WO2019207636A1 - 高張力鋼からなる鋼板の製造方法 - Google Patents
高張力鋼からなる鋼板の製造方法 Download PDFInfo
- Publication number
- WO2019207636A1 WO2019207636A1 PCT/JP2018/016550 JP2018016550W WO2019207636A1 WO 2019207636 A1 WO2019207636 A1 WO 2019207636A1 JP 2018016550 W JP2018016550 W JP 2018016550W WO 2019207636 A1 WO2019207636 A1 WO 2019207636A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- less
- steel
- steel sheet
- manufacturing
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
Definitions
- the present invention relates to a method of manufacturing a steel plate whose material is high-tensile steel.
- a steel plate made of high-strength steel has high strength and is relatively inexpensive. This steel sheet is widely used in automobile parts, railway vehicle parts, building materials, machine structural parts, piping, ships, and the like.
- High tensile steel is obtained by adding a plurality of alloy elements to low carbon steel.
- the content of alloy elements is small compared to that in alloy steel.
- High-tensile steel is a so-called low alloy. This low alloy contributes to the low price of the steel sheet.
- Classification of steel plates made of high-strength steel is disclosed on pages 552 to 559 of the Metal Handbook (5th revised edition) edited by the Japan Institute of Metals.
- high-strength steel has a demand for further lower alloy.
- the reduction in the amount of alloy elements impairs the high strength, which is an advantage of high strength steel.
- An object of the present invention is to provide a steel sheet having a small amount of alloy elements and excellent strength.
- the manufacturing method of the steel plate which consists of high-tensile steel based on this invention is the following. (1) a step of obtaining molten steel; (2) A step of continuously casting the molten steel to obtain a slab having a thickness of 80 mm or more and 150 mm or less, (3) subjecting the slab to hot rolling to obtain a strip-shaped steel sheet having a thickness of 1.0 mm to 12.5 mm; And (4) a step of winding the steel sheet.
- Hot rolling may include rough rolling and finish rolling.
- finish rolling the steel temperature on the entry side is 890 ° C. or more, and the steel temperature on the exit side is 850 ° C. or more.
- the temperature of the steel sheet during winding is 600 ° C. or less.
- the material of the steel plate is C: 0.08% by mass to 0.20% by mass Si: 0.20% by mass to 0.70% by mass Mn: 0.30% by mass to 1.10% by mass Ni: 0.2% by mass or less Cr: 0.2% by mass or less Cu: 0.2% by mass or less and Nb: 0.001% by mass or more, the balance being carbon steel with Fe and inevitable impurities.
- the total content of P and S in this carbon steel is 0.015 mass% or less.
- the material of the steel plate is C: 0.08 mass% or more and 0.12 mass% or less Si: 0.20 mass% or more and 0.35 mass% or less Mn: 0.30 mass% or more and 0.45 mass% or less Ni: 0.2 mass% or less Cr: 0.2% by mass or less Cu: 0.2% by mass or less and Nb: 0.001% by mass or more and 0.02% by mass or less, and the balance may be carbon steel with Fe and inevitable impurities. .
- the material of the steel plate is C: 0.12 mass% or more and 0.15 mass% or less Si: 0.20 mass% or more and 0.35 mass% or less Mn: 0.50 mass% or more and 0.65 mass% or less Ni: 0.2 mass% or less Cr: 0.2% by mass or less Cu: 0.2% by mass or less and Nb: 0.02% by mass or more and 0.05% by mass or less, and the balance may be carbon steel with Fe and inevitable impurities. .
- the material of the steel plate is C: 0.16 mass% or more and 0.18 mass% or less Si: 0.35 mass% or more and 0.50 mass% or less Mn: 0.65 mass% or more and 0.90 mass% or less Ni: 0.2 mass% or less Carbon: 0.2 mass% or less Cu: 0.2 mass% or less and Nb: 0.05 mass% or more, and the balance may be carbon steel with Fe and inevitable impurities.
- the material of the steel plate is C: 0.18 mass% or more and 0.20 mass% or less Si: 0.50 mass% or more and 0.70 mass% or less Mn: 0.90 mass% or more and 1.10 mass% or less Ni: 0.2 mass% or less Carbon: 0.2 mass% or less Cu: 0.2 mass% or less and Nb: 0.05 mass% or more, and the balance may be carbon steel with Fe and inevitable impurities.
