WO2019207622A1 - 電力需要予測装置、電力需要予測方法、およびそのプログラム - Google Patents

電力需要予測装置、電力需要予測方法、およびそのプログラム Download PDF

Info

Publication number
WO2019207622A1
WO2019207622A1 PCT/JP2018/016435 JP2018016435W WO2019207622A1 WO 2019207622 A1 WO2019207622 A1 WO 2019207622A1 JP 2018016435 W JP2018016435 W JP 2018016435W WO 2019207622 A1 WO2019207622 A1 WO 2019207622A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction
data
power demand
coefficient
unit
Prior art date
Application number
PCT/JP2018/016435
Other languages
English (en)
French (fr)
Inventor
理穂 荒井
酢山 明弘
靖弘 小倉
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Priority to JP2020515324A priority Critical patent/JP6915156B2/ja
Priority to PCT/JP2018/016435 priority patent/WO2019207622A1/ja
Publication of WO2019207622A1 publication Critical patent/WO2019207622A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Definitions

  • Embodiments of the present invention relate to a power demand prediction apparatus, a power demand prediction method, and a power demand prediction program for predicting a power demand.
  • a power demand prediction device that predicts a power demand based on an observation amount such as past demand and temperature history.
  • the prediction of power demand is generally performed by a technique such as multiple regression analysis using past demand results in the prediction target area.
  • One method for reducing the amount of power used is to reduce the amount of power supplied by an electric power company using, for example, a storage battery.
  • a reduction method using a storage battery for example, there is a method of reducing the amount of power used by the amount of discharge of the storage battery by discharging the storage battery in a time zone in which the maximum power demand is predicted based on the prediction of power demand. .
  • Storage battery discharges based on the prediction of power demand. Therefore, when an error occurs in the prediction of power demand, the peak of power use cannot be accurately predicted, and there is a possibility that the storage battery will miss the discharge timing. In addition, for example, when the peak value is predicted to be low, the storage battery starts discharging before the peak hour of power use, so there is a possibility that the storage battery cannot be discharged sufficiently during the peak hour of power use. there were. Therefore, there is an urgent need to develop a technology that can more accurately predict power demand.
  • the present embodiment has been proposed in order to solve the above-described problem, and its purpose is to predict a power demand more accurately, a power demand prediction device, a power demand prediction method, and a power demand. To provide a prediction program.
  • a power demand prediction apparatus includes a Fourier transform unit that performs Fourier transform on actual power demand data, and a result of Fourier transform on the actual power demand data.
  • a prediction model construction unit that constructs a prediction model that predicts coefficients, a prediction calculation unit that inputs prediction data to the prediction model, calculates coefficient prediction data of each frequency, and inverse Fourier transforms the coefficient prediction data of each frequency,
  • An inverse Fourier transform unit that calculates power demand prediction data.
  • the power demand prediction method of other embodiment is a computer or an electronic circuit.
  • the Fourier transform process which Fourier-transforms the performance data of an electric power demand, and the coefficient of each frequency from the result of Fourier-transforming the performance data of an electric power demand.
  • Predictive model construction process for constructing a predictive model to be predicted, predictive calculation process for inputting predictive data to the predictive model and calculating coefficient predictive data for each frequency, and inverse Fourier transform of the coefficient predictive data for each frequency, and power demand And an inverse Fourier transform process for calculating the prediction data.
  • this embodiment can be understood as a program for causing a computer to execute the function of the power demand prediction apparatus.
  • the power demand prediction apparatus 100 can be configured by executing a general-purpose computer with a predetermined program.
  • the computer has a configuration in which a CPU, a memory, a chip set, a graphics board having a GPU and a VRAM, a storage device such as an HDD or an SSD, an input interface, an output interface, and the like are connected via a bus.
  • a program that realizes the function of the power demand prediction apparatus 100 is stored in a storage device, and is expanded on a memory at the time of execution, and then executed according to a procedure.
  • an input unit 10 such as a mouse or a keyboard and a display unit 20 such as a CRT or a liquid crystal display are connected to the power demand prediction apparatus 100.
  • the input unit 10 is used by the user to input data selection, processing requests, and the like via the GUI screen.
  • the display unit 20 displays a GUI screen for the user to input.
  • the display unit 20 may be configured to display a prediction model or prediction data created by the power demand prediction apparatus 100.
  • the power demand prediction apparatus 100 includes a data management unit 200, a prediction model management unit 300, a prediction unit 400, and a command transmission unit 500.
  • the data management unit 200 is a processing unit that stores data necessary for power demand prediction and power demand prediction data, and includes a data acquisition unit 201, a missing interpolation unit 202, and a data storage unit 203.
  • the data acquisition unit 201 is a processing unit that acquires performance data and forecast data.
  • the actual data is data including past power demand data, weather information, and calendar information.
  • the forecast data is data including future weather information, calendar information, and event information.
  • the weather information includes information on the highest temperature, the lowest temperature, the amount of change in temperature, the amount of precipitation, the amount of solar radiation, and the sunshine duration.
  • the calendar information includes information on the date, date, and day of the week, and includes information on holidays such that May 3, 2018 (Thursday) is a constitutional anniversary.
  • the event information includes information on an event performed at a predetermined event venue and its date and time. For example, the event information includes information on concerts and exhibitions held at a predetermined venue.
  • the data acquisition unit 201 is configured to be able to acquire power demand data acquired through the A route, the B route, and the C route as past power demand data.
  • the data acquisition unit 201 may be configured to be able to acquire weather information, calendar information, and event information from the outside via a network.
  • the configuration in which the data acquisition unit 201 acquires data is not limited to these configurations.
  • the configuration may be such that the user inputs via the input unit 10.
  • the data acquisition unit 201 can be configured to acquire the actual data and the forecast data at a fixed cycle such as every 30 minutes, a fixed time such as midnight every day, or a timing when the data is updated. However, the data acquisition unit 201 may be configured not only to acquire single data at a predetermined acquisition timing but also to acquire integrated data of data for a predetermined period including data at the acquisition timing.
  • the missing interpolation unit 202 is a processing unit that interpolates the data as missing when there is data that could not be acquired in the actual data and forecast data acquired by the data acquisition unit 201.
  • a method for interpolating missing values methods such as linear interpolation, polynomial interpolation, and spline interpolation can be used.
  • the missing measurement storage unit 202 is configured to be able to interpolate data other than numerical values. For example, when the weather information of a region where the data acquisition unit 201 is not acquired, the missing interpolation unit 202 may interpolate the weather information of the region using data that can acquire the neighboring area.
  • the data storage unit 203 includes actual data and forecast data acquired by the data acquisition unit 201, or actual data and forecast data interpolated by the missing interpolation unit 202, and power demand prediction data created using a prediction model, Is a processing unit for storing.
  • the data storage unit 203 stores each input data as a data table associated with information related to the date and time corresponding to this data. An example of data stored by the data storage unit 203 is shown in FIG.
  • the data acquisition unit 201 may be able to acquire data of a part that has been missing after that with respect to the data that the missing interpolation unit 202 has performed interpolation processing on.
  • the data storage unit 203 may be configured to overwrite the interpolated data using the data obtained by the update unit (not shown) and store the data after overwriting.
  • the prediction model management unit 300 is a processing unit that constructs and stores a prediction model, and includes a Fourier transform unit 301, a prediction model construction unit 302, and a prediction model storage unit 303.
  • the prediction model management unit 300 constructs a prediction model based on a construction command from a command transmission unit 500 described later.
  • the Fourier transform unit 301 is a processing unit that reads the power demand record data stored in the data storage unit 203 and performs fast Fourier transform.
  • the Fourier transform unit 301 performs fast Fourier transform using the following formula 1.
  • the Fourier transform unit 301 performs a Fourier transform on the collected power demand data such as one day or one week. For example, the accumulated power demand data for 30 minutes is Fourier-transformed for 48 frames. Thus, by integrating a plurality of data together, Fourier transformation can be performed on the power demand data for one day.
  • the prediction model construction unit 302 is a processing unit that constructs a prediction model that predicts the coefficient of each frequency from the result of Fourier transforming the actual data.
  • the prediction model construction unit 302 is configured to construct a prediction model when a new model construction command is input from a command transmission unit 500 described later.
  • the prediction model is a model for predicting the coefficient of each frequency, and is a model in which a condition serving as an input of weather information or the like is associated with a coefficient of each frequency. Therefore, when a prediction model is used, a coefficient of each frequency in the value can be obtained by inputting a value as a condition.
  • Equation 2 the real part and the imaginary part are constructed using different models, but a model that estimates two simultaneously may be used.
  • the conditions that are input to the prediction model are not limited to the maximum temperature.
  • actual data and forecast data of minimum temperature, temperature change, precipitation, solar radiation, and sunshine hours past power demand performance data, coefficient after Fourier transform of past power demand performance data
  • predicted values of coefficients of other frequencies may be used.
  • the prediction formula is not limited to a quadratic formula, and a prediction model constructed by using one of various proposed methods such as multiple regression, clustering, neural network, probability density function, etc. It is also good.
  • weighting factor w x can be used to weight a condition that becomes an input to the prediction model.
  • the weighting factor w x can be determined by, for example, the number of days that have elapsed since the data was acquired. Specifically, the data acquired in the most recent week may be weighted on the assumption that the degree of importance is high.
  • the weighting factor w x may be determined by the size of the maximum demand or other methods.
  • the number of prediction models constructed by the prediction model construction unit 302 may be one, or a plurality of construction models may be constructed. For example, when the same prediction model is used for all dates and times, the prediction model construction unit 302 may be configured to construct one prediction model. Also, different prediction models may be used depending on the day of the week, season, and time zone. In this case, the prediction model construction unit 302 may be configured to construct a plurality of prediction models corresponding to each day of the week, for example, from the result of Fourier transform of the performance data for each day of the week.
  • the prediction model construction unit 302 includes an update unit (not shown), and has a function of reading and updating the prediction model stored in the prediction model storage unit 303.
  • the update of the prediction model is configured to update the prediction model when a model update command is input from a command transmission unit 500 described later.
  • the prediction model storage unit 303 is a processing unit that stores the prediction model constructed or updated by the prediction model construction unit 302.
  • the prediction model storage unit 303 stores the prediction model in association with the conditions for creating the prediction model.
  • the prediction unit 400 is a processing unit that calculates demand prediction data using a prediction model, and includes a prediction calculation unit 401 and an inverse Fourier transform unit 402.
  • the prediction unit 400 acquires the prediction model stored in the prediction model storage unit 303 and the prediction data stored in the data storage unit 203.
