WO2019207636A1 - 高張力鋼からなる鋼板の製造方法 - Google Patents

高張力鋼からなる鋼板の製造方法 Download PDF

Info

Publication number
WO2019207636A1
WO2019207636A1 PCT/JP2018/016550 JP2018016550W WO2019207636A1 WO 2019207636 A1 WO2019207636 A1 WO 2019207636A1 JP 2018016550 W JP2018016550 W JP 2018016550W WO 2019207636 A1 WO2019207636 A1 WO 2019207636A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
steel
steel sheet
manufacturing
Prior art date
Application number
PCT/JP2018/016550
Other languages
English (en)
French (fr)
Inventor
文六 島田
Original Assignee
株式会社Sbb66
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sbb66 filed Critical 株式会社Sbb66
Priority to PCT/JP2018/016550 priority Critical patent/WO2019207636A1/ja
Publication of WO2019207636A1 publication Critical patent/WO2019207636A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Definitions

  • the present invention relates to a method of manufacturing a steel plate whose material is high-tensile steel.
  • a steel plate made of high-strength steel has high strength and is relatively inexpensive. This steel sheet is widely used in automobile parts, railway vehicle parts, building materials, machine structural parts, piping, ships, and the like.
  • High tensile steel is obtained by adding a plurality of alloy elements to low carbon steel.
  • the content of alloy elements is small compared to that in alloy steel.
  • High-tensile steel is a so-called low alloy. This low alloy contributes to the low price of the steel sheet.
  • Classification of steel plates made of high-strength steel is disclosed on pages 552 to 559 of the Metal Handbook (5th revised edition) edited by the Japan Institute of Metals.
  • high-strength steel has a demand for further lower alloy.
  • the reduction in the amount of alloy elements impairs the high strength, which is an advantage of high strength steel.
  • An object of the present invention is to provide a steel sheet having a small amount of alloy elements and excellent strength.
  • the manufacturing method of the steel plate which consists of high-tensile steel based on this invention is the following. (1) a step of obtaining molten steel; (2) A step of continuously casting the molten steel to obtain a slab having a thickness of 80 mm or more and 150 mm or less, (3) subjecting the slab to hot rolling to obtain a strip-shaped steel sheet having a thickness of 1.0 mm to 12.5 mm; And (4) a step of winding the steel sheet.
  • Hot rolling may include rough rolling and finish rolling.
  • finish rolling the steel temperature on the entry side is 890 ° C. or more, and the steel temperature on the exit side is 850 ° C. or more.
  • the temperature of the steel sheet during winding is 600 ° C. or less.
  • the material of the steel plate is C: 0.08% by mass to 0.20% by mass Si: 0.20% by mass to 0.70% by mass Mn: 0.30% by mass to 1.10% by mass Ni: 0.2% by mass or less Cr: 0.2% by mass or less Cu: 0.2% by mass or less and Nb: 0.001% by mass or more, the balance being carbon steel with Fe and inevitable impurities.
  • the total content of P and S in this carbon steel is 0.015 mass% or less.
  • the material of the steel plate is C: 0.08 mass% or more and 0.12 mass% or less Si: 0.20 mass% or more and 0.35 mass% or less Mn: 0.30 mass% or more and 0.45 mass% or less Ni: 0.2 mass% or less Cr: 0.2% by mass or less Cu: 0.2% by mass or less and Nb: 0.001% by mass or more and 0.02% by mass or less, and the balance may be carbon steel with Fe and inevitable impurities. .
  • the material of the steel plate is C: 0.12 mass% or more and 0.15 mass% or less Si: 0.20 mass% or more and 0.35 mass% or less Mn: 0.50 mass% or more and 0.65 mass% or less Ni: 0.2 mass% or less Cr: 0.2% by mass or less Cu: 0.2% by mass or less and Nb: 0.02% by mass or more and 0.05% by mass or less, and the balance may be carbon steel with Fe and inevitable impurities. .
  • the material of the steel plate is C: 0.16 mass% or more and 0.18 mass% or less Si: 0.35 mass% or more and 0.50 mass% or less Mn: 0.65 mass% or more and 0.90 mass% or less Ni: 0.2 mass% or less Carbon: 0.2 mass% or less Cu: 0.2 mass% or less and Nb: 0.05 mass% or more, and the balance may be carbon steel with Fe and inevitable impurities.
  • the material of the steel plate is C: 0.18 mass% or more and 0.20 mass% or less Si: 0.50 mass% or more and 0.70 mass% or less Mn: 0.90 mass% or more and 1.10 mass% or less Ni: 0.2 mass% or less Carbon: 0.2 mass% or less Cu: 0.2 mass% or less and Nb: 0.05 mass% or more, and the balance may be carbon steel with Fe and inevitable impurities.
  • the material of the steel sheet according to the present invention is C: 0.08% by mass to 0.20% by mass Si: 0.20% by mass to 0.70% by mass Mn: 0.30% by mass to 1.10% by mass Ni: 0.2% by mass or less Cr: 0.2% by mass or less Cu: 0.2% by mass or less and Nb: 0.001% by mass or more, with the balance being Fe and unavoidable impurities.
  • the average crystal grain size in this steel sheet structure is 25 ⁇ m or less.
  • the low cost steel plate made of high strength steel can be obtained by the manufacturing method according to the present invention.
  • This steel plate is excellent in strength.
  • FIG. 1 is a flowchart showing a method for manufacturing a steel sheet according to an embodiment of the present invention.
  • the material of the steel plate according to the present invention is high tensile steel.