- the material of the steel sheet according to the present invention is C: 0.08% by mass to 0.20% by mass Si: 0.20% by mass to 0.70% by mass Mn: 0.30% by mass to 1.10% by mass Ni: 0.2% by mass or less Cr: 0.2% by mass or less Cu: 0.2% by mass or less and Nb: 0.001% by mass or more, with the balance being Fe and unavoidable impurities.
- the average crystal grain size in this steel sheet structure is 25 ⁇ m or less.
- the low cost steel plate made of high strength steel can be obtained by the manufacturing method according to the present invention.
- This steel plate is excellent in strength.
- FIG. 1 is a flowchart showing a method for manufacturing a steel sheet according to an embodiment of the present invention.
- the material of the steel plate according to the present invention is high tensile steel.
- An example of the manufacturing method of this steel plate is shown in FIG. In this manufacturing method, metal scrap or the like is put into an electric furnace. Arc discharge is performed in this electric furnace, and the scrap is melted (STEP 1). By this step, molten steel is obtained.
- This molten steel is transferred to a ladle.
- the molten steel is refined (STEP 2).
- the composition of the molten steel is prepared. Refining removes impurities from the molten steel to the extent possible.
- This molten steel is subjected to continuous casting (C. C.) (STEP 3).
- a continuous casting machine is used for continuous casting.
- a typical continuous casting machine has a mold. Molten steel is supplied to this mold via a tundish or the like. Molten steel is cooled in the mold. By cooling, a slab is obtained. This slab is strip-shaped.
- This slab is heated (STEP 4). Heating raises the temperature of the slab to a temperature suitable for subsequent rolling.
- a tunnel heating furnace can be used. Heating may be omitted.
- This slab is subjected to first rolling (rough rolling) (STEP 5).
- first rolling rough rolling
- the slab is passed between a pair of rolls.
- the slab is thinned by rough rolling.
- the slab is widened by rough rolling. This rough rolling is performed hot.
- This slab is subjected to second rolling (finish rolling) (STEP 6).
- finish rolling the slab is passed between a pair of rolls.
- the slab is further thinned by finish rolling.
- the slab is further widened by finish rolling.
- This finish rolling is performed hot.
- a steel plate is obtained by finish rolling.
- This steel plate is strip-shaped.
- the thickness of the steel plate is preferably 1.0 mm or more and 12.5 mm or less.
- This steel plate is cooled (STEP 7). By cooling, the temperature of the steel sheet decreases. Usually, the steel sheet is cooled by water cooling. Typically, the steel sheet is cooled by a cooling device constituted by a multistage bank having a laminar flow system.
- the cooled steel sheet is wound up on a reel or the like (STEP 8). By winding, the steel sheet assumes a coil shape. Thereafter, the steel sheet is conveyed in the form of a coil.
- the thickness of the slab in continuous casting is preferably 150 mm or less.
- the cooling rate is fast.
- a metal structure having a small crystal grain size is obtained.
- the strength of the steel sheet obtained from the slab having this metal structure is high. By controlling the crystal grain size, a steel sheet having high strength can be obtained even with a small amount of additive elements. In this steel plate, both high strength and low price can be achieved.
- the thickness is more preferably equal to or less than 130 mm, and particularly preferably equal to or less than 110 mm. From the viewpoint of slab productivity, the thickness is preferably 80 mm or more.
- the temperature of the steel on the entry side is preferably 890 ° C. or higher.
- the temperature is more preferably equal to or higher than 900 ° C, and particularly preferably equal to or higher than 910 ° C. From the viewpoint of preventing rough skin, the temperature is preferably 1000 ° C. or lower.
- the inlet temperature is the temperature measured at the front position of the first roll of the finishing mill.
- the temperature of the outgoing steel is preferably 850 ° C. or higher.
- fine crystal grains can be obtained.
- the temperature is more preferably 860 ° C. or higher, and particularly preferably 870 ° C. or higher. This temperature is preferably 1000 ° C. or less.
- the exit temperature is the temperature measured at the exit position of the last roll of the finishing mill.
