WO2019205771A1 - 一种用于电动燃油泵的叶轮 - Google Patents

一种用于电动燃油泵的叶轮 Download PDF

Info

Publication number
WO2019205771A1
WO2019205771A1 PCT/CN2019/074347 CN2019074347W WO2019205771A1 WO 2019205771 A1 WO2019205771 A1 WO 2019205771A1 CN 2019074347 W CN2019074347 W CN 2019074347W WO 2019205771 A1 WO2019205771 A1 WO 2019205771A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
line segment
wall
fuel pump
blade
Prior art date
Application number
PCT/CN2019/074347
Other languages
English (en)
French (fr)
Inventor
孙国庆
郭春林
李倩倩
Original Assignee
宁波洛卡特汽车零部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波洛卡特汽车零部件有限公司 filed Critical 宁波洛卡特汽车零部件有限公司
Publication of WO2019205771A1 publication Critical patent/WO2019205771A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven

Definitions

  • the present invention relates to the field of fuel pumps, and more particularly to an impeller for an electric fuel pump.
  • the electric fuel pump for automobiles is an important part of the modern automobile fuel control system. Its function is to suck the gasoline from the fuel tank located at the rear of the car, and supply the engine at the front end of the car through the pipeline, requiring the fuel pump to output a certain amount of fuel. Pressure and flow to meet fuel demand. In recent years, the double crisis of oil consumption and atmospheric pollution has increased the demand for energy conservation and emission reduction of vehicles.
  • No. 6,425,733 discloses a turbo fuel pump having a housing for housing an electric motor and a housing mounted on the housing, the housing having an annular passage; an impeller is contained within the housing, the impeller having a plurality of A blade arranged on the outer circumference, the impeller having a straight portion and a curved portion, wherein the length of the straight portion is 30% to 70% of the entire length of the impeller.
  • each of the blades of the impeller has a root which is bent rearward as viewed in the direction of rotation of the impeller, and the head is linearly inclined rearward from the curved portion and projects radially outward.
  • This shape of the blade allows the fuel to flow smoothly from the groove of the blade to the passage, preventing the flow rate from decreasing with the rotational speed, improving the low pressure performance and flow rate control capability.
  • the impeller since the impeller has a head that is inclined rearwardly in a straight line, the fuel flows out from the vane groove in the latter direction, and does not give the fuel high kinetic energy, resulting in a problem of lowering the pump efficiency.
  • the prior art fuel pump described above has a low energy efficiency ratio and poor stability, and the overall volume of the fuel pump is large.
  • the object of the present invention is to provide a fuel pump impeller with high energy density and low energy loss in order to solve the problems of low energy efficiency and poor stability of the fuel pump in the prior art.
  • the present invention provides an impeller for an electric fuel pump comprising: a core, a blade and an outer wall;
  • a plurality of blades are distributed on the core of the blade, a blade groove is formed between the two blades, and the outer wall is sleeved on the plurality of blades, so that the core, the blade and the outer wall are fixed together;
  • the two sides of the blade are smooth arcs, and the blades are bent at an axially intermediate position;
  • a smooth circular arc is a smooth connecting line from a first quadrant point on the outer wall to a second quadrant point on the core;
  • the first quadrant point is determined by rotating the first line segment from the impeller center line to the first side, and the impeller center line and the first line segment form a blade offset angle ⁇ , and the intersection of the first line segment and the outer wall inner diameter circle is One quadrant
  • the second quadrant point is the intersection of the impeller centerline and the outer core of the core.
  • the outer wall is provided with a uniformly distributed outer wall wedge groove, and the bottom surface of the outer wall wedge groove is deep to shallow, so that the bottom surface of the outer wall wedge groove forms a slope on the outer wall.
  • the number of the outer wall wedge grooves distributed on the outer wall is 3 to 10;