  • An example of the manufacturing method of this steel plate is shown in FIG. In this manufacturing method, metal scrap or the like is put into an electric furnace. Arc discharge is performed in this electric furnace, and the scrap is melted (STEP 1). By this step, molten steel is obtained.
  • This molten steel is transferred to a ladle.
  • the molten steel is refined (STEP 2).
  • the composition of the molten steel is prepared. Refining removes impurities from the molten steel to the extent possible.
  • This molten steel is subjected to continuous casting (C. C.) (STEP 3).
  • a continuous casting machine is used for continuous casting.
  • a typical continuous casting machine has a mold. Molten steel is supplied to this mold via a tundish or the like. Molten steel is cooled in the mold. By cooling, a slab is obtained. This slab is strip-shaped.
  • This slab is heated (STEP 4). Heating raises the temperature of the slab to a temperature suitable for subsequent rolling.
  • a tunnel heating furnace can be used. Heating may be omitted.
  • This slab is subjected to first rolling (rough rolling) (STEP 5).
  • first rolling rough rolling
  • the slab is passed between a pair of rolls.
  • the slab is thinned by rough rolling.
  • the slab is widened by rough rolling. This rough rolling is performed hot.
  • This slab is subjected to second rolling (finish rolling) (STEP 6).
  • finish rolling the slab is passed between a pair of rolls.
  • the slab is further thinned by finish rolling.
  • the slab is further widened by finish rolling.
  • This finish rolling is performed hot.
  • a steel plate is obtained by finish rolling.
  • This steel plate is strip-shaped.
  • the thickness of the steel plate is preferably 1.0 mm or more and 12.5 mm or less.
  • This steel plate is cooled (STEP 7). By cooling, the temperature of the steel sheet decreases. Usually, the steel sheet is cooled by water cooling. Typically, the steel sheet is cooled by a cooling device constituted by a multistage bank having a laminar flow system.
  • the cooled steel sheet is wound up on a reel or the like (STEP 8). By winding, the steel sheet assumes a coil shape. Thereafter, the steel sheet is conveyed in the form of a coil.
  • the thickness of the slab in continuous casting is preferably 150 mm or less.
  • the cooling rate is fast.
  • a metal structure having a small crystal grain size is obtained.
  • the strength of the steel sheet obtained from the slab having this metal structure is high. By controlling the crystal grain size, a steel sheet having high strength can be obtained even with a small amount of additive elements. In this steel plate, both high strength and low price can be achieved.
  • the thickness is more preferably equal to or less than 130 mm, and particularly preferably equal to or less than 110 mm. From the viewpoint of slab productivity, the thickness is preferably 80 mm or more.
  • the temperature of the steel on the entry side is preferably 890 ° C. or higher.
  • the temperature is more preferably equal to or higher than 900 ° C, and particularly preferably equal to or higher than 910 ° C. From the viewpoint of preventing rough skin, the temperature is preferably 1000 ° C. or lower.
  • the inlet temperature is the temperature measured at the front position of the first roll of the finishing mill.
  • the temperature of the outgoing steel is preferably 850 ° C. or higher.
  • fine crystal grains can be obtained.
  • the temperature is more preferably 860 ° C. or higher, and particularly preferably 870 ° C. or higher. This temperature is preferably 1000 ° C. or less.
  • the exit temperature is the temperature measured at the exit position of the last roll of the finishing mill.
  • the temperature of the steel sheet in winding is preferably 600 ° C. or lower. Fine crystal grains can be obtained by a manufacturing method in which the temperature is 600 ° C. or lower. From this viewpoint, this temperature is more preferably 590 ° C. or less, and particularly preferably 580 ° C. or less. This temperature is preferably 540 ° C. or higher. This temperature is the temperature of the steel sheet when it reaches the reel.
  • the average grain size in the metal structure of the steel sheet is preferably 25 ⁇ m or less.
  • a steel sheet having an average crystal grain size within this range is tough.
  • the average crystal grain size is more preferably 10 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the average crystal grain size is measured in a cross section perpendicular to the thickness direction of the steel plate and passing through the center of the thickness of the steel plate. This cross section is observed with an electron microscope.
  • the grain size of 20 randomly extracted crystal grains is measured, and an average value is calculated to obtain an average grain diameter.
  • the grain size in each crystal grain is the length of the longest line segment that can be drawn within the outline of this crystal grain in the micrograph.
  • the material of this steel plate is high-tensile steel.
  • This high strength steel contains C, Si, Mn, Ni, Cr, Cu and Nb.
  • the balance is Fe and inevitable impurities. In the following, the role of each element is explained in detail.
  • [Carbon (C)] C dissolves in Fe and increases the strength of the steel sheet.