- the temperature of the steel sheet in winding is preferably 600 ° C. or lower. Fine crystal grains can be obtained by a manufacturing method in which the temperature is 600 ° C. or lower. From this viewpoint, this temperature is more preferably 590 ° C. or less, and particularly preferably 580 ° C. or less. This temperature is preferably 540 ° C. or higher. This temperature is the temperature of the steel sheet when it reaches the reel.
- the average grain size in the metal structure of the steel sheet is preferably 25 ⁇ m or less.
- a steel sheet having an average crystal grain size within this range is tough.
- the average crystal grain size is more preferably 10 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
- the average crystal grain size is measured in a cross section perpendicular to the thickness direction of the steel plate and passing through the center of the thickness of the steel plate. This cross section is observed with an electron microscope.
- the grain size of 20 randomly extracted crystal grains is measured, and an average value is calculated to obtain an average grain diameter.
- the grain size in each crystal grain is the length of the longest line segment that can be drawn within the outline of this crystal grain in the micrograph.
- the material of this steel plate is high-tensile steel.
- This high strength steel contains C, Si, Mn, Ni, Cr, Cu and Nb.
- the balance is Fe and inevitable impurities. In the following, the role of each element is explained in detail.
- [Carbon (C)] C dissolves in Fe and increases the strength of the steel sheet.
- the C content is preferably equal to or greater than 0.08 mass%, more preferably equal to or greater than 0.12 mass%, and particularly preferably equal to or greater than 0.16 mass%. If the C content is excessive, the toughness of the steel sheet is impaired. From the viewpoint of toughness, the C content is preferably 0.20% by mass or less.
- Si contributes to the strength of the steel sheet. Further, Si contributes to the reduction of O which is an impurity. In this respect, the Si content is preferably equal to or greater than 0.20 mass%, more preferably equal to or greater than 0.35 mass%, and particularly preferably equal to or greater than 0.50 mass%. If the Si content is excessive, the toughness of the steel sheet is impaired. From the viewpoint of toughness, the Si content is preferably 0.70% by mass or less.
- Mn Manganese (Mn) Mn contributes to the strength of the steel sheet.
- the Mn content is preferably 0.30% by mass or more, more preferably 0.50% by mass or more, and particularly preferably 0.65% by mass or more. If the Mn content is excessive, the toughness of the steel sheet is impaired. From the viewpoint of toughness, the Mn content is preferably 1.10% by mass or less.
- Nickel (Ni) Ni can contribute to both strength and toughness of the steel sheet.
- the Ni content is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and particularly preferably 0.10% by mass or more. From the viewpoint of low cost of the steel sheet, the Ni content is preferably 0.2% by mass or less.
- Cr Cr
- the Cr content is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and particularly preferably 0.10% by mass or more. From the viewpoint of low cost of the steel sheet, the Cr content is preferably 0.2% by mass or less.
- [Copper (Cu)] Cu can contribute to both strength and toughness of the steel sheet.
- the Cr content is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and particularly preferably 0.10% by mass or more.
- the Cu content is preferably 0.2% by mass or less.
- Nb can contribute to refinement of crystal grains.
- the Nb content is preferably equal to or greater than 0.001% by mass, more preferably equal to or greater than 0.02% by mass, and particularly preferably equal to or greater than 0.05% by mass. From the viewpoint of low cost of the steel sheet, the Nb content is preferably 0.2% by mass or less.
- Oxygen (O) is an inevitable impurity. O reduces the toughness of the steel sheet.
- Phosphorus (P) is an inevitable impurity. P is unevenly distributed at the grain boundaries and reduces the toughness of the steel sheet. From these viewpoints, the total content of O and P is preferably 0.015% by mass or less, more preferably 0.010% by mass or less, and particularly preferably 0.005% by mass or less.
- S Sulfur
- S is an inevitable impurity.
- S like P, is an element that is easily segregated. S inhibits the toughness, weldability and workability of the steel sheet. From these viewpoints, the S content is preferably 0.01% by mass or less, particularly preferably 0.005% by mass or less.
- a composition particularly suitable for a steel sheet having a tensile strength of about 500 MPa is as follows.
- a composition particularly suitable for a steel sheet having a tensile strength of about 600 MPa is as follows.
