の内部の空洞91は、シャフト部66の中心軸線に沿って、シャフト部66の内部孔に連通する。 A rotating member 65 is connected to the downstream side of the shaft portion 66. The rotating member 65 is formed in a cylindrical shape having an axis perpendicular to the central axis of the shaft portion 66. The cavity 91 inside the rotating member 65 is open on both sides in the axial direction of the cylindrical shape forming the rotating member 65. A communication hole 92 is formed along the central axis of the shaft portion 66 at a connection portion with the shaft portion 66 of the rotating member 65. Accordingly, the cavity 91 inside the rotating member 65 communicates with the inner hole of the shaft portion 66 along the central axis of the shaft portion 66.
 回転部材65のうち、第1方向Xに関してシャフト部66との接続部とは反対側の部分は、フライヤアーム部4と接続されている。これによって、回転部材65がシャフト部66と共にシャフト部66の中心軸線周りに回転すると、フライヤアーム部4がワーク6の中心軸線周りに回転する。回転部材65の空洞91の内部には、第1ガイドローラ93が設けられる。この第1ガイドローラ93の回転軸線は、シャフト部66の中心軸線および回転部材65の軸線の両方に垂直に設定される。 The portion of the rotating member 65 opposite to the connecting portion with the shaft portion 66 in the first direction X is connected to the flyer arm portion 4. As a result, when the rotating member 65 rotates around the central axis of the shaft 66 together with the shaft 66, the flyer arm 4 rotates about the central axis of the workpiece 6. A first guide roller 93 is provided inside the cavity 91 of the rotating member 65. The rotation axis of the first guide roller 93 is set perpendicular to both the center axis of the shaft portion 66 and the axis of the rotation member 65.
 第1ガイドローラ93は、回転部材65の空洞91が開放している両端部のうち、一方の端部の近傍に配置される。これによって第1ガイドローラ93は、シャフト部66の中心軸線の延長線よりも回転部材65の一方の端部に近いほうに位置する。以下、シャフト部66の中心軸線に垂直で回転部材65を成す円筒形状の軸線と平行な方向を「第2方向Y」と称する。第2方向のうち、シャフト部66の中心軸線から第1ガイドローラ93に向かう向きを「第2方向一方Y1」と称し、第2方向一方Y1と逆の向きを「第2方向他方Y2」と称する。 The first guide roller 93 is disposed in the vicinity of one end portion of both end portions where the cavity 91 of the rotating member 65 is open. As a result, the first guide roller 93 is positioned closer to one end of the rotating member 65 than the extension of the central axis of the shaft portion 66. Hereinafter, a direction perpendicular to the central axis of the shaft portion 66 and parallel to the cylindrical axis forming the rotating member 65 is referred to as a “second direction Y”. Of the second directions, the direction from the central axis of the shaft portion 66 toward the first guide roller 93 is referred to as “second direction one Y1”, and the direction opposite to the second direction one Y1 is referred to as “second direction other Y2”. Called.
 シャフト部66の内部孔を通過した線材11は、回転部材65の空洞91の中において、第1ガイドローラ93に案内されて、回転部材65の第2方向一方Y1の端部の開口部94から、回転部材65の外に出る。第1ガイドローラ93は、回転部材65に設けられているので、回転部材65がシャフトの中心軸線周りに回転すると、回転部材65と共にシャフトの中心軸線周りに移動する。したがって、回転部材65がシャフトの中心軸線周りに回転すると、第2方向Yはフライヤ装置2の固定部61に対して回転する。 The wire 11 that has passed through the inner hole of the shaft portion 66 is guided by the first guide roller 93 in the cavity 91 of the rotating member 65, and from the opening 94 at the end of the rotating member 65 in the second direction one Y1. , Goes out of the rotating member 65. Since the first guide roller 93 is provided on the rotating member 65, when the rotating member 65 rotates around the central axis of the shaft, the first guide roller 93 moves around the central axis of the shaft together with the rotating member 65. Therefore, when the rotating member 65 rotates around the central axis of the shaft, the second direction Y rotates with respect to the fixed portion 61 of the flyer device 2.
 フライヤアーム部4の長手方向は、第2方向Yに一致する。フライヤアーム部4の第2方向一方Y1の端部には、旋回板96が設けられている。旋回板96の厚み方向は、第2方向Yに一致している。第2ガイドローラ95は旋回板96に取り付けられる。第2ガイドローラ95は、第1方向Xおよび第2方向Yの両方に垂直な回転軸線周りに回転自在である。回転部材65の空洞91内から第1ガイドローラ93に案内されて回転部材65の第2方向一方Y1の開口部94から出た線材11は、第2ガイドローラ95の外周面に巻掛けられ、その後フライヤノズル24を通って第2方向他方Y2に進み、ワーク6に巻回される。 The longitudinal direction of the flyer arm 4 coincides with the second direction Y. A swivel plate 96 is provided at the end of the flyer arm portion 4 in the second direction one Y1. The thickness direction of the swivel plate 96 coincides with the second direction Y. The second guide roller 95 is attached to the turning plate 96. The second guide roller 95 is rotatable around a rotation axis perpendicular to both the first direction X and the second direction Y. The wire 11 guided from the inside of the cavity 91 of the rotating member 65 to the first guide roller 93 and exiting from the opening portion 94 in the second direction one Y1 of the rotating member 65 is wound around the outer peripheral surface of the second guide roller 95, After that, it passes through the fryer nozzle 24 and proceeds to the other direction Y2 in the second direction, and is wound around the workpiece 6.
 フライヤノズル24、旋回板96、第2ガイドローラ95、フライヤアーム部4、回転部材65、第1ガイドローラ93、シャフト部66、ボールスプラインシャフト82、スプライン保持体83、カップリング部材86、およびボールスプライン側プーリ85は、モータ101によって回転駆動される。モータ101は、モータスタンド102に設けられ、モータスタンド102は固定部61の台板63に固定される。モータ101の回転力を出力する出力軸97には、モータ側プーリ103が回転軸線を同じくして取り付けられている。モータ側プーリ103は、歯付き滑車である。 Flyer nozzle 24, swivel plate 96, second guide roller 95, flyer arm portion 4, rotating member 65, first guide roller 93, shaft portion 66, ball spline shaft 82, spline holder 83, coupling member 86, and ball The spline pulley 85 is rotationally driven by the motor 101. The motor 101 is provided on the motor stand 102, and the motor stand 102 is fixed to the base plate 63 of the fixing unit 61. A motor-side pulley 103 is attached to the output shaft 97 that outputs the rotational force of the motor 101 with the same rotational axis. The motor side pulley 103 is a toothed pulley.
 モータ側プーリ103および前述のボールスプライン側プーリ85には、歯付きベルト104が巻掛けられ、モータ101の出力軸97の回転力は、モータ側プーリ103、歯付きベルト104、およびボールスプライン側プーリ85に伝達される。これらモータ101、モータ側プーリ103、歯付きベルト104、ボールスプライン側プーリ85は、フライヤ回転部5を構成する。モータ101の回転駆動力は、モータ側プーリ103が駆動輪となって、フライヤアーム部4に伝えられる。前述した可動部62の固定部61に対する移動機構は、モータ101からの回転駆動力が伝達されながらも、回転駆動とは独立して第1方向Xへの駆動が可能である。 A toothed belt 104 is wound around the motor side pulley 103 and the above-described ball spline side pulley 85, and the rotational force of the output shaft 97 of the motor 101 is applied to the motor side pulley 103, the toothed belt 104, and the ball spline side pulley. 85. These motor 101, motor side pulley 103, toothed belt 104, and ball spline side pulley 85 constitute a flyer rotating unit 5. The rotational driving force of the motor 101 is transmitted to the flyer arm unit 4 with the motor-side pulley 103 serving as a driving wheel. The moving mechanism of the movable part 62 with respect to the fixed part 61 described above can be driven in the first direction X independently of the rotational drive while the rotational driving force from the motor 101 is transmitted.
 次に、図9および図10を参照しながら、ワーク6に線材11を巻回するときに、フライヤノズル24から送出される線材11の線加速度の変化について説明する。図9は、実施の形態1におけるワーク6に線材11を巻回するときの、フライヤノズル24の位置を表す断面図である。図10は、実施の形態1において、ワーク6に対するフライヤアーム部4の角度と、フライヤノズル24から送出される線材11の線加速度との関係を表す図である。以下、フライヤアーム部4の角度を「フライヤ角度」と称する。図10では、フライヤアーム部4の角度が鉛直方向となり、フライヤノズル24がワーク6の真上に位置するときのフライヤ角度をゼロ度および360度として表している。 Next, changes in the linear acceleration of the wire 11 delivered from the flyer nozzle 24 when the wire 11 is wound around the workpiece 6 will be described with reference to FIGS. 9 and 10. FIG. 9 is a cross-sectional view showing the position of the fryer nozzle 24 when the wire 11 is wound around the workpiece 6 in the first embodiment. FIG. 10 is a diagram illustrating the relationship between the angle of the flyer arm unit 4 with respect to the workpiece 6 and the linear acceleration of the wire 11 delivered from the flyer nozzle 24 in the first embodiment. Hereinafter, the angle of the flyer arm portion 4 is referred to as “flyer angle”. In FIG. 10, the angle of the flyer arm portion 4 is in the vertical direction, and the flyer angle when the flyer nozzle 24 is positioned directly above the workpiece 6 is expressed as zero degrees and 360 degrees.