  • the outer wall wedge groove has an arc of 20° to 50°;
  • the deepest portion of the outer wall wedge groove is 0.3 mm to 0.6 mm.
  • the first balance hole is disposed on the leaf core near the axial center; the first balance hole penetrates the leaf core axially, and the number of the first balance holes is five.
  • the leaf core is provided with a second balance hole near the blade, and the second balance hole extends axially through the leaf core.
  • the first end of the second balance hole is provided with a first wedge-shaped groove.
  • the first wedge-shaped groove is opened from one end to the first, and the deepest portion of the first wedge-shaped groove is connected to the first end of the second balance hole.
  • the second end of the second balance hole is provided with a second wedge-shaped groove.
  • the second wedge-shaped groove is opened from the two ends from shallow to deep, and the second wedge-shaped groove is connected to the second end of the second balance hole.
  • the number of the second balance holes is five.
  • the second line segment perpendicular to the first line segment is made at the first quadrant point, the second line segment is rotated to the first side to form a third line segment, and the blade exit angle ⁇ is formed between the second line segment and the third line segment;
  • a fourth line segment perpendicular to the center line of the impeller is formed at the second quadrant point, and the fourth line segment is rotated toward the second side to form a fifth line segment, and a blade inlet angle ⁇ is formed between the fourth line segment and the fifth line segment;
  • the smooth arc is tangent to the third line segment and the fifth line segment at the same time.
  • the angle of the blade offset angle ⁇ is greater than 0° and less than 10°; the angles of the blade exit angle ⁇ and the blade inlet angle ⁇ are both greater than 0° and less than 90°.
  • the invention improves the working efficiency of the impeller by designing the special curvature of the blade; by setting the wedge groove on the outermost wall, the stability of the impeller is increased, the overall efficiency of the fuel pump is improved, and the fuel pump is The overall structure is more compact and refined.
  • FIG. 1 is a schematic view showing a blade curve of an impeller for an electric fuel pump of the present invention
  • FIG. 2 is a front view of an impeller for an electric fuel pump of the present invention
  • Figure 3 is a schematic view of the back of the impeller for the electric fuel pump of the present invention.
  • Figure 4 is a pressure/frequency comparison diagram of a conventional fuel pump
  • Figure 5 is a pressure/frequency comparison diagram of a fuel pump using the impeller of the present invention.
  • Figure 6 is a comparison diagram of energy efficiency of the fuel pump of the impeller of the present invention and a conventional fuel pump.
  • the fuel pump is mainly composed of a pump body, a permanent magnet DC motor and a metal casing.
  • the pump body is mainly composed of a pump cover, a pump chamber, an impeller, a thrust pin, and a pump chamber bearing.
  • the permanent magnet DC motor is mainly composed of a magnet, a rotor core, a brush, an armature, an armature shaft, a strut, a commutator, a bracket bearing, a bracket, a check valve and the like.
  • the impeller rotates, and the fuel is sucked from the oil tank through the filter screen, and then pressurized by the momentum exchange between the impeller and the annular passage of the pump body, and the pressurized fuel is pumped from the oil outlet to the fuel system for oil supply.
  • the fuel flows through the interior of the electric fuel pump permanent magnet motor and has a cooling effect on its armature. Therefore, this fuel pump is also called a wet fuel pump.
  • the structure of the impeller for the electric fuel pump of the embodiment of the present invention includes: a core 1, a blade 2 and an outer wall 3 as shown in FIGS. 1 to 3;
  • a plurality of blades 2 are distributed on the core 1 , a blade groove 4 is formed between the two blades 2 , and an outer wall 3 is sleeved on the plurality of blades 2 to fix the blade core 1 , the blade 2 and the outer wall 3 in one body;
