WO2019203050A1 - Wiring correction device and wiring correction method - Google Patents

Wiring correction device and wiring correction method Download PDF

Info

Publication number
WO2019203050A1
WO2019203050A1 PCT/JP2019/015346 JP2019015346W WO2019203050A1 WO 2019203050 A1 WO2019203050 A1 WO 2019203050A1 JP 2019015346 W JP2019015346 W JP 2019015346W WO 2019203050 A1 WO2019203050 A1 WO 2019203050A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal nanoparticle
nanoparticle ink
substrate
ink
laser beam
Prior art date
Application number
PCT/JP2019/015346
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 田ノ岡
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2019203050A1 publication Critical patent/WO2019203050A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/04Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits

Definitions

  • the present invention relates to a wiring correction device and a wiring correction method.
  • An FPD (Flat Panel Display) includes a substrate on which a fine wiring pattern is formed.
  • a repair process is performed.
  • a method for performing such a repair process for example, a method of forming a conductive path disclosed in Patent Document 1 is known.
  • the method for forming the conductive path includes a step of depositing a material layer made of a metal nanoparticle ink containing metal particles having a diameter of 5 to 100 nanometers on a substrate, and selectively forming a wiring formation scheduled region in the material layer. Irradiating a laser beam to sinter the metal nanoparticles, and ablation step of irradiating and removing an unsintered material layer other than the wiring formation scheduled region with an ablation laser beam.
  • the laser beam for ablation is required to have a large power output density in order to melt and scatter the material layer. Therefore, in the above-described ablation process, it is necessary to accurately determine the irradiation condition of the laser beam so that the underlying substrate is not damaged. In addition, in order not to damage the substrate, it is preferable to use a pulse laser having a narrow pulse width.
  • the laser light source of such a pulse laser has a problem that the cost of the entire apparatus is increased because it is very expensive.
  • Metal nanoparticle ink develops conductivity when heated. For this reason, in the ablation process described above, the metal nanoparticle ink melted and scattered by the laser beam for ablation may have conductivity by sintering, and there is a concern about the influence on other wiring patterns.
  • the present invention has been made in view of the above-described problems, and is a wiring correction device that can suppress damage to a substrate, can perform wiring correction quickly, and can also prevent other wiring patterns from being affected. It is another object of the present invention to provide a wiring correction method.
  • an aspect of the present invention is a wiring correction device that corrects a defective portion of a wiring pattern formed on a surface of a substrate, and includes a region including the defective portion.
  • An ink supply unit for applying metal nanoparticle ink; an ink heating unit for selectively irradiating a laser beam to the metal nanoparticle ink applied to the surface of the substrate; and a surface of the substrate A dry ice spraying unit that sprays dry ice particles toward the surface and removes the metal nanoparticle ink in a region not irradiated with the laser beam.
  • the metal nanoparticle ink is preferably a liquid containing metal nanoparticles made of gold, silver, copper, or aluminum.
  • the ink supply unit supplies the metal nanoparticle ink using any one of an inkjet method, a dispenser, and an electrostatic discharge method.
  • a suction unit that sucks the metal nanoparticle ink separated from the substrate by a jet of dry ice particles ejected from the dry ice ejection unit is provided.
  • Another aspect of the present invention is a wiring correction method, wherein a step of applying a metal nanoparticle ink to a region including a defect portion of a wiring pattern formed on a surface of a substrate is applied to the surface of the substrate.
  • the metal nanoparticle ink is preferably a liquid containing metal nanoparticles made of gold, silver, copper, or aluminum.
  • the present invention it is possible to suppress the substrate from being damaged in the correction of the wiring, to quickly correct the wiring, and to suppress the influence on other wiring patterns.
  • FIG. 1 is a schematic configuration diagram of a wiring correction device according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing a main part of the substrate showing a defective portion where the wiring correction is performed using the wiring correction device according to the embodiment of the present invention.
  • FIG. 3A is a schematic diagram of a substrate showing a state in which metal nanoparticle ink is applied to a region including a defect portion of a wiring pattern formed on the surface of the substrate using the wiring correction device according to the embodiment of the present invention.
  • FIG. 3-2 is a cross-sectional view taken along the line AB of FIG. 3-1.
  • FIG. 4-1 shows a state in which the metal nanoparticle ink applied to the surface of the substrate is selectively baked by irradiating a laser beam using the wiring correction device according to the embodiment of the present invention.
  • substrate shown.
  • FIG. 4-2 is a cross-sectional view taken along the line CD of FIG. 4-1.
  • FIG. 5 shows that the dry ice particles are ejected toward the metal nanoparticle ink after being irradiated with the laser beam by using the wiring correction device according to the embodiment of the present invention, and the laser beam is not irradiated.
  • FIG. 6A is a sectional view taken along line EF in FIG.
  • FIG. 6B is a cross-sectional view taken along the line GH in FIG.
  • FIG. 7 is a plan view of a principal part of the substrate showing a state where a defect portion on the surface of the substrate is corrected using the wiring correction device according to the embodiment of the present invention.
  • FIG. 8 is a flowchart showing a wiring correction method according to the embodiment of the present invention.
  • FIG. 1 shows a wiring correction device 1 according to an embodiment of the present invention.
  • the wiring correction device 1 includes an ink supply unit 2, an ink heating unit 3, and a dry ice ejection unit 4.
  • the wiring correction device 1 is mounted on a gantry stage (not shown) as a positioning mechanism.
  • the gantry stage is movable relative to the table 6 on which the correction substrate 5 is arranged.
  • the correction substrate 5 is an object for correcting the wiring by using the wiring correction device 1, and for example, a TFT substrate constituting a display device such as a liquid crystal display device can be applied.
  • the ink supply unit 2 includes an ink storage chamber 21 that stores the metal nanoparticle ink, and an ink discharge unit 22 that discharges the metal nanoparticle ink stored in the ink storage chamber 21.