- a composition particularly suitable for a steel sheet having a tensile strength of about 700 MPa is as follows.
- a composition particularly suitable for a steel sheet having a tensile strength of about 800 MPa is as follows.
- Example 1 Metal scrap was melted in an electric furnace to obtain molten steel. The molten steel was transferred to a pan and refined. The composition of this molten steel was as follows. C: 0.13 mass% Si: 0.25% by mass Mn: 0.60% by mass Ni: 0.09 mass% Cr: 0.11% by mass Cu: 0.07 mass% Nb: 0.02 mass% The remainder: Fe and inevitable impurities
- the slab was obtained by casting this molten steel with a continuous casting machine.
- the thickness of this slab was 130 mm.
- This slab was heated in a tunnel heating furnace. By heating, the temperature of the slab rose to 1120 ° C.
- This slab was subjected to rough rolling and finish rolling to obtain a steel plate having a thickness of 3.2 mm.
- finish rolling the temperature of the steel on the entry side was 910 ° C., and the temperature of the steel on the exit side was 870 ° C.
- the steel sheet was cooled to 580 ° C. and wound on a reel.
- Example 2 A steel plate was obtained in the same manner as in Example 1 except that the thickness of the slab was 150 mm.
- Example 3 A steel plate was obtained in the same manner as in Example 1 except that the Nb content was 0.05% by mass.
- Example 4 A steel plate was obtained in the same manner as in Example 1 except that the Nb content was 0.10% by mass.
- a steel plate was obtained in the same manner as in Example 1 except that the thickness of the slab was 180 mm.
- Test piece was collected from the center in the width direction of the steel plate. The length direction of this test piece corresponds to the rolling method. The test piece was subjected to a tensile test in accordance with JIS standards, and the tensile strength was measured. The results are shown in Table 1 below.
- the steel sheet according to the present invention can be used for various purposes.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
(1)溶鋼を得る工程、
(2)上記溶鋼に連続鋳造を施して、その厚さが80mm以上150mm以下であるスラブを得る工程、
(3)上記スラブに熱間圧延を施して、その厚さが1.0mm以上12.5mm以下である帯状の鋼板を得る工程、
及び
(4)上記鋼板を巻き取る工程
を含む。
C:0.08質量%以上0.20質量%以下
Si:0.20質量%以上0.70質量%以下
Mn:0.30質量%以上1.10質量%以下
Ni:0.2質量%以下
Cr:0.2質量%以下
Cu:0.2質量%以下
及び
Nb:0.001質量%以上