  • the C content is preferably equal to or greater than 0.08 mass%, more preferably equal to or greater than 0.12 mass%, and particularly preferably equal to or greater than 0.16 mass%. If the C content is excessive, the toughness of the steel sheet is impaired. From the viewpoint of toughness, the C content is preferably 0.20% by mass or less.
  • Si contributes to the strength of the steel sheet. Further, Si contributes to the reduction of O which is an impurity. In this respect, the Si content is preferably equal to or greater than 0.20 mass%, more preferably equal to or greater than 0.35 mass%, and particularly preferably equal to or greater than 0.50 mass%. If the Si content is excessive, the toughness of the steel sheet is impaired. From the viewpoint of toughness, the Si content is preferably 0.70% by mass or less.
  • Mn Manganese (Mn) Mn contributes to the strength of the steel sheet.
  • the Mn content is preferably 0.30% by mass or more, more preferably 0.50% by mass or more, and particularly preferably 0.65% by mass or more. If the Mn content is excessive, the toughness of the steel sheet is impaired. From the viewpoint of toughness, the Mn content is preferably 1.10% by mass or less.
  • Nickel (Ni) Ni can contribute to both strength and toughness of the steel sheet.
  • the Ni content is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and particularly preferably 0.10% by mass or more. From the viewpoint of low cost of the steel sheet, the Ni content is preferably 0.2% by mass or less.
  • Cr Cr
  • the Cr content is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and particularly preferably 0.10% by mass or more. From the viewpoint of low cost of the steel sheet, the Cr content is preferably 0.2% by mass or less.
  • [Copper (Cu)] Cu can contribute to both strength and toughness of the steel sheet.
  • the Cr content is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and particularly preferably 0.10% by mass or more.
  • the Cu content is preferably 0.2% by mass or less.
  • Nb can contribute to refinement of crystal grains.
  • the Nb content is preferably equal to or greater than 0.001% by mass, more preferably equal to or greater than 0.02% by mass, and particularly preferably equal to or greater than 0.05% by mass. From the viewpoint of low cost of the steel sheet, the Nb content is preferably 0.2% by mass or less.
  • Oxygen (O) is an inevitable impurity. O reduces the toughness of the steel sheet.
  • Phosphorus (P) is an inevitable impurity. P is unevenly distributed at the grain boundaries and reduces the toughness of the steel sheet. From these viewpoints, the total content of O and P is preferably 0.015% by mass or less, more preferably 0.010% by mass or less, and particularly preferably 0.005% by mass or less.
  • S Sulfur
  • S is an inevitable impurity.
  • S like P, is an element that is easily segregated. S inhibits the toughness, weldability and workability of the steel sheet. From these viewpoints, the S content is preferably 0.01% by mass or less, particularly preferably 0.005% by mass or less.
  • a composition particularly suitable for a steel sheet having a tensile strength of about 500 MPa is as follows.
  • a composition particularly suitable for a steel sheet having a tensile strength of about 600 MPa is as follows.
  • a composition particularly suitable for a steel sheet having a tensile strength of about 700 MPa is as follows.
  • a composition particularly suitable for a steel sheet having a tensile strength of about 800 MPa is as follows.
  • Example 1 Metal scrap was melted in an electric furnace to obtain molten steel. The molten steel was transferred to a pan and refined. The composition of this molten steel was as follows. C: 0.13 mass% Si: 0.25% by mass Mn: 0.60% by mass Ni: 0.09 mass% Cr: 0.11% by mass Cu: 0.07 mass% Nb: 0.02 mass% The remainder: Fe and inevitable impurities
  • the slab was obtained by casting this molten steel with a continuous casting machine.
  • the thickness of this slab was 130 mm.
  • This slab was heated in a tunnel heating furnace. By heating, the temperature of the slab rose to 1120 ° C.
  • This slab was subjected to rough rolling and finish rolling to obtain a steel plate having a thickness of 3.2 mm.
  • finish rolling the temperature of the steel on the entry side was 910 ° C., and the temperature of the steel on the exit side was 870 ° C.
  • the steel sheet was cooled to 580 ° C. and wound on a reel.
  • Example 2 A steel plate was obtained in the same manner as in Example 1 except that the thickness of the slab was 150 mm.
  • Example 3 A steel plate was obtained in the same manner as in Example 1 except that the Nb content was 0.05% by mass.
  • Example 4 A steel plate was obtained in the same manner as in Example 1 except that the Nb content was 0.10% by mass.
  • a steel plate was obtained in the same manner as in Example 1 except that the thickness of the slab was 180 mm.
  • Test piece was collected from the center in the width direction of the steel plate. The length direction of this test piece corresponds to the rolling method. The test piece was subjected to a tensile test in accordance with JIS standards, and the tensile strength was measured. The results are shown in Table 1 below.
  • the steel sheet according to the present invention can be used for various purposes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