  • the ink supply unit 2 is set so as to be movable with respect to the surface of the correction substrate 5 by driving a gantry stage (not shown).
  • the tip of the ink ejection part 22 is set so that, for example, a metal nanoparticle ink application region having a width of about several tens of ⁇ m can be formed.
  • the size of the opening at the tip of the ink discharge portion 22 and the size of the metal nanoparticle ink application region can be appropriately changed according to the line width dimension of the wiring pattern of the substrate to be corrected.
  • the ink supply unit 2 has metal nanoparticles in a region including a defect portion (cut region) 7A of the wiring pattern (metal wiring) 7 on the surface of the correction substrate 5. It is set so that the metal nanoparticle ink 8 containing may be applied.
  • the metal nanoparticle ink 8 it is preferable to use a liquid material containing metal nanoparticles made of gold, silver, copper, or aluminum having high conductivity.
  • the metal nanoparticles those whose surface is covered with, for example, an organic molecular film may be used. Since the metal nanoparticles covered with the organic molecular film are stably dispersed in the solvent, there is no electrical conductivity in an unsintered state.
  • a liquid (paste-like) liquid in which such metal nanoparticles are dispersed in a solvent can be used as the metal nanoparticle ink 8.
  • an inkjet method is used as a method for applying the metal nanoparticle ink 8.
  • the ink heating unit 3 includes an ink heating laser 31, a beam splitter 32, an objective lens 33, an observation illumination light source 34, a beam splitter 35, an observation two-dimensional sensor 36, and an imaging lens 37. I have.
  • the ink heating laser 31 oscillates the laser beam LB toward the surface of the correction substrate 5.
  • the laser beam LB passes through the beam splitter 32, is adjusted to a predetermined beam diameter by the objective lens 33, and is incident on the surface of the correction substrate 5.
  • the laser beam LB selectively heats the metal nanoparticle ink 8 disposed on the surface of the correction substrate 5.
  • the observation illumination light source 34 is set so as to emit the observation illumination light M and enter the surface of the correction substrate 5 through the beam splitters 35 and 32 and the objective lens 33.
  • the observation illumination light M incident on the surface of the correction substrate 5 is reflected by the surface of the correction substrate 5, passes through the objective lens 33, the beam splitters 32 and 35, and the imaging lens 37 to the observation two-dimensional sensor 36. It is set to enter.
  • the observation two-dimensional sensor 36 images the state of the surface of the correction substrate 5 to enable detection of the missing portion 7A of the wiring pattern 7, detection of the arrangement position of the metal nanoparticle ink 8, and the like.
  • the dry ice injection unit 4 includes a unit 41 for generating dry ice particles, a dry ice injection nozzle 42 connected to the unit 41, and a suction unit 43.
  • the dry ice spray nozzle 42 may be supplied with clean dry air (CDA) as an auxiliary gas. As shown in FIG. 1, the tip of the dry ice spray nozzle 42 protrudes toward the correction substrate 5 arranged on the table 6. Further, a suction port 43 ⁇ / b> A of the suction unit 43 is disposed in the vicinity of the tip of the dry ice spray nozzle 42.
  • the dry ice jet nozzle 42 is formed on the surface of the correction substrate 5 on which the metal nanoparticle ink 8 is present after the heat treatment to the metal nanoparticle ink 8 disposed in the defect portion 7A of the wiring pattern 7 on the correction substrate 5.
  • the dry ice particles generated by the unit 41 are sprayed toward
  • the Mohs hardness of the dry ice is 2, the Mohs hardness of the glass of the substrate material is 5, and the wiring materials of silver, aluminum, and copper are 2.7, 2.9, and 3.0, respectively. For this reason, in this embodiment, only the unsintered metal nanoparticle ink 8 can be removed without damaging the correction substrate 5.
  • the observation two-dimensional sensor 36 can identify the position where the dry ice particles collide by observing the surface position and surface state of the correction substrate 5 on which the dry ice particles ejected from the dry ice ejection nozzle 42 collide. To.
  • the particle size of the dry ice particles can be in the range of 0.1 to 1000 ⁇ m.
  • the pressure at which the dry ice particles collide with the surface of the correction substrate 5 can be adjusted to 0.01 to 1 MPa.
  • the suction unit 43 is set to suck the unfired metal nanoparticle ink 8 peeled off from the correction substrate 5 due to collision with dry ice particles through the suction port 43A immediately after peeling.
  • Wiring correction method Next, the wiring correction method will be described with reference to FIGS. First, a gantry stage (not shown) is driven to move the wiring correction device 1 relative to the correction substrate 5, and a defective portion (cut area) of the wiring pattern (metal wiring) 7 as shown in FIG. 7A is detected in advance.
  • the wiring correction method according to the present embodiment can be represented by the flowchart shown in FIG.
  • the metal nanoparticle ink 8 is supplied to the defective portion 7A of the wiring pattern 7 as shown in FIG. 2 (step S1).
  • a gantry stage (not shown) is driven so that the tip of the ink discharge unit 22 of the ink supply unit 2 is brought close to the missing portion 7A.
  • a predetermined amount of the metal nanoparticle ink 8 is ejected from the ink supply unit 2.
  • the metal nanoparticle ink 8 may be applied to an extent that includes the defective portion 7A, and application accuracy is not required.
  • the applied metal nanoparticle ink 8 is selectively irradiated with the laser beam LB to burn the region straddling the defect 7A (step S2).
  • the fired region (conductive region) 8A irradiated with the laser beam LB is sintered and solidified.
  • a region 8B where the laser beam LB has not been irradiated is in a state of an unfired liquid metal nanoparticle ink 8.
  • the laser beam LB may be irradiated while moving the objective lens 33 in the scanning direction S as shown in FIG.
  • the region irradiated with the laser beam LB may be scanned so as to overlap at least the defective portion 7A.