 まず、図9に示す点P1の位置をフライヤノズル24が通過する前後の線材11の線加速度について説明する。図9では、フライヤノズル24が回転する向きを矢印Uで表している。フライヤノズル24が点P0に位置するとき、すなわち点P1に到達するよりも前には、線材11は、ワーク6の角部Cおよび角部Dには接触しているけれども、角部Aには接触していない。したがって、線材11はワーク6の巻き取り面ADには接触していない。このとき、線材11がワーク6に接触している点、この場合には角部Dと、フライヤノズル24との距離を、線材11の「引き回し長さ」と称する。図9において、フライヤノズル24が点P1を通過する直前における、線材11の引き回し長さは、L44で表される。 First, the linear acceleration of the wire 11 before and after the flyer nozzle 24 passes through the position of the point P1 shown in FIG. 9 will be described. In FIG. 9, the direction in which the flyer nozzle 24 rotates is indicated by an arrow U. When the flyer nozzle 24 is positioned at the point P0, that is, before reaching the point P1, the wire 11 is in contact with the corners C and D of the workpiece 6, but the corner A is not touched. There is no contact. Therefore, the wire 11 is not in contact with the winding surface AD of the workpiece 6. At this time, the point where the wire 11 is in contact with the workpiece 6, in this case, the distance between the corner portion D and the flyer nozzle 24 is referred to as the “drawing length” of the wire 11. In FIG. 9, the drawing length of the wire 11 immediately before the flyer nozzle 24 passes through the point P1 is represented by L44.
 フライヤノズル24が点P1を通過した後には、線材11は、ワーク6の角部Aに接触するので、ワーク6の巻き取り面ADに接触している。このとき、線材11の引き回し長さは、角部Aとフライヤノズル24との距離となる。この点P1のように、線材11と接触するワーク6の巻き取り面が切り替わる位置を、「切り替え位置」と称する。図9において、フライヤノズル24が切り替え位置P1を通過した直後における、線材11の引き回し長さは、L1で表される。 After the flyer nozzle 24 has passed the point P1, the wire 11 is in contact with the corner A of the workpiece 6, and is in contact with the winding surface AD of the workpiece 6. At this time, the drawing length of the wire 11 is the distance between the corner A and the flyer nozzle 24. A position at which the winding surface of the workpiece 6 in contact with the wire 11 is switched like this point P1 is referred to as a “switching position”. In FIG. 9, the drawing length of the wire 11 immediately after the flyer nozzle 24 passes the switching position P1 is represented by L1.
 このように、フライヤノズル24が切り替え位置P1を通過するときには、線材11の引き回し長さはL44からL1に急峻に短縮するので、線材11が送出される線加速度は、急峻に増大する。以下、線材11がフライヤアーム部4から送出されるときの線材11の移動に関する速度を、「線速度」と称し、線材11の移動に関する加速度を「線加速度」と称する。図9においてフライヤノズル24が点P6に位置するとき、図10ではフライヤ角度をゼロ度および360度としている。 As described above, when the flyer nozzle 24 passes the switching position P1, the drawing length of the wire 11 is steeply shortened from L44 to L1, so that the linear acceleration at which the wire 11 is sent out sharply increases. Hereinafter, the speed relating to the movement of the wire 11 when the wire 11 is delivered from the flyer arm unit 4 is referred to as “linear velocity”, and the acceleration relating to the movement of the wire 11 is referred to as “linear acceleration”. In FIG. 9, when the fryer nozzle 24 is located at the point P6, the fryer angles are set to zero degrees and 360 degrees in FIG.
 フライヤノズル24が切り替え位置P1から切り替え位置P2までの間を移動するとき、線材11の引き回し長さは、図9に示すように、L1からL11まで緩やかに伸びるので、線材11の線加速度は緩やかに減少する。フライヤノズル24が切り替え位置P2を通過するときには、線材11はワーク6の角部Bに接触するので、線材11の引き回し長さは、図9に示すように、L11からL2となる。したがって、フライヤノズル24が切り替え位置P2を通過するときには、切り替え位置P1から切り替え位置P2までの間を移動するときに比べて急峻に短くなるので、線材11の線加速度は急峻に増大する。フライヤノズル24が切り替え位置P2から切り替え位置P3までを通過するときには、線材11の引き回し長さは、図9に示すL2からL22に緩やかに伸びるので、線材11の線加速度は負に転じ、緩やかに線材11の移動速度は減少する。 When the flyer nozzle 24 moves from the switching position P1 to the switching position P2, as shown in FIG. 9, the wire 11 is gently extended from L1 to L11, so that the linear acceleration of the wire 11 is moderate. To decrease. When the flyer nozzle 24 passes through the switching position P2, the wire 11 comes into contact with the corner B of the workpiece 6, so that the drawing length of the wire 11 changes from L11 to L2, as shown in FIG. Therefore, when the flyer nozzle 24 passes through the switching position P2, it becomes shorter and shorter than when moving between the switching position P1 and the switching position P2, so that the linear acceleration of the wire 11 increases sharply. When the flyer nozzle 24 passes from the switching position P2 to the switching position P3, the drawing length of the wire 11 gently extends from L2 to L22 shown in FIG. 9, so that the linear acceleration of the wire 11 turns negative, The moving speed of the wire 11 decreases.
 フライヤノズル24が切り替え位置P3を通過するときには、線材11の引き回し長さはL22からL3に急峻に短縮するので、線材11が送出される線加速度は、急峻に増大する。フライヤノズル24が切り替え位置P3から切り替え位置P4までの間を移動するとき、線材11の引き回し長さはL3からL33まで緩やかに伸びるので、線材11の線加速度は緩やかに減少する。フライヤノズル24が切り替え位置P4を通過するときには、線材11の引き回し長さは、L33からL4となる。したがって、フライヤノズル24が切り替え位置P4を通過するときには、切り替え位置P3から切り替え位置P4までの間を移動するときに比べて急峻に短くなるので、線材11の線加速度は急峻に増大する。 When the flyer nozzle 24 passes through the switching position P3, the drawing length of the wire 11 is steeply shortened from L22 to L3, so that the linear acceleration at which the wire 11 is sent out sharply increases. When the flyer nozzle 24 moves between the switching position P3 and the switching position P4, the drawing length of the wire 11 gradually extends from L3 to L33, and therefore the linear acceleration of the wire 11 gradually decreases. When the flyer nozzle 24 passes the switching position P4, the drawing length of the wire 11 is from L33 to L4. Therefore, when the flyer nozzle 24 passes through the switching position P4, the linear acceleration of the wire 11 increases steeply as compared with the time when the flyer nozzle 24 moves from the switching position P3 to the switching position P4.
 フライヤノズル24がP4からP1までを通過するときには、線材11の引き回し長さは、L4からL44に緩やかに伸びるので、線材11の線加速度は負に転じ、緩やかに線材11の移動速度は減少する。図10に示すように、切り替え位置P3から切り替え位置P1までの変化は、前述した、切り替え位置P1から切り替え位置P3までの変化と同様である。 When the flyer nozzle 24 passes from P4 to P1, the drawing length of the wire 11 gradually extends from L4 to L44. Therefore, the linear acceleration of the wire 11 turns negative, and the moving speed of the wire 11 gradually decreases. . As shown in FIG. 10, the change from the switching position P3 to the switching position P1 is the same as the change from the switching position P1 to the switching position P3 described above.
 次に、図11を参照しながら、テンションプーリ部13で線材11に張力を付与する原理を説明する。図11は、実施の形態1において、テンションプーリ部13が線材11に張力を付与する様子を表す図である。バックテンショナ23において、サファイヤ板33によって線材11を押圧力Pで押圧した場合、線材11とサファイヤ板33との動摩擦係数をμ1とすれば、バックテンショナ23によってバックテンショナ23よりも下流側の線材11に掛けられる張力T1は、次に式(1)で表される。
T1=P×μ1 ・・・(1)
Next, the principle of applying tension to the wire 11 with the tension pulley portion 13 will be described with reference to FIG. FIG. 11 is a diagram illustrating a state in which the tension pulley portion 13 applies tension to the wire 11 in the first embodiment. In the back tensioner 23, when the wire 11 is pressed with the pressing force P by the sapphire plate 33, if the dynamic friction coefficient between the wire 11 and the sapphire plate 33 is μ 1, the wire 11 on the downstream side of the back tensioner 23 by the back tensioner 23. Next, the tension T1 applied to is expressed by Expression (1).
T1 = P × μ1 (1)
 テンションプーリ22に対し、線材11を巻き付け角度θ1で巻き付けた場合、線材11とテンションプーリ22の外周面との間の動摩擦係数をμ2とすれば、オイラーのベルト理論によって、滑り張力Tsは、次の式(2)によって表される。
Ts=T1×e^(μ2×θ1) ・・・(2)
When the wire 11 is wound around the tension pulley 22 at the winding angle θ1, if the coefficient of dynamic friction between the wire 11 and the outer peripheral surface of the tension pulley 22 is μ2, the slip tension Ts is calculated according to Euler's belt theory as follows: (2)
Ts = T1 × e ^ (μ2 × θ1) (2)
 サーボモータ25を用いて、テンションプーリ22にトルクQをかけた場合、テンションプーリ22の慣性モーメントをI、テンションプーリ22の巻き取り半径をR2とすると、線材11に発生させる巻回のための張力T2は、次の式(3)で表される。 When a torque Q is applied to the tension pulley 22 using the servo motor 25, the tension for winding that is generated in the wire 11 is I, where the inertia moment of the tension pulley 22 is I and the winding radius of the tension pulley 22 is R2. T2 is represented by the following equation (3).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 前記式(3)において、{(d/dt)^2}θは、テンションプーリ22の回転角加速度である。ここで、T2>Tsであれば、線材11はテンションプーリ22の外周面を滑らない。サーボモータ25のトルクが一定となるフィードバック制御では、前記式(2)および前記式(3)で示した条件式に基づいて、T2>Tsを満たしながら、制御を行う。 In the above equation (3), {(d / dt) ^ 2} θ is the rotational angular acceleration of the tension pulley 22. Here, if T2> Ts, the wire 11 does not slide on the outer peripheral surface of the tension pulley 22. In feedback control in which the torque of the servo motor 25 is constant, control is performed while satisfying T2> Ts based on the conditional expressions shown in the expressions (2) and (3).