  • the two sides of the blade 2 are smooth arcs 21, and the blades 2 are bent at an axially intermediate position;
  • the smooth circular arc 21 is a smooth connecting line from the first quadrant point on the outer wall 3 to the second quadrant point on the core 1;
  • the first quadrant point is determined by rotating the first line segment 52 from the impeller center line 51 toward the first side, and the impeller center line 51 and the first line segment 52 form a blade offset angle ⁇ , the first line segment 52 and the outer wall 3
  • the intersection of the inner diameter circle is the first quadrant point;
  • the second quadrant point is the intersection of the impeller center line 51 and the outer circumference of the core 1.
  • a second line segment 53 perpendicular to the first line segment 52 is formed at the first quadrant point, and the second line segment 53 is rotated toward the first side to form a third line segment 54, and the blade exit angle ⁇ is formed between the second line segment 53 and the third line segment 54.
  • a fourth line segment 55 perpendicular to the impeller center line 51 is formed at the second quadrant point, and the fourth line segment 55 is rotated toward the second side to form a fifth line segment 56, and a blade inlet angle ⁇ is formed between the fourth line segment 55 and the fifth line segment. ;
  • the smooth circular arc 21 also needs to satisfy the condition of being tangent to the third line segment 54 and the fifth line segment 56 while starting from the first quadrant point to the second quadrant point.
  • the angle of the blade offset angle ⁇ is greater than 0° less than 10°; the angles of the blade exit angle ⁇ and the blade inlet angle ⁇ are both greater than 0° less than 90°; and the angle between the third line segment and the fifth line segment is greater than 90°. Less than 180°.
  • the outer wall 3 is provided with a uniformly distributed outer wall wedge groove 31.
  • the bottom surface of the outer wall wedge groove 31 is deep to shallow, so that the bottom surface of the outer wall wedge groove 31 forms a slope on the outer wall 3, and generally the number of outer wall wedge grooves 31 distributed on the outer wall 3 3 to 10, preferably 8 in this embodiment;
  • the outer wall wedge groove 31 has an arc of 20° to 50°, and is preferably 30° in this embodiment;
  • the deepest portion of the outer wall wedge groove 31 is 0.3 mm to 0.6 mm, and is preferably 0.4 mm in this embodiment.
  • a first balance hole 11 is disposed on the core 1 near the axis; the first balance hole 11 extends axially through the core 1, and the number of the first balance holes 11 is five.
  • the core core 1 is provided with a second balance hole 12 near the blade 2, and the second balance hole 12 extends axially through the core 1, and the number of the second balance holes 12 is the same as that of the first balance hole 11, and the first balance hole 11 is arranged in an empty form, the first balance hole 11 is slightly smaller than the second balance hole 12, the first balance hole 11 used in the present invention has a size of 1.5 mm, and the second balance hole 12 has a size of 2 mm.
  • the first end of the second balance hole 12 is provided with a first wedge-shaped groove 13 .
  • the first wedge-shaped groove 13 is opened from one end to the first, and the deepest portion of the first wedge-shaped groove 13 is connected to the first end of the second balance hole 12 . .
  • the second end of the second balance hole 12 is provided with a second wedge-shaped groove 14 .
  • the second wedge-shaped groove 14 is opened from the two ends from shallow to deep, and the second wedge-shaped groove 14 is connected to the second end of the second balance hole 12 at the deepest point. .
  • the fuel pump using the impeller of the present invention has higher energy efficiency ratio and stability than the transmission fuel pump; and because of the higher energy efficiency ratio, the same demand is required.
  • the volume of the fuel pump can be made smaller under the conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种用于电动燃油泵的叶轮,包括:叶芯(1)、叶片(2)和外壁(3);若干个叶片(2)分布在叶芯(1)上,两个叶片(2)之间形成叶片槽(4),外壁(3)套设于若干叶片(2)上,使叶芯(1)、叶片(2)和外壁(3)固定于一体;叶片(2)两侧面为光滑圆弧(21);光滑圆弧(21)为从外壁(3)上的第一象限点到叶芯(1)上的第二象限点的光滑连接线;通过叶片(2)特殊弧度的设计可以提高叶轮的工作效率;通过在外壁设置楔形槽(31),增加了叶轮的稳定性,提高了燃油泵的整体效率,并且燃油泵的整体结构小巧精致。