  • the line width of the fired region 8A is set larger than the line width of the wiring pattern 7.
  • step S3 the firing region 8A after the laser beam irradiation and the laser beam LB are irradiated.
  • a jet 44 of dry ice particles is applied toward the metal nanoparticle ink 8 that is not in a liquid state (step S3). Also in this step, the gantry stage (not shown) is driven to move the dry ice spray nozzle 42.
  • FIG. 6-1 is a cross-sectional view taken along the line EF in FIG. 5, and FIG. 6-2 is a cross-sectional view taken along the line GH in FIG.
  • the liquefied carbon dioxide gas is changed into dry ice particles by the Joule Thomson effect in the unit 41, and the laser beam LB is generated by the jet 44 of the dry ice particles.
  • the unfired metal nanoparticle ink 8 in the region 8B not irradiated with is blown off and removed. As a result, as shown in FIG. 7, the missing portion 7A of the wiring pattern 7 can be reliably corrected.
  • the suction unit 43 shown in FIG. 1 operates simultaneously with the dry ice jet unit 4 and captures the unfired metal nanoparticle ink 8 blown off.
  • the suction port 43A of the suction part 43 is disposed in the vicinity of the tip of the dry ice jet nozzle 42, the unfired metal nanoparticle ink 8 in the region 8B peeled off from the correction substrate 5 is used. Can be reliably captured and recovered.
  • the metal nanoparticle ink 8 other than the fired region 8A is not fired, the metal nanoparticle ink 8 is not sintered and does not exhibit electrical conductivity, and can prevent the adjacent wiring pattern 7 from being affected.
  • the laser beam LB is used for firing the metal nanoparticle ink 8, and the metal nanoparticle ink 8 is scattered by the laser beam LB. is not. Therefore, in this embodiment, since it is not necessary to increase the power output density of the laser beam LB, it is possible to suppress damage to the correction substrate 5 and to suppress the influence on other wiring patterns.
  • the metal nanoparticle ink 8 in the unfired region can be removed in a lump by the dry ice spray unit 4, so that the wiring correction can be performed quickly. For this reason, according to the wiring correction device 1 and the wiring correction method according to the present embodiment, for example, the production efficiency of an FPD including a TFT substrate can be improved.
  • the step of applying the metal nanoparticle ink 8 to each defect portion 7A on the surface of the correction substrate 5 the step of selectively firing by irradiating the laser beam LB, the dry ice particles
  • the step of removing the metal nanoparticle ink 8 in the region 8B where the laser beam LB was not irradiated by the jet 44 was performed.
  • the metal nanoparticle ink 8 is collectively applied to the plurality of defect portions 7A on the entire surface of the correction substrate 5
  • the plurality of defect portions 7A are collectively irradiated with the laser beam LB, and then
  • the metal nanoparticle ink 8 in the region not irradiated with the laser beam LB in the dry ice particle jet 44 may be removed in a lump.
  • a method of applying with a dispenser or an electrostatic discharge method can be used.
  • a liquid material is used as the metal nanoparticle ink 8, but after applying to the surface of the correction substrate 5, a step of reducing the fluidity by drying may be added.

Abstract

Provided is a wiring correction device comprising: an ink supply unit that applies metallic nanoparticle ink including metallic nanoparticles to a region containing a defect location; an ink heating unit that selectively fires by irradiating the metallic nanoparticle ink applied to the surface of a substrate with a laser beam; and a dry ice spray unit that converts liquefied carbon dioxide into dry ice particles by means of the Joule-Thompson effect. Also provided is a wiring correction method comprising: spraying the metallic nanoparticle ink after being irradiated with the laser beam with dry ice particles to remove the metallic nanoparticle ink in the region not irradiated with the laser beam.

Description

配線修正装置および配線修正方法Wiring correction device and wiring correction method
 本発明は、配線修正装置および配線修正方法に関する。 The present invention relates to a wiring correction device and a wiring correction method.
 FPD(Flat Panel Display)は、微細な配線パターンが形成された基板を備える。FPDの製造工程において、配線パターンに欠陥がある場合にはリペア処理を行っている。
このようなリペア処理を行う方法としては、例えば、特許文献1に開示された、導電路を形成する方法が知られている。この導電路を形成する方法は、5から100ナノメートルの直径をもつ金属粒子を含む金属ナノ粒子インクでなる材料層を基板上に堆積させる工程と、上記材料層における配線形成予定領域へ選択的にレーザビームを照射して金属ナノ粒子を焼結させる工程と、配線形成予定領域以外の未焼結の材料層をアブレーション用のレーザビームで照射して除去するアブレーション工程と、を備える。
An FPD (Flat Panel Display) includes a substrate on which a fine wiring pattern is formed. In the FPD manufacturing process, when the wiring pattern has a defect, a repair process is performed.
As a method for performing such a repair process, for example, a method of forming a conductive path disclosed in Patent Document 1 is known. The method for forming the conductive path includes a step of depositing a material layer made of a metal nanoparticle ink containing metal particles having a diameter of 5 to 100 nanometers on a substrate, and selectively forming a wiring formation scheduled region in the material layer. Irradiating a laser beam to sinter the metal nanoparticles, and ablation step of irradiating and removing an unsintered material layer other than the wiring formation scheduled region with an ablation laser beam.
特表2016-534552号公報Special table 2016-534552 gazette
 しかしながら、上述のアブレーション工程では、ビーム径の小さいレーザビームでアブレーションを行うため、不要な領域の材料層の全部を除去するには長時間を要するという問題点がある。また、アブレーション用のレーザビームは、材料層を溶融・飛散させるために大きなパワー出力密度が要求される。このため、上述のアブレーション工程では、下地の基板が損傷を受けないようにレーザビームの照射条件を正確に決定する必要がある。
加えて、基板に損傷を与えないようにするためには、パルス幅の狭いパルスレーザを用いることが好ましい。しかし、このようなパルスレーザのレーザ光源は、非常に高価格であるため装置全体のコスト高を招くという問題点がある。
However, in the ablation process described above, since ablation is performed with a laser beam having a small beam diameter, there is a problem that it takes a long time to remove the entire material layer in unnecessary regions. In addition, the laser beam for ablation is required to have a large power output density in order to melt and scatter the material layer. Therefore, in the above-described ablation process, it is necessary to accurately determine the irradiation condition of the laser beam so that the underlying substrate is not damaged.