 次に、図12および図13を参照しながら、線材11にかかる張力の変動を抑制する動作を説明する。図10を参照しながら前述したように、線材11をワーク6に巻回するときに、フライヤノズル24がワーク6の周囲を1周する間に、線材11の線加速度は正方向に2回、ピークを迎える。線材11を供給するボビン12とワーク6に線材11を巻回するフライヤ装置2との間で、バックテンショナ23とテンションプーリ22とによって線材11に張力を付与する構成の巻線装置1では、線加速度の急峻な変化が、巻線不良の原因となる。 Next, with reference to FIG. 12 and FIG. 13, an operation for suppressing a variation in tension applied to the wire 11 will be described. As described above with reference to FIG. 10, when the wire 11 is wound around the workpiece 6, the linear acceleration of the wire 11 is twice in the positive direction while the flyer nozzle 24 makes one turn around the workpiece 6. It reaches a peak. In the winding device 1 configured to apply tension to the wire 11 by the back tensioner 23 and the tension pulley 22 between the bobbin 12 that supplies the wire 11 and the flyer device 2 that winds the wire 11 around the workpiece 6, A steep change in acceleration causes a winding failure.
 図12は、実施の形態1において、線速度が急峻に増大していないときの、テンションプーリ22およびダンサローラ14の様子を表す図である。図13は、実施の形態1において、線速度の急峻な増大によって線材11の張力が増大しているときの、テンションプーリ22およびダンサローラ14の様子を表す図である。ワーク6に対し線材11を巻回しているときに、線加速度が増大すると、ダンサローラ14の下流側の線材11の張力が増大し、これによってダンサローラ14がフライヤ装置2側に揺動する。これに伴って、引張コイルばね16が伸長される。 FIG. 12 is a diagram illustrating a state of the tension pulley 22 and the dancer roller 14 in the first embodiment when the linear velocity does not increase steeply. FIG. 13 is a diagram illustrating the state of the tension pulley 22 and the dancer roller 14 when the tension of the wire 11 is increased due to a steep increase in the linear velocity in the first embodiment. When the wire 11 is wound around the workpiece 6 and the linear acceleration increases, the tension of the wire 11 on the downstream side of the dancer roller 14 increases, and thereby the dancer roller 14 swings toward the flyer device 2 side. Along with this, the tension coil spring 16 is extended.
 図12に示すように、線材11の線速度が急峻に増大していないときに、テンションプーリ22および線材11の最も下流側の接点と、ダンサローラ14および線材11の最も上流側の接点との距離をLa1とする。また、このときのダンサローラ14および線材11の最も下流側の接点と、第3アイレット36との距離をLb1とする。図13に示すように、線材11の線速度が急峻に増大し、これによってダンサローラ14の下流側の線材11の張力が増大しているとき、テンションプーリ22および線材11の最も下流側の接点と、ダンサローラ14および線材11の最も上流側の接点との距離をLa2とする。また、このときのダンサローラ14および線材11の最も下流側の接点と、第3アイレット36との距離をLb2とする。 As shown in FIG. 12, when the linear velocity of the wire 11 does not increase sharply, the distance between the most downstream contact of the tension pulley 22 and the wire 11 and the most upstream contact of the dancer roller 14 and the wire 11 Is La1. Further, the distance between the dancer roller 14 and the most downstream contact point of the wire 11 and the third eyelet 36 at this time is Lb1. As shown in FIG. 13, when the linear velocity of the wire 11 increases sharply and thereby the tension of the wire 11 on the downstream side of the dancer roller 14 increases, the tension pulley 22 and the contact point on the most downstream side of the wire 11 La2 is the distance between the dancer roller 14 and the most upstream contact of the wire 11. The distance between the dancer roller 14 and the most downstream contact of the wire 11 and the third eyelet 36 at this time is Lb2.
 ダンサローラ14よりも下流側の線材11において、張力が増大していないときの、ボビン12からフライヤノズル24までの線材11の経路長と、ダンサローラ14よりも下流側の線材11において張力が増大しているときの、ボビン12からフライヤノズル24までの線材11の経路長との差異dLは、次の式(4)で表される。
dL=(La1+Lb1)-(La2+Lb2) ・・・(4)
When the tension does not increase in the wire 11 downstream of the dancer roller 14, the path length of the wire 11 from the bobbin 12 to the flyer nozzle 24 and the tension in the wire 11 downstream of the dancer roller 14 increase. The difference dL from the path length of the wire 11 from the bobbin 12 to the flyer nozzle 24 when expressed is expressed by the following equation (4).
dL = (La1 + Lb1) − (La2 + Lb2) (4)
 また、ダンサローラ14の半径をR1、テンションプーリ22の半径をR2、支点17からテンションプーリ22の回転軸線までの距離をLc、支点17からダンサローラ14の回転軸線までの距離をLdとする。テンションプーリ22の半径はダンサローラ14の半径よりも大きい(R2>R1)。テンションプーリ22の半径は、テンションプーリ22と線材との摩擦力を確保するために、充分に大きく設定されるので、ダンサローラ14の揺動は、テンションプーリ22と線材11との摩擦力にほとんど影響しない。 The radius of the dancer roller 14 is R1, the radius of the tension pulley 22 is R2, the distance from the fulcrum 17 to the rotation axis of the tension pulley 22 is Lc, and the distance from the fulcrum 17 to the rotation axis of the dancer roller 14 is Ld. The radius of the tension pulley 22 is larger than the radius of the dancer roller 14 (R2> R1). Since the radius of the tension pulley 22 is set sufficiently large to secure the frictional force between the tension pulley 22 and the wire, the swing of the dancer roller 14 has almost no influence on the frictional force between the tension pulley 22 and the wire 11. do not do.
 また、支点17の回転軸線は、テンションプーリ22の回転軸線の鉛直方向下方に位置する。ダンサローラ14は、テンションプーリ22と支点17との間の位置で揺動する。引張コイルばね16とテンションアーム部15との接続点は、支点17に関してダンサローラ14とは反対側に位置し、支点17のさらに鉛直方向下方で揺動する。この接続点は、ダンサローラ14が揺動する向きとは反対の向きに揺動する。支点17からテンションプーリ22の回転軸線までの距離は、テンションプーリ22の半径、ダンサローラ14の半径および支点17からダンサローラ14の回転軸線までの距離の合計よりも大きく設定される(Lc>Ld+R1+R2)。したがって、ダンサローラ14がテンションプーリ22の下方で揺動しても、ダンサローラ14がテンションプーリ22に接触することはない。 Further, the rotation axis of the fulcrum 17 is positioned below the rotation axis of the tension pulley 22 in the vertical direction. The dancer roller 14 swings at a position between the tension pulley 22 and the fulcrum 17. The connection point between the tension coil spring 16 and the tension arm portion 15 is located on the opposite side of the dancer roller 14 with respect to the fulcrum 17 and swings further downward in the vertical direction of the fulcrum 17. This connection point swings in a direction opposite to the direction in which the dancer roller 14 swings. The distance from the fulcrum 17 to the rotation axis of the tension pulley 22 is set to be larger than the sum of the radius of the tension pulley 22, the radius of the dancer roller 14, and the distance from the fulcrum 17 to the rotation axis of the dancer roller 14 (Lc> Ld + R1 + R2). Therefore, even if the dancer roller 14 swings below the tension pulley 22, the dancer roller 14 does not contact the tension pulley 22.
 図12に示すように、線材11の線速度が急峻に増大していないときには、支点17を中心とするダンサローラ14の揺動方向Drは、ダンサローラ14から離れる線材11の進む方向Dr2と完全には一致していない。しかしダンサローラ14の揺動方向Drは、ダンサローラ14から離れる線材11が進む方向Dr2におよそ平行であるので、線材11の線速度の急峻な増大によって、ダンサローラ14は揺動できる。したがってダンサローラ14は、揺動によって線材11を繰り出し、線材11の線加速度の増大がテンションプーリ22に影響することを抑制する。 As shown in FIG. 12, when the linear velocity of the wire 11 does not increase steeply, the swing direction Dr of the dancer roller 14 around the fulcrum 17 is completely the same as the direction Dr2 of the wire 11 moving away from the dancer roller 14. Does not match. However, the swinging direction Dr of the dancer roller 14 is approximately parallel to the direction Dr2 in which the wire 11 moving away from the dancer roller 14 travels, so that the dancer roller 14 can swing due to a sharp increase in the linear velocity of the wire 11. Accordingly, the dancer roller 14 feeds the wire 11 by swinging and suppresses the increase in the linear acceleration of the wire 11 from affecting the tension pulley 22.