Description

一种用于电动燃油泵的叶轮 技术领域
本发明涉及燃油泵领域,尤其涉及一种用于电动燃油泵的叶轮。
背景技术
汽车用电动燃油泵是现代汽车燃油控制系统的重要部件,其作用是将汽油从位于汽车后部的油箱中吸出,通过管路供给位于汽车前端的发动机,要求燃油泵输出的燃油能达到一定的压力和流量以满足供油需求。近年来,石油消耗和大气环境污染的双重危机,增加了对车辆节能减排的需求。
如美国专利US 6425733公开了一种涡轮燃油泵,其具有容纳电动机的外壳以及装在外壳上的壳体,所述壳体具有环形通道;在所述壳体内容纳有叶轮,该叶轮具有多个在外圆周上排列的叶片,所述叶轮具有直线部分和弯曲部分,其中直线部分的长度为整个叶轮长度的30%~70%。在JP-A8-100780中,所述叶轮的每个叶片都有一个沿叶轮的转动方向看向后弯曲的根部,并且头部从弯曲部分直线地向后倾斜并沿径向向外伸出。叶片的这种形状能使燃油从叶片凹槽平滑地流向通道,防止流速随转速降低,提高了低压性能和流速控制能力。但是,由于叶轮具有直线地向后倾斜的头部,燃油在后面的方向从叶片凹槽流出,不能给燃油较高的动能,产生降低泵效率的问题。
又如中国发明专利CN 103758779B公开了一种采用正弦分布规律法则为基础的非等距叶轮设计方法,避免了进行大量的实验或模拟计算,即可较好地减小非等距叶片涡轮的压力脉动,又较好地保证了涡轮的静平衡。
但上述现有技术的燃油泵能效比低,且稳定性能差,并且燃油泵的整体体积较大。
发明内容
一、要解决的技术问题
本发明的目的是针对现有技术所存在的问题,特提供一种能量密度大、能量损失小的燃油泵叶轮,以解决现有技术中燃油泵能效比低,稳定性差的问题。
二、技术方案
为解决上述技术问题,本发明提供一种用于电动燃油泵的叶轮包括:叶芯、叶片和外壁;
若干个叶片分布在叶芯上,两个叶片之间形成叶片槽,外壁套设于若干叶片上,使叶芯、叶片和外壁固定于一体;
叶片两侧面为光滑圆弧,且叶片在轴向中间位置带有折弯;
光滑圆弧为从外壁上的第一象限点到叶芯上的第二象限点的光滑连接线;
第一象限点的确定方法为从叶轮中心线向第一侧旋转做第一线段,叶轮中心线和第一线段形成叶片偏移角θ,第一线段和外壁内径圆的交点为第一象限点;
第二象限点为叶轮中心线和叶芯外圆的交点。
其中,外壁上设有均匀分布的外壁楔形槽,外壁楔形槽的底面由深至浅,使外壁楔形槽的底面在外壁上形成斜面。
其中,外壁楔形槽在外壁上的分布数量为3至10个;
外壁楔形槽的弧度为20°至50°;
外壁楔形槽的最深处为0.3毫米至0.6毫米。
其中,叶芯上靠近轴心处设有第一平衡孔;第一平衡孔轴向贯穿叶芯,且第一平衡孔的数量为5个。
其中,叶芯靠近叶片处设有第二平衡孔,第二平衡孔轴向贯穿叶芯。
其中,第二平衡孔的第一端开设有第一楔形槽,第一楔形槽从一端开始由浅至深开设,且第一楔形槽的最深处与第二平衡孔的第一端连接。
其中,第二平衡孔的第二端开设有第二楔形槽,第二楔形槽从两端开始由浅至深开设,且第二楔形槽最深处与第二平衡孔的第二端连接。
其中,第二平衡孔的数量为5个。
其中,在第一象限点做垂直于第一线段的第二线段,第二线段向第一侧旋转做第三线段,第二线段和第三线段之间形成叶片出口角β;
在第二象限点做垂直于叶轮中心线的第四线段,第四线段向第二侧旋转做第五线段,第四线段和第五线段之间形成叶片进口角α;
光滑圆弧与第三线段和第五线段同时相切。
其中,叶片偏移角θ的角度大于0°小于10°;叶片出口角β和叶片进口角α的角度均大于0°小于90°。
三、有益效果
与现有技术相比,本发明通过叶片特殊弧度的设计提高了叶轮的工作效率;通过在最外壁设置楔形槽的设计,增加了叶轮的稳定性,提高了燃油泵的整体效率,并且燃油泵的整体结构更加小巧精致。
附图说明
图1为本发明用于电动燃油泵的叶轮的叶片曲线示意图;
图2为本发明用于电动燃油泵的叶轮正面示意图;
图3为本发明用于电动燃油泵的叶轮背面示意图;
图4为传统燃油泵的压力/频率对照图;
图5为采用本发明叶轮的燃油泵的压力/频率对照图;
图6为本发明叶轮的燃油泵和传统燃油泵的能效对比图。
图中:1为叶芯;2为叶片;3为外壁;4为叶片槽;11为第一平衡孔;12为第二平衡孔;13为第一楔形槽;14为第二楔形槽;21为光滑圆弧;31为外壁楔形槽;51为叶轮中心线;52为第一线段;53为第二线段;54为第三线段;55为第四线段;56为第五线段。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不能用来限制本发明的范围。
燃油泵主要由泵体、永磁直流电动机和金属外壳三部分组成。其中,泵体主要由泵盖、泵室、叶轮、止推销、泵室轴承构成。永磁直流电动机主要由磁铁、转子铁芯、电刷、电枢、电枢轴、撑片、换向器、支架轴承、支架、止回阀等构成。电动机通电后带动叶轮旋转,燃油从油箱中经滤网吸入,后经叶轮与泵体环形通道内流体发生动量交换而增压,加压后的燃油从出油口泵出给燃油系统供油。燃油流经电动燃油泵永磁电动机内部,对其电枢有冷却作用,故这种燃油泵也称为湿式燃油泵。
如上所述,本发明实施例的用于电动燃油泵的叶轮的结构如图1 至图3所示包括:叶芯1、叶片2和外壁3;
若干个叶片2分布在叶芯1上,两个叶片2之间形成叶片槽4,外壁3套设于若干叶片2上,使叶芯1、叶片2和外壁3固定于一体;
叶片2两侧面为光滑圆弧21,且叶片2在轴向中间位置带有折弯;
光滑圆弧21为从外壁3上的第一象限点到叶芯1上的第二象限点的光滑连接线;
第一象限点的确定方法为从叶轮中心线51向第一侧旋转做第一线段52,叶轮中心线51和第一线段52形成叶片偏移角θ,第一线段52和外壁3内径圆的交点为第一象限点;
第二象限点为叶轮中心线51和叶芯1外圆的交点。
在第一象限点做垂直于第一线段52的第二线段53,第二线段53向第一侧旋转做第三线段54,第二线段53和第三线段54之间形成叶片出口角β;
在所述第二象限点做垂直于叶轮中心线51的第四线段55,第四线段55向第二侧旋转做第五线段56,第四线段55和第五线段之间形成叶片进口角α;
光滑圆弧21在以第一象限点为起点至第二象限点为结束点的同时还需要满足与第三线段54和第五线段56同时相切的条件。
叶片偏移角θ的角度大于0°小于10°;叶片出口角β和叶片进口角α的角度均大于0°小于90°;并且第三线段和第五线段之间夹角要满足大于90°小于180°。
外壁3上设有均匀分布的外壁楔形槽31,外壁楔形槽31的底面由深至浅,使外壁楔形槽31的底面在外壁3上形成斜面,通常外壁 楔形槽31在外壁3上的分布数量为3至10个,本实施例优选8个;
外壁楔形槽31的弧度为20°至50°,本实施例优选30°;
外壁楔形槽31的最深处为0.3毫米至0.6毫米,本实施例优选0.4毫米。
叶芯1上靠近轴心处设有第一平衡孔11;第一平衡孔11轴向贯穿叶芯1,且第一平衡孔11的数量为5个。
叶芯1靠近叶片2处设有第二平衡孔12,第二平衡孔12轴向贯穿叶芯1,第二平衡孔12的数量跟第一平衡孔11的数量相同,并与第一平衡孔11之间呈现插空形式排列,第一平衡孔11略小于第二平衡孔12,本实用新型采用的第一平衡孔11的尺寸为1.5毫米,第二平衡孔12尺寸为2毫米。
第二平衡孔12的第一端开设有第一楔形槽13,第一楔形槽13从一端开始由浅至深开设,且第一楔形槽13的最深处与第二平衡孔12的第一端连接。
第二平衡孔12的第二端开设有第二楔形槽14,第二楔形槽14从两端开始由浅至深开设,且第二楔形槽14最深处与第二平衡孔12的第二端连接。
通过图4至图6实验对比图可看出,采用本发明叶轮的燃油泵相比传动燃油泵,具有更高的能效比和稳定性;并且由于具有更高的能效比,所以在相同需求的条件下可以将燃油泵的体积做的更加小巧。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种用于电动燃油泵的叶轮,其特征在于,所述用于电动燃油泵的叶轮包括:叶芯(1)、叶片(2)和外壁(3);