を含み、残部がFe及び不可避的不純物である炭素鋼である。
C:0.08質量%以上0.12質量%以下
Si:0.20質量%以上0.35質量%以下
Mn:0.30質量%以上0.45質量%以下
Ni:0.2質量%以下
Cr:0.2質量%以下
Cu:0.2質量%以下
及び
Nb:0.001質量%以上0.02質量%以下
を含み、残部がFe及び不可避的不純物である炭素鋼であってもよい。
C:0.12質量%以上0.15質量%以下
Si:0.20質量%以上0.35質量%以下
Mn:0.50質量%以上0.65質量%以下
Ni:0.2質量%以下
Cr:0.2質量%以下
Cu:0.2質量%以下
及び
Nb:0.02質量%以上0.05質量%以下
を含み、残部がFe及び不可避的不純物である炭素鋼であってもよい。
C:0.16質量%以上0.18質量%以下
Si:0.35質量%以上0.50質量%以下
Mn:0.65質量%以上0.90質量%以下
Ni:0.2質量%以下
Cr:0.2質量%以下
Cu:0.2質量%以下
及び
Nb:0.05質量%以上
を含み、残部がFe及び不可避的不純物である炭素鋼であってもよい。
C:0.18質量%以上0.20質量%以下
Si:0.50質量%以上0.70質量%以下
Mn:0.90質量%以上1.10質量%以下
Ni:0.2質量%以下
Cr:0.2質量%以下
Cu:0.2質量%以下
及び
Nb:0.05質量%以上
を含み、残部がFe及び不可避的不純物である炭素鋼であってもよい。
C:0.08質量%以上0.20質量%以下
Si:0.20質量%以上0.70質量%以下
Mn:0.30質量%以上1.10質量%以下
Ni:0.2質量%以下
Cr:0.2質量%以下
Cu:0.2質量%以下
及び
Nb:0.001質量%以上
を含み、残部がFe及び不可避的不純物である高張力鋼である。この鋼板の組織における、平均結晶粒径は、25μm以下である。
CはFeに固溶し、鋼板の強度を高める。この観点から、Cの含有率は0.08質量%以上が好ましく、0.12質量%以上がより好ましく、0.16質量%以上が特に好ましい。Cの含有率が過剰であると、鋼板の靱性が損なわれる。靱性の観点から、Cの含有率は0.20質量%以下が好ましい。
Siは、鋼板の強度に寄与する。さらにSiは、不純物であるOの低減に寄与する。この観点から、Siの含有率は0.20質量%以上が好ましく、0.35質量%以上がより好ましく、0.50質量%以上が特に好ましい。Siの含有率が過剰であると、鋼板の靱性が損なわれる。靱性の観点から、Siの含有率は0.70質量%以下が好ましい。
Mnは、鋼板の強度に寄与する。この観点から、Mnの含有率は0.30質量%以上が好ましく、0.50質量%以上がより好ましく、0.65質量%以上が特に好ましい。Mnの含有率が過剰であると、鋼板の靱性が損なわれる。靱性の観点から、Mnの含有率は1.10質量%以下が好ましい。
Niは、鋼板の強度及び靱性の両方に寄与しうる。この観点から、Niの含有率は0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.10質量%以上が特に好ましい。鋼板の低価格の観点から、Niの含有率は0.2質量%以下が好ましい。
Crは、鋼板の強度に寄与する。この観点から、Crの含有率は0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.10質量%以上が特に好ましい。鋼板の低価格の観点から、Crの含有率は0.2質量%以下が好ましい。
Cuは、鋼板の強度及び靱性の両方に寄与しうる。この観点から、Crの含有率は0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.10質量%以上が特に好ましい。鋼板の低価格の観点から、Cuの含有率は0.2質量%以下が好ましい。
Nbは、結晶粒の微細化に寄与しうる。この観点から、Nbの含有率は0.001質量%以上が好ましく、0.02質量%以上がより好ましく、0.05質量%以上が特に好ましい。鋼板の低価格の観点から、Nbの含有率は0.2質量%以下が好ましい。
C:0.08質量%以上0.12質量%以下
Si:0.20質量%以上0.35質量%以下
Mn:0.30質量%以上0.45質量%以下
Ni:0.2質量%以下
Cr:0.2質量%以下
Cu:0.2質量%以下
Nb:0.001質量%以上0.02質量%以下
C:0.12質量%以上0.15質量%以下
Si:0.20質量%以上0.35質量%以下
Mn:0.50質量%以上0.65質量%以下
Ni:0.2質量%以下
Cr:0.2質量%以下
Cu:0.2質量%以下
Nb:0.02質量%以上0.05質量%以下
C:0.16質量%以上0.18質量%以下
Si:0.35質量%以上0.50質量%以下
Mn:0.65質量%以上0.90質量%以下
Ni:0.2質量%以下
Cr:0.2質量%以下
Cu:0.2質量%以下
Nb:0.05質量%以上
C:0.18質量%以上0.20質量%以下
Si:0.50質量%以上0.70質量%以下
Mn:0.90質量%以上1.10質量%以下
Ni:0.2質量%以下
Cr:0.2質量%以下
Cu:0.2質量%以下
Nb:0.05質量%以上
金属スクラップを電気炉にて溶融し、溶鋼を得た。この溶鋼を取鍋に移し、精錬した。この溶鋼の組成は、以下のとおりであった。
C:0.13質量%
Si:0.25質量%