 図9および図10を参照しながら前述したように、ワーク6に線材11を巻回するときに線材11の引き回し長さが変動し、これによって線加速度が急峻に増大すると、ダンサローラ14よりも下流側の線材11の張力によってダンサローラ14が揺動し、フライヤ装置2側に変位する。これによって、前記式(4)で示した線材11の経路長の差異dLの範囲内で線材11はフライヤ装置2に急峻に送出される。ボビン12からテンションプーリ22までの線材11の経路長は変化せず、前記式(3)において示したテンションプーリ22の回転角加速度、{(d/dt)^2}θをゼロまたはゼロに近い値にすることができる。したがって、テンションプーリ部13における線材11の張力を一定にするか、または一定に近づけることができる。 As described above with reference to FIG. 9 and FIG. 10, when the wire 11 is wound around the workpiece 6, the length of the wire 11 varies, and when the linear acceleration sharply increases, the downstream of the dancer roller 14. The dancer roller 14 is swung by the tension of the wire 11 on the side, and is displaced to the flyer device 2 side. As a result, the wire 11 is abruptly sent to the fryer apparatus 2 within the range of the difference dL in the path length of the wire 11 shown in the above equation (4). The path length of the wire 11 from the bobbin 12 to the tension pulley 22 does not change, and the rotational angular acceleration of the tension pulley 22 shown in Equation (3), {(d / dt) ^ 2} θ, is zero or close to zero. Can be a value. Therefore, the tension of the wire 11 in the tension pulley portion 13 can be made constant or close to constant.
 ダンサローラ14およびテンションアーム部15の揺動に関する固有周波数は、フライヤノズル24の回転数の2倍以上に設定される。これは、次のような理由である。仮にダンサローラ14の揺動の固有周波数がフライヤノズル24の回転数の2倍よりも小さければ、図9で説明したワーク6に線材11を巻回するときの引き回し長さの変動に応じて、ダンサローラ14の揺動が遅れ、線加速度の変化をダンサローラ14の揺動によって吸収できないからである。 The natural frequency related to the swing of the dancer roller 14 and the tension arm portion 15 is set to be twice or more the rotational speed of the flyer nozzle 24. This is for the following reason. If the natural frequency of the swing of the dancer roller 14 is smaller than twice the number of rotations of the flyer nozzle 24, the dancer roller according to the fluctuation of the drawing length when the wire 11 is wound around the workpiece 6 described in FIG. This is because the swing of 14 is delayed and the change in linear acceleration cannot be absorbed by the swing of dancer roller 14.
 実施の形態1によれば、ダンサローラ14は、テンションプーリ部13から送出される線材11が巻掛けられ、線材11を巻線部に導くので、テンションプーリ部13とダンサローラ14との間に滑車を必要とせず、ダンサローラ14と巻線部との間にも滑車を必要としない。したがって、張力調整装置3を小形化できる。また多くの滑車によって線材11を多くの箇所で屈曲させる必要がないので、線材11に伸びが生じることがなく、巻線品質を向上できる。また支点17を中心としてダンサローラ14が揺動する方向は、ダンサローラ14から巻線部に向かう線材11の方向に平行であるので、線材11の線加速度が急峻に増大したときに、ダンサローラ14の揺動によって線加速度に応じて線材11を送出できる。 According to the first embodiment, the dancer roller 14 is wound with the wire 11 delivered from the tension pulley portion 13 and guides the wire 11 to the winding portion, so that the pulley is interposed between the tension pulley portion 13 and the dancer roller 14. No pulley is required between the dancer roller 14 and the winding portion. Therefore, the tension adjusting device 3 can be miniaturized. Moreover, since it is not necessary to bend the wire 11 in many places with many pulleys, elongation does not arise in the wire 11 and winding quality can be improved. Further, the direction in which the dancer roller 14 swings around the fulcrum 17 is parallel to the direction of the wire 11 from the dancer roller 14 toward the winding portion. Therefore, when the linear acceleration of the wire 11 sharply increases, the dancer roller 14 swings. The wire 11 can be sent out according to the linear acceleration by movement.
 また実施の形態1によれば、テンションプーリ部13からダンサローラ14に向かう線材11の方向は、ダンサローラ14から巻線部に向かう線材11の方向に対して垂直なので、ダンサローラ14が揺動によって巻線部に近づくことで線材11を送出しても、ダンサローラ14の揺動がテンションプーリ部13に与える影響を抑制できる。 Further, according to the first embodiment, the direction of the wire 11 from the tension pulley portion 13 toward the dancer roller 14 is perpendicular to the direction of the wire 11 from the dancer roller 14 toward the winding portion. Even if the wire 11 is sent out by approaching the portion, the influence of the swing of the dancer roller 14 on the tension pulley portion 13 can be suppressed.
 また実施の形態1によれば、ダンサローラ14において線材11は、ダンサローラ14の回転軸線を中心として半周以上にわたってダンサローラ14に巻掛けられるので、ダンサローラ14における巻き付け角度が小さい場合に比べて、ダンサローラ14と線材11との摩擦力を大きく保つことができる。したがって、線材11の張力がテンションプーリ部13に与える影響を低減できる。 Further, according to the first embodiment, in the dancer roller 14, the wire 11 is wound around the dancer roller 14 over a half circumference around the rotation axis of the dancer roller 14, so that the dancer roller 14 and the dancer roller 14 have a smaller winding angle than the dancer roller 14. The frictional force with the wire 11 can be kept large. Therefore, the influence which the tension | tensile_strength of the wire 11 has on the tension pulley part 13 can be reduced.
 また実施の形態1によれば、張力調整装置3に用いられる経路上の滑車の数を低減できるので、巻線装置1を小形化できる。また線材11が滑車によって屈曲される回数を低減できるので、巻線品質を向上できる。 Further, according to the first embodiment, since the number of pulleys on the path used for the tension adjusting device 3 can be reduced, the winding device 1 can be miniaturized. Moreover, since the frequency | count that the wire 11 is bent by a pulley can be reduced, winding quality can be improved.
 また実施の形態1によれば、ダンサローラ14の揺動に関する固有周波数は、フライヤアーム部4の回転数の2倍以上なので、ワーク6に線材11を巻回するときに生じる線加速度の変化に追従して、ダンサローラ14が揺動でき、ダンサローラ14の揺動によって線加速度の急峻な増大を吸収できる。 Further, according to the first embodiment, the natural frequency related to the swing of the dancer roller 14 is more than twice the number of rotations of the flyer arm portion 4, and therefore follows the change in linear acceleration that occurs when the wire 11 is wound around the workpiece 6. Thus, the dancer roller 14 can be swung, and the steep increase in linear acceleration can be absorbed by the swing of the dancer roller 14.
 また実施の形態1によれば、ダンサローラ14が揺動すると、ダンサローラ14から巻線部までの線材11の経路長が短くなるので、巻線部において発生する線材11の線加速度の変化を、ダンサローラ14の揺動によって吸収することができる。 Further, according to the first embodiment, when the dancer roller 14 swings, the path length of the wire 11 from the dancer roller 14 to the winding portion is shortened. Therefore, the change in the linear acceleration of the wire 11 generated in the winding portion is reduced. 14 can be absorbed.
 実施の形態1におけるバックテンショナ23の仕様に限定はない。ばね式、電磁ブレーキ式など、テンションプーリ22の外周面において線材11が滑らない程度に線材11に張力を付与することができる構成であれば良い。 There is no limitation on the specification of the back tensioner 23 in the first embodiment. Any structure that can apply tension to the wire 11 to the extent that the wire 11 does not slip on the outer peripheral surface of the tension pulley 22 such as a spring type or an electromagnetic brake type may be used.
 また実施の形態1では、移動機構としてリニアモータ74、ボールスプラインシャフト82、歯付きベルト104などを使用するものとしたけれども、このような構成に限定するものではない。 In the first embodiment, the linear motor 74, the ball spline shaft 82, the toothed belt 104, and the like are used as the moving mechanism. However, the present invention is not limited to such a configuration.
 また実施の形態1では、テンションプーリ22、ダンサローラ14、テンションアーム部15および付勢部の配置を、図12および図13のような位置関係として説明したけれども、これに限定するものではない。例えば、図14および図15のような配置であっても良い。図14は、実施の形態1の変形例において、線加速度が増大していないときの、テンションプーリ22、ダンサローラ14、テンションアーム部15および付勢部の位置関係を表す図である。図15は、実施の形態1の変形例において、線加速度が増大したときの、テンションプーリ22、ダンサローラ14、テンションアーム部15および付勢部の位置関係を表す図である。 In the first embodiment, the arrangement of the tension pulley 22, the dancer roller 14, the tension arm portion 15, and the urging portion is described as a positional relationship as shown in FIGS. 12 and 13, but is not limited to this. For example, the arrangement shown in FIGS. 14 and 15 may be used. FIG. 14 is a diagram illustrating a positional relationship among the tension pulley 22, the dancer roller 14, the tension arm unit 15, and the urging unit when the linear acceleration is not increased in the modification of the first embodiment. FIG. 15 is a diagram illustrating a positional relationship among the tension pulley 22, the dancer roller 14, the tension arm unit 15, and the urging unit when the linear acceleration increases in the modification of the first embodiment.
 図14および図15に示す変形例では、支点17はテンションプーリ22の回転軸線の鉛直方向下方に位置する。ダンサローラ14は、支点17のさらに鉛直方向下方で揺動する。付勢部である圧縮コイルばね105とテンションアーム部15との接続点は、支点17に関してダンサローラ14とは反対側に位置し、支点17とテンションプーリ22との間で揺動する。この接続点は、ダンサローラ14が揺動する向きとは反対の向きに揺動する。 14 and 15, the fulcrum 17 is positioned below the rotation axis of the tension pulley 22 in the vertical direction. The dancer roller 14 swings further vertically below the fulcrum 17. The connection point between the compression coil spring 105 that is the urging portion and the tension arm portion 15 is located on the opposite side of the dancer roller 14 with respect to the fulcrum 17, and swings between the fulcrum 17 and the tension pulley 22. This connection point swings in a direction opposite to the direction in which the dancer roller 14 swings.