In addition, in order not to damage the substrate, it is preferable to use a pulse laser having a narrow pulse width. However, the laser light source of such a pulse laser has a problem that the cost of the entire apparatus is increased because it is very expensive.
 金属ナノ粒子インクは、加熱により導電性を発現する。このため、上述のアブレーション工程では、アブレーション用のレーザビームにより溶融・飛散された金属ナノ粒子インクが焼結により導電性を持つ可能性があり、他の配線パターンへの影響が懸念される。 Metal nanoparticle ink develops conductivity when heated. For this reason, in the ablation process described above, the metal nanoparticle ink melted and scattered by the laser beam for ablation may have conductivity by sintering, and there is a concern about the influence on other wiring patterns.
 本発明は、上記の課題に鑑みてなされたものであって、基板に損傷を与えることを抑制でき、配線修正を迅速に行え、しかも他の配線パターンへ影響が及ぶことを抑制できる配線修正装置および配線修正方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and is a wiring correction device that can suppress damage to a substrate, can perform wiring correction quickly, and can also prevent other wiring patterns from being affected. It is another object of the present invention to provide a wiring correction method.
 上述した課題を解決し、目的を達成するために、本発明の態様は、基板の表面に形成された配線パターンの欠損箇所を修正する配線修正装置であって、前記欠損箇所を包含する領域に金属ナノ粒子インクを塗布するインク供給部と、前記基板の表面に塗布された前記金属ナノ粒子インクに対して、レーザビームを選択的に照射して焼成を行うインク加熱部と、前記基板の表面に向けてドライアイス粒子を噴射させ、前記レーザビームが照射されていない領域の金属ナノ粒子インクを除去する、ドライアイス噴射部と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, an aspect of the present invention is a wiring correction device that corrects a defective portion of a wiring pattern formed on a surface of a substrate, and includes a region including the defective portion. An ink supply unit for applying metal nanoparticle ink; an ink heating unit for selectively irradiating a laser beam to the metal nanoparticle ink applied to the surface of the substrate; and a surface of the substrate A dry ice spraying unit that sprays dry ice particles toward the surface and removes the metal nanoparticle ink in a region not irradiated with the laser beam.
 上記態様としては、前記金属ナノ粒子インクは、金、銀、銅、アルミニウムのいずれかでなる金属ナノ粒子を含む液状体であることが好ましい。 As the above aspect, the metal nanoparticle ink is preferably a liquid containing metal nanoparticles made of gold, silver, copper, or aluminum.
 上記態様としては、前記インク供給部は、インクジェット法、ディスペンサ、静電吐出法のいずれかを用いて前記金属ナノ粒子インクを供給すること好ましい。 As the above aspect, it is preferable that the ink supply unit supplies the metal nanoparticle ink using any one of an inkjet method, a dispenser, and an electrostatic discharge method.
 上記態様としては、前記ドライアイス噴射部から噴射されたドライアイス粒子の噴流により前記基板から剥離された前記金属ナノ粒子インクを吸引する吸引部を備えることが好ましい。 As the above aspect, it is preferable that a suction unit that sucks the metal nanoparticle ink separated from the substrate by a jet of dry ice particles ejected from the dry ice ejection unit is provided.
 本発明の他の態様は、配線修正方法であって、基板の表面に形成された配線パターンの欠損箇所を包含する領域に金属ナノ粒子インクを塗布する工程と、前記基板の表面に塗布された前記金属ナノ粒子インクに対して、レーザビームを照射して選択的に焼成を行い基板へ固定する工程と、前記レーザビームが照射された後の前記金属ナノ粒子インクに向けて、ドライアイス粒子を噴射して、前記レーザビームが照射されていない領域の金属ナノ粒子インクを除去する工程とを備えることを特徴とする。 Another aspect of the present invention is a wiring correction method, wherein a step of applying a metal nanoparticle ink to a region including a defect portion of a wiring pattern formed on a surface of a substrate is applied to the surface of the substrate. A step of selectively firing the metal nanoparticle ink by irradiating a laser beam and fixing the metal nanoparticle ink to a substrate; and a dry ice particle for the metal nanoparticle ink after being irradiated with the laser beam. And ejecting and removing the metal nanoparticle ink in a region not irradiated with the laser beam.
 上記態様としては、前記金属ナノ粒子インクは、金、銀、銅、アルミニウムのいずれかでなる金属ナノ粒子を含む液状体であることが好ましい。 As the above aspect, the metal nanoparticle ink is preferably a liquid containing metal nanoparticles made of gold, silver, copper, or aluminum.
 本発明によれば、配線の修正において、基板に損傷を与えることを抑制でき、配線修正を迅速に行え、しかも他の配線パターンへ影響が及ぶことを抑制できる。 According to the present invention, it is possible to suppress the substrate from being damaged in the correction of the wiring, to quickly correct the wiring, and to suppress the influence on other wiring patterns.