    若干个所述叶片(2)分布在所述叶芯(1)上,两个所述叶片(2)之间形成叶片槽(4),所述外壁(3)套设于所述若干叶片(2)上,使所述叶芯(1)、所述叶片(2)和所述外壁(3)固定于一体;
    所述叶片(2)两侧面为光滑圆弧(21),且所述叶片(2)在轴向中间位置带有折弯;
    所述光滑圆弧(21)为从所述外壁(3)上的第一象限点到所述叶芯(1)上的第二象限点的光滑连接线;
    所述第一象限点的确定方法为从叶轮中心线(51)向第一侧旋转做第一线段(52),所述叶轮中心线(51)和所述第一线段(52)形成叶片偏移角θ,所述第一线段(52)和所述外壁(3)内径圆的交点为第一象限点;
    所述第二象限点为叶轮中心线(51)和所述叶芯(1)外圆的交点。
  2. 如权利要求1所述的用于电动燃油泵的叶轮,其特征在于:所述外壁(3)上设有均匀分布的外壁楔形槽(31),所述外壁楔形槽(31)的底面由深至浅,使所述外壁楔形槽(31)的底面在所述外壁(3)上形成斜面。
  3. 如权利要求2所述的用于电动燃油泵的叶轮,其特征在于:所述外壁楔形槽(31)在所述外壁(3)上的分布数量为3至10个;
    所述外壁楔形槽(31)的弧度为20°至50°;
    所述外壁楔形槽(31)的最深处为0.3毫米至0.6毫米。
  4. 如权利要求1所述的用于电动燃油泵的叶轮,其特征在于:所述叶芯(1)上靠近轴心处设有第一平衡孔(11);所述第一平衡孔(11)轴向贯穿所述叶芯(1),且所述第一平衡孔(11)的数量为5个。
  5. 如权利要求1所述的用于电动燃油泵的叶轮,其特征在于:所述叶芯(1)靠近所述叶片(2)处设有第二平衡孔(12),所述第二平衡孔(12)轴向贯穿所述叶芯(1)。
  6. 如权利要求5所述的用于电动燃油泵的叶轮,其特征在于:所述第二平衡孔(12)的第一端开设有第一楔形槽(13),所述第一楔形槽(13)从一端开始由浅至深开设,且所述第一楔形槽(13)的最深处与所述第二平衡孔(12)的第一端连接。
  7. 如权利要求6所述的用于电动燃油泵的叶轮,其特征在于:所述第二平衡孔(12)的第二端开设有第二楔形槽(14),所述第二楔形槽(14)从两端开始由浅至深开设,且第二楔形槽(14)最深处与所述第二平衡孔(12)的第二端连接。
  8. 如权利要求7所述的用于电动燃油泵的叶轮,其特征在于:所述第二平衡孔(12)的数量为5个。
  9. 如权利要求1所述的用于电动燃油泵的叶轮,其特征在于:在所述第一象限点做垂直于所述第一线段(52)的第二线段(53),所述第二线段(53)向第一侧旋转做第三线段(54),所述第二线段(53)和所述第三线段(54)之间形成叶片出口角β;
    在所述第二象限点做垂直于所述叶轮中心线(51)的第四线段(55),所述第四线段(55)向第二侧旋转做第五线段(56),所述第四线段(55)和所述第五线段之间形成叶片进口角α;
    所述光滑圆弧(21)与所述第三线段(54)和所述第五线段(56) 同时相切。
  10. 如权利要求9所述的用于电动燃油泵的叶轮,其特征在于:所述叶片偏移角θ的角度大于0°小于10°;叶片出口角β和所述叶片进口角α的角度均大于0°小于90°。
PCT/CN2019/074347 2018-04-24 2019-02-01 一种用于电动燃油泵的叶轮 WO2019205771A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810371580.3 2018-04-24
CN201810371580.3A CN108678992B (zh) 2018-04-24 2018-04-24 一种用于电动燃油泵的叶轮的生产方法