金属スクラップが電気炉にて溶融され、溶鋼が得られる。この溶鋼が取鍋に移され、精錬される。この溶鋼が連続鋳造機にて鋳造され、スラブが得られる。このスラブの厚みは、80mm以上150mm以下である。このスラブが加熱され、粗圧延及び仕上圧延に供される。仕上げ圧延における、入側の鋼の温度は890℃であり、出側の鋼の温度は850℃以上である。これらの圧延により、厚さが1.0mm以上12.5mm以下である帯状の鋼板が得られる。この鋼板が600℃以下に冷却され、コイル状に巻き取られる。

Description

高張力鋼からなる鋼板の製造方法
 本発明は、その材質が高張力鋼である鋼板の製造方法に関する。
 高張力鋼からなる鋼板は、高強度であり、かつ比較的安価である。この鋼板は、自動車部品、鉄道車両用部品、建材、機械構造部品、配管、船舶等に、広く用いられている。
 高張力鋼は、低炭素鋼に複数の合金元素が添加されて得られる。合金元素の含有量は、合金鋼におけるそれと比べて、少ない。高張力鋼は、いわゆるローアロイである。このローアロイが、鋼板の低価格に寄与する。高張力鋼からなる鋼板の分類が、日本金属学会編の金属便覧(改訂5版)の第552頁から第559頁に開示されている。
日本金属学会編の金属便覧(改訂5版)
 低価格及び安全性の観点から、高張力鋼には、さらなるローアロイ化の要請がある。しかし、合金元素量の低減は、高張力鋼の長所である高強度を損なう。
 本発明の目的は、合金元素量が少なく、しかも強度に優れた鋼板の提供にある。
 本発明に係る、高張力鋼からなる鋼板の製造方法は、
(1)溶鋼を得る工程、
(2)上記溶鋼に連続鋳造を施して、その厚さが80mm以上150mm以下であるスラブを得る工程、
(3)上記スラブに熱間圧延を施して、その厚さが1.0mm以上12.5mm以下である帯状の鋼板を得る工程、
及び
(4)上記鋼板を巻き取る工程
を含む。
 熱間圧延が、粗圧延及び仕上圧延を含んでもよい。好ましくは、仕上げ圧延における、入側の鋼温度は890℃以上であり、出側の鋼温度は850℃以上である。
 好ましくは、巻き取り時の鋼板の温度は、600℃以下である。
 好ましくは、鋼板の材質は、
 C:0.08質量%以上0.20質量%以下
 Si:0.20質量%以上0.70質量%以下
 Mn:0.30質量%以上1.10質量%以下
 Ni:0.2質量%以下
 Cr:0.2質量%以下
 Cu:0.2質量%以下
及び
 Nb:0.001質量%以上
を含み、残部がFe及び不可避的不純物である炭素鋼である。
 好ましくは、この炭素鋼におけるP及びSの合計含有率は、0.015質量%以下である。
 鋼板の材質が、
 C:0.08質量%以上0.12質量%以下
 Si:0.20質量%以上0.35質量%以下
 Mn:0.30質量%以上0.45質量%以下
 Ni:0.2質量%以下
 Cr:0.2質量%以下
 Cu:0.2質量%以下
及び
 Nb:0.001質量%以上0.02質量%以下
を含み、残部がFe及び不可避的不純物である炭素鋼であってもよい。
 鋼板の材質が、
 C:0.12質量%以上0.15質量%以下
 Si:0.20質量%以上0.35質量%以下
 Mn:0.50質量%以上0.65質量%以下
 Ni:0.2質量%以下
 Cr:0.2質量%以下
 Cu:0.2質量%以下
及び
 Nb:0.02質量%以上0.05質量%以下
を含み、残部がFe及び不可避的不純物である炭素鋼であってもよい。
 鋼板の材質が、
 C:0.16質量%以上0.18質量%以下
 Si:0.35質量%以上0.50質量%以下
 Mn:0.65質量%以上0.90質量%以下
 Ni:0.2質量%以下
 Cr:0.2質量%以下
 Cu:0.2質量%以下
及び
 Nb:0.05質量%以上
を含み、残部がFe及び不可避的不純物である炭素鋼であってもよい。
 上記鋼板の材質が、
 C:0.18質量%以上0.20質量%以下
 Si:0.50質量%以上0.70質量%以下
 Mn:0.90質量%以上1.10質量%以下
 Ni:0.2質量%以下
 Cr:0.2質量%以下
 Cu:0.2質量%以下
及び
 Nb:0.05質量%以上
を含み、残部がFe及び不可避的不純物である炭素鋼であってもよい。
 他の観点によれば、本発明に係る鋼板の材質は、
 C:0.08質量%以上0.20質量%以下
 Si:0.20質量%以上0.70質量%以下
 Mn:0.30質量%以上1.10質量%以下
 Ni:0.2質量%以下
 Cr:0.2質量%以下
 Cu:0.2質量%以下
及び
 Nb:0.001質量%以上
を含み、残部がFe及び不可避的不純物である高張力鋼である。この鋼板の組織における、平均結晶粒径は、25μm以下である。
 本発明に係る製造方法により、高張力鋼からなる低価格な鋼板が得られうる。この鋼板は、強度に優れる。
図1は、本発明の一実施形態に係る鋼板の製造方法が示されたフローチャートである。
 以下、適宜図面が参照されつつ、好ましい実施形態に基づいて本発明が詳細に説明される。
 本発明に係る鋼板の材質は、高張力鋼である。この鋼板の製造方法の一例が、図1に示されている。この製造方法では、金属スクラップ等が電気炉に投入される。この電気炉にてアーク放電がなされ、スクラップが溶融する(STEP1)。このステップにより、溶鋼が得られる。