 実施の形態1において支点17を中心とする周方向の一方にテンションアーム部15を付勢する付勢部は、引張コイルばね16であるものとしたけれども、弾性によってテンションアーム部15を付勢することができれば、引張コイルばね16に限定するものではない。例えば図14および図15に示すように、付勢部は圧縮コイルばね105によって実現されても良い。 In the first embodiment, the urging portion that urges the tension arm portion 15 in one of the circumferential directions around the fulcrum 17 is the tension coil spring 16, but the tension arm portion 15 is urged by elasticity. If possible, it is not limited to the tension coil spring 16. For example, as shown in FIGS. 14 and 15, the biasing portion may be realized by a compression coil spring 105.
 このように、支点17を中心とするダンサローラ14の揺動方向Drが、ダンサローラ14からフライヤ装置2に向かう線材11の方向Dr2におよそ平行であれば良い。またテンションプーリ22の位置は、テンションプーリ22からダンサローラ14に向かう線材11の方向が、ダンサローラ14の揺動方向Drに垂直な方向であれば良い。またダンサローラ14に対するテンションプーリ22およびフライヤ装置2の位置関係は、ダンサローラ14に180度以上の巻掛け角度、理想的には270度の巻掛け角度となる配置であれば良い。 Thus, the swing direction Dr of the dancer roller 14 around the fulcrum 17 may be approximately parallel to the direction Dr2 of the wire 11 from the dancer roller 14 toward the flyer device 2. The tension pulley 22 may be positioned so long as the direction of the wire 11 from the tension pulley 22 toward the dancer roller 14 is perpendicular to the swinging direction Dr of the dancer roller 14. Further, the positional relationship between the tension pulley 22 and the flyer device 2 with respect to the dancer roller 14 may be any arrangement as long as the winding angle of the dancer roller 14 is 180 degrees or more, ideally 270 degrees.
実施の形態2.
 次に、実施の形態2による巻線装置1Bを図に基づいて以下に説明する。実施の形態2は、先に説明した実施の形態1に類似しており、以下、実施の形態1に対する実施の形態2の相違点を中心に説明する。図16は、実施の形態2による巻線装置1Bの構成を表す図である。図16に示すように、実施の形態2におけるワーク6は、スピンドル装置106によって回転する。巻線部は、スピンドルノズル107を有しており、スピンドルノズル107からワーク6に向けて線材11を送出する。スピンドル装置106は、ワーク6の中心軸線にスピンドル軸線を一致させて、スピンドル軸線を中心として、ワーク6を回転させる。
Embodiment 2. FIG.
Next, the winding device 1B according to the second embodiment will be described with reference to the drawings. The second embodiment is similar to the first embodiment described above, and the description below will focus on the differences of the second embodiment from the first embodiment. FIG. 16 is a diagram illustrating a configuration of a winding device 1B according to the second embodiment. As shown in FIG. 16, the workpiece 6 in the second embodiment is rotated by the spindle device 106. The winding part has a spindle nozzle 107, and sends the wire 11 from the spindle nozzle 107 toward the workpiece 6. The spindle device 106 aligns the spindle axis line with the center axis line of the workpiece 6 and rotates the workpiece 6 around the spindle axis line.
 スピンドルノズル107から送出される線材11は、回転するワーク6に巻き付けられる。この場合にも、線材11が巻回されるワーク6の外周面がワーク6の中心軸線周りに円形でないことによって、線材11の線加速度が生じ、スピンドルノズル107から送出される線材11の張力に変化が生じる。ダンサローラ14およびテンションアーム部15は、実施の形態1と同様に線材11の張力の増大に応じて揺動する。ダンサローラ14と線材11との摩擦力、および付勢部の変形エネルギによって、線材11の張力の増大が、テンションプーリ部13に与える影響を抑制する。 The wire 11 delivered from the spindle nozzle 107 is wound around the rotating workpiece 6. Also in this case, since the outer peripheral surface of the work 6 around which the wire 11 is wound is not circular around the center axis of the work 6, linear acceleration of the wire 11 occurs, and the tension of the wire 11 delivered from the spindle nozzle 107 is reduced. Change occurs. The dancer roller 14 and the tension arm portion 15 swing as the tension of the wire 11 increases as in the first embodiment. The influence of the increase in the tension of the wire 11 on the tension pulley 13 is suppressed by the frictional force between the dancer roller 14 and the wire 11 and the deformation energy of the urging portion.
 巻線部がフライヤ装置2である場合に限らず、実施の形態2のように、スピンドルノズル107を備える場合にも、テンションプーリ22からダンサローラ14に至るまでの途中位置の滑車、およびダンサローラ14から巻線部に至るまでの途中位置の滑車を省略でき、かつワーク6への線材11の巻回による線材11の線加速度の影響が、テンションプーリ部13に付与されることを抑制できる。 Not only in the case where the winding part is the flyer device 2 but also in the case where the spindle nozzle 107 is provided as in the second embodiment, the pulley at the midpoint from the tension pulley 22 to the dancer roller 14 and the dancer roller 14 A pulley at an intermediate position up to the winding portion can be omitted, and the influence of the linear acceleration of the wire 11 due to the winding of the wire 11 around the workpiece 6 can be suppressed from being applied to the tension pulley portion 13.
 したがって、張力調整装置3において設けられる滑車の数を、従来技術よりも低減でき、張力調整装置3を小形化できる。同様の理由により、張力調整装置3を備える巻線装置1Bを小形化できる。また滑車の数が低減されることによって、ボビン12からワーク6に至るまでに線材11を屈曲させる回数を低減することができる。したがって、巻線品質が低下することを防止できる。さらに、ワーク6に線材11を巻回するときに線材11に線加速度が生じても、ダンサローラ14の揺動によって張力の変動を抑制するので、線材11の張力の変動による巻線不良の発生を防止できる。 Therefore, the number of pulleys provided in the tension adjusting device 3 can be reduced as compared with the prior art, and the tension adjusting device 3 can be downsized. For the same reason, the winding device 1B including the tension adjusting device 3 can be downsized. Moreover, the number of times of bending the wire 11 from the bobbin 12 to the workpiece 6 can be reduced by reducing the number of pulleys. Therefore, it is possible to prevent the winding quality from deteriorating. Furthermore, even if linear acceleration occurs in the wire 11 when the wire 11 is wound around the workpiece 6, fluctuations in tension are suppressed by the swing of the dancer roller 14, so that winding defects due to fluctuations in the tension of the wire 11 are prevented. Can be prevented.
実施の形態3.
 次に、実施の形態3による巻線装置1Cを図に基づいて以下に説明する。実施の形態3は、先に説明した実施の形態1に類似しており、以下、実施の形態1に対する実施の形態3の相違点を中心に説明する。図17は、実施の形態3による巻線装置の構成を表す図である。図18は、実施の形態3による巻線装置において、ワーク6と、ワーク6の側面に沿って駆動されるノズル部108の駆動経路とを表す図である。図17および図18に示す巻線装置1Cは、ワーク6が固定されているノズル巻線機と呼ばれるタイプの巻線装置である。
Embodiment 3 FIG.
Next, the winding device 1C according to the third embodiment will be described with reference to the drawings. The third embodiment is similar to the first embodiment described above, and the difference between the third embodiment and the first embodiment will be mainly described below. FIG. 17 is a diagram illustrating a configuration of a winding device according to the third embodiment. FIG. 18 is a diagram illustrating the workpiece 6 and the drive path of the nozzle unit 108 driven along the side surface of the workpiece 6 in the winding device according to the third embodiment. A winding device 1C shown in FIGS. 17 and 18 is a type of winding device called a nozzle winding machine to which a workpiece 6 is fixed.
 図18に示すように、ワーク6は張力調整装置3側から見て矩形に形成されている。ノズル部108は、ワーク6から張力調整装置3に向かう中心軸線周りに、ワーク6の側面に沿って移動する。ノズル部108は、ノズル駆動部109によって駆動され、ワーク6の周囲を移動する。この移動に伴って、線材11はノズル部108から送出され、送出された線材11は、矩形のワーク6の周囲に巻回される。 As shown in FIG. 18, the workpiece 6 is formed in a rectangular shape as viewed from the tension adjusting device 3 side. The nozzle part 108 moves along the side surface of the workpiece 6 around the central axis line from the workpiece 6 toward the tension adjusting device 3. The nozzle unit 108 is driven by the nozzle driving unit 109 and moves around the workpiece 6. Along with this movement, the wire 11 is delivered from the nozzle portion 108, and the delivered wire 11 is wound around the rectangular workpiece 6.
 ワーク6の形状は張力調整装置3側から見て、円形ではなく矩形であるので、ノズル部108がワーク6の周囲に線材11を巻回するとき一定の速度で移動すると、ノズル部108から送出される線材11には線加速度が生じる。ただし、実施の形態3においてノズル部108は、ワーク6の側面に沿って移動するので、フライヤノズル24が回転する実施の形態1、およびワーク6がスピンドル装置106によって回転する実施の形態2に比べれば、実施の形態3において生じる線加速度は小さい。 Since the shape of the workpiece 6 is not circular but rectangular when viewed from the tension adjusting device 3 side, if the nozzle portion 108 moves at a constant speed when the wire 11 is wound around the workpiece 6, the workpiece 6 is sent out from the nozzle portion 108. A linear acceleration is generated in the wire 11 to be applied. However, since the nozzle portion 108 moves along the side surface of the workpiece 6 in the third embodiment, it is different from the first embodiment in which the flyer nozzle 24 is rotated and the second embodiment in which the workpiece 6 is rotated by the spindle device 106. For example, the linear acceleration generated in the third embodiment is small.