Mn:0.60質量%
Ni:0.09質量%
Cr:0.11質量%
Cu:0.07質量%
Nb:0.02質量%
残部:Fe及び不可避的不純物
スラブの厚みを150mmとした他は実施例1と同様にして、鋼板を得た。
Nbの含有率を0.05質量%とした他は実施例1と同様にして、鋼板を得た。
Nbの含有率を0.10質量%とした他は実施例1と同様にして、鋼板を得た。
スラブの厚みを180mmとした他は実施例1と同様にして、鋼板を得た。
鋼板の幅方向中央から、試験片を採取した。この試験片の長さ方向は、圧延方法に一致している。この試験片に、JISの規格に準拠して引張試験を行い、引張強さを測定した。この結果が、下記の表1に示されている。
Claims (10)
- 溶鋼を得る工程、
上記溶鋼に連続鋳造を施して、その厚さが80mm以上150mm以下であるスラブを得る工程、
上記スラブに熱間圧延を施して、その厚さが1.0mm以上12.5mm以下である帯状の鋼板を得る工程、
及び
上記鋼板を巻き取る工程
を含む、高張力鋼からなる鋼板の製造方法。 - 上記熱間圧延が、粗圧延及び仕上圧延を含んでおり、
上記仕上げ圧延における、入側の鋼温度が890℃以上であり、出側の鋼温度が850℃以上である請求項1に記載の製造方法。 - 上記鋼板の、巻き取り時の温度が600℃以下である請求項2に記載の製造方法。
- 上記鋼板の材質が、
C:0.08質量%以上0.20質量%以下
Si:0.20質量%以上0.70質量%以下
Mn:0.30質量%以上1.10質量%以下
Ni:0.2質量%以下
Cr:0.2質量%以下
Cu:0.2質量%以下
及び
Nb:0.001質量%以上
を含み、残部がFe及び不可避的不純物である炭素鋼である請求項1から3のいずれかに記載の製造方法。 - 上記炭素鋼におけるP及びSの合計含有率が0.015質量%以下である請求項4に記載の製造方法。
- 上記鋼板の材質が、
C:0.08質量%以上0.12質量%以下
Si:0.20質量%以上0.35質量%以下
Mn:0.30質量%以上0.45質量%以下
Ni:0.2質量%以下
Cr:0.2質量%以下
Cu:0.2質量%以下
及び
Nb:0.001質量%以上0.02質量%以下
を含み、残部がFe及び不可避的不純物である炭素鋼である請求項4又は5に記載の製造方法。 - 上記鋼板の材質が、
C:0.12質量%以上0.15質量%以下
Si:0.20質量%以上0.35質量%以下
Mn:0.50質量%以上0.65質量%以下
Ni:0.2質量%以下
Cr:0.2質量%以下
Cu:0.2質量%以下0.05質量%以下
及び
Nb:0.02質量%以上
を含み、残部がFe及び不可避的不純物である炭素鋼である請求項4又は5に記載の製造方法。 - 上記鋼板の材質が、
C:0.16質量%以上0.18質量%以下
Si:0.35質量%以上0.50質量%以下
Mn:0.65質量%以上0.90質量%以下
Ni:0.2質量%以下
Cr:0.2質量%以下
Cu:0.2質量%以下
及び
Nb:0.05質量%以上
を含み、残部がFe及び不可避的不純物である炭素鋼である請求項4又は5に記載の製造方法。 - 上記鋼板の材質が、
C:0.18質量%以上0.20質量%以下
Si:0.50質量%以上0.70質量%以下
Mn:0.90質量%以上1.10質量%以下
Ni:0.2質量%以下
Cr:0.2質量%以下
Cu:0.2質量%以下
及び
Nb:0.05質量%以上
を含み、残部がFe及び不可避的不純物である炭素鋼である請求項4又は5に記載の製造方法。 - その材質が、
C:0.08質量%以上0.20質量%以下
Si:0.20質量%以上0.70質量%以下
Mn:0.30質量%以上1.10質量%以下
Ni:0.2質量%以下
Cr:0.2質量%以下
Cu:0.2質量%以下
及び
Nb:0.001質量%以上
を含み、残部がFe及び不可避的不純物である高張力鋼であり、
その組織における平均結晶粒径が25μm以下である鋼板。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/016550 WO2019207636A1 (ja) | 2018-04-24 | 2018-04-24 | 高張力鋼からなる鋼板の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/016550 WO2019207636A1 (ja) | 2018-04-24 | 2018-04-24 | 高張力鋼からなる鋼板の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019207636A1 true WO2019207636A1 (ja) | 2019-10-31 |
Family
ID=68294442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/016550 WO2019207636A1 (ja) | 2018-04-24 | 2018-04-24 | 高張力鋼からなる鋼板の製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019207636A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04162943A (ja) * | 1990-10-25 | 1992-06-08 | Nippon Steel Corp | 連続鋳造鋳片の熱間加工割れ防止方法 |