 この溶鋼は、取鍋に移される。この取鍋において、溶鋼に精錬が施される(STEP2)。精錬では、溶鋼の組成が調製される。精錬によって、溶鋼から不純物が、可能な範囲で除去される。
 この溶鋼が、連続鋳造(C. C.)に供される(STEP3)。連続鋳造には、連続鋳造機が用いられる。一般的な連続鋳造機は、鋳型を有している。この鋳型に、タンディッシュ等を介して、溶鋼が供給される。溶鋼は、鋳型において冷却される。冷却により、スラブが得られる。このスラブは、帯状である。
 このスラブは、加熱される(STEP4)。加熱によりスラブの温度は、その後の圧延に適した温度まで上昇する。加熱には、例えばトンネル加熱炉が用いられ得る。加熱が省略されてもよい。
 このスラブが、第一圧延(粗圧延)に供される(STEP5)。粗圧延では、スラブが対のロールの間を通される。粗圧延により、スラブは薄肉化する。粗圧延により、スラブは広幅化する。この粗圧延は、熱間でなされる。
 このスラブが、第二圧延(仕上圧延)に供される(STEP6)。仕上圧延では、スラブが対のロールの間を通される。仕上圧延により、スラブはさらに薄肉化する。仕上圧延により、スラブはさらに広幅化する。この仕上圧延は、熱間でなされる。仕上圧延により、鋼板が得られる。この鋼板は、帯状である。鋼板の厚さは、1.0mm以上12.5mm以下が好ましい。
 この鋼板は、冷却される(STEP7)。冷却により、鋼板の温度が低下する。通常は、水冷によって鋼板が冷却される。典型的には、ラミナーフローシステムを有する多段のバンクにより構成される冷却装置により、鋼板が冷却される。
 冷却後の鋼板は、リール等に巻き取られる(STEP8)。巻き取りにより、鋼板はコイル状を呈する。その後に鋼板は、コイル状のままで搬送される。
 連続鋳造(STEP3)におけるスラブの厚さは、150mm以下が好ましい。厚さが150mm以下であるスラブでは、冷却速度が速い。このスラブでは、結晶粒径が小さな金属組織が得られる。この金属組織を有するスラブから得られた鋼板の強度は、高い。結晶粒径が制御されることにより、添加元素が少量でも、強度の高い鋼板が得られうる。この鋼板では、高強度と低価格とが、両立されうる。この観点から、厚さは130mm以下がより好ましく、110mm以下が特に好ましい。スラブの生産性の観点から、厚さは80mm以上が好ましい。
 仕上げ圧延(STEP6)における、入側の鋼の温度は、890℃以上が好ましい。この仕上げ圧延では、均一で微細な結晶粒が得られうる。この観点から、この温度は900℃以上がより好ましく、910℃以上が特に好ましい。ロールの肌荒れ防止の観点から、この温度は、1000℃以下が好ましい。入側の温度は、仕上圧延機の最初のロールの前面位置において測定される温度である。
 仕上げ圧延(STEP6)における、出側の鋼の温度は、850℃以上が好ましい。この仕上げ圧延では、微細な結晶粒が得られうる。この観点から、この温度は860℃以上がより好ましく、870℃以上が特に好ましい。この温度は、1000℃以下が好ましい。出側の温度は、仕上圧延機の最後のロールの出口位置において測定される温度である。
 巻き取り(STEP8)における鋼板の温度は、600℃以下が好ましい。この温度が600℃以下である製造方法により、微細な結晶粒が得られうる。この観点から、この温度は590℃以下がより好ましく、580℃以下が特に好ましい。この温度は、540℃以上が好ましい。この温度は、リールに到着した時点での鋼板の温度である。
 鋼板の金属組織における平均結晶粒径は、25μm以下が好ましい。平均結晶粒径がこの範囲内である鋼板は、強靱である。この観点から、平均結晶粒径は10μm以下がより好ましく、5μm以下が特に好ましい。平均結晶粒径は、鋼板の厚み方向に垂直であり、かつ鋼板の厚みの中心を通過する断面において測定される。この断面が、電子顕微鏡で観察される。無作為に抽出された20個の結晶粒においてその粒径が測定され、平均値が算出されて、平均結晶粒径が得られる。それぞれの結晶粒における粒径は、顕微鏡写真におけるこの結晶粒の輪郭内に画かれうる最長線分の長さである。
 前述の通り、この鋼板の材質は、高張力鋼である。この高張力鋼は、C、Si、Mn、Ni、Cr、Cu及びNbを含む。残部は、Fe及び不可避的不純物である。以下、各元素の役割が詳説される。
[炭素(C)]
 CはFeに固溶し、鋼板の強度を高める。この観点から、Cの含有率は0.08質量%以上が好ましく、0.12質量%以上がより好ましく、0.16質量%以上が特に好ましい。Cの含有率が過剰であると、鋼板の靱性が損なわれる。靱性の観点から、Cの含有率は0.20質量%以下が好ましい。
[ケイ素(Si)]
 Siは、鋼板の強度に寄与する。さらにSiは、不純物であるOの低減に寄与する。この観点から、Siの含有率は0.20質量%以上が好ましく、0.35質量%以上がより好ましく、0.50質量%以上が特に好ましい。Siの含有率が過剰であると、鋼板の靱性が損なわれる。靱性の観点から、Siの含有率は0.70質量%以下が好ましい。
[マンガン(Mn)]
 Mnは、鋼板の強度に寄与する。この観点から、Mnの含有率は0.30質量%以上が好ましく、0.50質量%以上がより好ましく、0.65質量%以上が特に好ましい。Mnの含有率が過剰であると、鋼板の靱性が損なわれる。靱性の観点から、Mnの含有率は1.10質量%以下が好ましい。
[ニッケル(Ni)]