図1は、本発明の実施の形態に係る配線修正装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a wiring correction device according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る配線修正装置を用いて配線修正を行う欠損箇所を示す基板の要部を示す平面図である。FIG. 2 is a plan view showing a main part of the substrate showing a defective portion where the wiring correction is performed using the wiring correction device according to the embodiment of the present invention. 図3-1は、本発明の実施の形態に係る配線修正装置を用いて基板の表面に形成された配線パターンの欠損箇所を包含する領域に金属ナノ粒子インクを塗布した状態を示す基板の要部平面図である。FIG. 3A is a schematic diagram of a substrate showing a state in which metal nanoparticle ink is applied to a region including a defect portion of a wiring pattern formed on the surface of the substrate using the wiring correction device according to the embodiment of the present invention. FIG. 図3-2は、図3-1のA-B断面図である。3-2 is a cross-sectional view taken along the line AB of FIG. 3-1. 図4-1は、本発明の実施の形態に係る配線修正装置を用いて基板の表面に塗布された金属ナノ粒子インクに対して、レーザビームを照射して選択的に焼成を行った状態を示す基板の要部平面図である。FIG. 4-1 shows a state in which the metal nanoparticle ink applied to the surface of the substrate is selectively baked by irradiating a laser beam using the wiring correction device according to the embodiment of the present invention. It is a principal part top view of the board | substrate shown. 図4-2は、図4-1のC-D断面図である。FIG. 4-2 is a cross-sectional view taken along the line CD of FIG. 4-1. 図5は、本発明の実施の形態に係る配線修正装置を用いて、レーザビームが照射された後の金属ナノ粒子インクに向けて、ドライアイス粒子を噴射して、レーザビームが照射されていない領域の金属ナノ粒子インクを除去した状態を示す基板の要部平面図である。FIG. 5 shows that the dry ice particles are ejected toward the metal nanoparticle ink after being irradiated with the laser beam by using the wiring correction device according to the embodiment of the present invention, and the laser beam is not irradiated. It is a principal part top view of the board | substrate which shows the state which removed the metal nanoparticle ink of the area | region. 図6-1は、図5のE-F断面図である。FIG. 6A is a sectional view taken along line EF in FIG. 図6-2は、図5のG-H断面図である。FIG. 6B is a cross-sectional view taken along the line GH in FIG. 図7は、本発明の実施の形態に係る配線修正装置を用いて基板の表面の欠損箇所を修正した状態を示す基板の要部平面図である。FIG. 7 is a plan view of a principal part of the substrate showing a state where a defect portion on the surface of the substrate is corrected using the wiring correction device according to the embodiment of the present invention. 図8は、本発明の実施の形態に係る配線修正方法を示すフローチャートである。FIG. 8 is a flowchart showing a wiring correction method according to the embodiment of the present invention.
 以下に、本発明の実施の形態に係る配線修正装置および配線修正方法の詳細を図面に基づいて説明する。但し、図面は模式的なものであり、各部材の寸法や寸法の比率や形状などは現実のものと異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率や形状が異なる部分が含まれている。 Hereinafter, details of the wiring correction device and the wiring correction method according to the embodiment of the present invention will be described with reference to the drawings. However, it should be noted that the drawings are schematic, and the dimensions, ratios and shapes of the members are different from actual ones. In addition, the drawings include portions having different dimensional relationships, ratios, and shapes.
[配線修正装置]
 図1は、本発明の実施の形態に係る配線修正装置1を示している。この配線修正装置1は、インク供給部2と、インク加熱部3と、ドライアイス噴射部4と、を備える。配線修正装置1は、位置決め機構として図示しないガントリステージに搭載されている。このガントリステージは、修正用基板5を配置するテーブル6に対して相対的に移動可能である。修正用基板5は、配線修正装置1を用いて配線修正を行う対象物であり、例えば、液晶表示装置などの表示デバイスを構成するTFT基板などを適用できる。
[Wiring correction device]
FIG. 1 shows a wiring correction device 1 according to an embodiment of the present invention. The wiring correction device 1 includes an ink supply unit 2, an ink heating unit 3, and a dry ice ejection unit 4. The wiring correction device 1 is mounted on a gantry stage (not shown) as a positioning mechanism. The gantry stage is movable relative to the table 6 on which the correction substrate 5 is arranged. The correction substrate 5 is an object for correcting the wiring by using the wiring correction device 1, and for example, a TFT substrate constituting a display device such as a liquid crystal display device can be applied.
(インク供給部)
 インク供給部2は、金属ナノ粒子インクを貯留するインク収容室21と、このインク収容室21に貯留した金属ナノ粒子インクを吐出するためのインク吐出部22と、を備えている。このインク供給部2は、図示しないガントリステージを駆動することにより、修正用基板5の表面に対して移動自在に設定されている。インク吐出部22の先端は、例えば、数十μm程度の幅寸法を有する金属ナノ粒子インクの塗布領域を形成できるように設定されている。なお、このインク吐出部22の先端の開口の大きさや金属ナノ粒子インクの塗布領域の大きさは、配線修正を施す基板の配線パターンの線幅寸法に応じて適宜変更可能である。図2および図3-1に示すように、インク供給部2は、修正用基板5の表面における配線パターン(金属配線)7の欠損箇所(切れている領域)7Aを包含する領域に金属ナノ粒子を含む金属ナノ粒子インク8を塗布するように設定されている。
(Ink supply unit)
The ink supply unit 2 includes an ink storage chamber 21 that stores the metal nanoparticle ink, and an ink discharge unit 22 that discharges the metal nanoparticle ink stored in the ink storage chamber 21. The ink supply unit 2 is set so as to be movable with respect to the surface of the correction substrate 5 by driving a gantry stage (not shown). The tip of the ink ejection part 22 is set so that, for example, a metal nanoparticle ink application region having a width of about several tens of μm can be formed. The size of the opening at the tip of the ink discharge portion 22 and the size of the metal nanoparticle ink application region can be appropriately changed according to the line width dimension of the wiring pattern of the substrate to be corrected. As shown in FIG. 2 and FIG. 3A, the ink supply unit 2 has metal nanoparticles in a region including a defect portion (cut region) 7A of the wiring pattern (metal wiring) 7 on the surface of the correction substrate 5. It is set so that the metal nanoparticle ink 8 containing may be applied.
