WO2019205519A1 - 天线装置及电子设备 - Google Patents

天线装置及电子设备 Download PDF

Info

Publication number
WO2019205519A1
WO2019205519A1 PCT/CN2018/110895 CN2018110895W WO2019205519A1 WO 2019205519 A1 WO2019205519 A1 WO 2019205519A1 CN 2018110895 W CN2018110895 W CN 2018110895W WO 2019205519 A1 WO2019205519 A1 WO 2019205519A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground layer
antenna
antenna device
circuit board
smith chart
Prior art date
Application number
PCT/CN2018/110895
Other languages
English (en)
French (fr)
Inventor
何其娟
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2019205519A1 publication Critical patent/WO2019205519A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • H01Q1/2266Supports; Mounting means by structural association with other equipment or articles used with computer equipment disposed inside the computer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the present invention relates to the field of antenna technology, and more particularly to an antenna device and an electronic device.
  • the antenna element needs to be isolated from the circuit board to avoid the influence of the circuit board on the antenna device. For example, a large clearance area needs to be placed on the board to accommodate the antenna elements. Typically, the antenna elements are spaced a distance from the board above the clear area of the board. Therefore, usually the antenna device takes up a large space in the electronic device.
  • Wearable devices include, for example, earphones and watches.
  • people often wear smart Bluetooth headsets and/or smart watches while running.
  • smart wireless devices such as smart home devices have greatly enriched people's daily lives.
  • Smart home devices include, for example, sweeping robots, smart speakers, and the like. People can enjoy the comfort and convenience of life through smart home devices.
  • Bluetooth headsets For example, various Bluetooth headsets have appeared. Bluetooth headsets are loved by people for their convenience. The appearance of the Bluetooth headset is rich and varied. The design of the Bluetooth antenna has also changed accordingly to accommodate the appearance of the Bluetooth headset.
  • flexible circuit boards FPCs
  • FPCs flexible circuit boards
  • Smith Chart is an auxiliary tool that technicians often use. Technicians often use the Smith chart to calculate and represent the impedance characteristics of impedance elements such as antennas.
  • an antenna device comprising: a first ground layer; a second ground layer located below the first ground layer, wherein the second ground layer comprises a main board, the first ground layer Connecting with the second ground layer; and an antenna element located near the first ground layer and coupled to the first ground layer by a coupling gap.
  • the antenna element includes a feeding point and a loop antenna connected to the feeding point, the feeding point is disposed on the main board and electrically connected to the main board, the loop antenna and the The first formation interval forms a coupling gap.
  • the radiation frequency range of the antenna element satisfies within a range of plus or minus 30 degrees centered on a center point of the Smith chart on the Smith chart before impedance matching is performed on the antenna device; the Smith circle The center point of the graph is the preset resonance point.
  • At least one of a width of the coupling slot, a length of the loop antenna, and a width of the loop antenna is set such that a radiation frequency range of the antenna element satisfies a Smith chart on a Smith chart
  • the center point is centered within plus or minus 30 degrees.
  • the antenna device is a Bluetooth antenna device; the radiation frequency ranges from 2.4 GHz to 2.5 GHz.
  • the antenna element is flush with or lower than the first formation relative to the second formation.
  • the second ground layer comprises a main board and a battery, or comprises a main board and a flexible circuit board, the main board and the battery or the flexible circuit board are connected by a conductive member; the first ground layer and the battery or the flexible Board connection.
  • the method further includes: a third ground layer; the third ground layer is located below the second ground layer, and is connected to the second ground layer by a second flexible circuit board.
  • the distance between the first ground layer and the second ground layer is not less than 2 mm.
  • the width of the coupling slot is greater than 1 mm.
  • an electronic device comprising the antenna device described above.
  • One technical effect of the present invention is that a compact antenna device can be provided.
  • FIG. 1 is a schematic elevational view of an antenna device in accordance with one embodiment.
  • FIG. 2 is a schematic side view of an antenna device in accordance with one embodiment.
  • FIG 3 is a schematic side view of a variation of an antenna device in accordance with an embodiment.
  • 4 is an impedance characteristic of an unmatched antenna device according to an embodiment, represented using a Smith chart.
  • Figure 5 is a schematic illustration of the current distribution of a multilayer circuit board during resonance.
  • Figure 6 is another schematic diagram of current distribution of a multilayer circuit board during resonance.
  • FIG. 7 is a schematic diagram of a partial current of an antenna device in accordance with an embodiment.
  • Figure 8 is a schematic elevational view of an antenna device in accordance with another embodiment.
  • Figure 9 is an impedance characteristic of a multilayer structure in an antenna device according to an embodiment, represented by a Smith chart.
  • Figure 10 is an S11 characteristic of an antenna device in accordance with one embodiment.
  • 11-14 are various variations of an antenna device in accordance with one embodiment.
  • Fig. 15 is an impedance characteristic of a plurality of layers in a conventional antenna device expressed using a Smith chart.
  • the antenna element is arranged in the vicinity of a multi-layer (at least two layers) circuit board, wherein a coupling is formed between the antenna element and the at least one circuit board by a coupling gap.
  • “coupled” refers to a substantial effect on the antenna radiation of the antenna device, i.e., the antenna elements cooperate with the circuit board such that the entire antenna device as a whole forms antenna radiation. In this way, the space occupied by the antenna device can be reduced, making the antenna device more compact.
  • Such an antenna device is particularly suitable for wearable devices such as Bluetooth headsets or other small devices that require wireless communication.
  • the antenna device 10 includes a first ground layer and a second ground layer located below the first ground layer.
  • the second ground layer comprises a main board, and the first ground layer core is connected to the second ground layer.
  • the first formation is equal in size to the second formation, ie the first formation area is not much smaller than the second formation area and vice versa.
  • the formation refers to a circuit having a ground wiring composed of a flexible circuit board FPC, a soft and hard bonding board, a conventional RF4 PCB board, or other materials.
  • the ground layer is not only a circuit with a ground function but a circuit with a ground function, and the circuit can also integrate other functions.
  • a motherboard is included in the second ground layer, that is, a motherboard having a ground circuit is regarded as a second ground layer.
  • the second ground layer includes a main board and a battery, or includes a main board and a flexible circuit board. The main board is connected to the battery or the flexible circuit board through a conductive member, and the first ground layer is connected to the battery or the flexible circuit board. At this time, the battery or the flexible circuit board is a circuit having a ground wiring.
  • the first ground layer and the second ground layer may be implemented by a circuit board having a ground layer wiring, that is, a first circuit board and a second circuit board.
  • the first ground layer and the second ground layer are respectively realized by the first circuit board and the second circuit board as an example.
  • the antenna device 10 includes a first circuit board 201 and a second circuit board 202 located below the first circuit board.