 Niは、鋼板の強度及び靱性の両方に寄与しうる。この観点から、Niの含有率は0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.10質量%以上が特に好ましい。鋼板の低価格の観点から、Niの含有率は0.2質量%以下が好ましい。
[クロム(Cr)]
 Crは、鋼板の強度に寄与する。この観点から、Crの含有率は0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.10質量%以上が特に好ましい。鋼板の低価格の観点から、Crの含有率は0.2質量%以下が好ましい。
[銅(Cu)]
 Cuは、鋼板の強度及び靱性の両方に寄与しうる。この観点から、Crの含有率は0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.10質量%以上が特に好ましい。鋼板の低価格の観点から、Cuの含有率は0.2質量%以下が好ましい。
[ニオブ(Nb)]
 Nbは、結晶粒の微細化に寄与しうる。この観点から、Nbの含有率は0.001質量%以上が好ましく、0.02質量%以上がより好ましく、0.05質量%以上が特に好ましい。鋼板の低価格の観点から、Nbの含有率は0.2質量%以下が好ましい。
 酸素(O)は、不可避的不純物である。Oは、鋼板の靱性を低下させる。リン(P)は、不可避的不純物である。Pは粒界に偏在し、鋼板の靱性を低下させる。これらの観点から、O及びPの合計含有率は0.015質量%以下が好ましく、0.010質量%以下がより好ましく、0.005質量%以下が特に好ましい。
 硫黄(S)は、不可避的不純物である。Sは、Pと同様に偏析しやすい元素である。Sは、鋼板の靱性、溶接性及び加工性を阻害する。これらの観点から、Sの含有率は0.01質量%以下が好ましく、0.005質量%以下が特に好ましい。
 引張強さが500MPa程度である鋼板に特に適した組成は、下記の通りである。
 C:0.08質量%以上0.12質量%以下
 Si:0.20質量%以上0.35質量%以下
 Mn:0.30質量%以上0.45質量%以下
 Ni:0.2質量%以下
 Cr:0.2質量%以下
 Cu:0.2質量%以下
 Nb:0.001質量%以上0.02質量%以下
 引張強さが600MPa程度である鋼板に特に適した組成は、下記の通りである。
 C:0.12質量%以上0.15質量%以下
 Si:0.20質量%以上0.35質量%以下
 Mn:0.50質量%以上0.65質量%以下
 Ni:0.2質量%以下
 Cr:0.2質量%以下
 Cu:0.2質量%以下
 Nb:0.02質量%以上0.05質量%以下
 引張強さが700MPa程度である鋼板に特に適した組成は、下記の通りである。
 C:0.16質量%以上0.18質量%以下
 Si:0.35質量%以上0.50質量%以下
 Mn:0.65質量%以上0.90質量%以下
 Ni:0.2質量%以下
 Cr:0.2質量%以下
 Cu:0.2質量%以下
 Nb:0.05質量%以上
 引張強さが800MPa程度である鋼板に特に適した組成は、下記の通りである。
 C:0.18質量%以上0.20質量%以下
 Si:0.50質量%以上0.70質量%以下
 Mn:0.90質量%以上1.10質量%以下
 Ni:0.2質量%以下
 Cr:0.2質量%以下
 Cu:0.2質量%以下
 Nb:0.05質量%以上
 以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。
 [実施例1]
 金属スクラップを電気炉にて溶融し、溶鋼を得た。この溶鋼を取鍋に移し、精錬した。この溶鋼の組成は、以下のとおりであった。
 C:0.13質量%
 Si:0.25質量%
 Mn:0.60質量%
 Ni:0.09質量%
 Cr:0.11質量%
 Cu:0.07質量%
 Nb:0.02質量%
 残部:Fe及び不可避的不純物
 この溶鋼を連続鋳造機にて鋳造し、スラブを得た。このスラブの厚みは、130mmであった。このスラブを、トンネル加熱炉で加熱した。加熱により、スラブの温度は1120℃に上昇した。このスラブに粗圧延及び仕上圧延を施して、厚みが3.2mmである鋼板を得た。仕上げ圧延における、入側の鋼の温度は910℃であり、出側の鋼の温度は870℃であった。この鋼板を580℃に冷却し、リールに巻き取った。
 [実施例2]
 スラブの厚みを150mmとした他は実施例1と同様にして、鋼板を得た。
 [実施例3]
 Nbの含有率を0.05質量%とした他は実施例1と同様にして、鋼板を得た。
 [実施例4]
 Nbの含有率を0.10質量%とした他は実施例1と同様にして、鋼板を得た。
 [比較例]
 スラブの厚みを180mmとした他は実施例1と同様にして、鋼板を得た。
 [引張強さ]
 鋼板の幅方向中央から、試験片を採取した。この試験片の長さ方向は、圧延方法に一致している。この試験片に、JISの規格に準拠して引張試験を行い、引張強さを測定した。この結果が、下記の表1に示されている。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示されるように、各実施例の製造方法では、強度に優れた試験片が得られる。この評価結果から、本発明の優位性は明らかである。
 本発明に係る鋼板は、種々の用途に用いられうる。