 金属ナノ粒子インク8としては、導電率の高い、金、銀、銅、アルミニウムのいずれかでなる金属ナノ粒子を含む液状体のものを用いることが好ましい。金属ナノ粒子は、表面が、例えば有機分子膜で覆われたものを用いてもよい。有機分子膜で覆われた金属ナノ粒子は安定して溶剤中に分散するため、未焼結の状態では導電性がない。本実施の形態では、金属ナノ粒子インク8として、このような金属ナノ粒子を溶媒に分散した液状体(ペースト状)のものを用いることができる。なお、金属ナノ粒子としては、上記の金属に限定されない。なお、本実施の形態では、金属ナノ粒子インク8を塗布する方式としてインクジェット法を用いる。 As the metal nanoparticle ink 8, it is preferable to use a liquid material containing metal nanoparticles made of gold, silver, copper, or aluminum having high conductivity. As the metal nanoparticles, those whose surface is covered with, for example, an organic molecular film may be used. Since the metal nanoparticles covered with the organic molecular film are stably dispersed in the solvent, there is no electrical conductivity in an unsintered state. In the present embodiment, as the metal nanoparticle ink 8, a liquid (paste-like) liquid in which such metal nanoparticles are dispersed in a solvent can be used. In addition, as a metal nanoparticle, it is not limited to said metal. In the present embodiment, an inkjet method is used as a method for applying the metal nanoparticle ink 8.
(インク加熱部)
 インク加熱部3は、インク加熱用レーザ31と、ビームスプリッタ32と、対物レンズ33と、観察用照明光源34と、ビームスプリッタ35と、観察用2次元センサ36と、結像レンズ37と、を備えている。
(Ink heating section)
The ink heating unit 3 includes an ink heating laser 31, a beam splitter 32, an objective lens 33, an observation illumination light source 34, a beam splitter 35, an observation two-dimensional sensor 36, and an imaging lens 37. I have.
 インク加熱用レーザ31は、修正用基板5の表面に向けてレーザビームLBを発振する。図1に示すように、レーザビームLBは、ビームスプリッタ32を通って対物レンズ33で所定のビーム径に調整されて修正用基板5の表面に入射される。本実施の形態では、レーザビームLBは、修正用基板5の表面に配置された金属ナノ粒子インク8を選択的に加熱する。 The ink heating laser 31 oscillates the laser beam LB toward the surface of the correction substrate 5. As shown in FIG. 1, the laser beam LB passes through the beam splitter 32, is adjusted to a predetermined beam diameter by the objective lens 33, and is incident on the surface of the correction substrate 5. In the present embodiment, the laser beam LB selectively heats the metal nanoparticle ink 8 disposed on the surface of the correction substrate 5.
 観察用照明光源34は、観察用照明光Mを出射してビームスプリッタ35,32および対物レンズ33を通って修正用基板5の表面に入射するように設定されている。修正用基板5の表面に入射した観察用照明光Mは、修正用基板5の表面で反射して対物レンズ33、ビームスプリッタ32,35、結像レンズ37を通って観察用2次元センサ36に入射するように設定されている。観察用2次元センサ36は、修正用基板5の表面の状態を撮像して、配線パターン7の欠損箇所7Aの検出、金属ナノ粒子インク8の配置位置の検出などを可能にする。 The observation illumination light source 34 is set so as to emit the observation illumination light M and enter the surface of the correction substrate 5 through the beam splitters 35 and 32 and the objective lens 33. The observation illumination light M incident on the surface of the correction substrate 5 is reflected by the surface of the correction substrate 5, passes through the objective lens 33, the beam splitters 32 and 35, and the imaging lens 37 to the observation two-dimensional sensor 36. It is set to enter. The observation two-dimensional sensor 36 images the state of the surface of the correction substrate 5 to enable detection of the missing portion 7A of the wiring pattern 7, detection of the arrangement position of the metal nanoparticle ink 8, and the like.
(ドライアイス噴射部)
 ドライアイス噴射部4は、ドライアイス粒子を生成するためのユニット41と、このユニット41に接続されたドライアイス噴射ノズル42と、吸引部43を備えている。なお、ドライアイス噴射ノズル42には、補助気体としてのクリーンドライエア(CDA)を供給してもよい。図1に示すように、ドライアイス噴射ノズル42の先端部は、テーブル6に配置された修正用基板5に向けて突出している。また、ドライアイス噴射ノズル42の先端部の近傍には、吸引部43の吸引口43Aが配置されている。
(Dry ice spraying part)
The dry ice injection unit 4 includes a unit 41 for generating dry ice particles, a dry ice injection nozzle 42 connected to the unit 41, and a suction unit 43. The dry ice spray nozzle 42 may be supplied with clean dry air (CDA) as an auxiliary gas. As shown in FIG. 1, the tip of the dry ice spray nozzle 42 protrudes toward the correction substrate 5 arranged on the table 6. Further, a suction port 43 </ b> A of the suction unit 43 is disposed in the vicinity of the tip of the dry ice spray nozzle 42.
 ドライアイス噴射ノズル42は、修正用基板5上の配線パターン7の欠損箇所7Aに配置された金属ナノ粒子インク8への加熱処理後に、この金属ナノ粒子インク8が存在する修正用基板5の表面に向けてユニット41で生成したドライアイス粒子を噴射させる。ドライアイスのモース硬度は2、基板材料のガラスのモース硬度は5、配線材料の銀、アルミニウム、銅はそれぞれ2.7、2.9、3.0である。このため、本実施の形態では、修正用基板5を損傷させることなく、未焼結の金属ナノ粒子インク8のみを除去できる。 The dry ice jet nozzle 42 is formed on the surface of the correction substrate 5 on which the metal nanoparticle ink 8 is present after the heat treatment to the metal nanoparticle ink 8 disposed in the defect portion 7A of the wiring pattern 7 on the correction substrate 5. The dry ice particles generated by the unit 41 are sprayed toward The Mohs hardness of the dry ice is 2, the Mohs hardness of the glass of the substrate material is 5, and the wiring materials of silver, aluminum, and copper are 2.7, 2.9, and 3.0, respectively. For this reason, in this embodiment, only the unsintered metal nanoparticle ink 8 can be removed without damaging the correction substrate 5.