  • the second circuit board 202 is connected to the first circuit board 201.
  • the second circuit board 202 is connected to the first circuit board 201 through the first flexible circuit board 204.
  • the first circuit board 201 includes a first ground layer (not shown), and the second circuit board 201 includes a second ground layer (not shown).
  • FIG. 2 shows a side view of the antenna device 10. As shown in FIG. 2, the second circuit board 202 is connected to the first circuit board 201 through the first flexible circuit board 204.
  • the antenna device 10 may further include a third ground layer, the third ground layer is located below the second ground layer, and is connected to the second ground layer through the second flexible circuit board.
  • the antenna device 10 further includes a third circuit board 203 located below the second circuit board 202.
  • the third circuit board 203 can be connected to the second circuit board 202 through the second flexible circuit board 205.
  • the third circuit board can be a circuit board for a battery or equivalent battery space, and/or a flexible circuit board.
  • Figure 3 shows a variant of the embodiment.
  • the circuit boards 202, 203 collectively constitute a second circuit board, and the second circuit board is coupled to the first circuit board 201 via the first flexible circuit board 204.
  • the circuit boards 202, 203 are connected by conductive foam, shrapnel or the like to form a second ground layer.
  • the second circuit board 202 is a main board.
  • the first flexible circuit board 204 and the second flexible circuit board 205 are elongated.
  • the antenna device 10 further includes an antenna element 102 located adjacent to the first circuit board 201 and forming a coupling gap 103 with the first circuit board 201.
  • the antenna element 102 can be annular. However, those skilled in the art will appreciate that the antenna element 102 can be other shapes, such as rectangular, or other polygonal shapes, and the like.
  • the antenna element 102 surrounds the periphery of the first circuit board 201 and is spaced apart from the first circuit board 201 by a gap 103 which is different from the prior art.
  • the antenna element can be combined with the circuit board to some extent.
  • the antenna device disclosed herein is more compact than prior art antenna devices. This is especially advantageous for small electronic device applications.
  • the antenna element 102 may be flush with or lower than the first circuit board 201 relative to the second circuit board 202. This further facilitates reducing the space occupied by the antenna device.
  • support members such as frames or struts may be provided in the electronic device to which the antenna device is applied to fix the position of the antenna elements and the respective circuit boards.
  • the distance between the first and second circuit boards, and/or the distance between the second and third circuit boards is greater than 1 mm.
  • the distance between the first circuit board 201 and the second circuit board 202 is not less than 2 mm. That is to say, the distance between the first ground layer and the second ground layer is not less than 2 mm, so that the coupling between the circuit boards can be better avoided.
  • the width of the coupling slit is greater than 1 mm.
  • the performance of the antenna device can be optimized by setting the impedance of the antenna device. Since the antenna element is coupled to the circuit board to affect the radiation characteristics of the entire antenna device, the impedance of the antenna device is considered here, rather than the impedance of the antenna element.
  • the antenna element 102 includes a feed point 101.
  • the antenna element 102 includes a feed point 101 and a loop antenna connected to the feed point 101.
  • the feeding point 101 can be disposed on the main board and electrically connected to the main board.
  • the loop antenna forms a coupling gap 103 with the first ground layer, that is, the first circuit board 201.
  • a Smith chart is usually used to indicate the radiation frequency of an antenna. Therefore, before the impedance matching of the antenna device is performed, the radiation frequency range of the antenna element satisfies the range of plus or minus 30 degrees centered on the center point of the Smith chart on the Smith chart; the center point of the Smith chart is Preset resonance point.
  • the antenna device of the present application it is a parallel resonance, and the point P in FIG. 4 represents a parallel resonance point of the antenna device, that is, a preset resonance point.
  • the radiation frequency range of the antenna element satisfies the point of the point P, and the angle with the positive horizontal axis (x-axis) is between -30° and +30°, that is, within 60° in FIG.
  • the antenna device is in parallel resonance.
  • the radiation frequency can be adjusted by setting at least one of the width of the coupling slit, the length of the loop antenna, and the width of the loop antenna, so that the radiation frequency range of the antenna element satisfies the center point of the Smith chart on the Smith chart.
  • the center is within plus or minus 30 degrees.
  • the antenna radiation frequency can be reflected by the shape and structure of the antenna element. That is, in the antenna device, after the center point of the Smith chart is set in advance, the components of the antenna are adjusted such that the radiation frequency of the antenna device is within plus or minus 30 degrees centering on the center point of the Smith chart. .
  • center point of the Smith chart can be set according to actual needs, and the present invention does not limit this.
  • connection portion between the formations and the antenna feed does not have a large influence on the operation mode between the antenna element and the multilayer circuit board (plurality of formations).
  • connection portion first flexible circuit board 204 which does not have a large influence on the natural resonance frequency between the multilayer structures.
  • Fig. 5 is a view showing a current distribution in the case where the radiation frequency of the antenna device is not set as in Fig. 4 above. .
  • the current is indicated by an arrow.
  • current is mainly distributed in the first flexible circuit board 204 and the second flexible circuit board 205.
  • the current distribution on the first flexible circuit board 204 and the second flexible circuit board 205 is equal to the current distribution on the circuit boards 201, 202, 203.
  • the board is in a parallel resonant state with natural resonance.
  • FIG. 6 and 7 are schematic views showing the current distribution in the case where the radiation frequency of the antenna device is set as shown in Fig. 4.
  • the antenna device is adjusted to the state of parallel resonance.
  • the excitation antenna parallel resonance mode is employed to suppress the parallel natural resonance of the circuit board, thereby causing the multilayer circuit board to be subjected to stimulated radiation.
  • the current distribution in Figure 6 is different from Figure 5.
  • the current is moved by the stronger area connection section (the first flexible circuit board 204 for connecting the first, second, and third circuit boards 201, 202, 203, the second flexible circuit board 205) to the vicinity of the antenna element 102.
  • the edge position of a circuit board 201 The current in other boards and flexible boards in a multilayer circuit board is significantly reduced. This minimizes the impact of the multilayer board on the antenna elements.
  • the antenna device in which the radiation frequency is set as shown in Figs. 5 and 9 can have better performance.
  • the solid line indicates the current path and size of the antenna element
  • the broken line indicates the coupling current on the first circuit board 201.
  • the coupling of the antenna element to the first circuit board 201 is strong in terms of current distribution.
  • the degree of coupling can be determined by the coupling slot 103. As the degree of coupling increases, the resonant frequency of the antenna elements shifts.
  • the antenna device can be provided while satisfying the radiation frequency characteristics shown in the Smith chart of FIG. Such an antenna device has better performance.