 実施の形態3の巻線装置1Cにおいて、実施の形態1および実施の形態2に比べれば小さいながらも、線加速度は生じる。実施の形態3において、巻線時に生じた線加速度は、ダンサローラ14およびテンションアーム部15の揺動によって吸収される。実施の形態3において、ダンサローラ14およびテンションアーム部15は、実施の形態1と同様に線材11の線加速度の増大に応じて揺動し、この揺動によって線材11が繰り出される。これによって、線材11に発生する張力の変動は、抑制される。またダンサローラ14と線材11との摩擦、および引張コイルばね16の変形によって、線材11の張力の増大が、テンションプーリ部13に与える影響を抑制する。 In the winding device 1C according to the third embodiment, linear acceleration is generated although it is small as compared with the first and second embodiments. In the third embodiment, the linear acceleration generated during winding is absorbed by the swing of the dancer roller 14 and the tension arm portion 15. In the third embodiment, the dancer roller 14 and the tension arm portion 15 swing according to the increase in the linear acceleration of the wire 11 as in the first embodiment, and the wire 11 is fed out by this swing. Thereby, the fluctuation | variation of the tension | tensile_strength which generate | occur | produces in the wire 11 is suppressed. Further, the friction between the dancer roller 14 and the wire 11 and the deformation of the tension coil spring 16 suppress the influence of the increase in the tension of the wire 11 on the tension pulley portion 13.
 巻線部がフライヤ装置2である場合に限らず、実施の形態3のように、ノズル巻線機と呼ばれるタイプの巻線装置におけるノズル部108を備える場合にも、テンションプーリ22からダンサローラ14に至るまでの途中一の滑車、およびダンサローラ14から巻線部に至るまでの途中位置の滑車を省略でき、かつワーク6への線材11の巻回による線材11の線加速度の影響が、テンションプーリ部13に付与されることを抑制できる。張力調整装置3において設けられる滑車の数を、従来技術よりも低減できるので、張力調整装置3を従来よりも小形化できる。したがって、張力調整装置3を備える巻線装置1Cも小形化できる。 Not only when the winding part is the flyer apparatus 2 but also when the nozzle part 108 in the type of winding apparatus called a nozzle winding machine is provided as in the third embodiment, the tension pulley 22 is connected to the dancer roller 14. The pulley on the way to the end and the pulley on the way from the dancer roller 14 to the winding portion can be omitted, and the influence of the linear acceleration of the wire 11 due to the winding of the wire 11 around the work 6 is affected by the tension pulley portion. 13 can be suppressed. Since the number of pulleys provided in the tension adjusting device 3 can be reduced as compared with the prior art, the tension adjusting device 3 can be made smaller than before. Therefore, the winding device 1C including the tension adjusting device 3 can also be reduced in size.
 また、テンションプーリ部13からフライヤ装置2までの間の滑車の数が低減されることによって、ボビン12からワーク6に至るまでに線材11が屈曲される回数を低減できる。したがって、巻線品質の低下を防止できる。さらに、ワーク6に線材11を巻回するときに線材11に線加速度が生じても、ダンサローラ14の揺動によって張力の変動を抑制するので、線材11の張力の変動による巻線不良の発生を防止できる。 Further, by reducing the number of pulleys between the tension pulley section 13 and the flyer device 2, the number of times the wire 11 is bent from the bobbin 12 to the workpiece 6 can be reduced. Therefore, it is possible to prevent a decrease in winding quality. Furthermore, even if linear acceleration occurs in the wire 11 when the wire 11 is wound around the workpiece 6, fluctuations in tension are suppressed by the swing of the dancer roller 14, so that winding defects due to fluctuations in the tension of the wire 11 are prevented. Can be prevented.
実施の形態4.
 次に、実施の形態4による巻線装置1Dを図に基づいて以下に説明する。実施の形態4は、先に説明した実施の形態1に類似しており、以下、実施の形態1に対する実施の形態4の相違点を中心に説明する。図19は、実施の形態4における巻線装置1Dの構成を表す図である。
Embodiment 4 FIG.
Next, the winding device 1D according to the fourth embodiment will be described with reference to the drawings. The fourth embodiment is similar to the first embodiment described above, and the difference between the first embodiment and the fourth embodiment will be mainly described below. FIG. 19 is a diagram illustrating a configuration of winding device 1D in the fourth embodiment.
 実施の形態1に示した張力調整装置3において、サーボモータ25はフィードバック制御され、このフィードバック制御によって、テンションプーリ22には一定のトルクが発生する。前記式(3)において、トルクQを一定に与えている場合、テンションプーリ22の回転角加速度{(d/dt)^2}θをゼロにできれば、線材11に発生させる巻回のための張力T2は、一定となる。しかし、テンションプーリ22の回転角加速度{(d/dt)^2}θには変動が生じやすく、ゼロにできない場合がある。 In the tension adjusting device 3 shown in the first embodiment, the servo motor 25 is feedback controlled, and a constant torque is generated in the tension pulley 22 by this feedback control. In the above formula (3), when the torque Q is constant, if the rotational angular acceleration {(d / dt) ^ 2} θ of the tension pulley 22 can be made zero, the tension for winding generated in the wire 11 T2 is constant. However, the rotational angular acceleration {(d / dt) ^ 2} θ of the tension pulley 22 is likely to fluctuate and may not be zero.
 実施の形態4においては、線材11に発生させる巻回のための張力T2を一定に制御するために、サーボモータ25に設置された計測部110を用いて、テンションプーリ22の回転角加速度{(d/dt)^2}θを計測する。計測部110は、エンコーダおよび加速度ピックアップの少なくともいずれか一方によって実現できる。現状のトルクQ2は、回転角加速度{(d/dt)^2}θの計測結果に慣性モーメントIを乗じた値として、次の式(5)で表される。
Q2=I{(d/dt)^2}θ ・・・(5)
In the fourth embodiment, in order to control the tension T2 for winding generated in the wire 11 to be constant, the rotational angular acceleration {( d / dt) ^ 2} θ is measured. The measurement unit 110 can be realized by at least one of an encoder and an acceleration pickup. The current torque Q2 is expressed by the following equation (5) as a value obtained by multiplying the measurement result of the rotational angular acceleration {(d / dt) ^ 2} θ by the moment of inertia I.
Q2 = I {(d / dt) ^ 2} θ (5)
 テンションプーリ22に生じさせるべきトルクの目標値をQ*とすると、実際にサーボモータ25に付与するトルクQ3は、次に式(6)で表される。
Q3=Q*-Q2=Q*-I{(d/dt)^2}θ ・・・(6)
この式(6)に基づくサーボモータ25の制御は、制御部7によって行われる。
Assuming that the target value of the torque to be generated in the tension pulley 22 is Q *, the torque Q3 that is actually applied to the servo motor 25 is expressed by the following equation (6).
Q3 = Q * −Q2 = Q * −I {(d / dt) ^ 2} θ (6)
The control of the servo motor 25 based on the equation (6) is performed by the control unit 7.
 仮に、回転角加速度{(d/dt)^2}θを求める際に、エンコーダなどによって計測した角度データを2回微分する構成の場合、制御部7の演算速度が遅ければ、巻線装置1Dの稼働中にリアルタイムに回転角加速度を求めることが困難な場合がある。このように、制御周波数が遅くフィードバック制御が追いつかない場合には、巻線装置1Cの稼働に先駆けて、回転角加速度{(d/dt)^2}θをフライヤノズル24の回転位置ψの関数として事前に求めておき、前記式(6)で表されるトルクQ3のうち、I{(d/dt)^2}θの項をフィードフォワード制御で与えても良い。 If the rotational angular acceleration {(d / dt) ^ 2} θ is obtained and the angular data measured by the encoder or the like is differentiated twice, if the calculation speed of the control unit 7 is slow, the winding device 1D In some cases, it is difficult to obtain the rotational angular acceleration in real time during operation. As described above, when the control frequency is low and the feedback control cannot catch up, the rotational angular acceleration {(d / dt) ^ 2} θ is a function of the rotational position ψ of the flyer nozzle 24 prior to the operation of the winding device 1C. And the term of I {(d / dt) ^ 2} θ among the torque Q3 represented by the equation (6) may be given by feedforward control.
 事前に回転角加速度の関数を求めておき、この関数に基づいてフィードフォワード制御を行う、このようなサーボモータ25のトルク制御は、実施の形態3のノズル巻線機、および実施の形態4の巻線装置1Dの両方に適用可能である。実施の形態3のようにノズル巻線機を用いる場合には、回転角加速度{(d/dt)^2}θをノズル部108の回転位置ψの関数として事前に求めておく。回転位置ψとは、フライヤノズル24またはノズル部108の回転に関して、フライヤノズル24またはノズル部108が360度のうちのいずれの位置にあるか、ということを表す値である。 Such a torque control of the servo motor 25 that obtains a function of rotational angular acceleration in advance and performs feedforward control based on this function is performed by the nozzle winding machine of the third embodiment and the fourth embodiment. The present invention can be applied to both the winding device 1D. When the nozzle winding machine is used as in the third embodiment, the rotational angular acceleration {(d / dt) ^ 2} θ is obtained in advance as a function of the rotational position ψ of the nozzle unit 108. The rotational position ψ is a value indicating which position of the flyer nozzle 24 or the nozzle unit 108 is 360 degrees with respect to the rotation of the flyer nozzle 24 or the nozzle unit 108.