 観察用2次元センサ36は、ドライアイス噴射ノズル42から噴射されたドライアイス粒子が衝突する修正用基板5の表面位置および表面状態を観察してドライアイス粒子が衝突する位置を特定することを可能にする。 The observation two-dimensional sensor 36 can identify the position where the dry ice particles collide by observing the surface position and surface state of the correction substrate 5 on which the dry ice particles ejected from the dry ice ejection nozzle 42 collide. To.
 なお、ドライアイス粒子の粒径としては、0.1~1000μmの範囲にすることが可能である。また、ドライアイス粒子が修正用基板5の表面に衝突する圧力は、0.01~1MPaに調整することができる。 The particle size of the dry ice particles can be in the range of 0.1 to 1000 μm. The pressure at which the dry ice particles collide with the surface of the correction substrate 5 can be adjusted to 0.01 to 1 MPa.
 吸引部43は、ドライアイス粒子が衝突して修正用基板5から剥離された未焼成の金属ナノ粒子インク8を剥離直後に吸引口43Aで吸引するように設定されている。 The suction unit 43 is set to suck the unfired metal nanoparticle ink 8 peeled off from the correction substrate 5 due to collision with dry ice particles through the suction port 43A immediately after peeling.
[配線修正方法]
 次に、図1から図8を用いて、配線修正方法について説明する。まず、図示しないガントリステージを駆動して配線修正装置1を修正用基板5に相対的に移動させて、図2に示すような、配線パターン(金属配線)7の欠損箇所(切れている領域)7Aを検出しておく。本実施の形態に係る配線修正方法は、図8に示すフローチャートで表すことができる。
[Wiring correction method]
Next, the wiring correction method will be described with reference to FIGS. First, a gantry stage (not shown) is driven to move the wiring correction device 1 relative to the correction substrate 5, and a defective portion (cut area) of the wiring pattern (metal wiring) 7 as shown in FIG. 7A is detected in advance. The wiring correction method according to the present embodiment can be represented by the flowchart shown in FIG.
 まず、図2に示すような配線パターン7の欠損箇所7Aに、金属ナノ粒子インク8を供給する(ステップS1)。この工程では、図示しないガントリステージを駆動してインク供給部2のインク吐出部22の先端が欠損箇所7Aに近接させる。そして、インク供給部2から所定量の金属ナノ粒子インク8を吐出する。このとき、図3-1および図3-2に示すように、金属ナノ粒子インク8は、欠損箇所7Aを包含する程度に塗布すればよく、塗布する精度は要求されない。 First, the metal nanoparticle ink 8 is supplied to the defective portion 7A of the wiring pattern 7 as shown in FIG. 2 (step S1). In this step, a gantry stage (not shown) is driven so that the tip of the ink discharge unit 22 of the ink supply unit 2 is brought close to the missing portion 7A. Then, a predetermined amount of the metal nanoparticle ink 8 is ejected from the ink supply unit 2. At this time, as shown in FIG. 3A and FIG. 3B, the metal nanoparticle ink 8 may be applied to an extent that includes the defective portion 7A, and application accuracy is not required.
 次に、図4-1および図4-2に示すように、塗布した金属ナノ粒子インク8にレーザビームLBを選択的に照射して欠損箇所7Aを跨ぐ領域を焼成させる(ステップS2)。 Next, as shown in FIGS. 4-1 and 4-2, the applied metal nanoparticle ink 8 is selectively irradiated with the laser beam LB to burn the region straddling the defect 7A (step S2).
 この結果、レーザビームLBが照射された焼成領域(導電性領域)8Aは、焼結されて固化する。レーザビームLBが照射されなかった領域8Bは、未焼成の液状体の金属ナノ粒子インク8の状態である。この工程では、図4-2に示すように、対物レンズ33をスキャン方向Sに移動させながら、レーザビームLBの照射を行えばよい。なお、レーザビームLBを照射する領域は、少なくとも欠損箇所7Aに重なるように走査させればよい。
図4-1に示すように、本実施の形態では、焼成領域8Aの線幅を配線パターン7の線幅よりも大きく設定している。
As a result, the fired region (conductive region) 8A irradiated with the laser beam LB is sintered and solidified. A region 8B where the laser beam LB has not been irradiated is in a state of an unfired liquid metal nanoparticle ink 8. In this step, the laser beam LB may be irradiated while moving the objective lens 33 in the scanning direction S as shown in FIG. Note that the region irradiated with the laser beam LB may be scanned so as to overlap at least the defective portion 7A.
As shown in FIG. 4A, in the present embodiment, the line width of the fired region 8A is set larger than the line width of the wiring pattern 7.
 次に、図5に示すように、上記のレーザビームLBによる加熱工程を経て得られた焼成領域8Aのみを残すために、レーザビームが照射された後の焼成領域8Aと、レーザビームLBが照射されずに液状体のままの金属ナノ粒子インク8と、に向けて、ドライアイス粒子の噴流44を当てる(ステップS3)。この工程においても、図示しないガントリステージを駆動して、ドライアイス噴射ノズル42を移動させる。 Next, as shown in FIG. 5, in order to leave only the firing region 8A obtained through the heating process with the laser beam LB, the firing region 8A after the laser beam irradiation and the laser beam LB are irradiated. A jet 44 of dry ice particles is applied toward the metal nanoparticle ink 8 that is not in a liquid state (step S3). Also in this step, the gantry stage (not shown) is driven to move the dry ice spray nozzle 42.