  • Fig. 8 shows an example of an antenna device in which the radiation frequency of the antenna device is set in accordance with the Smith chart of Fig. 4.
  • the antenna device includes a feeding point 301, an antenna element 302, a coupling slit 303, a first circuit board 401, a second circuit board 402, a third circuit board 403, and a flexible circuit board 404.
  • the Smith chart can not only indicate the radiation frequency of the antenna device, but also the impedance characteristics of the antenna device.
  • Fig. 9 shows the impedance of the multi-layer structure in the antenna device of Fig. 8 and when irradiated with a conventional antenna device. None of the antenna devices are impedance matched.
  • the solid line indicates the impedance characteristics exhibited by the board after the antenna element is removed in the conventional antenna device. For example, as the frequency changes from 1.5 GHz to 3 GHz, the impedance changes from a hollow starting point to a solid end point.
  • the broken line indicates the impedance characteristics exhibited by the board after the antenna element is removed in the antenna apparatus of Fig. 8.
  • Figure 10 is an S11 characteristic of the antenna device of Figure 8 and a conventional antenna device in which matching elements are added to the antenna device.
  • the solid line indicates the resonance characteristic of the conventional antenna device
  • the broken line indicates the resonance characteristic of the antenna device shown in FIG.
  • there is an unnecessary resonance C (dashed circle) in the solid line, and unnecessary resonance (solid circle) D in the broken line is suppressed.
  • the conventional antenna device has a weaker suppression effect on the natural resonance of the multi-story structure.
  • the bandwidth of the conventional antenna device at 2.4 GHz is also narrower than that of the antenna device shown in FIG.
  • Conventional antenna devices create additional unwanted resonances that do not effectively radiate energy.
  • the antenna device of the multi-layer structure of the conventional antenna forms a resonance at 1.9 GHz, which affects the bandwidth of 2.4 GHz.
  • the antenna device shown in Fig. 8 can better suppress resonance caused by a multilayer (ground layer) structure.
  • the natural resonant frequency of the multilayer (ground) structure is around 2 GHz.
  • the antenna device shown in Fig. 8 can further improve the bandwidth and efficiency of the antenna device.
  • the antenna device shown in FIG. 8 can have better performance than a conventional antenna device such as a quarter-wavelength IFA antenna.
  • Fig. 15 is a multilayer impedance characteristic of a conventional antenna device expressed using a Smith chart.
  • the legends L, M, and N respectively represent the configuration of a two-layer circuit and two three-layer circuit boards, wherein each layer of the circuit board includes a ground layer.
  • L denotes a configuration of a conventional antenna element and a circuit board, wherein the circuit board arrangement includes two layers of circuit boards.
  • M denotes a configuration of a conventional antenna element and a circuit board, wherein the board configuration includes a three-layer circuit board.
  • N indicates that the configuration includes a three-layer circuit board and a conventional antenna element, wherein the circuit board configuration includes a three-layer circuit board, and the connection circuit board 24 is located on a side close to the feeding point of the antenna element.
  • E denotes the position of the 50 ohm matching impedance. As shown in Figure 15, as the number of board layers increases, the impedance of the board of a conventional antenna approaches the 50 ohm matching impedance. This makes it difficult to adjust the impedance characteristics of the antenna device and affect the antenna radiation.
  • the effect of the three-layer structure on the antenna elements is considerable.
  • the three-layer structure will affect the impedance of the antenna. It can be seen from Fig. 15 that the impedance of the three-layer structure is easier to approach the system impedance (50 ohms) than the two-layer structure, which means that it is difficult to affect the nature of the three-layer structure by adjusting the size and matching of the antenna elements. Resonance and its unwanted radiation. In addition, this can also result in a narrowing of the bandwidth of the antenna device.
  • the antenna device described above is a Bluetooth antenna device and a frequency range in which the radiation frequency ranges from 2.4 GHz to 2.5 GHz.
  • the antenna device is a Bluetooth earphone antenna.
  • the antenna device can have a more flexible configuration.
  • the second circuit board 402 is quadrangular and sequentially includes first, second, third, and fourth sides, wherein the first side and the third side are opposite, the second side and the fourth side Relative side.
  • the first and third sides are shorter than the second and fourth sides.
  • the feed point 301 is on the first side
  • the first flexible circuit board 304 is located on one side of the second and fourth sides near the feed point 301.
  • the second side is closer to the feed point 301 than the fourth side from the feed point 301
  • the first flexible circuit board 304 is disposed on the second side.
  • connection flexible circuit board With the prior art, it is difficult to set the connection flexible circuit board close to the feed point as in Fig. 8.
  • the antenna device provided herein is advantageous in terms of design freedom.
  • the configuration of various antenna devices is illustrated in Figures 11-14, wherein the antenna device includes more than two layers of circuit boards, i.e., includes at least two layers of circuit boards. Thanks to the above settings, the connections between the boards are also more flexible.
  • the antenna device includes a feed point 501, a first circuit board 601, and a second circuit board 602.
  • the antenna device further includes a third circuit board 603 located below the second circuit board 602.
  • the first circuit board 601 and the second circuit board 602 are connected by a first flexible circuit board 604.
  • the third circuit board 603 is connected to the second circuit board 602 through the second flexible circuit board 605.
  • the second flexible circuit board 605 is located on one of the second and fourth sides adjacent to the feed point 501.
  • At least one of the first, second, and third circuit boards 601, 602, 603 is a flexible circuit board.
  • the design of electronic devices is more flexible by using flexible circuit boards.
  • the three-layer structure (three-layer structure) shown in Figures 11-14 can have a flexible configuration.
  • the length, width, and coupling gap of the antenna element can be adjusted to set the impedance characteristics of the antenna device.
  • the antenna elements in the antenna device of the three-layer structure may be set shorter than the two-layer structure.
  • the length of the antenna refers to the electrical length.
  • the length of the antenna may be 1/2 wavelength of the operating frequency, which is the electrical length at the parallel resonant frequency point of the antenna, which is different from a conventional half-wavelength loop antenna.
  • the electrical length of the antenna device after being affected by the coupling is about 1/2 wavelength, and the antenna device is at the parallel resonant frequency point. nearby.
  • the distance between the first and second circuit boards 601, 602 and the distance between the second and third circuit boards 602, 603 are greater than 1 mm, preferably, not less than 2 mm. This ensures better antenna performance.
  • the feed point 301, the antenna element 302, the coupling slot 303, the circuit boards 401-404, the feed point 501 in FIGS. 11-14, the antenna element 502, the coupling slot 503, and the circuit in FIG. Plates 601-605 may correspond to respective components of Figures 1-3, 5-7, respectively.
  • the above antenna device can also be applied to an electronic device.
  • the electronic device includes the antenna device described above.
  • the electronic device is, for example, a Bluetooth headset, a Bluetooth watch, a mobile phone, a tablet, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明涉及天线装置及电子设备。天线装置包括:第一地层;位于第一地层下方的第二地层,其中,所述第二地层包含有主板,所述第一地层与所述第二地层连接;以及位于第一地层附近的并与第一地层通过耦合缝隙形成耦合的天线元件。本发明所要解决的一个技术问题是如何提供一种新型的天线装置。发明的一个用途是蓝牙天线。 (图1)