  • the prediction calculation unit 401 is a processing unit that inputs prediction data to the acquired prediction model and calculates coefficient prediction data of each frequency. For example, in Equation 2 above, the coefficient of each frequency is calculated by substituting 10 ° C., which is the value of the acquired forecast data, into the value of x for the maximum temperature.
  • the inverse Fourier transform unit 402 is a processing unit that performs inverse Fourier transform on the coefficient prediction data of each frequency calculated by the prediction calculation unit 401. Electric power demand prediction data is calculated by performing inverse Fourier transform on the coefficient prediction data. The calculated power demand prediction data is stored in the data storage unit 203. The inverse Fourier transform unit 402 performs inverse Fourier transform using Equation 3 below.
  • the command transmission unit 500 is a processing unit that outputs a model update command or a new model construction command based on the demand record data and the demand prediction data stored in the data storage unit 203.
  • the command transmission unit 500 includes a model update determination unit 501.
  • the model update determination unit 501 is a processing unit that determines the necessity of updating a prediction model or building a new prediction model.
  • the model update determination unit 501 compares the demand prediction data with the actual demand data, and determines that the prediction model needs to be updated or constructed when the comparison result exceeds or falls below a predetermined standard.
  • the model update determination unit 501 determines that the update of the prediction model or the construction of a new prediction model is necessary, the model update determination unit 501 outputs a model update command or a new model construction command to the prediction model management unit 300.
  • the model update determination unit 501 determines that the model needs to be updated if, for example, a tendency of going off appears when comparing the distribution of the demand forecast data and the distribution of the actual demand data.
  • FIG. 4 is a graph in which the ratio of the demand actual data and the demand forecast data is plotted for the past one day.
  • ⁇ T is the number of difference frames from 0:00 to 0:29 of 12/1.
  • the ratio between the demand forecast data and the demand record data shows a tendency that a value exceeding 1.0 exceeds 80% and deviates.
  • the model update determination unit 501 may determine that the prediction model needs to be constructed or updated, and may output a model construction command or a model update command.
  • the model update determination unit 501 may be configured not to accept the next determination until a certain period of time has elapsed after the model construction command or the model update command is issued once. Or it is good also as a structure which outputs a model update instruction
  • ⁇ Data for the past several hours to several years including the latest data of demand forecast data and actual demand data can be used to determine model update.
  • the amount of data to be used may be determined in advance or may be set by the user.
  • a criterion for determining whether to update an existing prediction model or to construct a new prediction model can be set as appropriate in accordance with the actual operation status and the like. For example, when only a comparison result for a predetermined time in a day is defective, it is conceivable to update an existing prediction model. Further, when the time period in which the comparison result is defective tends to increase, for example, it may be determined that the change is due to a change in power demand due to a change in season or day of the week, and a prediction model may be newly constructed.
  • step S01 the data acquisition unit 201 of the data management unit 200 acquires performance data and forecast data.
  • performance data In this example, past power demand data, weather information, and calendar information are acquired as performance data.
  • future weather information is acquired as prediction data.
  • the data acquisition unit 201 acquires performance data every 30 minutes. It is assumed that the performance data has no delay time. Further, it is assumed that the forecast data receives data for the prediction target day on the day before the prediction target date.
  • step S02 the missing interpolation unit 202 confirms whether there is a missing measurement in the data acquired from the data acquisition unit 201, and if there is a missing measurement in the power demand data (YES in step S02), any Interpolate missing measurements using a technique. Further, when there is a missing measurement in the weather information (YES in step S02), interpolation is performed using data obtained in the neighboring area. On the other hand, when there is no missing data in the data acquired by the data acquisition unit 201 (NO in step S02), no interpolation is performed.
  • step S03 the data acquired by the data acquisition unit 201 or the data interpolated by the missing interpolation unit 202 is stored in the data storage unit 203.
  • FIG. 2 is an example of data stored by the data storage unit 203. In the example of FIG. 2, a data table when the prediction target date is 2017/12/1 is shown.
  • the data in Fig. 2 will be described.
  • the data acquisition unit 201 acquires the daily temperature forecast data for 48 frames simultaneously. Therefore, in the column of the temperature forecast, data is input to all the cells from 01:00 to 0:29 of 12/1 to 23:30 to 23:59.
  • the 30-minute accumulated demand record data and the temperature record data acquired by the data acquisition unit 201 are input up to 11/30 the day before the prediction target day.
  • the prediction execution time is 23:30 the day before the prediction target date. For this reason, the record data from 23:00 to 23:29 are input. Using the actual data up to this point, demand forecast data of 12/1 is calculated.
  • step S04 the model determination unit 501 of the command transmission unit 500 determines whether the prediction model management unit 300 needs to construct a new prediction model.
  • the process proceeds to step S05, and the coefficient is predicted using the existing prediction model.
  • the command transmission unit 500 transmits a command to the prediction model management unit 300 to construct the prediction model.
  • step S401 the Fourier transform unit 301 of the prediction model management unit 300 performs fast Fourier transform on the performance data.
  • the Fourier transform unit 301 performs fast Fourier transform using the above Equation 1.
  • N 48.
  • step S402 the prediction model construction unit 302 constructs a prediction model for predicting the coefficient of each frequency.
  • the prediction models shown in the following formulas 4 and 5 are constructed.
  • Tp represents the highest temperature on the prediction target day.
  • the prediction model storage unit 403 stores the constructed prediction model.
  • step S05 the prediction calculation unit 401 of the prediction unit 400 uses the prediction model stored in the prediction model storage unit 303 to generate coefficient prediction data for each frequency.
  • the process of calculating the coefficient prediction data of 12/1 will be described using Equation 4 and Equation 5.
  • coefficient prediction data is calculated by substituting 10 ° C. of the forecast data into Equation 4 and Equation 5. Then, the following formulas 6 and 7 are obtained.
  • step S06 the inverse Fourier transform unit 402 performs inverse Fourier transform on the coefficient prediction data of each frequency calculated by the prediction calculation unit 401 to calculate power demand prediction data.
  • the inverse Fourier transform unit 402 performs inverse Fourier transform using the above equation 3.
  • step S ⁇ b> 601 the inverse Fourier transform unit 402 stores the calculated power demand prediction data in the data storage unit 203.
  • the data storage unit 203 stores the power demand prediction data calculated in the demand prediction data cell of the corresponding date and time.
  • step S07 the model determination unit 501 of the command transmission unit 500 compares the demand prediction data with the actual demand data, and determines whether to update the model at the next prediction execution time.
  • the command transmission unit 500 transmits a command to the prediction model management unit 300 to update the prediction model.
  • step S701 the prediction model construction unit 302 acquires an existing prediction model from the prediction model storage unit 303, and updates the prediction model using the actual power demand data.
  • step S702 the updated prediction model is stored in the prediction model storage unit 303.
  • the process ends.
  • Demand forecast data calculated by the flow as described above and stored in the data storage unit 203 can be confirmed by the user by displaying it on the display unit 20. Further, the demand prediction data may be output to an external control device or the like.
  • a control device a device that creates a storage battery discharge plan based on demand forecast data, a device that changes a power procurement plan, a device that informs users of demand forecast data using a screen or voice, etc. Can do.
  • the power demand prediction apparatus 100 includes a Fourier transform unit 301 that performs Fourier transform on actual power demand data, and a result of Fourier transform on the actual power demand data.
  • a prediction model construction unit 302 that constructs a prediction model to be predicted, prediction data is input to the prediction model, coefficient computation data 401 that calculates coefficient prediction data of each frequency, and inverse Fourier transform of the coefficient prediction data of each frequency,
  • An inverse Fourier transform unit 402 that calculates power demand prediction data.
  • each frequency can be grasped by Fourier transforming the actual power demand data. Therefore, it is possible to accurately predict power demand including peak power by constructing a prediction model from the result of Fourier transform, and by performing inverse Fourier transform on the coefficient prediction data calculated by inputting the forecast data to this prediction model. It becomes possible.
  • the power demand prediction apparatus 100 includes a separation frequency determination unit 321, a long wavelength model construction unit 322, a short wavelength model construction unit 323, and an increase amount addition unit 403 in the prediction model construction unit 302. Have.
  • the separation frequency determination unit 321 is a processing unit that determines a separation frequency that becomes a separation point between a long wavelength and a short wavelength.
  • the separation frequency can be determined from the coefficient size of each frequency, the coefficient of each frequency and the correlation coefficient of the variable used in the prediction model, and the like.
  • the separation frequency may be configured to be input by the user via the input unit 10.
  • a plurality of prediction models may be constructed with different separation frequencies, and the separation frequency with the smallest error as a result of comparing the power demand prediction data and the power demand record data may be selected. As a result, all frequencies can be treated as long wavelength components. When all the frequencies are long wavelength components, the same processing as in the first embodiment is performed.
  • the separation frequency determination unit 321 has a function of separating the result of the Fourier transform performed by the Fourier transform unit 301 using the determined separation frequency into a long wavelength component and a short wavelength component. As a result of the fast Fourier transform, it is assumed that the coefficients of the long wavelength components are distributed as shown in FIG. As is clear from FIG. 3, the long wavelength coefficient has a second-order correlation with the maximum temperature.
  • FIG. 7 shows an example of the coefficient of the short wavelength component.
  • FIG. 8 shows an example of the power spectrum of each frequency.
  • FIG. 8 shows that the short wavelength coefficient is smaller than the long wavelength coefficient.
  • the prediction model for the long wavelength component coefficient and the prediction model for the short wavelength component coefficient are constructed using different methods.
  • the long wavelength model construction unit 322 is a processing unit that constructs a prediction model for predicting a coefficient of a long wavelength component.
  • the long wavelength model constructing unit 322 constructs a prediction model for the long wavelength component by the same processing as in the first embodiment.
  • the waveform of the daily power demand in the power demand prediction data calculated later is determined by the prediction model constructed by the long wavelength model construction unit 322.
  • the short wavelength model construction unit 323 determines a fixed value of the coefficient based on the coefficient of the short wavelength component.
  • the short wavelength component coefficient model is used to accurately predict the peak power value.
  • the short wavelength coefficient has a weak correlation with the maximum temperature, and takes a value in the vicinity of the average value when a prediction model is constructed by an approximate expression.
  • the short wavelength component is treated as 0 just because the correlation is weak, the waveform of the power demand prediction data falls. Therefore, in order to predict peak power demand, the coefficient of the short wavelength component cannot be ignored.
  • the short wavelength model construction unit 323 may be configured to determine a fixed value regardless of the value of the condition that is an input to the prediction model such as the maximum temperature. Moreover, it is good also as a structure which determines several fixed value by the value of the conditions used as the input to a prediction model.
  • FIG. 10 shows an example in which the coefficient magnitude is changed according to the maximum temperature.
  • the short wavelength model constructing unit 323 can sum up and use the values of the coefficients of the respective short wavelengths. Here, the total value is expressed as an increase amount. By adding the increase amount to the power demand prediction data obtained from the long wavelength component, the largest predicted value is calculated.
  • the prediction calculation unit 401 calculates long wavelength component coefficient prediction data using a long wavelength component prediction model. Then, the inverse Fourier transform unit 402 performs inverse Fourier transform on the coefficient prediction data of the long wavelength component.
  • the increase amount adding unit 403 is a processing unit that adds the increase amount to the result of the inverse Fourier transform unit 402 performing inverse Fourier transform on the coefficient prediction data of the long wavelength component.
  • step S41 the model determination unit 501 of the command transmission unit 500 determines whether the prediction model management unit 300 needs to construct a new prediction model. If the model determining unit 501 determines that the construction of the prediction model is not necessary (NO in step S41), the process proceeds to step S51, and the coefficient is predicted using the existing prediction model. On the other hand, when the model determination unit 501 determines that the prediction model needs to be constructed (YES in step S41), the command transmission unit 500 transmits a command to the prediction model management unit 300 to construct the prediction model.
  • step S411 the Fourier transform unit 301 of the prediction model management unit 300 performs fast Fourier transform on the performance data.
  • the Fourier transform unit 301 performs fast Fourier transform using the above Equation 1.
  • step S412 the separation frequency determination unit 321 determines a separation frequency for separating the long wavelength component and the short wavelength component. Then, the separation frequency determination unit 321 separates the result of the Fourier transform performed by the Fourier transform unit 301 using the determined separation frequency into a long wavelength component and a short wavelength component.
  • step S413 the long wavelength model construction unit 322 constructs a prediction model for the long wavelength component.
  • the model construction method of the long wavelength model construction unit 322 is the same method as S402 in FIG.
  • step S414 the short wavelength model construction unit 323 determines the increase amount from the coefficient of the short wavelength component.
  • the prediction model storage unit 303 receives the prediction model for the long wavelength component constructed by the long wavelength model construction unit 322 and the increase amount that is the prediction model for the short wavelength component decided by the short wavelength model construction unit 323. save.
  • step S51 the prediction calculation unit 401 calculates the coefficient prediction data of the long wavelength component using the prediction model of the coefficient of the long wavelength component stored in the prediction model storage unit 303.
  • step S61 the inverse Fourier transform unit 402 performs inverse Fourier transform on the coefficient prediction data of the long wavelength component calculated by the prediction calculation unit 401 to calculate power demand prediction data.
  • step S61 the coefficient of the short wavelength component is treated as zero.
  • the solid line graph in FIG. 11 shows an example of the calculated power demand prediction data.
  • step S71 the increase amount adding unit 403 adds the increase amount, which is a short wavelength component prediction model, to the inverse Fourier transform result, and calculates final power demand prediction data.
  • the dotted line graph in FIG. 11 shows an example of final power demand prediction data to which the increase amount is added.
  • the increase amount adding unit 403 stores the calculated power demand prediction data in the data storage unit 203.
  • the data storage unit 203 stores the power demand prediction data calculated in the demand prediction data cell of the corresponding date and time.
  • step S07, S701, and S702 the process similar to the said embodiment is performed.
  • a separation frequency determination unit 321 that separates the result of Fourier transform of actual power demand data into a long wavelength component and a short wavelength component, and a long wavelength model construction unit that builds a prediction model that predicts a coefficient of the long wavelength component 322 and the short wavelength model construction unit 323 that determines the fixed value of the coefficient based on the coefficient of the short wavelength component, and the inverse Fourier transform unit 402 calculates the fixed value of the coefficient determined by the short wavelength model construction unit 323.
  • an increase amount adding unit 403 for adding to the power demand prediction data.
  • the power demand prediction apparatus 100 of this embodiment adds a fixed value of a coefficient determined by the short wavelength model construction unit 323 to power demand prediction data calculated using a prediction model that predicts a coefficient of a long wavelength component. is doing. Therefore, it is possible to calculate more accurate power demand prediction data having the largest peak value.
  • the storage battery control device has such a criterion that, for example, the storage battery is discharged when a predetermined power demand is exceeded.
  • the storage battery discharge reference is 560 kWh / 30 min.
  • the power demand prediction data of the dotted line to which the fixed value of the coefficient determined by the short wavelength model construction unit 323 is added is introduced into the storage battery control device, the discharge reference is 600 kWh / 30 min. If the actual power demand is close to the power demand forecast result of the dotted line, if the discharge standard is 560 kWh / 30 min, all of the storage battery capacity is discharged before the peak time of power demand, and the demand at the peak time Can not be reduced.
  • the power demand prediction data calculated by the power demand prediction device 100 of the present embodiment has the largest peak value. Therefore, since the storage battery control device can determine a more accurate discharge power reference value, the storage battery can be discharged more reliably. Therefore, even when a small-capacity storage battery is introduced, it is possible to reliably discharge the storage battery and obtain a reduction merit. From the above, by applying the power demand prediction data created by the power demand prediction device 100 of the present embodiment to the storage battery control device, the installation cost of the storage battery is suppressed, and even for a small capacity storage battery, It is possible to achieve a significant reduction effect.
  • the short wavelength model construction unit 323 determines the maximum value of each coefficient of the short wavelength component as a fixed value of the coefficient. (3) The short wavelength model construction unit 323 determines the maximum value of each coefficient of the short wavelength component in a predetermined confidence interval as a fixed value of the coefficient.
  • the power demand prediction apparatus 100 is constructed by building a prediction model using a probability density function in the second embodiment. As illustrated in FIG. 12, the power demand prediction apparatus 100 includes a probability prediction model construction unit 331 in the long wavelength model construction unit 322. Further, the prediction unit 400 includes a demand prediction data determination unit 404.
  • the probability prediction model construction unit 331 is a processing unit that constructs a prediction model with a probability density function.
  • the prediction model calculated by the prediction model construction unit 300 is a prediction model as shown in FIG. 3, and there is only one coefficient prediction data calculated based on a condition that becomes an input such as the maximum temperature. It was.
  • the coefficient data calculated by the Fourier transform varies, and the value varies greatly around the maximum temperature of 30 ° C. or around 10 ° C. Therefore, in order to further improve the accuracy of the prediction model, the probability prediction model construction unit 331 constructs a plurality of prediction models using the probability density function, thereby calculating more accurate power demand prediction data.
  • the probability density function may be constructed using any method such as a parametric method such as Bayesian estimation, a nonparametric method such as kernel density estimation, or a semiparametric method such as maximum likelihood method.
  • FIG. 14 shows the coefficient distribution of FIG. 3 in terms of probability density.
  • the probability prediction model construction unit 331 constructs a plurality of prediction models. Then, the prediction calculation unit 401 calculates coefficient data of a plurality of long wavelength components using the plurality of prediction models, and the inverse Fourier transform unit 402 performs inverse Fourier transform on the coefficient data of the plurality of long wavelength components, respectively. . Accordingly, a plurality of power demand forecast data is calculated.
  • the demand prediction data determination unit 404 is a processing unit that determines final power demand prediction data based on a plurality of power demand prediction data.
  • the determination method may be the one with the largest peak power value or may calculate the average of all demand forecast data. Also, the calculation results can be classified into clusters and determined from the results of the largest number of clusters. It is also possible to transmit a plurality of demand forecast data to the control device and use the power demand forecast data most suitable for control.
  • step S413A for the long wavelength component separated by the separation frequency determination unit 321, the long wavelength model construction unit 322 constructs a prediction model.
  • step S51A the prediction calculation unit 401 calculates coefficient prediction data of a plurality of long wavelength components using a prediction model of coefficients of a plurality of long wavelength components stored in the prediction model storage unit 303.
  • step S61A the inverse Fourier transform unit 402 performs inverse Fourier transform on the coefficient prediction data of the plurality of long wavelength components calculated by the prediction calculation unit 401 to calculate a plurality of power demand prediction data.
  • An example of a plurality of power demand prediction data calculated by the inverse Fourier transform unit 402 is shown in FIG.
  • step S711A the demand prediction data determination unit 404 determines final power demand prediction data.
  • the prediction model construction unit 302 further includes a probability prediction model construction unit 331 that constructs a prediction model with a probability density function, and constructs a plurality of prediction models using the probability density function.
  • the prediction calculation unit 401 inputs prediction data to each of the plurality of prediction model data, calculates a plurality of coefficient prediction data, and the inverse Fourier transform unit 402 converts the plurality of coefficient prediction data to the inverse Fourier respectively. Convert and calculate a plurality of power demand forecast data.
  • the result of Fourier transforming the actual data may include variation.
  • an accurate prediction model has not been constructed, for example, in the region where the maximum temperature is around 30 ° C. or around 10 ° C. in FIG. Therefore, by constructing multiple prediction models using probability density functions and calculating multiple power demand prediction data, robust prediction is possible even when there are variations in data points, so accurate power demand Prediction data can be calculated.
  • the probability prediction model construction unit 331 is configured to be provided in the long wavelength model construction unit 322, but is also provided in the short wavelength model construction unit 323 to calculate a probability density function for an increase amount that is a prediction model of the short wavelength component.
  • the increase amount may be determined according to this probability.
  • it is good also as a structure which applies the probability prediction model construction part 331 to the electric power demand prediction apparatus 100 of 1st Embodiment.
  • the power demand prediction program is stored in a storage medium or storage device such as a flexible disk, a CD-ROM, a magneto-optical disk, a semiconductor memory, or a hard disk. Moreover, it may be distributed as a digital signal via a network or the like.
  • the intermediate processing result is temporarily stored in a storage device such as a main memory.
  • DESCRIPTION OF SYMBOLS 10 ... Input part 20 ... Display part 200 ... Data management part 201 ... Data acquisition part 202 ... Missing interpolation part 203 ... Data storage part 300 ... Prediction model management part 301 ... Fourier transform part 302 ... Prediction model construction part 303 ... Prediction model Storage unit 321 ... separation frequency determination unit 322 ... long wavelength model construction unit 323 ... short wavelength model construction unit 331 ... probability prediction model construction unit 400 ... prediction unit 401 ... prediction operation unit 402 ... inverse Fourier transform unit 403 ... increase amount addition unit 404 ... demand prediction data determination unit 500 ... command transmission unit 501 ... model update determination unit

Landscapes

  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

電力需要をより正確に予測することを可能とする電力需要予測装置、電力需要予測方法、および電力需要予測プログラムを提供する。電力需要の実績データをフーリエ変換するフーリエ変換部301と、電力需要の実績データをフーリエ変換した結果から、各周波数の係数を予測する予測モデルを構築する予測モデル構築部302と、予測モデルに予報データを入力し、各周波数の係数予測データを算出する予測演算部401と、各周波数の係数予測データを逆フーリエ変換し、電力需要予測データを算出する逆フーリエ変換部402と、を有する。

Description

電力需要予測装置、電力需要予測方法、およびそのプログラム
 本発明の実施形態は、電力需要量を予測する電力需要予測装置、電力需要予測方法、および電力需要予測プログラムに関する。
 従来から、電力需要量を過去の需要や気温の履歴などの観測量に基づいて予測する電力需要予測装置が知られている。電力需要の予測は、予測対象地域の過去の需要実績を用いて、重回帰分析などの手法により行うことが一般的である。
特開2009-225550号公報
 近年、電力需要が逼迫する夏季や冬季に、電力使用のピークの時間帯において、電力使用量を削減することが求められている。この電力使用量の削減方法のひとつに、例えば蓄電池を用いて電力会社の供給電力量を削減する手法がある。蓄電池を用いた削減方法では、例えば、電力需要の予測に基づき最大の電力需要が予測される時間帯に蓄電池を放電することで、蓄電池の放電量の分だけ使用電力量を削減する方法がある。
 蓄電池は、電力需要の予測に基づいて放電を行う。そのため、電力需要の予測に誤りが生じた場合、電力使用のピークを正確に予測することができず、蓄電池が放電のタイミングを逸してしまうおそれがあった。また、例えばピーク値が低く予測された場合、蓄電池の放電を電力使用のピーク時間帯より前に開始してしまうことから、電力使用のピーク時間帯に十分な蓄電池の放電ができなくなる可能性があった。従って、電力需要をより正確に予測可能な技術の開発が急務であった。
 本実施形態は、上記の課題を解決するために提案されたものであり、その目的は、電力需要をより正確に予測することを可能とする電力需要予測装置、電力需要予測方法、および電力需要予測プログラムを提供することにある。
 上記目的を達成するために、本発明の実施形態に係る電力需要予測装置は、電力需要の実績データをフーリエ変換するフーリエ変換部と、電力需要の実績データをフーリエ変換した結果から、各周波数の係数を予測する予測モデルを構築する予測モデル構築部と、予測モデルに予報データを入力し、各周波数の係数予測データを算出する予測演算部と、各周波数の係数予測データを逆フーリエ変換し、電力需要予測データを算出する逆フーリエ変換部と、を有する。
 また、他の実施形態の電力需要予測方法は、コンピュータ又は電子回路が、電力需要の実績データをフーリエ変換するフーリエ変換処理と、電力需要の実績データをフーリエ変換した結果から、各周波数の係数を予測する予測モデルを構築する予測モデル構築処理と、予測モデルに予報データを入力し、各周波数の係数予測データを算出する予測演算処理と、各周波数の係数予測データを逆フーリエ変換し、電力需要予測データを算出する逆フーリエ変換処理と、を実行する。
 なお、本実施形態は、上記電力需要予測装置の機能をコンピューターに実行させるためのプログラムをとして捉えることができる。
第1の実施形態の電力需要予測装置の構成を示すブロック図である。 実績データ、予報データ、および予測データが保存される態様の一例を示すデータテーブルである。 第1の実施形態の電力需要予測装置が構築する予測モデルの一例を示すグラフである。 需要実績データと需要予測データの比率を過去1日分プロットしたグラフである。 第1の実施形態の電力需要予測装置が電力需要予測データを算出するフローを示すフローチャートである。 第2の実施形態の電力需要予測装置の構成を示すブロック図である。 短波長成分の係数と最高気温の関係の一例を示すグラフである。 各周波数のパワースペクトルの一例を示すグラフである。 第2の実施形態の電力需要予測装置が電力需要予測データを算出するフローを示すフローチャートである。 第2の実施形態の電力需要装置が決定する短波長成分の係数の一例を示すグラフである。 第2の電力需要予測装置が算出した電力需要予測データの一例を示すグラフである。 第3の実施形態の電力需要予測装置の構成を示すブロック図である。 第3の実施形態の電力需要予測装置が電力需要予測データを算出するフローを示すフローチャートである。 各周波数の係数を確率予測密度で示したグラフである。 第3の実施形態の電力需要予測装置が算出した複数の電力需要予測データを示すグラフである。
[1.第1の実施形態]
[電力需要予測装置の構成]
 第1の実施形態に係る電力需要予測装置100について、図1~5を参照して説明する。電力需要予測装置100は、汎用のコンピューターを所定のプログラムで実行することにより構成することができる。コンピューターは、CPU、メモリ、チップセット、GPU及びVRAMを有するグラフィックスボード、HDD又はSSD等の記憶装置、入力インターフェース、出力インターフェース等がバスを介して接続された構成である。電力需要予測装置100の機能を実現するプログラムは記憶装置に格納され、実行時にメモリ上へと展開された後、手順に従って実行される。
 具体的には、図1に示す通り、電力需要予測装置100には、マウスやキーボード等の入力部10、CRTや液晶ディスプレイ等の表示部20が接続されている。入力部10は、ユーザがGUI画面を介してデータの選択や処理の要求等を入力するために使用される。表示部20は、ユーザが入力を行うためのGUI画面を表示するものである。また、表示部20は、電力需要予測装置100が作成した予測モデルや予測データを表示する構成としても良い。
 電力需要予測装置100は、データ管理部200、予測モデル管理部300、予測部400、および指令送信部500を備える。
(データ管理部)
 データ管理部200は、電力需要予測に必要なデータおよび電力需要の予測データを保存する処理部であり、データ取得部201、欠測補間部202、およびデータ保存部203を備える。
 データ取得部201は、実績データと予報データを取得する処理部である。実績データとは、過去の電力需要データ、気象情報、カレンダー情報を含むデータである。また、予報データとは、将来の気象情報、カレンダー情報、イベント情報を含むデータである。気象情報は、最高気温・最低気温・気温の変化量・降水量・日射量・日照時間に関する情報を含む。カレンダー情報は、年月日、日時、曜日に関する情報を含み、2018年5月3日(木)が憲法記念日である、というような祝休日の情報を含む。イベント情報は、所定のイベント会場で行われるイベントおよびその日時に関する情報を含む。例えばイベント情報としては、所定の会場で行われるコンサートや展示会の情報が含まれる。
 データ取得部201は、過去の電力需要データとして、Aルート、Bルート、およびCルートで取得した電力需要データを取得可能に構成される。また、データ取得部201は、ネットワークを介して外部から気象情報、カレンダー情報、およびイベント情報を取得可能に構成されても良い。ただし、データ取得部201がデータを取得する構成は、これらの構成に限定されない。例えば、ユーザが入力部10を介して入力する構成としても良い。
 データ取得部201は、例えば30分毎などの決まった周期、毎日午前0時などの決まった時刻、またはデータが更新されたタイミング、に実績データと予報データを取得するよう構成することができる。ただし、データ取得部201は、所定の取得タイミングにおける単体のデータを取得するだけでなく、取得タイミングにおけるデータを含む所定の期間のデータの積算データを取得する構成としても良い。
 欠測補間部202は、データ取得部201が取得した実績データおよび予報データに取得できなかったデータがある場合に、当該データを欠測として補間する処理部である。欠測値の補間方法は線形補間、多項式補間、スプライン補間などの手法を用いることができる。欠測保管部202は、数値以外のデータについても、補間可能に構成される。例えば、データ取得部201がある地域の気象情報が取得できなかった場合に、欠測補間部202がその地域の気象情報を近隣エリアの取得できたデータを用いて補間してもよい。
 データ保存部203は、データ取得部201が取得した実績データおよび予報データ、または欠測補間部202で補間処理された実績データおよび予報データ、および予測モデルを用いて作成した電力需要の予測データ、を保存する処理部である。データ保存部203は、入力された各データを、このデータに対応する日時に関する情報と関連付けたデータテーブルとして保存する。データ保存部203が保存するデータの一例を図2に示す。
 なお、欠測補間部202が補間処理を行ったデータについて、その後欠測していた部分のデータをデータ取得部201が取得できる場合がある。その場合には、データ保存部203は不図示の更新部により入手できたデータを用いて、補間した部分のデータを上書きし、上書き後のデータを保存する構成としても良い。
(予測モデル管理部)
 予測モデル管理部300は、予測モデルを構築して保存する処理部であり、フーリエ変換部301、予測モデル構築部302、予測モデル保存部303を有する。予測モデル管理部300は、後述の指令送信部500からの構築指令に基づき、予測モデルを構築する。
 フーリエ変換部301は、データ保存部203に保存された電力需要の実績データを読み出し、高速フーリエ変換を行う処理部である。フーリエ変換部301は、以下の数式1を用いて高速フーリエ変換を行う。
Figure JPOXMLDOC01-appb-M000001
 フーリエ変換部301は、1日や1週間など、まとまった電力需要データに対してフーリエ変換を行うものとする。例えば、30分間の積算電力需要データを、48コマ分まとめてフーリエ変換する。このように複数のデータをまとめて積算することで、1日分の電力需要データに対してフーリエ変換を行うことができる。
 予測モデル構築部302は、実績データをフーリエ変換した結果から、各周波数の係数を予測する予測モデルを構築する処理部である。予測モデル構築部302は、後述する指令送信部500から新規モデル構築指令が入力された場合に、予測モデルを構築するように構成されている。予測モデルとは、各周波数の係数を予測するためのモデルであり、気象情報等の入力となる条件と、各周波数の係数が関連付けられたモデルである。従って、予測モデルを用いると、条件となる値を入力することにより、その値における各周波数の係数を求めることができる。
 例えば、周波数の係数の実数成分をy、1日の最高気温をxとしたとき、xとyの関係は、図3に示す関係となる。この二次近似式を算出すると、予測モデルとして以下の数式2を得ることができる。なお、数式2では実数部と虚数部を別のモデルで構築したが、2つを同時に推定するモデルとしても良い。
Figure JPOXMLDOC01-appb-M000002
 予測モデルへの入力となる条件は、最高気温に限定されない。例えば、気象情報として、最低気温・気温の変化量・降水量・日射量・日照時間の実績データと予報データ、過去の電力需要の実績データ、過去の電力需要の実績データのフーリエ変換後の係数、他の周波数の係数の予測値、などを用いても良い。また、予測式は二次式に限るものではなく、重回帰、クラスタリング、ニューラルネットワーク、確率密度関数、など、提唱されている様々な手法のうち、いずれかの手法を用いて構築された予測モデルとしても良い。
 さらに、重み係数wを用いて、予測モデルへの入力となる条件に重み付けをすることも可能である。重み係数wは、例えば、データを取得してからの経過日数で定めることができる。具体的には、直近一週間に取得したデータについては、重要度が高いと考え重み付けを行っても良い。重み係数wは、最大需要の大きさや他の方法で定めてもよい。
 予測モデル構築部302が構築する予測モデルの数は、単数であっても良いし、複数構築する構成としても良い。例えば、全ての日時で同じ予測モデルを用いる場合には、予測モデル構築部302は予測モデルを一つ構築するように構成すれば良い。また、曜日、季節、および時間帯によって異なる予測モデルを用いることもある。この場合には、予測モデル構築部302は、例えば曜日毎の実績データをフーリエ変換した結果から、各曜日に対応する複数の予測モデルを構築するように構成すれば良い。
 なお、予測モデル構築部302は、不図示の更新部を有し、予測モデル保存部303に保存した予測モデルを読み出して更新する機能を有する。予測モデルの更新は、後述する指令送信部500からモデル更新指令が入力された場合に、予測モデルを更新するように構成されている。
 予測モデル保存部303は、予測モデル構築部302が構築または更新した予測モデルを保存する処理部である。予測モデル構築部302が複数の予測モデルを構築する構成とした場合には、予測モデル保存部303は、予測モデルを作成した条件と関連付けて予測モデルを保存する。
(予測部)
 予測部400は、予測モデルを用いて需要予測データを算出する処理部であり、予測演算部401および逆フーリエ変換部402を有する。予測部400は、予測モデル保存部303に保存されている予測モデルと、データ保存部203に保存された予報データを取得する。
 予測演算部401は、取得した予測モデルに予報データを入力し、各周波数の係数予測データを算出する処理部である。例えば、上記数式2において、最高気温をxの値に、取得した予報データの値である10℃を代入することで、各周波数の係数が算出される。
 逆フーリエ変換部402は、予測演算部401で算出した各周波数の係数予測データについて逆フーリエ変換を実施する処理部である。係数予測データを逆フーリエ変換することにより、電力需要予測データが算出される。算出した電力需要予測データは、データ保存部203に保存される。逆フーリ変換部402は、以下の数式3を用いて逆フーリエ変換を行う。
Figure JPOXMLDOC01-appb-M000003
(指令送信部)
 指令送信部500は、データ保存部203に保存された需要実績データと需要予測データに基づいて、モデル更新指令または新規モデル構築指令を出力する処理部である。指令送信部500は、モデル更新判断部501を有する。
 モデル更新判断部501は、予測モデルの更新または新規予測モデルの構築の必要性を判断する処理部である。モデル更新判断部501は、需要予測データと需要実績データを比較し、その比較結果が所定の基準を超えたまたは下回った場合に、予測モデルの更新または構築が必要であると判断する。モデル更新判断部501は、予測モデルの更新または新規予測モデルの構築が必要であると判断した場合、予測モデル管理部300に対してモデル更新指令または新規モデル構築指令を出力する。
 モデル更新判断部501は、例えば、需要予測データの分布と需要実績データの分布を比較した際に外れ方の傾向が表れている場合、モデル更新が必要であるとの判断を下す。図4は、需要実績データと需要予測データの比率を過去1日分プロットしたグラフである。ΔTは12/1の0:00~0:29との差分コマ数である。需要予測データと需要実績データの比率は1.0を超える値が8割を超え外れ方の傾向を示している。このような場合に、モデル更新判断部501が、予測モデルの構築または更新が必要であると判断し、モデル構築指令またはモデル更新指令を出力しても良い。
 需要実績データと需要予測データの比較において、直近に取得したデータを重要であるとして重み付けをする処理を加えてもよい。また、図4の例では過去1日のすべての時刻の比率を用いて判断したが、ある特定の時刻や電力需要がピークとなった時刻のデータだけを用いて構築・更新の判断を実施してもよい。さらに、図4の例では需要予測データと需要実績データの比率によって決定したが、誤差量などの比率以外の指標を用いることもできる。また、モデル更新判断部501は、一度モデル構築指令またはモデル更新指令を発令してから一定期間が経過するまでは、次の判断を受け付けないように構成されても良い。または、特定の日時に必ずモデルを更新するというデータに因らない条件により、モデル更新指令を出力する構成としても良い。
 モデル更新の判断には需要予測データ、需要実績データの最新データを含む過去数時間から数年のデータを用いることができる。使用するデータ量はあらかじめ定めておいてもよく、ユーザが設定してもよい。また、既存の予測モデルを更新するか、新規に予測モデルを構築するか、の判断基準は実際の運用状況等に併せて適宜設定することができる。たとえば、一日のうち所定の時間の比較結果のみが不良である場合には、既存の予測モデルを更新することが考えられる。また、比較結果が不良となる時間帯が増加傾向にある場合には、例えば季節や曜日の変化による電力需要の変化であると判断し、新規に予測モデルを構築する構成としても良い。
[電力需要予測装置の動作]
 上記のような本実施形態の電力需要予測装置100を用いた、電力需要予測データの算出フローについて図5のフローチャートを参照しつつ説明する。以下の例では、一日の需要データは30分毎に取得されるものであり、合計48コマから成り立っているものとする。また、予測は1日分をまとめて予測するものとし、予測対象日の前日の23:30に予測を実施するものとする。
 ステップS01において、データ管理部200のデータ取得部201が、実績データと予報データを取得する。本例では、実績データとして過去の電力需要データ、気象情報、およびカレンダー情報を取得する。また、予測データとして、将来の気象情報を取得する。データ取得部201は、30分毎に実績データを取得する。なお、実績データには、遅延時間はないと想定する。また、予報データは、予測対象日の前日に予測対象日分のデータを受信すると想定する。
 ステップS02において、欠測補間部202が、データ取得部201から取得したデータに欠測があるかを確認し、電力需要データに欠測があった場合には(ステップS02のYES)、任意の手法を用いて欠測を補間する。また、気象情報に欠測があった場合には(ステップS02のYES)、近隣エリアの取得できたデータを用いて補間する。一方、データ取得部201が取得したデータに欠測がない場合(ステップS02のNO)、補間は行われない。
 ステップS03において、データ取得部201が取得したデータ、または欠測補間部202が補間したデータは、データ保存部203に保存される。図2は、データ保存部203が保存するデータの一例である。図2の例では、予測対象日を2017/12/1とした場合のデータテーブルを示す。
 図2のデータについて説明する。データ取得部201は、1日の気温予報データを48コマ分同時に取得する。従って、気温予報の列には12/1の0:00~0:29のセルから23:30~23:59までの全てのセルにデータが入力されている。また、データ取得部201が取得した30分間の積算需要の実績データおよび気温の実績データは、予測対象日前日の11/30まで入力されている。ここで、予測実施時刻は、予測対象日の前日の23:30である。そのため、23:00~23:29の実績データまでが入力されている。この時点までの実績データを用いて、12/1の需要予測データが算出される。
 ステップS04において、指令送信部500のモデル判断部501は、予測モデル管理部300が新規の予測モデルを構築する必要があるかを判断する。モデル判断部501が予測モデルの構築が必要ではないと判断した場合(ステップS04のNO)、ステップS05に進み、既存の予測モデルを用いて係数の予測を行う。一方、モデル判断部501が予測モデルの構築が必要であると判断した場合(ステップS04のYES)、指令送信部500が予測モデル管理部300に、予測モデルの構築を行うよう指令を送信する。
 ステップS401において、予測モデル管理部300のフーリエ変換部301は、実績データを高速フーリエ変換する。フーリエ変換部301は、上記数式1を用いて高速フーリエ変換を実施する。ここではN=48である。
 次にステップS402において、予測モデル構築部302が、各周波数の係数を予測するための予測モデルを構築する。例えば以下の数式4および数式5に示す予測モデルを構築する。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 ここで、y、yはそれぞれx=1、x=2の周波数の係数、Tpは予測対象日の最高気温を表している。ここでは1日48コマを1つの波形としているため、周波数の係数の予測式はy~y24の25個が作成される。そして、α=0.3、β=-1.0、γ=0、α=0.05、β=-0.1、γ=0と係数が決定したと想定する。そしてステップS403において、予測モデル保存部403は、構築した予測モデルを保存する。
 ステップS05において、予測部400の予測演算部401は、予測モデル保存部303に保存されている予測モデルを用いて、各周波数の係数予測データを作成する。ここでは、上記数式4および数式5を用いて、12/1の係数予測データを算出する過程を説明する。12/1の最高気温の予報データが10℃である場合、数式4および数式5に予報データの10℃を代入して係数予測データを算出する。すると、以下の数式6および数式7が得られる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 ステップS06において、逆フーリエ変換部402は、予測演算部401が算出した各周波数の係数予測データを逆フーリエ変換し、電力需要予測データを算出する。逆フーリエ変換部402は、上記式3を用いて逆フーリエ変換を実施する。ステップS601において、逆フーリエ変換部402は、算出した電力需要予測データをデータ保存部203に保存する。データ保存部203は、該当する日時の需要予測データセルに算出した電力需要予測データを保存する。
 ステップS07において、指令送信部500のモデル判断部501は、需要予測データと需要実績データを比較して、次の予測実施時刻にモデルの更新を実施するかを判断する。予測モデルの更新が必要であると判断した場合(ステップS07のYES)、指令送信部500が予測モデル管理部300に、予測モデルの更新を行うよう指令を送信する。ステップS701において、予測モデル構築部302は、予測モデル保存部303から既存の予測モデルを取得し、電力需要の実績データを用いてこの予測モデルを更新する。そして、ステップS702において、更新された予測モデルを予測モデル保存部303に保存する。一方、予測モデルの更新が必要でないと判断した場合(ステップS07のNO)、処理を終了する。
 以上のようなフローで算出され、データ保存部203に保存された需要予測データは、表示部20に表示することによりユーザが確認できる。また、需要予測データを外部の制御装置等に出力して用いても良い。制御装置としては、需要予測データをもとに蓄電池の放電計画を作成する装置や、電力の調達計画を変更する装置、ユーザに需要予測データを画面や音声などを用いて知らせる装置等とすることができる。
[作用効果]
(1)以上のような本実施形態の電力需要予測装置100は、電力需要の実績データをフーリエ変換するフーリエ変換部301と、電力需要の実績データをフーリエ変換した結果から、各周波数の係数を予測する予測モデルを構築する予測モデル構築部302と、予測モデルに予報データを入力し、各周波数の係数予測データを算出する予測演算部401と、各周波数の係数予測データを逆フーリエ変換し、電力需要予測データを算出する逆フーリエ変換部402と、を有する。
 電力需要の実績データをフーリエ変換することで、周波数ごとの特徴を把握できる。従って、フーリエ変換した結果から予測モデルを構築し、この予測モデルに予報データを入力して算出した係数予測データを逆フーリエ変換することにより、ピーク電力を含めた電力需要を正確に予測することが可能となる。
(2)電力需要予測データと、電力需要実績データの比較結果に基づき、予測モデルの更新または新規予測モデルの構築の必要性を判断するモデル更新判断部501をさらに有する。
 逆フーリエ変換部402で算出した電力需要予測データと、実際の電力需要の実績データを比較して構築した予測モデルの妥当性を評価し、新たな構築または更新を判断することで、さらに正確な電力需要の予測が可能となる。
[2.第2の実施形態]
[電力需要予測装置の構成]
 第2実施形態ついて、図6~11を参照して説明する。なお、第2実施形態以降の実施形態においては、前述した実施形態とは異なる点のみを説明し、同じ部分については同じ符号を付して詳細な説明は省略する。本実施形態の電力需要予測装置100は、図6に示すとおり、予測モデル構築部302において分離周波数決定部321、長波長モデル構築部322、短波長モデル構築部323、および増加量加算部403を有する。
 分離周波数決定部321は、長波長・短波長の分かれ目となる分離周波数を決定する処理部である。分離周波数は各周波数の係数の大きさや、各周波数の係数と予測モデルに使用する変数の相関係数、などから判断することができる。分離周波数は、入力部10を介してユーザが入力する構成としても良い。また、異なる分離周波数で複数の予測モデルを構築し、電力需要予測データと電力需要実績データを比較した結果誤差が最も小さくなる分離周波数を選択してもよい。この結果、すべての周波数を長波長成分と扱うことも可能とする。すべての周波数を長波長成分とした場合は、第1の実施形態と同様の処理を行うこととなる。
 分離周波数決定部321は、決定した分離周波数でフーリエ変換部301がフーリエ変換した結果を、長波長成分と短波長成分に分離する機能を有する。高速フーリエ変換の結果、長波長成分の係数が図3のように分布しているとする。図3からも明らかな通り、長波長の係数は最高気温と二次の相関があることが分かる。
 一方、短波長成分の係数の一例を図7に示す。図7から明らかな通り、短波長の係数は最高気温との相関が弱いことが分かる。また、図8は、各周波数のパワースペクトルの一例を示している。図8より、長波長の係数に比べ、短波長の係数は小さいことが分かる。この特徴を考慮して、本実施形態では長波長成分の係数の予測モデルと短波長成分の係数の予測モデルを別の手法を用いて構築する。
 長波長モデル構築部322は、長波長成分の係数を予測する予測モデルを構築する処理部である。長波長モデル構築部322は、第1の実施形態と同様の処理で長波長成分の予測モデルを構築する。長波長モデル構築部322が構築した予測モデルにより、後に算出される電力需要予測データにおける1日の電力需要の波形が決定する。
 短波長モデル構築部323は、短波長成分の係数に基づいて、係数の固定値を決定する。短波長成分の係数のモデルは、ピーク電力の値を正確に予測するために活用する。上記の通り、図7の例では、短波長の係数は最高気温との相関が弱く、近似式により予測モデルを構築すると平均値付近の値をとる。ここで、相関が弱いからといって短波長成分を0として扱った場合、電力需要予測データの波形が落ち込むことになる。よって、ピーク電力需要を予測するためには、短波長成分の係数を無視することはできない。さらに、より正確にピーク電力需要を予測するためには、平均値ではなくより大きな値を用いて、一番大きな予測値を算出することが重要である。
 そこで短波長成分の係数の算出には、各係数の最大値や、各係数の分布に信頼区間を設定した際の最大値、などを用いることが好ましい。短波長モデル構築部323は、最高気温等の予測モデルへの入力となる条件の値に関係なく、一定の固定値を決定する構成としても良い。また、予測モデルへの入力となる条件の値によって、複数の固定値を決定する構成としても良い。図10では、最高気温によって係数の大きさを変更した場合の例を示す。短波長モデル構築部323は、各短波長の係数の値が決定したらこれらの値を合計して用いることができる。ここでは、合計値を増加量と表現する。増加量は、長波長成分から求めた電力需要予測データに加算されることで、一番大きな予測値が算出されることとなる。
 本実施形態では、予測演算部401は、長波長成分の予測モデルを用いて、長波長成分の係数予測データを算出する。そして、逆フーリエ変換部402はこの長波長成分の係数予測データを逆フーリエ変換する。増加量加算部403は、逆フーリエ変換部402が長波長成分の係数予測データを逆フーリエ変換した結果に、上記増加量を加算する処理部である。
[電力需要予測装置の動作]
 本実施形態の電力需要予測装置100を用いた、電力需要予測データの算出フローについて図9のフローチャートを参照しつつ説明する。まず、ステップS01~S03については、上記実施形態と同様に処理を行う。
 そして、ステップS41において、指令送信部500のモデル判断部501は、予測モデル管理部300が新規の予測モデルを構築する必要があるかを判断する。モデル判断部501が予測モデルの構築が必要ではないと判断した場合(ステップS41のNO)、ステップS51に進み、既存の予測モデルを用いて係数の予測を行う。一方、モデル判断部501が予測モデルの構築が必要であると判断した場合(ステップS41のYES)、指令送信部500が予測モデル管理部300に、予測モデルの構築を行うよう指令を送信する。
 ステップS411において、予測モデル管理部300のフーリエ変換部301は、実績データを高速フーリエ変換する。フーリエ変換部301は、上記数式1を用いて高速フーリエ変換を実施する。
 ステップS412において、分離周波数決定部321は、長波長成分と短波長成分を分ける分離周波数を決定する。そして、分離周波数決定部321は、決定した分離周波数でフーリエ変換部301がフーリエ変換した結果を、長波長成分と短波長成分に分離する。そして、ステップS413において、長波長モデル構築部322は、長波長成分の予測モデルを構築する。長波長モデル構築部322のモデル構築手法は、図5のS402と同様の手法である。
 また、ステップS414において、短波長モデル構築部323は、短波長成分の係数から増加量を決定する。そして、ステップ415において、長波長モデル構築部322が構築した長波長成分の予測モデルと、短波長モデル構築部323が決定した短波長成分の予測モデルである増加量を、予測モデル保存部303に保存する。
 ステップS51において、予測演算部401は、予測モデル保存部303に保存されている長波長成分の係数の予測モデルを用いて、長波長成分の係数予測データを算出する。ステップS61において、逆フーリエ変換部402は、予測演算部401が算出した長波長成分の係数予測データを逆フーリエ変換して電力需要予測データを算出する。なお、ステップS61では、短波長成分の係数は0として扱う。図11の実線のグラフは、算出された電力需要予測データの一例を示す。
 ステップS71において、増加量加算部403は、逆フーリエ変換の結果に短波長成分の予測モデルである増加量を加算し、最終的な電力需要予測データを算出する。図11の点線のグラフは、増加量が加算された最終的な電力需要予測データの一例を示す。増加量が加算されることで、実線の電力需要予測データが、点線の最終的な電力需要予測データに示すように底上げされた値となる。ステップS71において、増加量加算部403は、算出した電力需要予測データをデータ保存部203に保存する。データ保存部203は、該当する日時の需要予測データセルに算出した電力需要予測データを保存する。ステップS07、S701、およびS702については、上記実施形態と同様の処理を行う。
[作用効果]
(1)電力需要の実績データをフーリエ変換した結果を、長波長成分と短波長成分に分離する分離周波数決定部321と、長波長成分の係数を予測する予測モデルを構築する長波長モデル構築部322と、短波長成分の係数に基づいて、係数の固定値を決定する短波長モデル構築部323と、短波長モデル構築部323が決定した係数の固定値を、逆フーリエ変換部402が算出した電力需要予測データに加算する増加量加算部403と、をさらに有する。
 本実施形態の電力需要予測装置100は、長波長成分の係数を予測する予測モデルを用いて算出された電力需要予測データに対して、短波長モデル構築部323が決定した係数の固定値を加算している。従って、一番大きなピーク値を有する、より正確な電力需要予測データを算出することができる。
 このような電力需要予測データが、例えば蓄電池の制御装置に適用された場合の作用効果を説明する。蓄電池の制御装置は、例えば既定の電力需要を超えた場合に蓄電池を放電させる、というような基準を有する。図11の電力需要予測データで考えると、長波長成分の予測モデルを用いて算出した実線の電力需要予測データが蓄電池の制御装置に導入された場合、蓄電池の放電基準は560kWh/30minとなる。一方、短波長モデル構築部323が決定した係数の固定値が加算された点線の電力需要予測データが蓄電池の制御装置に導入された場合、放電基準は600kWh/30minとなる。実際の電力需要が点線の電力需要予測結果に近い値である場合、放電基準を560kWh/30minとすると、電力需要のピーク時刻を迎える前に蓄電池容量のすべてを放電しきってしまい、ピーク時刻の需要を削減できなくなる。
 蓄電池を用いた電力使用量の削減は、従来より行われているが、従来では大容量の蓄電池が導入され、大きなピークを長時間に渡り削減する手法が取られていることが多い。しかし、実際には、蓄電池が十分に活用されていないケースもあり、高価な蓄電池を導入した割には削減のメリットが少なくなくなってしまうことがあった。従って、蓄電池の導入量を減らし、設置コストを低減したいという要望があった。
 蓄電池の導入量を減らした場合には、比較的短時間の間において最大ピークを削減するという手法を取る必要が生じる。上記のように、本実施形態の電力需要予測装置100が算出する電力需要予測データは、一番大きなピーク値を有する。従って、蓄電池の制御装置がより正確な放電電力基準値を決定することが可能となるため、蓄電池をより確実に放電させることができる。そのため、小容量の蓄電池を導入した場合であっても、確実に蓄電池を放電させ削減のメリットを得ることが可能となる。以上より、本実施形態の電力需要予測装置100が作成した電力需要予測データを蓄電池の制御装置に適用することにより、蓄電池の設置コストを抑えるとともに、小容量の蓄電池であっても導入費用に対して大きな削減効果をもたらすことが可能となる。
(2)短波長モデル構築部323は、短波長成分の各係数の最大値を係数の固定値として決定する。
(3)短波長モデル構築部323は、短波長成分の各係数の、所定の信頼区間における最大値を係数の固定値として決定する。
 短波長成分の各係数の最大値を係数の固定値とすることで、最も大きなピーク値を有する電力需要予測データを算出することが可能となる。各係数の最大値を用いることで、さらに正確な電力需要の予測ができる。また、信頼区間を見受けることで異常値を除去することができる。
[3.第3の実施形態]
[電力需要予測装置の構成]
 第3実施形態ついて、図12~15を参照して説明する。本実施形態の電力需要予測装置100は、上記第2の実施形態において確率密度関数を用いて予測モデルを構築したものである。図12に示すとおり、電力需要予測装置100は、長波長モデル構築部322において、確率予測モデル構築部331を有する。また、予測部400において、需要予測データ決定部404を有する。
 確率予測モデル構築部331は、予測モデルを確率密度関数で構築する処理部である。上記実施形態では、予測モデル構築部300が算出する予測モデルは、図3に示すような予測モデルであり、最高気温等の入力となる条件を基に算出される係数予測データは一つであった。しかし、フーリエ変換により算出される係数データにはばらつきがあり、特に最高気温30℃付近や10℃付近は値のばらつきが大きい。そこで、予測モデルの正確性をさらに向上させるために、確率予測モデル構築部331により、複数の予測モデルを確率密度関数を用いて構築することで、より正確な電力需要予測データを算出する。
 確率密度関数は、ベイズ推定などのパラメトリック手法、カーネル密度推定などのノンパラメトリック手法、最尤法などのセミパラメトリック手法などのいずれの方法を用いて構築してもよいものとする。図14は、図3の係数の分布を確率密度で表したものである。
 本実施形態では、確率予測モデル構築部331により、複数の予測モデルが構築される。そして、予測演算部401は、この複数の予測モデルを用いて、複数の長波長成分の係数データを算出し、逆フーリエ変換部402は、複数の長波長成分の係数データをそれぞれ逆フーリエ変換する。従って、複数の電力需要予測データが算出されることとなる。
 需要予測データ決定部404は、複数の電力需要予測データに基づいて、最終的な電力需要予測データを決定する処理部である。決定方法は最もピーク電力の値が大きいものとしてもよいし、すべての需要予測データの平均を算出してもよい。また、算出結果をクラスタに分類してもっとも数の多いクラスタの結果から決定することもできる。複数の需要予測データを制御装置に送信し、制御に最も適した電力需要予測データを利用させることもできる。
[電力需要予測装置の動作]
 本実施形態の電力需要予測装置100を用いた、電力需要予測データの算出フローについて図13のフローチャートを参照しつつ説明する。本実施形態の算出フローは、ステップS413A、ステップS51A、ステップS61Aに新たな特徴があり、他のステップについては上記第2の実施形態同様に処理を行う。ステップS413Aにおいて、分離周波数決定部321が分離した長波長成分については、長波長モデル構築部322が予測モデルを構築する。
 ステップS51Aにおいて、予測演算部401は、予測モデル保存部303に保存されている複数の長波長成分の係数の予測モデルを用いて、複数の長波長成分の係数予測データを算出する。ステップS61Aにおいて、逆フーリエ変換部402は、予測演算部401が算出した複数の長波長成分の係数予測データを逆フーリエ変換して複数の電力需要予測データを算出する。逆フーリエ変換部402が算出した、複数の電力需要予測データの一例を図15に示す。ステップS711Aにおいて、需要予測データ決定部404が、最終的な電力需要予測データを決定する。
[作用効果]
 本実施形態の電力需要予測装置100は、予測モデル構築部302が、予測モデルを確率密度関数で構築する確率予測モデル構築部331をさらに有し、確率密度関数を用いて複数の予測モデルを構築するものであり、予測演算部401は、複数の予測モデルデータのそれぞれに予報データを入力し、複数の係数予測データを算出し、逆フーリエ変換部402は、複数の係数予測データをそれぞれ逆フーリエ変換し、複数の電力需要予測データを算出する。
 上記の通り、実績データをフーリエ変換した結果は、ばらつきを含む場合がある。このような場合、例えば図3の最高気温30℃付近や10℃付近のばらつきがみられる領域では、正確な予測モデルが構築できていない可能性がある。従って、確率密度関数を用いて複数の予測モデルを構築して、複数の電力需要予測データを算出することで、データ点にばらつきがある場合でもロバストな予測が可能となるため、正確な電力需要予測データを算出することが可能となる。
 上記の各実施形態、各態様は、本明細書において一例として提示したものであって、発明の範囲を限定することを意図するものではない。すなわち、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことが可能である。これらの実施形態やその変形例は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 例えば、確率予測モデル構築部331は長波長モデル構築部322に設ける構成としたが、短波長モデル構築部323にも設けて、短波長成分の予測モデルである増加量についても確率密度関数を算出し、この確率に従って増加量を決定する構成としても良い。また、第1の実施形態の電力需要予測装置100に、確率予測モデル構築部331を適用する構成としても良い。
 電力需要予測プログラムは、例えばフレキシブルディスク、CD-ROM、光磁気ディスク、半導体メモリ、ハードディスク等の記憶媒体又は記憶装置に格納される。また、ネットワークなどを介してデジタル信号として配信される場合もある。尚、中間的な処理結果はメインメモリ等の記憶装置に一時保管される。
10…入力部
20…表示部
200…データ管理部
201…データ取得部
202…欠測補間部
203…データ保存部
300…予測モデル管理部
301…フーリエ変換部
302…予測モデル構築部
303…予測モデル保存部
321…分離周波数決定部
322…長波長モデル構築部
323…短波長モデル構築部
331…確率予測モデル構築部
400…予測部
401…予測演算部
402…逆フーリエ変換部
403…増加量加算部
404…需要予測データ決定部
500…指令送信部
501…モデル更新判断部

Claims (8)

  1.  電力需要の実績データをフーリエ変換するフーリエ変換部と、
     電力需要の実績データをフーリエ変換した結果から、各周波数の係数を予測する予測モデルを構築する予測モデル構築部と、
     予測モデルに予報データを入力し、各周波数の係数予測データを算出する予測演算部と、
     各周波数の係数予測データを逆フーリエ変換し、電力需要予測データを算出する逆フーリエ変換部と、を有する電力需要予測装置。
  2.  電力需要の実績データをフーリエ変換した結果を、長波長成分と短波長成分に分離する分離周波数決定部と、
     長波長成分の係数を予測する予測モデルを構築する長波長モデル構築部と、
     短波長成分の係数に基づいて、係数の固定値を決定する短波長モデル構築部と、
     前記短波長モデル構築部が決定した係数の固定値を、前記逆フーリエ変換部が算出した電力需要予測データに加算する増加量加算部と、をさらに有する請求項1記載の電力需要予測装置。
  3.  前記短波長モデル構築部は、短波長成分の各係数の最大値を係数の固定値として決定することを特徴とする請求項2記載の電力需要予測装置。
  4.  前記短波長モデル構築部は、短波長成分の各係数の、所定の信頼区間における最大値を係数の固定値として決定することを特徴とする請求項2記載の電力需要予測装置。
  5.  前記予測モデル構築部が、予測モデルを確率密度関数で構築する確率予測モデル構築部をさらに有し、確率密度関数を用いて複数の予測モデルを構築するものであり、
     前記予測演算部は、複数の予測モデルデータのそれぞれに予報データを入力し、複数の係数予測データを算出し、
     前記逆フーリエ変換部は、複数の係数予測データをそれぞれ逆フーリエ変換し、複数の電力需要予測データを算出する請求項1~4いずれか一項記載の電力需要予測装置。
  6.  前記電力需要予測データと、前記電力需要実績データの比較結果に基づき、前記予測モデルの更新または新規予測モデルの構築の必要性を判断するモデル更新判断部をさらに有する請求項1~5いずれか1項記載の電力需要予測装置。
  7.  コンピュータ又は電子回路が、
     電力需要の実績データをフーリエ変換するフーリエ変換処理と、
     電力需要の実績データをフーリエ変換した結果から、各周波数の係数を予測する予測モデルを構築する予測モデル構築処理と、
     予測モデルに予報データを入力し、各周波数の係数予測データを算出する予測演算処理と、
     各周波数の係数予測データを逆フーリエ変換し、電力需要予測データを算出する逆フーリエ変換処理と、を実行する電力需要予測方法。
  8.  コンピュータに、
     電力需要の実績データをフーリエ変換するフーリエ変換処理と、
     電力需要の実績データをフーリエ変換した結果から、各周波数の係数を予測する予測モデルを構築する予測モデル構築処理と、
     予測モデルに予報データを入力し、各周波数の係数予測データを算出する予測演算処理と、
     各周波数の係数予測データを逆フーリエ変換し、電力需要予測データを算出する逆フーリエ変換処理と、を実行させる電力需要予測プログラム。
PCT/JP2018/016435 2018-04-23 2018-04-23 電力需要予測装置、電力需要予測方法、およびそのプログラム WO2019207622A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020515324A JP6915156B2 (ja) 2018-04-23 2018-04-23 電力需要予測装置、電力需要予測方法、およびそのプログラム
PCT/JP2018/016435 WO2019207622A1 (ja) 2018-04-23 2018-04-23 電力需要予測装置、電力需要予測方法、およびそのプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/016435 WO2019207622A1 (ja) 2018-04-23 2018-04-23 電力需要予測装置、電力需要予測方法、およびそのプログラム

Publications (1)

Publication Number Publication Date
WO2019207622A1 true WO2019207622A1 (ja) 2019-10-31

Family

ID=68295002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016435 WO2019207622A1 (ja) 2018-04-23 2018-04-23 電力需要予測装置、電力需要予測方法、およびそのプログラム

Country Status (2)

Country Link
JP (1) JP6915156B2 (ja)
WO (1) WO2019207622A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211922A (ja) * 2018-06-01 2019-12-12 株式会社日立製作所 データ予測システム、データ予測方法、およびデータ予測装置
CN111062749A (zh) * 2019-12-12 2020-04-24 北京爱奇艺科技有限公司 增长量预估方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056103A (ja) * 2003-08-04 2005-03-03 Tokyo Electric Power Co Inc:The 電源計画についての情報処理方法及びコンピュータ・システム
JP2005141708A (ja) * 2003-11-05 2005-06-02 Yoji Mukuda 需要予測プログラム、当該需要予測プログラムを記録したコンピュータ読み取り可能な記録媒体、及び需要予測装置
US20150088790A1 (en) * 2013-09-20 2015-03-26 Xerox Corporation Hybrid system for demand prediction
JP2017028861A (ja) * 2015-07-22 2017-02-02 清水建設株式会社 電力管理システム及び電力管理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056103A (ja) * 2003-08-04 2005-03-03 Tokyo Electric Power Co Inc:The 電源計画についての情報処理方法及びコンピュータ・システム
JP2005141708A (ja) * 2003-11-05 2005-06-02 Yoji Mukuda 需要予測プログラム、当該需要予測プログラムを記録したコンピュータ読み取り可能な記録媒体、及び需要予測装置
US20150088790A1 (en) * 2013-09-20 2015-03-26 Xerox Corporation Hybrid system for demand prediction
JP2017028861A (ja) * 2015-07-22 2017-02-02 清水建設株式会社 電力管理システム及び電力管理方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211922A (ja) * 2018-06-01 2019-12-12 株式会社日立製作所 データ予測システム、データ予測方法、およびデータ予測装置
JP7217074B2 (ja) 2018-06-01 2023-02-02 株式会社日立製作所 電力需給管理システム、電力需給管理方法、および電力需給管理装置
JP2023022056A (ja) * 2018-06-01 2023-02-14 株式会社日立製作所 電力需給管理システム、データ予測方法、およびデータ予測装置
JP7340081B2 (ja) 2018-06-01 2023-09-06 株式会社日立製作所 電力需給管理システム、データ予測方法、およびデータ予測装置
CN111062749A (zh) * 2019-12-12 2020-04-24 北京爱奇艺科技有限公司 增长量预估方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
JPWO2019207622A1 (ja) 2021-02-12
JP6915156B2 (ja) 2021-08-04

Similar Documents

Publication Publication Date Title
JP5940922B2 (ja) 自然エネルギー量予測装置
Messner et al. Extending extended logistic regression: Extended versus separate versus ordered versus censored
CN107480028B (zh) 磁盘可使用的剩余时长的获取方法及装置
US20170371073A1 (en) Prediction apparatus, prediction method, and non-transitory storage medium
WO2019207622A1 (ja) 電力需要予測装置、電力需要予測方法、およびそのプログラム
WO2024114018A1 (zh) 风力发电机组的发电性能评估方法和装置
JP2021039739A (ja) 予測装置、予測プログラム、及び予測方法
CN117200223A (zh) 日前电力负荷预测方法和装置
CN113518000A (zh) 在线服务的实例数量调整的方法、装置及电子设备
JP6893323B2 (ja) 発電設備情報推定システムおよび発電設備情報推定方法
Fangmann et al. Statistical approaches for identification of low-flow drivers: temporal aspects
Wilson et al. Use of meteorological data for improved estimation of risk in capacity adequacy studies
WO2020209142A1 (ja) 電力管理装置
Masselot et al. Heat-related mortality prediction using low-frequency climate oscillation indices: Case studies of the cities of Montréal and Québec, Canada
JP7332554B2 (ja) 情報処理装置、情報処理方法及びコンピュータプログラム
CN112926780A (zh) 基于Sister预测的平均分位数回归的概率负荷预测方法
JP5425985B2 (ja) 貯水施設の運用支援システム、運用支援方法及びプログラム
JP2022093884A (ja) 生育状態予測方法及び生育状態予測プログラム
JP2020123199A (ja) 予測システム、予測方法
Zhou et al. Precipitation estimation based on weighted Markov chain model
JP2010267217A (ja) 予測装置、予測プログラムおよび予測方法
JP7354794B2 (ja) 太陽光発電量予測装置、太陽光発電量予測装置の制御方法及びプログラム
WO2023053236A1 (ja) 需要予測装置及び需要予測方法
JP7272158B2 (ja) 発電出力算出装置、及び発電出力算出方法
JP7400411B2 (ja) 太陽光発電量予測装置、太陽光発電量予測装置の制御方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916335

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515324

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916335

Country of ref document: EP

Kind code of ref document: A1