Publications (1)

Publication Number Publication Date
WO2019205771A1 true WO2019205771A1 (zh) 2019-10-31

Family

ID=63801302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074347 WO2019205771A1 (zh) 2018-04-24 2019-02-01 一种用于电动燃油泵的叶轮

Country Status (2)

Country Link
CN (1) CN108678992B (zh)
WO (1) WO2019205771A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108678992B (zh) * 2018-04-24 2020-10-16 宁波洛卡特汽车零部件有限公司 一种用于电动燃油泵的叶轮的生产方法
CN112576543B (zh) * 2020-11-16 2023-01-24 中国航发西安动力控制科技有限公司 带混流段结构的双面燃油泵叶轮

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010036400A1 (en) * 2000-04-14 2001-11-01 Atsushige Kobayashi Fuel pump for internal combustion engine
CN202326393U (zh) * 2011-12-12 2012-07-11 重庆平江实业有限责任公司 电动燃油泵叶轮
CN204099268U (zh) * 2014-09-26 2015-01-14 哈尔滨志阳汽车电机有限公司 一种缸内喷射发动机电动燃油泵不等分叶片叶轮
US20150050155A1 (en) * 2013-08-14 2015-02-19 Coavis Impeller for fuel pump of vehicle
CN204553327U (zh) * 2015-04-27 2015-08-12 温州大学 一种具有侧边叶片槽的燃油泵叶轮
CN204942068U (zh) * 2015-09-21 2016-01-06 浙江锦佳汽车零部件有限公司 一种高流量燃油泵的叶轮
CN206280298U (zh) * 2016-12-20 2017-06-27 南海西部石油油田服务(深圳)有限公司 一种用于海洋石油生产的离心泵叶轮及离心泵
CN108678992A (zh) * 2018-04-24 2018-10-19 宁波洛卡特汽车零部件有限公司 一种用于电动燃油泵的叶轮