Description

天线装置及电子设备 技术领域
本发明涉及天线技术领域,更具体地,本发明涉及一种天线装置和电子设备。
背景技术
在现有技术中,天线元件需要与电路板进行隔离,以避免电路板对天线装置的影响。例如,需要在电路板上设置较大的净空区,以容纳天线元件。通常,天线元件在电路板的净空区上方与电路板间隔开一定距离。因此,通常天线装置会在电子设备中占用较大的空间。
近年来,使用无线传输的可穿戴设备备受关注。可穿戴设备例如包括耳机、手表。现在,人们经常在跑步时佩戴智能蓝牙耳机和/或智能手表。此外,诸如智能家居设备的智能无线设备也极大地丰富了人们的日常生活。智能家居设备例如包括扫地机器人、智能音箱等。人们可以通过智能家居设备享受生活的舒适与便利。
例如,出现了各种蓝牙耳机。蓝牙耳机由于其便利性而受到人们的喜爱。蓝牙耳机的外观丰富多样。蓝牙天线的设计也相应地变化,以便于与蓝牙耳机的外观相适应。通常,在蓝牙耳机中使用柔性电路板(FPC),以节省空间。然而,由于柔性电路板的布线及形状位置多变,因此,给天线的设计与实现带来影响。
在现有技术中,史密斯图(Smith Chart)是技术人员经常使用的一个辅助工具。技术人员经常使用史密斯图来计算和表示诸如天线的阻抗元件的阻抗特性。
发明内容
本发明的一个目的是提供一种新型的天线装置。
根据本发明的一个方面,提供了一种天线装置,其特征在于,包括:第一地层;位于第一地层下方的第二地层,其中,所述第二地层包含有主板,所述第一地层与所述第二地层连接;以及位于第一地层附近的并与第一地层通过耦合缝隙形成耦合的天线元件。
优选地,所述天线元件包括馈电点及与所述馈电点连接的环形天线,所述馈电点设置在所述主板上,并与所述主板电连接,所述环形天线与所述第一地层间隔形成耦合缝隙。
优选地,在未对所述天线装置进行阻抗匹配之前,所述天线元件的辐射频率范围满足在史密斯圆图上以史密斯圆图的中心点为中心的正负30度范围内;所述史密斯圆图的中心点为预设谐振点。
优选地,所述耦合缝隙的宽度、所述环形天线的长度和所述环形天线的宽度中的至少一个被设置成使得所述天线元件的辐射频率范围满足在史密斯圆图上以史密斯圆图的中心点为中心的正负30度范围内。
优选地,所述天线装置是蓝牙天线装置;所述辐射频率范围为2.4GHz至2.5GHz的频率范围。
优选地,相对于所述第二地层,所述天线元件与所述第一地层齐平或者低于所述第一地层。
优选地,所述第二地层包含主板及电池,或者包括主板及柔性电路板,所述主板与所述电池或柔性电路板通过导电件连接;所述第一地层与所述电池或所述柔性电路板连接。
优选地,还包括:第三地层;所述第三地层位于所述第二地层下方,并通过第二柔性电路板与所述第二地层连接。
优选地,所述第一地层与所述第二地层的间距离不小于2mm。
优选地,所述耦合缝隙的宽度大于1mm。
根据本发明的另一个方面,提供了一种电子设备,其特征在于,包括前面所述的天线装置。
本发明的一个技术效果在于,可以提供一种紧凑的天线装置。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是根据一个实施例的天线装置的示意性正视图。
图2是根据一个实施例的天线装置的示意性侧视图。
图3是根据一个实施例的天线装置的一个变形的示意性侧视图。
图4是使用史密斯图表示的、根据一个实施例的未加匹配的天线装置的阻抗特性。
图5是多层电路板在谐振时的电流分布的一个示意图。
图6是多层电路板在谐振时的电流分布的另一个示意图。
图7是根据一个实施例的天线装置的部分电流的示意图。
图8是根据另一个实施例的天线装置的示意性正视图。
图9是使用史密斯图表示的、根据一个实施例的天线装置中的多层地结构的阻抗特性。
图10是根据一个实施例的天线装置的S11特性。
图11-14是根据一个实施例的天线装置的各种变形。
图15是使用史密斯图表示的、传统天线装置中多地层的阻抗特性。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术和设备可能不作详细讨论,但在适当情况下,所述技术和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的 值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
下面,参照附图描述根据本发明的各个实施例和例子。
在这里,提出了将天线元件设置在多层(至少两层)电路板附近的技术方案,其中,在天线元件与至少一层电路板之间通过耦合缝隙形成耦合。这里,“耦合”指的是对天线装置的天线辐射产生实质影响,即,天线元件与电路板共同作用从而整个天线装置作为整体形成天线辐射。通过这种方式,可以减少天线装置所占用的空间,使得天线装置更加紧凑。这种天线装置尤其适合于诸如蓝牙耳机等的可穿戴设备、或者其他需要无线通信的小型设备。
如图1所示,天线装置10包括第一地层和位于第一地层下方的第二地层。其中,第二地层包含有主板,第一地层核第二地层连接。第一地层与第二地层面积大小相当,即第一地层面积不会远小于第二地层面积,反之亦然。地层指的是由柔性电路板FPC、软硬结合板、常规RF4PCB板或其他材料所构成的具有地层布线的电路。
需要说明的是,地层不仅是具有接地功能的电路,而是指具有接地功能的电路,此电路还可以集成其他功能。例如,在第二地层中包含有主板,即为将具有接地电路的主板视为第二地层。或者,第二地层包含主板及电池,或者包括主板及柔性电路板,主板与电池或柔性电路板通过导电件连接,第一地层与电池或柔性电路板连接。此时,电池或柔性电路板即为具有地层布线的电路。本申请中,第一地层及第二地层可以由具有地层布线的电路板实现,即为第一电路板,及第二电路板。以下以第一地层及第二地层分别由第一电路板及第二电路板实现为例进行说明。
也就是说,天线装置10包括第一电路板201和位于第一电路板下方的第二电路板202。第二电路板202与第一电路板201连接。例如,第二电路板202通过第一柔性电路板204与第一电路板201连接。
例如,第一电路板201包括第一地层(未示出),以及第二电路板201 包括第二地层(未示出)。
图2示出了天线装置10的侧视图。如图2所示,第二电路板202通过第一柔性电路板204与第一电路板201连接。