Claims (10)

  1.  溶鋼を得る工程、
     上記溶鋼に連続鋳造を施して、その厚さが80mm以上150mm以下であるスラブを得る工程、
     上記スラブに熱間圧延を施して、その厚さが1.0mm以上12.5mm以下である帯状の鋼板を得る工程、
    及び
     上記鋼板を巻き取る工程
    を含む、高張力鋼からなる鋼板の製造方法。
  2.  上記熱間圧延が、粗圧延及び仕上圧延を含んでおり、
     上記仕上げ圧延における、入側の鋼温度が890℃以上であり、出側の鋼温度が850℃以上である請求項1に記載の製造方法。
  3.  上記鋼板の、巻き取り時の温度が600℃以下である請求項2に記載の製造方法。
  4.  上記鋼板の材質が、
     C:0.08質量%以上0.20質量%以下
     Si:0.20質量%以上0.70質量%以下
     Mn:0.30質量%以上1.10質量%以下
     Ni:0.2質量%以下
     Cr:0.2質量%以下
     Cu:0.2質量%以下
    及び
     Nb:0.001質量%以上
    を含み、残部がFe及び不可避的不純物である炭素鋼である請求項1から3のいずれかに記載の製造方法。
  5.  上記炭素鋼におけるP及びSの合計含有率が0.015質量%以下である請求項4に記載の製造方法。
  6.  上記鋼板の材質が、
     C:0.08質量%以上0.12質量%以下
     Si:0.20質量%以上0.35質量%以下
     Mn:0.30質量%以上0.45質量%以下
     Ni:0.2質量%以下
     Cr:0.2質量%以下
     Cu:0.2質量%以下
    及び
     Nb:0.001質量%以上0.02質量%以下
    を含み、残部がFe及び不可避的不純物である炭素鋼である請求項4又は5に記載の製造方法。
  7.  上記鋼板の材質が、
     C:0.12質量%以上0.15質量%以下
     Si:0.20質量%以上0.35質量%以下
     Mn:0.50質量%以上0.65質量%以下
     Ni:0.2質量%以下
     Cr:0.2質量%以下
     Cu:0.2質量%以下0.05質量%以下
    及び
     Nb:0.02質量%以上
    を含み、残部がFe及び不可避的不純物である炭素鋼である請求項4又は5に記載の製造方法。
  8.  上記鋼板の材質が、
     C:0.16質量%以上0.18質量%以下
     Si:0.35質量%以上0.50質量%以下
     Mn:0.65質量%以上0.90質量%以下
     Ni:0.2質量%以下
     Cr:0.2質量%以下
     Cu:0.2質量%以下
    及び
     Nb:0.05質量%以上
    を含み、残部がFe及び不可避的不純物である炭素鋼である請求項4又は5に記載の製造方法。
  9.  上記鋼板の材質が、
     C:0.18質量%以上0.20質量%以下
     Si:0.50質量%以上0.70質量%以下
     Mn:0.90質量%以上1.10質量%以下
     Ni:0.2質量%以下
     Cr:0.2質量%以下
     Cu:0.2質量%以下
    及び
     Nb:0.05質量%以上
    を含み、残部がFe及び不可避的不純物である炭素鋼である請求項4又は5に記載の製造方法。
  10.  その材質が、
     C:0.08質量%以上0.20質量%以下
     Si:0.20質量%以上0.70質量%以下
     Mn:0.30質量%以上1.10質量%以下
     Ni:0.2質量%以下
     Cr:0.2質量%以下
     Cu:0.2質量%以下
    及び
     Nb:0.001質量%以上
    を含み、残部がFe及び不可避的不純物である高張力鋼であり、
     その組織における平均結晶粒径が25μm以下である鋼板。
PCT/JP2018/016550 2018-04-24 2018-04-24 高張力鋼からなる鋼板の製造方法 WO2019207636A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/016550 WO2019207636A1 (ja) 2018-04-24 2018-04-24 高張力鋼からなる鋼板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/016550 WO2019207636A1 (ja) 2018-04-24 2018-04-24 高張力鋼からなる鋼板の製造方法