JP2005002441A (ja) * | 2003-06-13 | 2005-01-06 | Sumitomo Metal Ind Ltd | 高強度鋼材及びその製造方法 |
JP2007070647A (ja) * | 2005-09-02 | 2007-03-22 | Nippon Steel Corp | 高強度鋼板およびその製造方法 |
WO2017154727A1 (ja) * | 2016-03-11 | 2017-09-14 | Jfeスチール株式会社 | 高強度薄鋼板およびその製造方法 |
JP2018031055A (ja) * | 2016-08-24 | 2018-03-01 | 新日鐵住金株式会社 | 鋳片、及び、鋳片の製造方法 |
-
2018
- 2018-04-24 WO PCT/JP2018/016550 patent/WO2019207636A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04162943A (ja) * | 1990-10-25 | 1992-06-08 | Nippon Steel Corp | 連続鋳造鋳片の熱間加工割れ防止方法 |
JP2005002441A (ja) * | 2003-06-13 | 2005-01-06 | Sumitomo Metal Ind Ltd | 高強度鋼材及びその製造方法 |
JP2007070647A (ja) * | 2005-09-02 | 2007-03-22 | Nippon Steel Corp | 高強度鋼板およびその製造方法 |
WO2017154727A1 (ja) * | 2016-03-11 | 2017-09-14 | Jfeスチール株式会社 | 高強度薄鋼板およびその製造方法 |
JP2018031055A (ja) * | 2016-08-24 | 2018-03-01 | 新日鐵住金株式会社 | 鋳片、及び、鋳片の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107429349B (zh) | 冷轧钢板及其制造方法 | |
TWI465583B (zh) | 熱浸鍍鋅鋼板及其製造方法 | |
TWI484050B (zh) | 冷軋鋼板、及其製造方法、以及熱壓印成形體 | |
CN110168126B (zh) | 热轧钢板及其制造方法 | |
JP6177551B2 (ja) | 絞り加工性と加工後の表面硬さに優れる熱延鋼板 | |
JP5064991B2 (ja) | 高強度高延性アルミニウム合金板 | |
WO2011115279A1 (ja) | 冷間加工性と焼入れ性に優れた熱延鋼板およびその製造方法 | |
JP7539567B2 (ja) | 700MPa級の熱成形アクスルハウジング鋼及びその調製方法 | |
CN104264051B (zh) | 一种屈服强度345Mpa以上低合金钢热轧卷板及其制备方法 | |
KR102193066B1 (ko) | 딥드로잉 적용을 위한 냉간압연 평강 제품 및 그 제조 방법 | |
WO2014109401A1 (ja) | 冷間加工性と加工後の表面硬さに優れる熱延鋼板 | |
CN113430467B (zh) | 一种薄规格1400MPa级贝氏体钢及其制造方法 | |
JP7164071B1 (ja) | 無方向性電磁鋼板 | |
TWI661056B (zh) | 熱軋鋼板及其製造方法 | |
WO2019103120A1 (ja) | 熱延鋼板及びその製造方法 | |
KR102301544B1 (ko) | 변형가능한 경량강을 위해 설정되는 특성의 조합을 계산하기 위한 방법 | |
WO2015159965A1 (ja) | 強冷間加工性と加工後の硬さに優れる熱延鋼板 | |
WO2019207636A1 (ja) | 高張力鋼からなる鋼板の製造方法 | |
CN108603257B (zh) | 扁钢产品和其生产方法 | |
JP6406436B2 (ja) | 鋼板 | |
JPWO2019203251A1 (ja) | 熱延鋼板 | |
JP7513916B2 (ja) | 熱間圧延鋼板 | |
CN115349027B (zh) | 钢板及其制造方法 | |
JP2003183778A (ja) | 鋼線材、鋼線及びその製造方法 | |
RU2327747C1 (ru) | Сортовой прокат, круглый из среднеуглеродистой стали повышенной обрабатываемости резанием |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18916407 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/02/2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18916407 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |