WO2019206135A1 - 射频阻抗匹配的方法及装置、半导体处理设备 - Google Patents

射频阻抗匹配的方法及装置、半导体处理设备 Download PDF

Info

Publication number
WO2019206135A1
WO2019206135A1 PCT/CN2019/083882 CN2019083882W WO2019206135A1 WO 2019206135 A1 WO2019206135 A1 WO 2019206135A1 CN 2019083882 W CN2019083882 W CN 2019083882W WO 2019206135 A1 WO2019206135 A1 WO 2019206135A1
Authority
WO
WIPO (PCT)
Prior art keywords
sweep
pulse
parameter
pulse period
matching
Prior art date
Application number
PCT/CN2019/083882
Other languages
English (en)
French (fr)
Inventor
韦刚
卫晶
杨京
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Priority to JP2020560351A priority Critical patent/JP7000598B2/ja
Priority to KR1020207029770A priority patent/KR102184903B1/ko
Publication of WO2019206135A1 publication Critical patent/WO2019206135A1/zh
Priority to US17/080,632 priority patent/US11114281B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge

Definitions

  • the present invention relates to the field of semiconductor device technologies, and in particular, to a method for matching RF impedance, a device for matching RF impedance, and a semiconductor processing device including the device for matching RF impedance.
  • CCP Capacitively Coupled Plasma
  • ICP Inductively Coupled Plasma
  • ECR Electron Cyclotron Resonance
  • the present invention is directed to at least one of the technical problems existing in the prior art, and provides a method of RF impedance matching, a device for RF impedance matching, and a semiconductor processing device including the device for matching RF impedance.
  • a first aspect of the present invention provides a method for matching RF impedance, the radio frequency includes M pulse periods, each of the pulse periods includes N pulse stages, and M and N are integers greater than one;
  • the method comprises the steps of:
  • step S110 further includes:
  • Step S111 performing sweep matching on each of the frequency sweeping stages in the i-th pulse period
  • Step S112 after the matching is completed, acquiring a sweep end parameter of each of the sweep stages of the ith pulse period;
  • step S120 further includes:
  • the frequency sweep parameter of the pulse phase corresponding to each of the frequency sweeping stages of the m+jth pulse period remains unchanged, and the frequency sweep ends with each of the mth pulse period
  • step S112 further includes:
  • n ⁇ N n ⁇ N
  • each of the pulse phases is matched by sweeping or adjusting a matcher capacitance, so that The output impedance of the RF power supply matches the load impedance.
  • the sweep end parameter includes:
  • At least one of a sweep frequency, a sweep range, a sweep speed, a sweep accuracy, and a gain At least one of a sweep frequency, a sweep range, a sweep speed, a sweep accuracy, and a gain.
  • a device for RF impedance matching is also provided for use in the above method for RF impedance matching provided by the present invention.
  • the device includes an obtaining module, a determining module, and a control module; wherein
  • the control module is configured to perform frequency sweep matching on each of the ⁇ th pulse periods, and send a control signal to the acquiring module after the matching is completed;
  • the acquiring module is configured to acquire, when the control signal is received, a sweep end parameter of each of the sweep stages of the ith pulse period, and send the parameter to the determining module;
  • the determining module is configured to determine whether a sweep end parameter of each of the frequency sweeping stages of the i-th pulse period matches the target frequency sweep parameter; if matched, send a matching signal to the control module, if If there is no match, a mismatch signal is sent to the control module;
  • the control module is further configured to:
  • a control signal, and the sweep start parameter of each of the sweep stages of the i+1th pulse period is consistent with the sweep end parameter of each of the sweep stages of the ith pulse period;
  • the sweep parameter of the pulse phase corresponding to each of the sweep phases of each pulse period remains unchanged, and Consistent with the sweep end parameter of each of the mth pulse periods.
  • a semiconductor processing apparatus comprising the above described RF impedance matching apparatus provided by the present invention.
  • the method of RF impedance matching of the present invention by making the sweep start parameter of each sweep phase of the i+1th pulse period coincide with the sweep end parameter of each sweep phase of the ith pulse period, it is not necessary to The frequency sweeping is re-frequency-modulated, so that matching can be achieved without using too high a sweeping speed, thereby avoiding the problem of instability such as overshoot.
  • the reflected power of the RF power source can be effectively reduced, so that the RF power output by the RF power source is loaded onto the load (for example, the RF coil) as much as possible, thereby reducing the power consumption of the RF power source, improving the matching efficiency and application. window.
  • FIG. 1 is a general flow chart of a method for matching RF impedance in an embodiment of the present invention
  • step S110 is a flowchart of step S110 in a method for matching RF impedance according to an embodiment of the present invention
  • step S120 is a flow chart of step S120 in a method for matching RF impedance according to an embodiment of the present invention
  • step S120 is another flow chart of step S120 in the method for matching RF impedance according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of periodic sweep matching of a method for matching RF impedance according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of periodic sweep matching of a method for matching RF impedance in an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of an apparatus for matching RF impedance according to an embodiment of the present invention.
  • a first aspect of the invention relates to a method for RF impedance matching, wherein the radio frequency comprises M pulse periods, each pulse period comprises N pulse phases, and M, N are integers greater than one.
  • the method for matching RF impedance includes the following steps:
  • step S110 the first n pulse phases of the first m pulse periods are swept frequency matched as the frequency sweeping phase, and the sweep starting parameters and the ithth of each sweep phase of the i+1th pulse period are performed.
  • the sweep end parameters of the respective sweep stages of the pulse period are the same, so that the sweep end parameters of the sweep stages in the mth pulse period are matched with the preset target sweep parameters; m, n are greater than 0.
  • An integer, and m ⁇ M, n ⁇ N; i 1, 2, ..., m.
  • each z-stage of the first m pulse periods is subjected to frequency sweep matching, and the sweep start parameter of each sweep stage of the i+1th pulse period and each frequency sweep of the ith pulse period are performed.
  • the sweep end parameters of the phase are consistent. Specifically, after the z-phase sweep matching of the first pulse period is completed, the sweep end parameter will be used as the sweep start parameter of the sweep matching of the z-stage of the second pulse period, and so on. After the z-phase sweep matching of the mth pulse period is completed, the sweep end parameter matches the preset target sweep parameter, that is, the output impedance of the RF power source is matched with the load impedance.
  • the above value m may be a preset empirical value or may be a variable.
  • the so-called variable is that the index value m is not preset, but after the sweep matching of the phase z of each pulse period is completed, it is obtained in real time and judged whether the sweep end parameter matches the target sweep parameter, and according to The matching result is used to determine whether the phase z of the subsequent pulse period is to continue the sweep matching, or to perform step S120, that is, to determine the value m.
  • step S110 further includes:
  • Step S111 performing sweep matching on each of the frequency sweeping stages in the i-th pulse period
  • Step S112 after the matching is completed, acquiring a sweep end parameter of each frequency sweeping stage of the i-th pulse period;
  • step S113 if the sweep end parameter of each sweep phase of the i-th pulse period matches the target sweep parameter, the value of i is m at this time.
  • step S112 further includes:
  • the specific type of the above-mentioned sweep end parameter is not limited.
  • the sweep end parameter may be one of a sweep frequency, a sweep range, a sweep frequency, a sweep precision, and a gain.
  • the output impedance of the RF power source is matched with the load impedance.
  • the above step S120 is performed. As shown in FIG. 3, in the above step S120, in the m+1th pulse period to the Mth pulse period, the sweep parameters of the pulse phase corresponding to each frequency sweep phase of each pulse period remain unchanged. And it is consistent with the sweep end parameter of each sweep stage in the mth pulse period.
  • the sweep phase is referred to as the z-stage
  • the sweep end parameter is used as the z-stage of all subsequent pulse periods.
  • the corresponding sweep parameter of the pulse phase z', and the sweep parameter of the pulse phase z' remains unchanged.
  • the frequency sweep fine adjustment may also be performed.
  • the sweep end parameter is used as a sweep start parameter for each pulse period z' of the pulse period and the m'th pulse period following it.
  • Sweep matching is performed, and the sweep matching manner is the same as the sweep matching method of step S110 described above, that is, the sweep start parameter of each sweep stage of the i+1th pulse period and each sweep of the ith pulse period
  • the sweep end parameters of the frequency phase are consistent until the sweep end parameter of each pulse phase z' of the m'th pulse period matches the preset target sweep parameter.
  • the above value m' may be a preset empirical value or may be a variable.
  • the step S120 further includes:
  • step S112 further includes:
  • the reflected power of the predetermined RF power source is less than or equal to 80 W.
  • the reflected power as a basis for judging whether or not to match, it is possible to ensure that the reflected power is reduced as much as possible, thereby effectively reducing the power consumption of the RF power source, improving the matching efficiency and the application window.
  • n ⁇ N that is, only the first n pulse stages are performed as the frequency sweeping stage.
  • the above-described sweep matching, and the subsequent pulse phase ie, in the n+1th pulse phase to the Nth pulse phase
  • the matching process of each first pulse phase and the matching process of each second pulse phase are independent of each other, and the two pulse phases respectively achieve matching.
  • the method for matching the RF impedance provided by the present invention, in the first m pulse periods, by the sweep start parameter of each sweep stage of the i+1th pulse period and the ith pulse period
  • the sweep end parameters of each sweep stage are the same, so it is not necessary to re-frequency the frequency at each sweep stage, so that matching can be achieved without using too high sweep speed, thereby avoiding unstable problems such as overshoot.
  • the reflected power of the RF power source can be effectively reduced, so that the RF power output by the RF power source is loaded onto the load (for example, the RF coil) as much as possible, thereby reducing the power consumption of the RF power source, improving the matching efficiency and application. window.
  • the method for matching RF impedance uses a radio frequency impedance matching device of an ICP device for matching.
  • the center frequency of the radio frequency is 13.56MHz, and the power frequency of the radio frequency can be adjusted within the range of 13.56 ⁇ 5%MHz.
  • the radio frequency includes M pulse periods, which are the first pulse period Z 1 , the second pulse period Z 2 , the mth pulse period Z m , the m+1th pulse period Z m+1 , the first M- 1 pulse period Z M-1 and Mth pulse period Z M .
  • the respective RF loading powers of the first pulse phase 1, the second pulse phase 2, and the third pulse phase 3 are P 1 , P 2 , and 0.
  • the first pulse phase 1 is used as a frequency sweeping phase, and the matching scheme is performed by using the matching method of the above step S110, wherein the sweep frequency end parameter is a frequency sweeping frequency; the second pulse phase 2 and the third phase are performed.
  • the pulse phase 3 adopts the traditional matching scheme, and will not be described here.
  • a first phase of a radio frequency pulse power of the initial sweep and the sweep frequency F 0 in order to reduce the reflected power, and at the end of the sweep When the frequency F 1 ends, the reflected power is P r1 , which does not meet the target sweep parameter requirement.
  • the first pulse phase 1 starts to sweep with the end sweep frequency F 1 of the first pulse period Z 1 and ends with the end of the sweep frequency F 2 , at which time the reflected power is P r2 , still does not meet the target sweep parameter requirements.
  • the first pulse phase 1 starts to sweep with the end sweep frequency F m-1 of the m- 1th pulse period Z m-1 , and ends the sweep frequency F
  • the reflected power is P rm , which satisfies the target sweep parameter requirement, that is, the matching of the output impedance of the RF power source with the load impedance is completed.
  • the RF power source may be in the mth pulse period Z.
  • end sweep frequency F m m a starting point for the sweep, sweep is restarted until after m 'of the Z pulse period m' after the first stage of a final pulse reflected power parameters required to meet the matching target swept by the sweep .
  • the RF impedance matching method provided by this embodiment uses a CCP device RF impedance matching device for matching.
  • the center frequency of the radio frequency is 60MHz, and the frequency of the radio frequency power source can be adjusted within the range of 60 ⁇ 10%MHz.
  • the radio frequency includes M pulse periods, and the radio frequency includes M pulse periods, which are the first pulse period Z 1 , the second pulse period Z 2 , the mth pulse period Z m , and the m+1th pulse period Z m . +1 ... the M-1th pulse period Z M-1 and the Mth pulse period Z M .
  • the corresponding RF loading power of Phase 2 is P a and P b .
  • the first pulse phase 1 and the second pulse phase 2 are both used as a frequency sweeping phase, and the matching scheme of the two is performed by the matching method of the above step S110, and the first pulse phase 1 and The sweeping process of the second pulse phase 2 is independent of each other.
  • the first pulse period 1 Z 6 the first stage of a radio frequency pulse power supply frequency F a0 initial sweep and the sweep to reduce the reflected power, and at the end of the sweep
  • the frequency F a1 ends, and the reflected power is P ra1 at this time, which does not satisfy the target sweep parameter requirement of the first pulse phase 1.
  • the second pulse phase 2 starts to sweep with the initial sweep frequency F b0 of the RF power source, and ends with the end sweep frequency F b1 .
  • the reflected power is P rb1 , and the target sweep of the second pulse phase 2 is not satisfied. Parameter requirements.
  • the first pulse phase 1 starts to sweep with the end sweep F a1 of the first pulse phase 1 in the first pulse period Z 1 , and the first pulse phase 1
  • the end of the sweep frequency F a2 ends, and the reflected power is P ra2 , which still does not meet the target sweep parameter requirement of the first pulse phase 1 .
  • the second pulse phase 2 starts the sweep using the end sweep frequency F b1 of the second pulse phase 2 in the first pulse period Z 1 and ends with the sweep frequency F b2 at the end of the second pulse phase 2 .
  • the reflected power is P rb2 , which does not satisfy the target sweep parameter requirement of the second pulse phase 2.
  • the first pulse phase 1 starts to sweep with the end sweep frequency F am-1 of the first pulse phase 1 of the m-1th pulse period Z m-1 And ending with the end of the sweep frequency F am , the reflected power is P ram , and still does not meet the target sweep parameter requirement of the first pulse phase 1 .
  • the second phase uses a first pulse pulse period m-1 Z m 1-pulse in the second stage of the end of the sweep frequency F bm-1 2 sweep begins, and ending at the end of the sweep frequency F bm, then
  • the reflected power is P rbm , which satisfies the target sweep parameter requirement of the second pulse phase 2, that is, the matching of the output impedance of the RF power supply of the second pulse phase 2 with the load impedance.
  • the second pulse phase 2 For the second pulse phase 2, starting from the m+1th pulse period Z m+1 , the subsequent RF cycles, the second RF phase 2 using the RF frequency remain unchanged, and with the mth pulse period Z The end of the second pulse phase 2 of m is consistent with the sweep frequency F bm , so that the reflected power P rbm+1 can be guaranteed to meet the target sweep parameter requirements.
  • the first pulse phase 1 uses the end sweep frequency F of the first pulse phase 1 of the mth pulse period Z m Am starts to sweep and ends with the end of the sweep frequency F am+1 .
  • the reflected power is P ram , which still does not meet the target sweep parameter requirement of the first pulse phase 1.
  • the first pulse phase 1 adopts the end of the first pulse phase 1 of the M-1 pulse period Z M-2 , the end sweep frequency F aM -2 starts the sweep and ends with the end of the sweep frequency F aM-1 .
  • the reflected power is P raM-1 , which satisfies the target sweep parameter requirement of the first pulse phase 1.
  • the RF frequency used in the first pulse phase 1 remains unchanged, and the end sweep frequency F aM with the M-1 pulse period Z M-1 -1 is consistent, so that the reflected power P raM can be guaranteed to meet the target sweep parameter requirements.
  • the RF power supply can start the sweep frequency F bm at the end of the second pulse phase 2 of the mth pulse period Z m , and restart the sweep until the m is passed. After the second pulse period Z m ' , the second pulse phase 2 passes the frequency sweep to finally make the reflected power meet the matching target frequency parameter requirement.
  • an apparatus 100 for RF impedance matching is provided for use in the method of RF impedance matching as described above.
  • the device 100 for RF impedance matching in this embodiment performs sweeping of the sweep start parameter and the ith pulse period of each sweep stage of the i+1th pulse period in the first m pulse periods.
  • the parameters of the sweep end of the phase are the same, and it is not necessary to re-frequency the frequency modulation in each sweeping stage, so that the matching can be realized without using an excessively high sweeping speed, thereby avoiding the problem of instability such as overshoot.
  • the reflected power of the RF power source can be effectively reduced, so that the RF power output by the RF power source is loaded onto the load (for example, the RF coil) as much as possible, thereby reducing the power consumption of the RF power source, improving the matching efficiency and application. window.
  • the apparatus 100 for matching the radio frequency impedance includes the acquisition module 110, the determination module 120, and the control module 130.
  • the control module 130 is configured to perform frequency sweep matching on each of the frequency sweeping stages in the ith pulse period, and send a control signal to the acquiring module 110 after the matching is completed.
  • the acquiring module 110 is configured to acquire the control signal when receiving the control signal.
  • the sweep end parameter of each sweep phase of the i-th pulse period is sent to the determination module 120; the determination module 120 is configured to determine whether the sweep end parameter of each of the sweep stages of the i-th pulse period is related to the target scan The frequency parameters are matched; if they match, the matching signal is sent to the control module 130, and if not, the mismatch signal is sent to the control module 130;
  • the control module 130 is also used to:
  • the sweep parameter of the pulse phase corresponding to each sweep phase of each pulse period remains unchanged, and the mth The sweep end parameters of each sweep phase in the pulse period are the same.
  • a semiconductor processing apparatus comprising the apparatus for RF impedance matching as described above.
  • the semiconductor processing device of the structure of the present embodiment has the device for matching the RF impedance as described above, and the device can apply the method of matching the RF impedance described above, so that the matching can be realized without using an excessively high sweep speed, thereby avoiding There is an unstable problem such as overshoot.
  • the reflected power of the RF power source can be effectively reduced, so that the RF power output by the RF power source is loaded onto the load (for example, the RF coil) as much as possible, thereby reducing the power consumption of the RF power source, improving the matching efficiency and application. window.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)

Abstract

本发明公开了射频阻抗匹配的方法、装置和设备。包括:S110、扫频匹配阶段;S120、扫频保持阶段;S110包括循环执行至少一次下述步骤:S111、获取当前脉冲周期在预定的至少一个脉冲阶段结束时射频电源的扫频结束参数;S112、分别判断当前脉冲周期的各预定的脉冲阶段的扫频结束参数是否与目标扫频参数匹配;当匹配时,执行S120,不匹配时,执行S113;S113、下一个脉冲周期的各预定的脉冲阶段,射频电源分别根据前一个脉冲周期的各预定的脉冲阶段的扫频结束参数进行扫频;S120包括:后续脉冲周期的各预定的脉冲阶段,射频电源停止扫频,并保持与目标扫频参数匹配的扫频结束参数。能够快速扫频至与目标扫频参数相匹配,有效保证脉冲等离子体顺利点火。

Description

射频阻抗匹配的方法及装置、半导体处理设备 技术领域
本发明涉及半导体设备技术领域,具体涉及一种射频阻抗匹配的方法、一种射频阻抗匹配的装置和一种包括该射频阻抗匹配的装置的半导体处理设备。
背景技术
在传统半导体制造工艺中已经使用多种不同类型的等离子体设备,例如,电容耦合等离子体(Capacitively Coupled Plasma,以下简称CCP)设备、电感耦合等离子体(Inductively Coupled Plasma,以下简称ICP)设备以及电子回旋共振等离子体(Electron Cyclotron Resonance,以下简称ECR)设备等等。
近年来,随着晶片尺寸从200mm增大到300mm,增大等离子体点火窗口范围,提高晶片处理工艺的均匀性以及保持较高的等离子体密度变得非常重要。其中,为了保证脉冲等离子体能够顺利点火,在脉冲开启的瞬间需要一定程度的功率过冲,为此,现有技术采用的方法是:在脉冲开启阶段增加一段过冲过程,在该过冲过程中通过使用较大的脉冲过冲功率来保证脉冲等离子体点火成功。
但是,根据脉冲等离子体在其点火击穿瞬间的阻抗特性,需要加载较高的脉冲过冲功率和较长的脉冲过冲时间才能脉冲点火成功。有的情况下即使加载的过冲功率足够大和过冲时间足够长也很难脉冲点火成功。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种射频 阻抗匹配的方法、一种射频阻抗匹配的装置和一种包括该射频阻抗匹配的装置的半导体处理设备。
为了实现上述目的,本发明的第一方面,提供了一种射频阻抗匹配的方法,射频包括M个脉冲周期,各所述脉冲周期包括N个脉冲阶段,M,N均为大于1的整数;其特征在于,所述方法包括以下步骤:
S110,将前m个所述脉冲周期中的前n个所述脉冲阶段作为扫频阶段进行扫频匹配,且第i+1个脉冲周期的各所述扫频阶段的扫频起始参数与第i个脉冲周期的各个所述扫频阶段的扫频结束参数一致,以使第m个所述脉冲周期中的各所述扫频阶段的扫频结束参数与预设的目标扫频参数相匹配;m,n均为大于0的整数,且m<M,n≤N;i=1,2,...,m;
S120,在第m+1个脉冲周期至第M个脉冲周期中,每个脉冲周期的与各所述扫频阶段对应的脉冲阶段的扫频参数保持不变,且与第m个所述脉冲周期中的各所述扫频阶段的扫频结束参数一致。
可选的,所述步骤S110,进一步包括:
步骤S111、将第i个所述脉冲周期中的各所述扫频阶段进行扫频匹配;
步骤S112、在匹配完成后,获取所述第i个脉冲周期的各所述扫频阶段的扫频结束参数;
步骤S113、判断第i个脉冲周期的各所述扫频阶段的扫频结束参数是否与所述目标扫频参数相匹配;若匹配,则执行所述步骤S120,若不匹配,则使i=i+1,并返回执行所述步骤S111,且第i+1个脉冲周期的各所述扫频阶段的扫频起始参数与第i个脉冲周期的各个所述扫频阶段的扫频结束参数一致。
可选的,所述步骤S120,进一步包括:
S121,第m+j个脉冲周期的与各所述扫频阶段对应的脉冲阶段的扫频参数保持不变,且与第m个所述脉冲周期中的各所述扫频阶段的扫频结束参数 一致;j=1,2,...,M-m-1;
S122,获取所述第m+j个脉冲周期的各所述扫频阶段的扫频结束参数;
S123、判断第m+j个脉冲周期的各所述扫频阶段的扫频结束参数是否与所述目标扫频参数相匹配;若匹配,则使j=j+1,并返回执行所述步骤S121,若不匹配,则使j=j+1,并返回执行所述步骤S110,且第j+1个脉冲周期的各所述扫频阶段的扫频起始参数与第j个脉冲周期的各个所述扫频阶段的扫频结束参数一致。
可选的,所述步骤S112,进一步包括:
获取所述第i个脉冲周期的各所述扫频阶段结束时,射频电源的反射功率;
判断所述反射功率是否与预定的反射功率相匹配,若匹配,则判定所述扫频结束参数与所述目标扫频参数相匹配;若不匹配,则判定所述扫频结束参数与所述目标扫频参数不匹配。
可选的,在所述步骤S110中,n<N;
在每个所述脉冲周期中,在第n+1个所述脉冲阶段至第N个所述脉冲阶段中,每个所述脉冲阶段采用扫频或者调节匹配器电容的方式进行匹配,以使射频电源的输出阻抗与负载阻抗相匹配。
可选的,N=3;n=1。
可选的,N=2;n=2。
可选的,所述扫频结束参数包括:
扫频频率、扫频范围、扫频速度、扫频精度和增益中的至少一者。
本发明的另一个方面,还提供一种射频阻抗匹配的装置,应用于本发明提供的上述射频阻抗匹配的方法。
可选的,装置包括获取模块、判断模块和控制模块;其中,
所述控制模块,用于将第i个所述脉冲周期中的各所述扫频阶段进行扫 频匹配,并在匹配完成后向所述获取模块发送控制信号;
所述获取模块,用于在接收到所述控制信号时,获取所述第i个脉冲周期的各所述扫频阶段的扫频结束参数,并发送至所述判断模块;
所述判断模块,用于判断第i个脉冲周期的各所述扫频阶段的扫频结束参数是否与所述目标扫频参数相匹配;若匹配,则向所述控制模块发送匹配信号,若不匹配,则向所述控制模块发送不匹配信号;
所述控制模块还用于:
在接收到所述不匹配信号时,使i=i+1,并将第i个所述脉冲周期中的各所述扫频阶段进行扫频匹配,并在匹配完成后向所述获取模块发送控制信号,且第i+1个脉冲周期的各所述扫频阶段的扫频起始参数与第i个脉冲周期的各个所述扫频阶段的扫频结束参数一致;
在接收到所述匹配信号时,在第m+1个脉冲周期至第M个脉冲周期中,每个脉冲周期的与各所述扫频阶段对应的脉冲阶段的扫频参数保持不变,且与第m个所述脉冲周期中的各所述扫频阶段的扫频结束参数一致。
本发明的另一个方面,还提供一种半导体处理设备,其包括本发明提供的上述射频阻抗匹配的装置。
本发明的射频阻抗匹配的方法、射频阻抗匹配的装置和半导体处理设备。在前m个脉冲周期中,通过使第i+1个脉冲周期的各扫频阶段的扫频起始参数与第i个脉冲周期的各个扫频阶段的扫频结束参数一致,可以不必在每个扫频阶段均重新进行频率调制,从而无需采用过高的扫频速度也能够实现匹配,进而可以避免出现超调等不稳定的问题。同时,还可以有效减小射频电源的反射功率,使得射频电源所输出的射频功率尽可能地加载至负载(例如,射频线圈)上,从而可以降低射频电源的功耗,提高匹配的效率和应用窗口。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1为本发明一实施例中射频阻抗匹配的方法的总的流程图;
图2为本发明一实施例中射频阻抗匹配的方法中步骤S110的流程图;
图3为本发明一实施例中射频阻抗匹配的方法中步骤S120的一种流程图;
图4为本发明一实施例中射频阻抗匹配的方法中步骤S120的另一种流程图;
图5为本发明一实施例中射频阻抗匹配的方法的周期扫频匹配示意图;
图6为本发明一实施例中射频阻抗匹配的方法的周期扫频匹配示意图;
图7为本发明一实施例中射频阻抗匹配的装置的结构示意图。
附图标记说明
100:射频阻抗匹配的装置;
110:获取模块;
120:判断模块;
130:控制模块。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明的第一方面,涉及一种射频阻抗匹配的方法,其中,射频包括M个脉冲周期,各脉冲周期包括N个脉冲阶段,M,N均为大于1的整数。如图1所示,该射频阻抗匹配的方法包括以下步骤:
S110、扫频匹配阶段。
S120、扫频保持阶段。
在步骤S110中,将前m个脉冲周期中的前n个脉冲阶段作为扫频阶段进行扫频匹配,且第i+1个脉冲周期的各扫频阶段的扫频起始参数与第i个脉冲周期的各个扫频阶段的扫频结束参数一致,以使第m个脉冲周期中的各扫频阶段的扫频结束参数与预设的目标扫频参数相匹配;m,n均为大于0的整数,且m<M,n≤N;i=1,2,...,m。
下面以n=1,且将该扫频阶段称为z阶段为例对上述步骤S110进行详细说明。在步骤S110中,将前m个脉冲周期中的各z阶段进行扫频匹配,且第i+1个脉冲周期的各扫频阶段的扫频起始参数与第i个脉冲周期的各个扫频阶段的扫频结束参数一致。具体来说,当第1个脉冲周期的z阶段扫频匹配完成之后,其扫频结束参数将作为第2个脉冲周期的z阶段进行扫频匹配的扫频起始参数,以此类推,在第m个脉冲周期的z阶段扫频匹配完成之后,其扫频结束参数与预设的目标扫频参数相匹配,即,完成射频电源的输出阻抗与负载阻抗的匹配。
上述数值m可以是预先设定的经验值,或者也可以是变量。所谓变量,是指数值m不进行预先设定,而是在每个脉冲周期的阶段z扫频匹配完成之后,通过实时获取并判断其扫频结束参数是否与目标扫频参数相匹配,并根据匹配结果来判定后续脉冲周期的阶段z是继续进行扫频匹配,还是进行步骤S120,即,确定数值m。
具体地,针对数值m不进行预先设定的情况,如图2所示,上述步骤S110进一步包括:
步骤S111、将第i个脉冲周期中的各扫频阶段进行扫频匹配;
步骤S112、在匹配完成后,获取第i个脉冲周期的各扫频阶段的扫频结束参数;
步骤S113、判断第i个脉冲周期的各扫频阶段的扫频结束参数是否与目标扫频参数相匹配;若匹配,则执行步骤S120,若不匹配,则使i=i+1,并返回执行步骤S111,且第i+1个脉冲周期的各扫频阶段的扫频起始参数与第i个脉冲周期的各个扫频阶段的扫频结束参数一致。
容易理解,在步骤S113中,若第i个脉冲周期的各扫频阶段的扫频结束参数与目标扫频参数相匹配,此时i的数值即为m。
可选的,上述步骤S112,进一步包括:
获取第i个脉冲周期的各扫频阶段结束时,射频电源的反射功率;
判断反射功率是否与预定的反射功率相匹配,若匹配,则判定扫频结束参数与目标扫频参数相匹配;若不匹配,则判定扫频结束参数与目标扫频参数不匹配。
在实际应用中,对于上述扫频结束参数的具体种类并没有作出限定,例如,该扫频结束参数可以是扫频频率、扫频范围、扫频速度、扫频精度和增益中的一者。
在前m个所述脉冲周期之后,完成射频电源的输出阻抗与负载阻抗的匹配,在进行后续的所述脉冲周期时,进行上述步骤S120。如图3所示,在上述步骤S120中,在第m+1个脉冲周期至第M个脉冲周期中,每个脉冲周期的与各扫频阶段对应的脉冲阶段的扫频参数保持不变,且与第m个脉冲周期中的各扫频阶段的扫频结束参数一致。
以n=1,且将该扫频阶段称为z阶段为例,在第m个脉冲周期的z阶段的扫频匹配结束时,其扫频结束参数用作后续的所有脉冲周期的与z阶段相对应的脉冲阶段z’的扫频参数,且该脉冲阶段z’的扫频参数保持不变。
可选的,在进行第m+1个脉冲周期至第M个脉冲周期的过程中,若任意一个脉冲周期的实际匹配不满足匹配要求时,还可以进行扫频微调。具体地,以上述第m个脉冲周期的z阶段的扫频匹配结束时,其扫频结束参数作 为扫频起始参数对该脉冲周期及其后面的m’个脉冲周期的各脉冲阶段z’进行扫频匹配,该扫频匹配方式与上述步骤S110的扫频匹配方式相同,即,第i+1个脉冲周期的各扫频阶段的扫频起始参数与第i个脉冲周期的各个扫频阶段的扫频结束参数一致,直至第m’个脉冲周期的各脉冲阶段z’的扫频结束参数与预设的目标扫频参数相匹配。
与上述步骤S110相类似的,上述数值m’可以是预先设定的经验值,或者也可以是变量。针对数值m’不进行预先设定的情况,如图4所示,步骤S120,进一步包括:
S121,第m+j个脉冲周期的与各扫频阶段对应的脉冲阶段的扫频参数保持不变,且与第m个脉冲周期中的各扫频阶段的扫频结束参数一致;j=1,2,...,M-m-1;
S122,获取第m+j个脉冲周期的各扫频阶段的扫频结束参数;
S123、判断第m+j个脉冲周期的各扫频阶段的扫频结束参数是否与目标扫频参数相匹配;若匹配,则使j=j+1,并返回执行步骤S121,若不匹配,则使j=j+1,并返回执行步骤S110,且第j+1个脉冲周期的各扫频阶段的扫频起始参数与第j个脉冲周期的各个扫频阶段的扫频结束参数一致。
可选地,上述步骤S112,进一步包括:
获取第i个脉冲周期的各扫频阶段结束时,射频电源的反射功率;
判断反射功率是否与预定的反射功率相匹配,若匹配,则判定扫频结束参数与目标扫频参数相匹配;若不匹配,则判定扫频结束参数与目标扫频参数不匹配。
可选的,上述预定的射频电源的反射功率小于或等于80W。
通过以反射功率作为判断是否匹配的依据,可以保证尽可能地减小反射功率,从而可以有效降低射频电源的功耗,提高匹配的效率和应用窗口。
可选地,在每个脉冲周期(第1个脉冲周期至第M个脉冲周期的范围 内)中,在上述步骤S110中,n<N,即,只有前n个脉冲阶段作为扫频阶段进行上述扫频匹配,而后续的脉冲阶段(即,在第n+1个脉冲阶段至第N个脉冲阶段)可以采用常规的匹配方式进行匹配,以使射频电源的输出阻抗与负载阻抗相匹配。当然,在实际应用中,也可以使n=N,即,每个脉冲阶段均作为扫频阶段进行上述扫频匹配。
需要说明的是,在同一脉冲周期,不同的脉冲阶段之间的扫频匹配是相互独立的,例如,假设每个脉冲周期包括两个脉冲阶段,即,N=2,且分别称为第一脉冲阶段和第二脉冲阶段;并且,两个脉冲阶段均进行上述扫频匹配。在这种情况下,在前m个脉冲周期中,各第一脉冲阶段的匹配过程与各第二脉冲阶段的匹配过程是相互独立的,两个脉冲阶段各自实现匹配。
综上所述,本发明提供的射频阻抗匹配的方法,在前m个脉冲周期中,通过使第i+1个脉冲周期的各扫频阶段的扫频起始参数与第i个脉冲周期的各个扫频阶段的扫频结束参数一致,可以不必在每个扫频阶段均重新进行频率调制,从而无需采用过高的扫频速度也能够实现匹配,进而可以避免出现超调等不稳定的问题。同时,还可以有效减小射频电源的反射功率,使得射频电源所输出的射频功率尽可能地加载至负载(例如,射频线圈)上,从而可以降低射频电源的功耗,提高匹配的效率和应用窗口。
下文将分两个实施例对本发明提供的射频阻抗匹配的方法进行详细说明。
实施例1:
如图5所示,本实施例提供的射频阻抗匹配的方法,其利用ICP设备的射频阻抗匹配装置进行匹配。其中,射频的中心频率为13.56MHz,射频的电源频率能够在13.56±5%MHz范围内调整。射频包括M个脉冲周期,分别为第1个脉冲周期Z 1、第2个脉冲周期Z 2……第m个脉冲周期Z m、第m+1个脉冲周期Z m+1……第M-1个脉冲周期Z M-1和第M个脉冲周期Z M。各 脉冲周期分为N个脉冲阶段,N=3,且分别为第1个脉冲阶段1(时间T1)、第2个脉冲阶段2(时间T2)和第3个脉冲阶段3(时间T3)。第1个脉冲阶段1、第2个脉冲阶段2和第3个脉冲阶段3各自对应的射频加载功率为P 1、P 2和0。
在实施例1中,上述第1个脉冲阶段1作为扫频阶段,其匹配方案采用上述步骤S110的匹配方式进行,其中,扫频结束参数为扫频频率;第2个脉冲阶段2和第3个脉冲阶段3均采用传统的匹配方案,在此不作赘述。
具体地,如图5所示,在第1个脉冲周期Z 1中,第1个脉冲阶段1采用射频电源的初始扫频频率F 0开始扫频,以减小反射功率,并以结束扫频频率F 1结束,此时反射功率为P r1,不满足目标扫频参数要求。
在第2个脉冲周期Z 2中,第1个脉冲阶段1采用第1个脉冲周期Z 1的结束扫频频率F 1开始扫频,并以结束扫频频率F 2结束,此时反射功率为P r2,仍不满足目标扫频参数要求。
依次类推,直到第m个脉冲周期Z m,第1个脉冲阶段1采用第m-1个脉冲周期Z m-1的结束扫频频率F m-1开始扫频,并以结束扫频频率F m结束,此时反射功率为P rm,满足目标扫频参数要求,即,完成射频电源的输出阻抗与负载阻抗的匹配。
自第m+1个脉冲周期Z m+1开始,后续的各脉冲周期,第1个脉冲阶段1采用的射频频率保持不变,且与第m个脉冲周期Z m的结束扫频频率F m保持一致,从而可以保证反射功率P rm+1满足目标扫频参数要求。
可选的,自第m+1个脉冲周期Z m+1开始,后续的任意一个脉冲周期,若出现射频频率不满足目标扫频参数要求的情况,则可以射频电源以第m个脉冲周期Z m的结束扫频频率F m为扫频起点,重新开始扫频,直至经过m’个脉冲周期Z m’后,第1个脉冲阶段1通过扫频最终使反射功率满足匹配目标扫频参数要求。
实施例2:
如图6所示,本实施例提供的射频阻抗匹配的方法,其利用CCP设备射频阻抗匹配装置进行匹配。其中,射频的中心频率为60MHz,射频电源的频率能够在60±10%MHz范围内调整。射频包括M个脉冲周期,射频包括M个脉冲周期,分别为第1个脉冲周期Z 1、第2个脉冲周期Z 2……第m个脉冲周期Z m、第m+1个脉冲周期Z m+1……第M-1个脉冲周期Z M-1和第M个脉冲周期Z M。各脉冲周期分为N个脉冲阶段,N=2,且分别为第1个脉冲阶段1(时间Ta)和第2个脉冲阶段2(时间Tb),第1个脉冲阶段1和第2个脉冲阶段2对应的射频加载功率为P a和P b
在实施例2中,上述第1个脉冲阶段1和第2个脉冲阶段2均作为扫频阶段,二者的匹配方案采用上述步骤S110的匹配方式进行,并且,上述第1个脉冲阶段1和第2个脉冲阶段2的扫频过程是相互独立的。
具体地,如图6所示,在第1个脉冲周期Z 1中,第1个脉冲阶段1采用射频电源的初始扫频频率F a0开始扫频,以减小反射功率,并以结束扫频频率F a1结束,此时反射功率为P ra1,不满足第1个脉冲阶段1的目标扫频参数要求。第2个脉冲阶段2采用射频电源的初始扫频频率F b0开始扫频,并以结束扫频频率F b1结束,此时反射功率为P rb1,不满足第2个脉冲阶段2的目标扫频参数要求。
在第2个脉冲周期Z 2中,第1个脉冲阶段1采用第1个脉冲周期Z 1中的第1个脉冲阶段1的结束扫频F a1开始扫频,并以第1个脉冲阶段1的结束扫频频率F a2结束,此时反射功率为P ra2,仍不满足第1个脉冲阶段1的目标扫频参数要求。第2个脉冲阶段2采用第1个脉冲周期Z 1中的第2个脉冲阶段2的结束扫频频率F b1开始扫频,并以第2个脉冲阶段2的结束扫频频率F b2结束,此时反射功率为P rb2,不满足第2个脉冲阶段2的目标扫频参数 要求。
依次类推,直到第m个脉冲周期Z m,第1个脉冲阶段1采用第m-1个脉冲周期Z m-1中的第1个脉冲阶段1的结束扫频频率F am-1开始扫频,并以结束扫频频率F am结束,此时反射功率为P ram,仍不满足第1个脉冲阶段1的目标扫频参数要求。第2个脉冲阶段采用第m-1个脉冲周期Z m-1中的第2个脉冲阶段2的结束扫频频率F bm-1开始扫频,并以结束扫频频率F bm结束,此时反射功率为P rbm,满足第2个脉冲阶段2的目标扫频参数要求,即,完成第2个脉冲阶段2的射频电源的输出阻抗与负载阻抗的匹配。
对于第2个脉冲阶段2,自第m+1个脉冲周期Z m+1开始,后续的各脉冲周期,第2个脉冲阶段2采用的射频频率保持不变,且与第m个脉冲周期Z m的第2个脉冲阶段2的结束扫频频率F bm保持一致,从而可以保证反射功率P rbm+1满足目标扫频参数要求。
对于第1个脉冲阶段1,在第m+1个脉冲周期Z m+1中,第1个脉冲阶段1采用第m个脉冲周期Z m中的第1个脉冲阶段1的结束扫频频率F am开始扫频,并以结束扫频频率F am+1结束,此时反射功率为P ram,仍不满足第1个脉冲阶段1的目标扫频参数要求。
依次类推,在第M-1个脉冲周期Z M-1中,第1个脉冲阶段1采用第M-2个脉冲周期Z M-2中的第1个脉冲阶段1的结束扫频频率F aM-2开始扫频,并以结束扫频频率F aM-1结束,此时反射功率为P raM-1,满足第1个脉冲阶段1的目标扫频参数要求。自第M个脉冲周期Z M开始,后续的各脉冲周期,第1个脉冲阶段1采用的射频频率保持不变,且与第M-1个脉冲周期Z M-1的结束扫频频率F aM-1保持一致,从而可以保证反射功率P raM满足目标扫频参数要求。
可选的,无论是第1个脉冲阶段1还是第2个脉冲阶段2,在射频频率保持不变的脉冲周期之后,当两者之一或二者都不满足匹配精度时,采用以下方式重新调节:以第2个脉冲阶段2为例,可以射频电源以第m个脉冲周 期Z m的第2个脉冲阶段2的结束扫频频率F bm为扫频起点,重新开始扫频,直至经过m’个脉冲周期Z m’后第2个脉冲阶段2通过扫频最终使反射功率满足匹配目标扫频参数要求。
本发明的第二方面,如图7所示,提供了一种射频阻抗匹配的装置100,应用于前文记载的射频阻抗匹配的方法。
本实施例中的射频阻抗匹配的装置100,在前m个脉冲周期中,通过使第i+1个脉冲周期的各扫频阶段的扫频起始参数与第i个脉冲周期的各个扫频阶段的扫频结束参数一致,可以不必在每个扫频阶段均重新进行频率调制,从而无需采用过高的扫频速度也能够实现匹配,进而可以避免出现超调等不稳定的问题。同时,还可以有效减小射频电源的反射功率,使得射频电源所输出的射频功率尽可能地加载至负载(例如,射频线圈)上,从而可以降低射频电源的功耗,提高匹配的效率和应用窗口。
可选地,如图7所示,上述射频阻抗匹配的装置100包括获取模块110、判断模块120和控制模块130。其中,控制模块130用于将第i个脉冲周期中的各扫频阶段进行扫频匹配,并在匹配完成后向获取模块110发送控制信号;获取模块110用于在接收到控制信号时,获取第i个脉冲周期的各扫频阶段的扫频结束参数,并发送至判断模块120;判断模块120用于判断第i个脉冲周期的各所述扫频阶段的扫频结束参数是否与目标扫频参数相匹配;若匹配,则向控制模块130发送匹配信号,若不匹配,则向控制模块130发送不匹配信号;
控制模块130还用于:
在接收到不匹配信号时,使i=i+1,并将第i个脉冲周期中的各扫频阶段进行扫频匹配,并在匹配完成后向获取模块发送控制信号,且第i+1个脉冲周期的各扫频阶段的扫频起始参数与第i个脉冲周期的各个扫频阶段的扫频结束参数一致;
在接收到匹配信号时,在第m+1个脉冲周期至第M个脉冲周期中,每个脉冲周期的与各扫频阶段对应的脉冲阶段的扫频参数保持不变,且与第m个脉冲周期中的各扫频阶段的扫频结束参数一致。
本发明的第三方面,提供了一种半导体处理设备,包括前文记载的的射频阻抗匹配的装置。
本实施例结构的半导体处理设备,具有前文记载的射频阻抗匹配的装置,该装置可以应用前文记载的射频阻抗匹配的方法,因此,无需采用过高的扫频速度也能够实现匹配,进而可以避免出现超调等不稳定的问题。同时,还可以有效减小射频电源的反射功率,使得射频电源所输出的射频功率尽可能地加载至负载(例如,射频线圈)上,从而可以降低射频电源的功耗,提高匹配的效率和应用窗口。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (11)

  1. 一种射频阻抗匹配的方法,射频包括M个脉冲周期,各所述脉冲周期包括N个脉冲阶段,M,N均为大于1的整数;其特征在于,所述方法包括以下步骤:
    S110,将前m个所述脉冲周期中的前n个所述脉冲阶段作为扫频阶段进行扫频匹配,且第i+1个脉冲周期的各所述扫频阶段的扫频起始参数与第i个脉冲周期的各个所述扫频阶段的扫频结束参数一致,以使第m个所述脉冲周期中的各所述扫频阶段的扫频结束参数与预设的目标扫频参数相匹配;m,n均为大于0的整数,且m<M,n≤N;i=1,2,...,m;
    S120,在第m+1个脉冲周期至第M个脉冲周期中,每个脉冲周期的与各所述扫频阶段对应的脉冲阶段的扫频参数保持不变,且与第m个所述脉冲周期中的各所述扫频阶段的扫频结束参数一致。
  2. 根据权利要求1所述的射频阻抗匹配的方法,其特征在于,所述步骤S110,进一步包括:
    步骤S111、将第i个所述脉冲周期中的各所述扫频阶段进行扫频匹配;
    步骤S112、在匹配完成后,获取所述第i个脉冲周期的各所述扫频阶段的扫频结束参数;
    步骤S113、判断第i个脉冲周期的各所述扫频阶段的扫频结束参数是否与所述目标扫频参数相匹配;若匹配,则执行所述步骤S120,若不匹配,则使i=i+1,并返回执行所述步骤S111,且第i+1个脉冲周期的各所述扫频阶段的扫频起始参数与第i个脉冲周期的各个所述扫频阶段的扫频结束参数一致。
  3. 根据权利要求1所述的射频阻抗匹配的方法,其特征在于,所述步骤S120,进一步包括:
    S121,第m+j个脉冲周期的与各所述扫频阶段对应的脉冲阶段的扫频参数保持不变,且与第m个所述脉冲周期中的各所述扫频阶段的扫频结束参数一致;j=1,2,...,M-m-1;
    S122,获取所述第m+j个脉冲周期的各所述扫频阶段的扫频结束参数;
    S123、判断第m+j个脉冲周期的各所述扫频阶段的扫频结束参数是否与所述目标扫频参数相匹配;若匹配,则使j=j+1,并返回执行所述步骤S121,若不匹配,则使j=j+1,并返回执行所述步骤S110,且第j+1个脉冲周期的各所述扫频阶段的扫频起始参数与第j个脉冲周期的各个所述扫频阶段的扫频结束参数一致。
  4. 根据权利要求2所述的射频阻抗匹配的方法,其特征在于,所述步骤S112,进一步包括:
    获取所述第i个脉冲周期的各所述扫频阶段结束时,射频电源的反射功率;
    判断所述反射功率是否与预定的反射功率相匹配,若匹配,则判定所述扫频结束参数与所述目标扫频参数相匹配;若不匹配,则判定所述扫频结束参数与所述目标扫频参数不匹配。
  5. 根据权利要求1所述的射频阻抗匹配的方法,其特征在于,在所述步骤S110中,n<N;
    在每个所述脉冲周期中,在第n+1个所述脉冲阶段至第N个所述脉冲阶段中,每个所述脉冲阶段采用扫频或者调节匹配器电容的方式进行匹配,以使射频电源的输出阻抗与负载阻抗相匹配。
  6. 根据权利要求1-3任意一项所述的射频阻抗匹配的方法,其特征在于,N=3;n=1。
  7. 根据权利要求1-3任意一项所述的射频阻抗匹配的方法,其特征在于,N=2;n=2。
  8. 根据权利要求1-3任意一项所述的射频阻抗匹配的方法,其特征在于,所述扫频结束参数包括:
    扫频频率、扫频范围、扫频速度、扫频精度和增益中的至少一者。
  9. 一种射频阻抗匹配的装置,其特征在于,应用于权利要求1至8中任意一项所述的射频阻抗匹配的方法。
  10. 根据权利要求9所述的射频阻抗匹配的装置,其特征在于,应用于权利要求2所述的射频阻抗匹配的方法;所述装置包括获取模块、判断模块和控制模块;其中,
    所述控制模块,用于将第i个所述脉冲周期中的各所述扫频阶段进行扫频匹配,并在匹配完成后向所述获取模块发送控制信号;
    所述获取模块,用于在接收到所述控制信号时,获取所述第i个脉冲周期的各所述扫频阶段的扫频结束参数,并发送至所述判断模块;
    所述判断模块,用于判断第i个脉冲周期的各所述扫频阶段的扫频结束参数是否与所述目标扫频参数相匹配;若匹配,则向所述控制模块发送匹配信号,若不匹配,则向所述控制模块发送不匹配信号;
    所述控制模块还用于:
    在接收到所述不匹配信号时,使i=i+1,并将第i个所述脉冲周期中的各所述扫频阶段进行扫频匹配,并在匹配完成后向所述获取模块发送控制信号,且第i+1个脉冲周期的各所述扫频阶段的扫频起始参数与第i个脉冲周期的各个所述扫频阶段的扫频结束参数一致;
    在接收到所述匹配信号时,在第m+1个脉冲周期至第M个脉冲周期中,每个脉冲周期的与各所述扫频阶段对应的脉冲阶段的扫频参数保持不变,且 与第m个所述脉冲周期中的各所述扫频阶段的扫频结束参数一致。
  11. 一种半导体处理设备,其特征在于,包括权利要求9或10所述的射频阻抗匹配的装置。
PCT/CN2019/083882 2018-04-27 2019-04-23 射频阻抗匹配的方法及装置、半导体处理设备 WO2019206135A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020560351A JP7000598B2 (ja) 2018-04-27 2019-04-23 無線周波数インピーダンス整合のための方法およびデバイス、および半導体処理装置
KR1020207029770A KR102184903B1 (ko) 2018-04-27 2019-04-23 Rf 임피던스 매칭 방법 및 장치, 반도체 처리 설비
US17/080,632 US11114281B2 (en) 2018-04-27 2020-10-26 Method and device for radio frequency impedance matching, and semiconductor processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810392841.X 2018-04-27
CN201810392841.XA CN110416047B (zh) 2018-04-27 2018-04-27 射频阻抗匹配的方法及装置、半导体处理设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/080,632 Continuation US11114281B2 (en) 2018-04-27 2020-10-26 Method and device for radio frequency impedance matching, and semiconductor processing apparatus

Publications (1)

Publication Number Publication Date
WO2019206135A1 true WO2019206135A1 (zh) 2019-10-31

Family

ID=68294893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083882 WO2019206135A1 (zh) 2018-04-27 2019-04-23 射频阻抗匹配的方法及装置、半导体处理设备

Country Status (6)

Country Link
US (1) US11114281B2 (zh)
JP (1) JP7000598B2 (zh)
KR (1) KR102184903B1 (zh)
CN (1) CN110416047B (zh)
TW (1) TWI708277B (zh)
WO (1) WO2019206135A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200185196A1 (en) * 2018-12-07 2020-06-11 Advanced Micro-Fabrication Equipment Inc. China Method and device for matching impedance of pulse radio frequency plasma
CN112014762A (zh) * 2020-10-21 2020-12-01 佛仪科技(佛山)有限公司 射频电源的阻抗匹配测试方法、装置、介质及测试平台
DE102022118340A1 (de) * 2022-07-21 2024-02-01 TRUMPF Hüttinger GmbH + Co. KG Verfahren zum Zünden und/oder Aufrechterhalten eines Plasmas mit einem gepulsten Hochfrequenzsignal, Leistungsgenerator und Plasmaanordnung
CN116087598B (zh) * 2023-04-07 2023-07-21 深圳市广能达半导体科技有限公司 射频匹配电压检测方法、检测装置、电子设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650645A (zh) * 2011-09-01 2014-03-19 株式会社日立国际电气 等离子体生成用电源装置以及等离子体生成参数设定方法
CN107887247A (zh) * 2016-09-30 2018-04-06 朗姆研究公司 在一个状态中频率和匹配调谐以及在另一状态中频率调谐

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093747A (ja) * 1983-10-28 1985-05-25 Hitachi Ltd 走査電子顕微鏡および類似装置
KR101447302B1 (ko) * 2006-12-12 2014-10-06 오를리콘 어드벤스드 테크놀로지스 아크티엔게젤샤프트 고전력 임펄스 마그네트론 스퍼터링(hipims)에서의 아크 억제 및 펄싱
US9368329B2 (en) * 2012-02-22 2016-06-14 Lam Research Corporation Methods and apparatus for synchronizing RF pulses in a plasma processing system
CN103456591B (zh) * 2012-05-31 2016-04-06 中微半导体设备(上海)有限公司 自动频率调谐源和偏置射频电源的电感耦合等离子处理室
CN103730316B (zh) * 2012-10-16 2016-04-06 中微半导体设备(上海)有限公司 一种等离子处理方法及等离子处理装置
CN103928283B (zh) * 2013-01-10 2016-06-15 中微半导体设备(上海)有限公司 一种真空处理腔室的射频脉冲功率匹配的方法及其装置
CN104425201B (zh) * 2013-08-30 2017-09-01 北京北方微电子基地设备工艺研究中心有限责任公司 阻抗匹配方法及阻抗匹配系统
CN105826154B (zh) * 2015-01-06 2017-12-19 北京北方华创微电子装备有限公司 针对脉冲射频电源的阻抗匹配方法及装置
US9876476B2 (en) 2015-08-18 2018-01-23 Mks Instruments, Inc. Supervisory control of radio frequency (RF) impedance tuning operation
US20170330764A1 (en) * 2016-05-12 2017-11-16 Lam Research Corporation Methods and apparatuses for controlling transitions between continuous wave and pulsing plasmas
CN106298778A (zh) * 2016-09-30 2017-01-04 中国科学院微电子研究所 半导体器件及其制造方法及包括该器件的电子设备
US10424467B2 (en) * 2017-03-13 2019-09-24 Applied Materials, Inc. Smart RF pulsing tuning using variable frequency generators
CN109148250B (zh) * 2017-06-15 2020-07-17 北京北方华创微电子装备有限公司 阻抗匹配装置和阻抗匹配方法
US10679825B2 (en) * 2017-11-15 2020-06-09 Lam Research Corporation Systems and methods for applying frequency and match tuning in a non-overlapping manner for processing substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650645A (zh) * 2011-09-01 2014-03-19 株式会社日立国际电气 等离子体生成用电源装置以及等离子体生成参数设定方法
CN107887247A (zh) * 2016-09-30 2018-04-06 朗姆研究公司 在一个状态中频率和匹配调谐以及在另一状态中频率调谐

Also Published As

Publication number Publication date
CN110416047A (zh) 2019-11-05
US20210098235A1 (en) 2021-04-01
US11114281B2 (en) 2021-09-07
TW201946093A (zh) 2019-12-01
CN110416047B (zh) 2021-03-02
TWI708277B (zh) 2020-10-21
JP7000598B2 (ja) 2022-01-19
KR102184903B1 (ko) 2020-12-01
JP2021521601A (ja) 2021-08-26
KR20200127256A (ko) 2020-11-10

Similar Documents

Publication Publication Date Title
WO2019206135A1 (zh) 射频阻抗匹配的方法及装置、半导体处理设备
US10790126B2 (en) Smart RF pulsing tuning using variable frequency generators
CN108028166B (zh) 用于处理基板的射频脉冲反射减量
US20170099722A1 (en) Rf power delivery with approximated saw tooth wave pulsing
US20170358428A1 (en) Rf power delivery regulation for processing substrates
US9614524B1 (en) Automatic impedance tuning with RF dual level pulsing
US20200075290A1 (en) Radio frequency (rf) pulsing impedance tuning with multiplier mode
TWI776184B (zh) 一種射頻電源系統、電漿處理器及其調頻匹配方法
WO2022078336A1 (zh) 阻抗匹配方法、阻抗匹配器和半导体工艺设备
CN103928283A (zh) 一种用于真空处理腔室的射频脉冲功率匹配的方法及其装置
JP7105373B2 (ja) 無線周波数源のコントロール方法
US20080053817A1 (en) Plasma processing apparatus and plasma processing method
US20230031768A1 (en) Systems and methods for variable gain tuning of matching networks
CN112509899B (zh) 电感耦合等离子体处理装置及其点火控制方法
CN109994360B (zh) 一种等离子体射频调节方法及等离子处理装置
CN113539776B (zh) 射频电源的校准方法、半导体工艺方法及设备
TW202022657A (zh) 脈衝射頻電漿的阻抗匹配方法和裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207029770

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020560351

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793609

Country of ref document: EP

Kind code of ref document: A1