进一步的,天线装置10还可以包括第三地层,第三地层位于第二地层下方,且通过第二柔性电路板与第二地层连接。
也就是说,天线装置10还包括:位于第二电路板202下方的第三电路板203。如图2所示,第三电路板203可以通过第二柔性电路板205与第二电路板202连接。例如,第三电路板可以是用于电池或等同电池空间的电路板,和/或是柔性电路板。
图3示出了所述实施例的一个变形。如图3所示,电路板202、203共同构成第二电路板,以及第二电路板通过第一柔性电路板204与第一电路板201连接。例如,电路板202、203通过导电泡棉、弹片等连接,形成第二地层。
进一步的,在三层结构的电路板中,即为天线装置10包括第一电路板201,第二电路板202及第三电路板203的情况,第二电路板202是主板。第一柔性电路板204、第二柔性电路板205是狭长型的。
如图1所示,天线装置10还包括位于第一电路板201附近的并与第一电路板201形成耦合缝隙103的天线元件102。
如图所示,天线元件102可以是环形的。但是本领域技术人员应当理解,天线元件102也可以是其他形状的,例如,矩形、或其他多边形等。天线元件102环绕于第一电路板201的周边,且与第一电路板201间间隔有缝隙103这与现有技术是不同的。
在这里公开的天线装置中,在一定程度上,天线元件可以与电路板结合。相对于现有技术的天线装置,这里公开的天线装置更加紧凑。对于小型电子设备的应用,这是尤其有利的。
例如,相对于第二电路板202,天线元件102可以与第一电路板201齐平或者低于第一电路板201。这进一步有利于减小天线装置所占用的空间。
尽管图中没有示出,但是,在应用天线装置的电子设备中可以设置诸 如框架或者支杆的支撑元件,以固定天线元件和各个电路板的位置。
进一步的,第一和第二电路板之间的距离、和/或第二和第三电路板之间的距离大于1mm。例如,第一电路板201与第二电路板202的间距离不小于2mm。也就是说,第一地层与第二地层间的距离不小于2mm,这样可以较好地避免电路板之间的耦合。
进一步的,耦合缝隙的宽度大于1mm。
可以通过设置天线装置的阻抗来优化天线装置的性能。由于天线元件与电路板产生耦合,从而影响整个天线装置的辐射特性,因此,在这里所考虑的是天线装置的阻抗,而不是天线元件的阻抗。这里,例如,如图1所示,天线元件102包括馈电点101。
例如,天线元件102包括馈电点101及与馈电点101连接的环形天线。馈电点101可以设置在主板上,并与主板电连接。环形天线与第一地层即为第一电路板201间隔形成耦合缝隙103。
在天线设计技术领域,通常使用史密斯圆图来表示天线的辐射频率。因此,在未对所述天线装置进行阻抗匹配之前,天线元件的辐射频率范围满足在史密斯圆图上以史密斯圆图的中心点为中心的正负30度范围内;史密斯圆图的中心点为预设谐振点。在本申请中的天线装置中,其为并联谐振,图4中的P点表示天线装置的并联谐振点,即为预设谐振点。此时,天线元件的辐射频率范围满足在P点为中心,与正向横轴(x轴)的夹角在-30°到+30°之间,即图4中的60°范围内。此时,天线装置为并联谐振。
进一步的,可以通过设置耦合缝隙的宽度、环形天线的长度和环形天线的宽度中的至少一个,调整辐射频率,使得天线元件的辐射频率范围满足在史密斯圆图上以史密斯圆图的中心点为中心的正负30度范围内。换句话说,在一定程度上,天线辐射频率可以通过天线元件的形状、结构体现。即为,在天线装置中,预先设定好史密斯圆图的中心点后,通过调整天线的各元件,使得天线装置的辐射频率在以史密斯圆图的中心点为中心的正负30度范围内。
需要说明的是史密斯圆图的中心点可以根据实际需求进行设定,本发明对此不做限制。
进一步的,通过这种设置,地层之间的连接部分与天线馈电之间的相对位置不会对天线元件与多层电路板(多个地层)之间的工作模式产生较大影响。例如,在图3所示的两层地结构中,存在一个连接部分(第一柔性电路板204),连接部分不会对多层地结构之间的自然谐振频率产生较大影响。
图5示出了未像上面图4那样设置天线装置的辐射频率的情况下的电流分布的示意图。。在图5中,通过箭头指示电流。如图5所示,通常,电流主要分布在第一柔性电路板204和第二柔性电路板205中。在多个电路板处于自然谐振时,在第一柔性电路板204与第二柔性电路板205上有较强的电流分布。在第一柔性电路板204与第二柔性电路板205上的电流分布与在电路板201、202、203上电流分布是均等的。电路板在自然谐振的情况下处于并联谐振状态。
图6、7示出了如图4那样设置天线装置的辐射频率的情况下的电流分布的示意图。在这里,天线装置被调整到并联谐振的状态。
如图6所示,当进行辐射时,电流主要分布在第一电路板201中。在这里,采用激励天线并联谐振模式,抑制电路板的并联自然谐振,从而使多层电路板处于受激辐射。图6中的电流分布不同于图5。电流由较强的区域连接段(用于连接第一、第二、第三电路板201、202、203的第一柔性电路板204、第二柔性电路板205)移动到靠近天线元件102的第一电路板201的边缘位置。在多层电路板中的其他电路板和柔性电路板中的电流明显减弱。这使得多层电路板对天线元件的影响降低到最小。
如图7所示,耦合主要发生在第一电路板201和天线元件102之间。在这种情况下,其他电路板对天线元件的性能影响较小。这更加容易制造符合要求的天线装置。因此,相对于如图5、9那样设置辐射频率的天线装置可以具有更好的性能。在图7中,实线表示天线元件的电流路径及大小,虚线表示第一电路板201上的耦合电流。从电流分布上看,天线元件与第一电路板201的耦合较强。耦合程度可以由耦合缝隙103确定。随着耦合程度的增加,天线元件的谐振频率会偏移。可以在满足图4的史密斯圆图所示的辐射频率特性的情况下设置天线装置。这样的天线装置具有较好的 性能。
图8示出了天线装置的一个例子,根据图4的史密斯圆图设置该天线装置的辐射频率。如图8所示,天线装置包括馈电点301、天线元件302、耦合缝隙303、第一电路板401、第二电路板402、第三电路板403和柔性电路板404。