 具体的に、事前に回転角加速度の関数を求める際には、テンションプーリに生じさせるべきトルクのみを与えた状態で、テンション装置のサーボモータの回転角加速度{(d/dt)^2}θを、フライヤノズル24の回転位置ψ、またはノズル部108の回転位置ψの関数として、連続的なデータを取得しておく。このとき回転位置ψの時間微分は、一定としておく。稼働中には、フライヤノズル24の回転位置ψ、またはノズル部108の回転位置ψを検出し、検出された回転位置ψの値に応じて、事前に取得した回転角加速度の関数に基づいて回転角加速度{(d/dt)^2}θを求め、式(6)に基づいて付与するトルクQ3を求める。なお、加速度ピックアップなどを用いて回転角加速度をリアルタイムに検出できる場合、および制御部7の演算速度が充分に早く、巻線装置1Dの稼働中にリアルタイムに回転角加速度を計測できる場合には、リアルタイムに検出または計測された回転角加速度{(d/dt)^2}θを用いて、式(6)に基づいてフィードバック制御するほうが、事前に求めた回転角加速度の関数に基づいて制御するよりも、高い精度で制御が可能となるので、好ましい。 Specifically, when the function of the rotational angular acceleration is obtained in advance, the rotational angular acceleration {(d / dt) ^ 2} θ of the servo motor of the tension device is given with only the torque to be generated on the tension pulley. Is obtained as a function of the rotational position ψ of the flyer nozzle 24 or the rotational position ψ of the nozzle unit 108. At this time, the time derivative of the rotational position ψ is kept constant. During operation, the rotational position ψ of the flyer nozzle 24 or the rotational position ψ of the nozzle unit 108 is detected, and the rotation is performed based on the rotation angular acceleration function acquired in advance according to the detected rotational position ψ. The angular acceleration {(d / dt) ^ 2} θ is obtained, and the torque Q3 to be applied is obtained based on the equation (6). When the rotational angular acceleration can be detected in real time using an acceleration pickup or the like, and when the calculation speed of the control unit 7 is sufficiently fast and the rotational angular acceleration can be measured in real time while the winding device 1D is in operation, Using the rotational angular acceleration {(d / dt) ^ 2} θ detected or measured in real time, feedback control based on the equation (6) is performed based on the rotational angular acceleration function obtained in advance. This is preferable because control can be performed with higher accuracy.
 実施の形態4によれば、計測部110によってテンションプーリ22の回転角加速度を計測し、計測部110の計測結果に基づいて、サーボモータ25からテンションプーリ22に付与されるトルクを制御するので、線材11に生じる張力の変動を抑制でき、巻線不良の発生を防止できる。 According to the fourth embodiment, the rotational angular acceleration of the tension pulley 22 is measured by the measurement unit 110, and the torque applied from the servo motor 25 to the tension pulley 22 is controlled based on the measurement result of the measurement unit 110. Variations in tension generated in the wire 11 can be suppressed, and occurrence of winding defects can be prevented.
 ワーク6の形状は中心軸線に沿って見たときに矩形であるものとしたけれども、ワーク6の形状は、矩形に限定するものではない。ワーク6を中心軸線に沿って見たときの形状が、多角形であれば、線材11の線加速度に変動が生じ、その変動は、ダンサローラ14の揺動によって抑制でき、巻線不良の発生を防止できる。 Although the shape of the workpiece 6 is a rectangle when viewed along the central axis, the shape of the workpiece 6 is not limited to a rectangle. If the shape of the workpiece 6 when viewed along the central axis is a polygon, the linear acceleration of the wire 11 varies, and the variation can be suppressed by the swing of the dancer roller 14 to prevent the occurrence of winding defects. Can be prevented.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組合せで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。 Although this application describes various exemplary embodiments and examples, various features, aspects, and functions described in one or more embodiments may be applied to particular embodiments. The present invention is not limited to this, and can be applied to the embodiments alone or in various combinations. Accordingly, innumerable modifications not illustrated are envisaged within the scope of the technology disclosed in the present application. For example, the case where at least one component is deformed, the case where the component is added or omitted, the case where the at least one component is extracted and combined with the component of another embodiment are included.
 1,1B,1C,1D 巻線装置、2 フライヤ装置、3 張力調整装置、4 フライヤアーム部、5 フライヤ回転部、6 ワーク、7 制御部、11 線材、12 ボビン、13 テンションプーリ部、14 ダンサローラ、15 テンションアーム部、16 引張コイルばね、17 支点、21 第1滑車、22 テンションプーリ、23 バックテンショナ、24 フライヤノズル、25 サーボモータ、26 第1アイレット、31 第2アイレット、32 フェルト部、33 サファイヤ板、34 テンションプーリ台、35 プーリガイド部、36 第3アイレット、41 シリンダ、42 ロッド、43 押圧リニアガイド、44 バックテンショナ台、45 第4アイレット、46 第1ボールベアリング、51 第2ボールベアリング、52 ダンサローラ台、53 テンションアーム部の一端部、54 テンションアーム部の他端部、55 自動調心座、56 ワーク保持部、57 レーザ変位計、61 固定部、62 可動部、63 台板、64 移動リニアガイド、65 回転部材、66 シャフト部、67 リニア固定子、71 シャフト軸受、72 移動台、73 可動子、74 リニアモータ、75 リニア位置検出器、76 スライダ、81 スケール、82 ボールスプラインシャフト、83 スプライン保持体、84 スプライン外筒体、85 ボールスプライン側プーリ、86 カップリング部材、91 空洞、92 連通孔、93 第1ガイドローラ、94 開口部、95 第2ガイドローラ、96 旋回板、97 出力軸、101 モータ、102 モータスタンド、103 モータ側プーリ、104 歯付きベルト、105 圧縮コイルばね、106 スピンドル装置、107 スピンドルノズル、108 ノズル部、109 ノズル駆動部、110 計測部。 1, 1B, 1C, 1D Winding device, 2 flyer device, 3 tension adjusting device, 4 flyer arm unit, 5 flyer rotating unit, 6 work, 7 control unit, 11 wire rod, 12 bobbin, 13 tension pulley unit, 14 dancer roller , 15 tension arm, 16 tension coil spring, 17 fulcrum, 21 first pulley, 22 tension pulley, 23 back tensioner, 24 flyer nozzle, 25 servo motor, 26 first eyelet, 31 second eyelet, 32 felt part, 33 Sapphire plate, 34 tension pulley base, 35 pulley guide section, 36 third eyelet, 41 cylinder, 42 rod, 43 pressing linear guide, 44 back tensioner base, 45 fourth eyelet, 46 first ball bearing, 51 second Bearing, 52 dancer roller base, 53 one end of tension arm, 54 other end of tension arm, 55 self-aligning seat, 56 work holding part, 57 laser displacement meter, 61 fixed part, 62 movable part, 63 base plate , 64 moving linear guide, 65 rotating member, 66 shaft part, 67 linear stator, 71 shaft bearing, 72 moving base, 73 mover, 74 linear motor, 75 linear position detector, 76 slider, 81 scale, 82 ball spline Shaft, 83 spline holder, 84 spline outer cylinder, 85 ball spline pulley, 86 coupling member, 91 cavity, 92 communication hole, 93 first guide roller, 94 opening, 95 second guide roller, 96 swivel plate 97 output shaft, 101 Motor, 102 motor stand, 103 motor-side pulley, 104 toothed belt, 105 compression coil spring, 106 a spindle device 107 spindle nozzles, 108 nozzles unit, 109 a nozzle driving unit 110 measuring unit.

Claims (9)

  1. ボビンから送出される線材を、ワークに対して前記線材の巻回を行う巻線部に導き、前記線材の張力を調整する張力調整装置であって、
    前記ボビンから送出される前記線材に張力を付与するテンションプーリ部と、
    前記テンションプーリ部から送出される前記線材が巻掛けられ、前記線材を前記巻線部に導くとともに、揺動可能に設けられるダンサローラと、
    前記ダンサローラを回転自在に支持し、前記ダンサローラの回転軸とは異なる位置に設けられる支点を中心として、前記ダンサローラの揺動を規定するテンションアーム部と、
    前記支点を中心とした周方向のうち、前記ダンサローラが前記巻線部から遠ざかる向きに、前記テンションアーム部を付勢する付勢部とを備え、
    前記ダンサローラを離れた線材は、前記ダンサローラから直線的に前記巻線部に向かう張力調整装置。
    A wire tensioning device that guides a wire rod fed from a bobbin to a winding portion that winds the wire rod around a workpiece, and adjusts the tension of the wire rod,
    A tension pulley portion for applying tension to the wire rod fed from the bobbin;
    The wire rod delivered from the tension pulley portion is wound, and the wire rod is guided to the winding portion, and a dancer roller is provided so as to be swingable.
    A tension arm portion that rotatably supports the dancer roller, and defines a swing of the dancer roller around a fulcrum provided at a position different from a rotation axis of the dancer roller;
    A biasing part that biases the tension arm part in a direction in which the dancer roller moves away from the winding part in a circumferential direction around the fulcrum;
    The wire rod that has left the dancer roller is a tension adjusting device that linearly moves from the dancer roller toward the winding portion.
  2. 前記テンションプーリ部から前記ダンサローラに向かう線材の方向は、前記ダンサローラから前記巻線部に向かう線材の方向に対し、垂直である請求項1に記載の張力調整装置。 The tension adjusting device according to claim 1, wherein the direction of the wire from the tension pulley portion toward the dancer roller is perpendicular to the direction of the wire from the dancer roller toward the winding portion.
  3. 前記ダンサローラにおいて前記線材は、前記ダンサローラの回転軸を中心として前記ダンサローラに巻掛けられる請求項1または請求項2に記載の張力調整装置。 3. The tension adjusting device according to claim 1, wherein the wire rod is wound around the dancer roller around a rotation shaft of the dancer roller.