Publications (1)

Publication Number Publication Date
WO2019207636A1 true WO2019207636A1 (ja) 2019-10-31

Family

ID=68294442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016550 WO2019207636A1 (ja) 2018-04-24 2018-04-24 高張力鋼からなる鋼板の製造方法

Country Status (1)

Country Link
WO (1) WO2019207636A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162943A (ja) * 1990-10-25 1992-06-08 Nippon Steel Corp 連続鋳造鋳片の熱間加工割れ防止方法
JP2005002441A (ja) * 2003-06-13 2005-01-06 Sumitomo Metal Ind Ltd 高強度鋼材及びその製造方法
JP2007070647A (ja) * 2005-09-02 2007-03-22 Nippon Steel Corp 高強度鋼板およびその製造方法
WO2017154727A1 (ja) * 2016-03-11 2017-09-14 Jfeスチール株式会社 高強度薄鋼板およびその製造方法
JP2018031055A (ja) * 2016-08-24 2018-03-01 新日鐵住金株式会社 鋳片、及び、鋳片の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162943A (ja) * 1990-10-25 1992-06-08 Nippon Steel Corp 連続鋳造鋳片の熱間加工割れ防止方法
JP2005002441A (ja) * 2003-06-13 2005-01-06 Sumitomo Metal Ind Ltd 高強度鋼材及びその製造方法
JP2007070647A (ja) * 2005-09-02 2007-03-22 Nippon Steel Corp 高強度鋼板およびその製造方法
WO2017154727A1 (ja) * 2016-03-11 2017-09-14 Jfeスチール株式会社 高強度薄鋼板およびその製造方法
JP2018031055A (ja) * 2016-08-24 2018-03-01 新日鐵住金株式会社 鋳片、及び、鋳片の製造方法

Similar Documents

Publication Publication Date Title
CN107429349B (zh) 冷轧钢板及其制造方法
TWI465583B (zh) 熱浸鍍鋅鋼板及其製造方法
TWI484050B (zh) 冷軋鋼板、及其製造方法、以及熱壓印成形體
CN110168126B (zh) 热轧钢板及其制造方法
JP6177551B2 (ja) 絞り加工性と加工後の表面硬さに優れる熱延鋼板
JP5064991B2 (ja) 高強度高延性アルミニウム合金板
WO2011115279A1 (ja) 冷間加工性と焼入れ性に優れた熱延鋼板およびその製造方法
JP7539567B2 (ja) 700MPa級の熱成形アクスルハウジング鋼及びその調製方法
CN104264051B (zh) 一种屈服强度345Mpa以上低合金钢热轧卷板及其制备方法
KR102193066B1 (ko) 딥드로잉 적용을 위한 냉간압연 평강 제품 및 그 제조 방법
WO2014109401A1 (ja) 冷間加工性と加工後の表面硬さに優れる熱延鋼板
CN113430467B (zh) 一种薄规格1400MPa级贝氏体钢及其制造方法
JP7164071B1 (ja) 無方向性電磁鋼板
TWI661056B (zh) 熱軋鋼板及其製造方法
WO2019103120A1 (ja) 熱延鋼板及びその製造方法
KR102301544B1 (ko) 변형가능한 경량강을 위해 설정되는 특성의 조합을 계산하기 위한 방법
WO2015159965A1 (ja) 強冷間加工性と加工後の硬さに優れる熱延鋼板
WO2019207636A1 (ja) 高張力鋼からなる鋼板の製造方法
CN108603257B (zh) 扁钢产品和其生产方法
JP6406436B2 (ja) 鋼板
JPWO2019203251A1 (ja) 熱延鋼板
JP7513916B2 (ja) 熱間圧延鋼板
CN115349027B (zh) 钢板及其制造方法
JP2003183778A (ja) 鋼線材、鋼線及びその製造方法
RU2327747C1 (ru) Сортовой прокат, круглый из среднеуглеродистой стали повышенной обрабатываемости резанием

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/02/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18916407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

NENP Non-entry into the national phase

Ref country code: JP