史密斯圆图不仅可以表示出天线装置的辐射频率,还可以表示出天线装置的阻抗特性。图9示出了多地层结构在图8的天线装置和采用传统天线装置在辐射时的阻抗情况。天线装置都没有进行阻抗匹配。在图9中,在史密斯圆图中,实线表示传统天线装置中去除了天线元件之后的电路板所体现的阻抗特性。例如,随着频率从1.5GHz变化到3GHz,阻抗从实线的空心起点变化到实心终点。虚线表示图8的天线装置中去除了天线元件之后的电路板所体现的阻抗特性。例如,随着频率从1.5GHz变化到3GHz,阻抗从虚线的空心起点变化到实心终点。应当注意,尽管图9与图4都是史密斯圆图,但是,它们所代表的对象是不同的。在图9中,A点表示采用传统天线的多层结构(多地层)的电路板的第一并联谐振(即自然谐振频率)下的阻抗。在图9中,B点表示图8的多层结构(多地层)的电路板的第一并联谐振(即自然谐振频率)下的阻抗。如图9所示,尽管传统天线装置也可以用于天线辐射,但是,由于图8的电路板的阻抗包含较多电抗成分,因此更容易调整图8所示的天线装置,以避免地层存在不必要的谐振。从图9的史密斯圆图可以看出,图8的电路板中的第一并联谐振受到了抑制,而且阻抗更高。当为天线装置添加匹配元件后,在图8的天线装置中,对多地层自然谐振频率的抑制效果更加明显。
图10是图8的天线装置和传统天线装置的S11特性,其中,为天线装置添加了匹配元件。如图10所示,实线表示传统天线装置的谐振特性,虚线表示图8所示的天线装置的谐振特性。如图10所示,在实线中存在不必要的谐振C(虚线圆圈),而在虚线中的不必要的谐振(实线圆圈)D被抑制。从图10可以看出,传统天线装置对多地层结构的自然谐振的抑制效果较弱。此外,由于多地层结构,传统天线装置在2.4GHz的带宽也比图8所示的天线装置的带宽窄。传统天线装置形成了额外的不需要的谐振,这样 的谐振不能有效辐射能量。此外,如果多地层结构的天线装置的无用谐振出现在2.4GHz附近,则由于阻抗的急剧变化,这会使得传统天线装置的带宽变窄。如图10所示,传统天线的多地层结构的天线装置在1.9GHz形成谐振,该谐振影响了处2.4GHz的带宽。图8所示的天线装置可以较好地抑制由多层(地层)结构引起的谐振。例如,对于诸如蓝牙耳机的某些蓝牙天线装置,多层(地层)结构的自然谐振频率在2GHz附近。图8所示的天线装置可以进一步改进天线装置的带宽和效率。
因此,相比传统天线装置,如四分之一波长的IFA天线,图8所示的天线装置可以具有更好的性能。
图15是使用史密斯图表示的、传统天线装置的多层地阻抗特性。如图15所示,图例L、M、N分别表示两层电路以及两种三层电路板的配置,其中,每层电路板都包括地层。例如,L表示传统天线元件和电路板的配置,其中,该电路板配装置包括两层电路板。M表示传统天线元件和电路板的配置,其中,该电路板配置包括三层电路板。N表示配置包括三层电路板以及传统天线元件,其中,该电路板配置包括三层电路板,连接电路板24位于靠近天线元件的馈电点的一侧。在图15中,E表示50欧姆匹配阻抗的位置。如图15所示,随着电路板层数的增加,传统天线的电路板的阻抗会靠近50欧姆匹配阻抗的位置。这样难以调整天线装置的阻抗特性并会对天线辐射产生影响。
一般来说,三层地结构对天线元件的影响是相当大的。如图15所示,三层地结构将影响天线的阻抗。从图15看出,相对于二层地结构,三层地结构的阻抗更容易接近系统阻抗(50欧姆),这意味着较难通过调节天线元件的尺寸和匹配来影响三层地结构的自然谐振及其不需要的辐射。此外,这也可导致天线装置的带宽变窄。
例如,上述天线装置是蓝牙天线装置,以及辐射频率范围为2.4GHz至2.5GHz的频率范围。例如,天线装置是蓝牙耳机天线。
通过上面的设置,天线装置可以具有更加灵活的配置。例如,在图8的天线装置中,第二电路板402是四边形并且依次包括第一、第二、第三、第四边,其中,第一边和第三边相对,第二边和第四边相对。相对于第二、 第四边,第一、第三边较短。馈电点301位于第一边,以及第一柔性电路板304位于第二边和第四边中靠近馈电点301的一条边上。例如,第二边距离馈电点301相对于第四边距离馈电点301更近,则第一柔性电路板304设置在第二边上。
通过现有技术的方式,很难像图8那样,将连接柔性电路板设置得靠近馈电点。从设计自由度方面来说,这里提供的天线装置是有利的。
例如,在图11-14示出了各种天线装置的配置,其中天线装置包括多于两层的电路板,即,包括至少两层电路板。由于采用了上面的设置,因此,电路板之间的连接也更加灵活。
例如,如图11-14所示,天线装置包括馈电点501、第一电路板601、第二电路板602。此外,天线装置还包括位于第二电路板602下方的第三电路板603。第一电路板601和第二电路板602通过第一柔性电路板604连接。第三电路板603通过第二柔性电路板605与第二电路板602连接。如图12、14所示,第二柔性电路板605位于第二边和第四边中靠近馈电点501的一条边上。
例如,第一、第二、第三电路板601、602、603中的至少一个是柔性电路板。通过使用柔性电路板,电子设备的设计更加灵活。
图11-14所示的三层结构(三层地结构)可以具有灵活的配置。可以对天线元件的长度、宽度以及耦合缝隙进行调整,以设置天线装置的阻抗特性。例如,相对于二层结构,三层结构的天线装置中的天线元件可以被设置得较短。
本领域技术人员应当理解,在这里,天线的长度指的是电长度。例如,天线的长度可以是工作频率的1/2波长,此长度是在天线的并联谐振频率点处的电长度,这不同于传统的半波长环天线。此外,由于多(地)层中的其中一层靠近天线元件,例如,它们形成耦合缝隙103,天线装置受耦合影响后的电长度为约1/2波长,此时天线装置处于并联谐振频率点附近.
例如,第一和第二电路板601、602之间的距离以及第二和第三电路板602、603之间的距离大于1mm,优选的,不小于2mm。这可以保证较好的天线性能。
在上面的附图中,图8中的馈电点301、天线元件302、耦合缝隙303、电路板401-404、图11-14中的馈电点501、天线元件502、耦合缝隙503、电路板601-605可以分别与图1-3、5-7中的相应部件对应。
此外,还可以将上述天线装置应用于电子设备。该电子设备包括前面所述的天线装置。所述电子设备例如是蓝牙耳机、蓝牙手表、手机、平板电脑等。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (11)

  1. 一种天线装置,其特征在于,包括:
    第一地层;
    位于第一地层下方的第二地层,其中,所述第二地层包含有主板,所述第一地层与所述第二地层连接;以及
    位于第一地层附近的并与第一地层通过耦合缝隙形成耦合的天线元件。
  2. 根据权利要求1所述的天线装置,其特征在于,所述天线元件包括馈电点及与所述馈电点连接的环形天线,所述馈电点设置在所述主板上,并与所述主板电连接,所述环形天线与所述第一地层间隔形成耦合缝隙。
  3. 根据权利要求1或2所述的天线装置,其特征在于,在未对所述天线装置进行阻抗匹配之前,所述天线元件的辐射频率范围满足在史密斯圆图上以史密斯圆图的中心点为中心的正负30度范围内;所述史密斯圆图的中心点为预设谐振点。
  4. 根据权利要求1至3任一项所述的天线装置,其特征在于,所述耦合缝隙的宽度、所述环形天线的长度和所述环形天线的宽度中的至少一个被设置成使得所述天线元件的辐射频率范围满足在史密斯圆图上以史密斯圆图的中心点为中心的正负30度范围内。
  5. 根据权利要求1至4任一项所述的天线装置,其特征在于,所述天线装置是蓝牙天线装置;
    所述辐射频率范围为2.4GHz至2.5GHz的频率范围。
  6. 根据权利要求1至5任一项所述的天线装置,其特征在于,相对于所述第二地层,所述天线元件与所述第一地层齐平或者低于所述第一地层。
  7. 根据权利要求1至6任一项所述的天线装置,其特征在于,所述第二地层包含主板及电池,或者包括主板及柔性电路板,所述主板与所述电池或柔性电路板通过导电件连接;
    所述第一地层与所述电池或所述柔性电路板连接。
  8. 根据权利要求1至7任一项所述的天线装置,其特征在于,还包括:第三地层;
    所述第三地层位于所述第二地层下方,并通过第二柔性电路板与所述第二地层连接。
  9. 根据权利要求1至8任一项所述的天线装置,其特征在于,所述第一地层与所述第二地层的间距离不小于2mm。
  10. 根据权利要求1至9任一项所述的天线装置,其特征在于,所述耦合缝隙的宽度大于1mm。
  11. 一种电子设备,其特征在于,包括根据权利要求1至10任一项所述的天线装置。
PCT/CN2018/110895 2018-04-25 2018-10-18 天线装置及电子设备 WO2019205519A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810381487.0A CN108711668B (zh) 2018-04-25 2018-04-25 天线装置及电子设备
CN201810381487.0 2018-04-25

Publications (1)

Publication Number Publication Date
WO2019205519A1 true WO2019205519A1 (zh) 2019-10-31

Family

ID=63866858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110895 WO2019205519A1 (zh) 2018-04-25 2018-10-18 天线装置及电子设备

Country Status (2)

Country Link
CN (1) CN108711668B (zh)
WO (1) WO2019205519A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165409B (zh) * 2019-05-31 2021-06-01 歌尔科技有限公司 一种天线装置及通信设备
CN110323542B (zh) * 2019-06-28 2021-08-06 歌尔科技有限公司 一种天线装置及蓝牙耳机
CN110444893B (zh) * 2019-08-16 2020-05-26 歌尔科技有限公司 一种单极天线带宽调整方法及系统
CN114824737A (zh) * 2019-09-17 2022-07-29 华为技术有限公司 蓝牙耳机
CN110911819B (zh) * 2019-12-12 2021-10-22 深圳市思讯通信技术有限公司 2.4GHz高频环形激励振子天线
CN113079435B (zh) * 2021-04-07 2023-07-21 畅达星科技(深圳)有限公司 一种耳机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101971646A (zh) * 2008-03-13 2011-02-09 索尼爱立信移动通讯有限公司 用于耳机的天线和具有一体化天线的耳机
CN203932307U (zh) * 2014-02-21 2014-11-05 上海安费诺永亿通讯电子有限公司 手表天线及设有该手表天线的手表
CN104409869A (zh) * 2014-11-29 2015-03-11 青岛歌尔声学科技有限公司 一种多合一天线及一种多功能通讯设备
CN105785757A (zh) * 2016-04-28 2016-07-20 歌尔声学股份有限公司 手表天线装置及电子手表
CN205485353U (zh) * 2016-01-14 2016-08-17 昆山联滔电子有限公司 智能手表
US9640858B1 (en) * 2016-03-31 2017-05-02 Motorola Mobility Llc Portable electronic device with an antenna array and method for operating same
CN106842896A (zh) * 2016-12-26 2017-06-13 歌尔股份有限公司 一种可穿戴设备、外壳及可穿戴设备的天线控制方法
WO2017222217A1 (ko) * 2016-06-22 2017-12-28 주식회사 아모텍 링형 안테나 모듈 및 이를 제조하기 위한 제조용 지그

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20041455A (fi) * 2004-11-11 2006-05-12 Lk Products Oy Antennikomponentti
TW201126811A (en) * 2010-01-27 2011-08-01 Chi Mei Comm Systems Inc Antenna module
CN203251148U (zh) * 2012-06-08 2013-10-23 江苏大学 传感器的无线能量双频接收装置
JP2015149405A (ja) * 2014-02-06 2015-08-20 デクセリアルズ株式会社 アンテナ装置、非接触電力伝送用アンテナユニット、及び電子機器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101971646A (zh) * 2008-03-13 2011-02-09 索尼爱立信移动通讯有限公司 用于耳机的天线和具有一体化天线的耳机
CN203932307U (zh) * 2014-02-21 2014-11-05 上海安费诺永亿通讯电子有限公司 手表天线及设有该手表天线的手表
CN104409869A (zh) * 2014-11-29 2015-03-11 青岛歌尔声学科技有限公司 一种多合一天线及一种多功能通讯设备
CN205485353U (zh) * 2016-01-14 2016-08-17 昆山联滔电子有限公司 智能手表
US9640858B1 (en) * 2016-03-31 2017-05-02 Motorola Mobility Llc Portable electronic device with an antenna array and method for operating same
CN105785757A (zh) * 2016-04-28 2016-07-20 歌尔声学股份有限公司 手表天线装置及电子手表
WO2017222217A1 (ko) * 2016-06-22 2017-12-28 주식회사 아모텍 링형 안테나 모듈 및 이를 제조하기 위한 제조용 지그
CN106842896A (zh) * 2016-12-26 2017-06-13 歌尔股份有限公司 一种可穿戴设备、外壳及可穿戴设备的天线控制方法

Also Published As

Publication number Publication date
CN108711668A (zh) 2018-10-26
CN108711668B (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
WO2019205519A1 (zh) 天线装置及电子设备
JP5532866B2 (ja) マルチアンテナ装置および携帯機器
US7652628B2 (en) Antenna for use in earphone and earphone with integrated antenna
JP4343655B2 (ja) アンテナ
KR101248247B1 (ko) 격리 안테나를 가진 핸드헬드 전자장치
US10841716B2 (en) Hearing device with two-half loop antenna
US10886603B2 (en) Hearing device incorporating conformal folded antenna
US20080165065A1 (en) Antennas for handheld electronic devices
JP2011109547A (ja) マルチアンテナ装置および携帯機器
JP2007281990A (ja) アンテナ装置及びそれを用いた無線通信機器
JP6528496B2 (ja) アンテナ装置
JP2008011490A5 (zh)
TW200805781A (en) An antenna system
JP2017522759A (ja) 切り替え可能なπ字形アンテナ
JP6990833B2 (ja) アンテナ装置
US11784398B2 (en) Antenna device and earphones
JP2003158419A (ja) 逆fアンテナ及びその給電方法並びにそのアンテナ調整方法
JP6548271B2 (ja) アンテナ装置および無線機器
JP2012244188A (ja) マルチバンド対応のマルチアンテナ装置および通信機器
JP2008262989A (ja) 高周波回路基板
TWI773940B (zh) 無線耳機
JP2015185910A (ja) 通信装置及びアンテナ装置
CN212303908U (zh) 一种三维结构的蓝牙天线装置及蓝牙设备
JP2012244190A (ja) マルチバンド対応のマルチアンテナ装置および通信機器
KR20150089376A (ko) 이어폰 안테나

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916146

Country of ref document: EP

Kind code of ref document: A1