  4. 前記テンションプーリ部のテンションプーリに回転トルクを付与する回転駆動部と、
    前記テンションプーリの回転角加速度を計測する計測部と、
    前記計測部の計測結果に基づいて、前記回転駆動部によって前記テンションプーリに付与される回転トルクを制御する制御部とを備える請求項1から請求項3のいずれか1項に記載の張力調整装置。
    A rotation drive unit that applies a rotational torque to the tension pulley of the tension pulley unit;
    A measurement unit for measuring the rotational angular acceleration of the tension pulley;
    The tension adjusting device according to any one of claims 1 to 3, further comprising: a control unit that controls a rotational torque applied to the tension pulley by the rotation driving unit based on a measurement result of the measuring unit. .
  5. 請求項1から請求項4のいずれか1項に記載の張力調整装置と、前記巻線部とを備える巻線装置。 A winding device comprising the tension adjusting device according to any one of claims 1 to 4 and the winding portion.
  6. 前記巻線部は、前記ワークに対して線材を送出するフライヤアーム部と、
    前記フライヤアーム部を前記ワークに対して回転させるフライヤ回転部とを備え、
    前記ダンサローラの揺動に関する固有周波数は、前記フライヤアーム部の回転数の2倍以上である請求項5に記載の巻線装置。
    The winding portion is a flyer arm portion for sending a wire to the workpiece,
    A flyer rotating unit that rotates the flyer arm unit with respect to the workpiece;
    The winding device according to claim 5, wherein a natural frequency related to the swing of the dancer roller is at least twice the number of rotations of the flyer arm portion.
  7. 前記ワークはスピンドル装置によって回転され、
    前記巻線部は、前記ワークに向けて送出される前記線材の経路を規定するスピンドルノズルを備える請求項5に記載の巻線装置。
    The workpiece is rotated by a spindle device,
    The winding device according to claim 5, wherein the winding unit includes a spindle nozzle that defines a path of the wire rod fed toward the workpiece.
  8. 前記ワークは固定され、
    前記巻線部は、前記ワークに対して線材を送出するノズル部と、
    前記ノズル部を前記ワークの側面に沿って駆動するノズル駆動部とを備える請求項5に記載の巻線装置。
    The workpiece is fixed,
    The winding part is a nozzle part for sending a wire to the workpiece;
    The winding device according to claim 5, further comprising a nozzle driving unit that drives the nozzle unit along a side surface of the workpiece.
  9. 前記巻線部が前記ワークに前記線材を巻回するときに、前記巻線部における前記線材の送出速度に関し、前記線材の線加速度が増大すると、前記ダンサローラの揺動によって、前記ダンサローラから前記巻線部までの前記線材の経路長が短くなる請求項5から請求項8のいずれか1項に記載の巻線装置。 When the wire portion winds the wire around the workpiece, if the linear acceleration of the wire increases with respect to the feeding speed of the wire in the winding portion, the winding of the dancer roller causes the winding from the dancer roller. The winding device according to any one of claims 5 to 8, wherein a path length of the wire to the wire portion is shortened.
PCT/JP2018/040298 2018-04-26 2018-10-30 Tension adjusting device and wire winding device WO2019207827A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020516009A JP6906695B2 (en) 2018-04-26 2018-10-30 Manufacturing method of tension adjusting device, winding device and rotary electric machine
CN201880091255.XA CN111971244B (en) 2018-04-26 2018-10-30 Tension adjusting device, winding device, and method for manufacturing rotating electric machine
TW108105840A TWI678714B (en) 2018-04-26 2019-02-21 Tension adjusting apparatus and winding apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018084703 2018-04-26
JP2018-084703 2018-04-26

Publications (1)

Publication Number Publication Date
WO2019207827A1 true WO2019207827A1 (en) 2019-10-31

Family

ID=68295248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040298 WO2019207827A1 (en) 2018-04-26 2018-10-30 Tension adjusting device and wire winding device

Country Status (4)

Country Link
JP (1) JP6906695B2 (en)
CN (1) CN111971244B (en)
TW (1) TWI678714B (en)
WO (1) WO2019207827A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114852786A (en) * 2022-05-16 2022-08-05 南京信息工程大学 Intelligent tension take-up device
CN117645206A (en) * 2024-01-30 2024-03-05 萤聚线缆科技(云南)有限公司 Tension adjusting device for 5G cable production and processing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI743822B (en) * 2020-06-08 2021-10-21 萬潤科技股份有限公司 Winding method and equipment
CN112216506A (en) * 2020-10-28 2021-01-12 常德市德韵电子设备有限公司 Inductor production winding device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2140728A (en) * 1936-01-11 1938-12-20 Elevator Supplies Co Inc Wire spooling apparatus and tension varying element
JPH09202531A (en) * 1995-11-22 1997-08-05 Sony Corp Tension controller for wire material
JP2009018906A (en) * 2007-07-12 2009-01-29 Toyo Tire & Rubber Co Ltd Yarn-winding apparatus
WO2012108250A1 (en) * 2011-02-07 2012-08-16 三菱電機株式会社 Automatic wire bonder
JP2013028438A (en) * 2011-07-29 2013-02-07 Taga Manufacturing Co Ltd Tension apparatus, automatic winding machine, method for controlling tension, and method for manufacturing winding wire
JP2013147326A (en) * 2012-01-20 2013-08-01 Nittoku Eng Co Ltd Tension device and tension imparting method
JP2016131223A (en) * 2015-01-15 2016-07-21 三菱電機株式会社 Coil winding device
WO2016117038A1 (en) * 2015-01-20 2016-07-28 三菱電機株式会社 Tension roller, tension adjustment device, and electric-motor production method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310124A (en) * 1992-04-29 1994-05-10 Axis Usa, Inc. Wire tensioner with program controlled bidirectional pulley wheel
JPH06342730A (en) * 1993-05-31 1994-12-13 Taiyo Yuden Co Ltd Toroidal wiring device
CN101454850B (en) * 2006-05-26 2011-08-31 日特机械工程株式会社 Wire winding system, tension device, and wire winding method
US8316865B2 (en) * 2008-07-31 2012-11-27 Mcneil-Ppc, Inc. Process for winding dental tape
JP2010118452A (en) * 2008-11-12 2010-05-27 Mitsuba Corp Winding machine
JP5177701B2 (en) * 2009-02-16 2013-04-10 コマツNtc株式会社 Traverse control method and apparatus
JP2010194576A (en) * 2009-02-25 2010-09-09 Kobe Steel Ltd Method and apparatus for rewinding welding wire
JP5744651B2 (en) * 2011-07-12 2015-07-08 三菱電機株式会社 Winding machine tensioning device
JP6269593B2 (en) * 2015-06-23 2018-01-31 株式会社村田製作所 Wire winding method and wire winding apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2140728A (en) * 1936-01-11 1938-12-20 Elevator Supplies Co Inc Wire spooling apparatus and tension varying element
JPH09202531A (en) * 1995-11-22 1997-08-05 Sony Corp Tension controller for wire material
JP2009018906A (en) * 2007-07-12 2009-01-29 Toyo Tire & Rubber Co Ltd Yarn-winding apparatus
WO2012108250A1 (en) * 2011-02-07 2012-08-16 三菱電機株式会社 Automatic wire bonder
JP2013028438A (en) * 2011-07-29 2013-02-07 Taga Manufacturing Co Ltd Tension apparatus, automatic winding machine, method for controlling tension, and method for manufacturing winding wire
JP2013147326A (en) * 2012-01-20 2013-08-01 Nittoku Eng Co Ltd Tension device and tension imparting method
JP2016131223A (en) * 2015-01-15 2016-07-21 三菱電機株式会社 Coil winding device
WO2016117038A1 (en) * 2015-01-20 2016-07-28 三菱電機株式会社 Tension roller, tension adjustment device, and electric-motor production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114852786A (en) * 2022-05-16 2022-08-05 南京信息工程大学 Intelligent tension take-up device
CN114852786B (en) * 2022-05-16 2023-09-19 南京信息工程大学 Intelligent tension take-up device
CN117645206A (en) * 2024-01-30 2024-03-05 萤聚线缆科技(云南)有限公司 Tension adjusting device for 5G cable production and processing
CN117645206B (en) * 2024-01-30 2024-04-05 萤聚线缆科技(云南)有限公司 Tension adjusting device for 5G cable production and processing

Also Published As

Publication number Publication date
JPWO2019207827A1 (en) 2020-12-10
CN111971244A (en) 2020-11-20
TWI678714B (en) 2019-12-01
CN111971244B (en) 2022-04-05
TW201946079A (en) 2019-12-01
JP6906695B2 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
WO2019207827A1 (en) Tension adjusting device and wire winding device
JP5177701B2 (en) Traverse control method and apparatus
JP4734409B2 (en) Winding device, tension device, and winding method
US7651046B2 (en) Bobbin winding device
JP4432453B2 (en) Winding device and electric motor
JP2019146386A (en) Cable movement device
JP2006306508A (en) Taping device
KR100505136B1 (en) The traverse device of a bobbin-less coil winding machine
JP2001122525A (en) Tape winding device and method
JP6316215B2 (en) Coil winding device
WO2016117038A1 (en) Tension roller, tension adjustment device, and electric-motor production method
CN108975067B (en) Tension device
CN112299137A (en) Tension adjusting unit and automatic winding equipment
JP2015228393A (en) Coil manufacturing device
US11060838B2 (en) Coordinate measuring machine
CN111115390A (en) Winding equipment
JP7336825B2 (en) Winding device and winding method
JPS622199Y2 (en)
JPH0859081A (en) Fine line winding machine
CN211971414U (en) Winding equipment
JP3381413B2 (en) Coil manufacturing equipment
JP7357428B2 (en) Winding device and winding method
JP2003341893A (en) Belt-like material winder
JP2021124198A (en) Wire constant tension device
JP2951538B2 (en) Intermittent feed winding machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516009

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916518

Country of ref document: EP

Kind code of ref document: A1