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310308A (en) * 1993-10-04 1994-05-10 Ford Motor Company Automotive fuel pump housing with rotary pumping element
JP4700414B2 (ja) * 2005-06-02 2011-06-15 本田技研工業株式会社 空冷内燃機関用多翼ファン
JP4789003B2 (ja) * 2006-03-30 2011-10-05 株式会社デンソー 燃料ポンプ
CN102434490B (zh) * 2011-12-12 2014-07-16 重庆平江实业有限责任公司 一种电动燃油泵叶轮
CN202732465U (zh) * 2012-06-14 2013-02-13 浙江超越实业有限公司 一种汽油机用的风机飞轮
CN202673765U (zh) * 2012-06-21 2013-01-16 重庆万力联兴实业(集团)有限公司 一种燃油泵叶轮
CN204591776U (zh) * 2015-04-28 2015-08-26 胡金花 一种油泵叶轮
CN205013367U (zh) * 2015-09-28 2016-02-03 湖南机油泵股份有限公司 一种离心泵叶轮

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010036400A1 (en) * 2000-04-14 2001-11-01 Atsushige Kobayashi Fuel pump for internal combustion engine
CN202326393U (zh) * 2011-12-12 2012-07-11 重庆平江实业有限责任公司 电动燃油泵叶轮
US20150050155A1 (en) * 2013-08-14 2015-02-19 Coavis Impeller for fuel pump of vehicle
CN204099268U (zh) * 2014-09-26 2015-01-14 哈尔滨志阳汽车电机有限公司 一种缸内喷射发动机电动燃油泵不等分叶片叶轮
CN204553327U (zh) * 2015-04-27 2015-08-12 温州大学 一种具有侧边叶片槽的燃油泵叶轮
CN204942068U (zh) * 2015-09-21 2016-01-06 浙江锦佳汽车零部件有限公司 一种高流量燃油泵的叶轮
CN206280298U (zh) * 2016-12-20 2017-06-27 南海西部石油油田服务(深圳)有限公司 一种用于海洋石油生产的离心泵叶轮及离心泵
CN108678992A (zh) * 2018-04-24 2018-10-19 宁波洛卡特汽车零部件有限公司 一种用于电动燃油泵的叶轮

Also Published As

Publication number Publication date
CN108678992B (zh) 2020-10-16
CN108678992A (zh) 2018-10-19

Similar Documents

Publication Publication Date Title
KR101913147B1 (ko) 후향 이중구배 단면 형상 깃 원심임펠러
AU2020348637A1 (en) High-efficiency and low-noise automobile electronic water pump
WO2019205771A1 (zh) 一种用于电动燃油泵的叶轮
CN108361205A (zh) 一种离心泵叶轮及包含该离心泵叶轮的lng潜液泵
CN205243867U (zh) 一种旋流泵
AU2020426866B2 (en) Permanent magnet direct-drive slurry pump based on gas film drag reduction
US8740575B2 (en) Liquid ring pump with liner
CN105179914A (zh) 一种机油泵
CN112648230A (zh) 一种高效抗汽蚀离心泵叶轮
CN215762422U (zh) 一种具有消涡抑制分离功能的叶轮及压缩机、空调和汽车
CN113550933B (zh) 一种涡轮泵
CN112761959B (zh) 一种多级离心增压泵
CN110080999B (zh) 一种离心鼓风机
KR101222017B1 (ko) 자동차 연료펌프용 임펠러
CN208203642U (zh) 一种立式泵
JP2005188337A (ja) 作動流体還流路を有する過給用コンプレッサ
JPH084682A (ja) 一体化燃料ポンプ組立体
CN217633088U (zh) 一种离心泵的叶轮以及离心泵
CN109882423A (zh) 一种超低比转速离心泵装置
CN211230961U (zh) 一种水泵叶轮结构
CN220956155U (zh) 一种用于浆液泵的离心叶轮
CN219711823U (zh) 一种燃料电池氢气循环泵防水结构
CN211343272U (zh) 一种变频冰箱压缩机用新型宽转速泵油装置
CN210423068U (zh) 潜水泵
CN214196517U (zh) 一种高性能无刷电动燃油泵的叶轮

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792535

Country of ref document: EP

Kind code of ref document: A1