 図6-1は図5のE-F断面図、図6-2は、図5のG-H断面図である。図6-1および図6-2に示すように、本実施の形態では、ユニット41で液化炭酸ガスをジュールトムソン効果によりドライアイス粒子に変化させ、このドライアイス粒子の噴流44で、レーザビームLBが照射されていない領域8Bの未焼成の金属ナノ粒子インク8を吹き飛ばして除去する。その結果、図7に示すように、配線パターン7の欠損箇所7Aを確実に修正することができる。 6-1 is a cross-sectional view taken along the line EF in FIG. 5, and FIG. 6-2 is a cross-sectional view taken along the line GH in FIG. As shown in FIGS. 6A and 6B, in this embodiment, the liquefied carbon dioxide gas is changed into dry ice particles by the Joule Thomson effect in the unit 41, and the laser beam LB is generated by the jet 44 of the dry ice particles. The unfired metal nanoparticle ink 8 in the region 8B not irradiated with is blown off and removed. As a result, as shown in FIG. 7, the missing portion 7A of the wiring pattern 7 can be reliably corrected.
 このとき、図1に示す吸引部43は、ドライアイス噴射部4と同時に稼働して吹き飛ばされる未焼成の金属ナノ粒子インク8を捕捉する。本実施の形態では、ドライアイス噴射ノズル42の先端部の近傍に吸引部43の吸引口43Aが配置されているため、修正用基板5から剥離した、領域8Bの未焼成の金属ナノ粒子インク8を確実に捕捉して回収することができる。 At this time, the suction unit 43 shown in FIG. 1 operates simultaneously with the dry ice jet unit 4 and captures the unfired metal nanoparticle ink 8 blown off. In the present embodiment, since the suction port 43A of the suction part 43 is disposed in the vicinity of the tip of the dry ice jet nozzle 42, the unfired metal nanoparticle ink 8 in the region 8B peeled off from the correction substrate 5 is used. Can be reliably captured and recovered.
 また、焼成領域8A以外の金属ナノ粒子インク8は焼成されないため、焼結して導電性を発現させることがなく、隣接する配線パターン7へ影響が及ぶことを防止できる。 In addition, since the metal nanoparticle ink 8 other than the fired region 8A is not fired, the metal nanoparticle ink 8 is not sintered and does not exhibit electrical conductivity, and can prevent the adjacent wiring pattern 7 from being affected.
 本実施の形態に係る配線修正装置1および配線修正方法によれば、レーザビームLBは金属ナノ粒子インク8を焼成させるために用いるものであり、金属ナノ粒子インク8をレーザビームLBで飛散させるものではない。したがって、本実施の形態では、レーザビームLBのパワー出力密度を大きくする必要がないため、修正用基板5に損傷を与えることを抑制でき、しかも他の配線パターンへ影響が及ぶことを抑制できる。 According to the wiring correction device 1 and the wiring correction method according to the present embodiment, the laser beam LB is used for firing the metal nanoparticle ink 8, and the metal nanoparticle ink 8 is scattered by the laser beam LB. is not. Therefore, in this embodiment, since it is not necessary to increase the power output density of the laser beam LB, it is possible to suppress damage to the correction substrate 5 and to suppress the influence on other wiring patterns.
 本実施の形態に係る配線修正装置1および配線修正方法によれば、未焼成領域の金属ナノ粒子インク8をドライアイス噴射部4で一括して除去できるため、配線修正を迅速に行える。このため、本実施の形態に係る配線修正装置1および配線修正方法によれば、例えば、TFT基板などを備えるFPDの生産効率を向上できる。 According to the wiring correction device 1 and the wiring correction method according to the present embodiment, the metal nanoparticle ink 8 in the unfired region can be removed in a lump by the dry ice spray unit 4, so that the wiring correction can be performed quickly. For this reason, according to the wiring correction device 1 and the wiring correction method according to the present embodiment, for example, the production efficiency of an FPD including a TFT substrate can be improved.
[その他の実施の形態]
 以上、本発明の実施の形態について説明したが、この実施の形態の開示の一部をなす論述および図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。
[Other embodiments]
As mentioned above, although embodiment of this invention was described, it should not be understood that the description and drawing which make a part of disclosure of this embodiment limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
 上記実施の形態では、修正用基板5の表面の欠損箇所7A毎に、金属ナノ粒子インク8を塗布する工程と、レーザビームLBを照射して選択的に焼成を行う工程と、ドライアイス粒子の噴流44でレーザビームLBが照射されていない領域8Bの金属ナノ粒子インク8を除去する工程と、を行った。本発明では、修正用基板5の表面全体の複数の欠損箇所7Aに、一括して金属ナノ粒子インク8を塗布した後、一括して複数の欠損箇所7AへレーザビームLBを照射し、その後、ドライアイス粒子の噴流44でレーザビームLBが照射されていない領域の金属ナノ粒子インク8を一括して除去しても勿論よい。 In the above-described embodiment, the step of applying the metal nanoparticle ink 8 to each defect portion 7A on the surface of the correction substrate 5, the step of selectively firing by irradiating the laser beam LB, the dry ice particles The step of removing the metal nanoparticle ink 8 in the region 8B where the laser beam LB was not irradiated by the jet 44 was performed. In the present invention, after the metal nanoparticle ink 8 is collectively applied to the plurality of defect portions 7A on the entire surface of the correction substrate 5, the plurality of defect portions 7A are collectively irradiated with the laser beam LB, and then Of course, the metal nanoparticle ink 8 in the region not irradiated with the laser beam LB in the dry ice particle jet 44 may be removed in a lump.
 上記実施の形態では、金属ナノ粒子インク8の供給手段として、インクジェット法の他、ディスペンサで塗布する方法や、静電吐出法を用いることができる。 In the above embodiment, as a means for supplying the metal nanoparticle ink 8, in addition to the inkjet method, a method of applying with a dispenser or an electrostatic discharge method can be used.
 上記実施の形態では、金属ナノ粒子インク8として、液状体のものを用いたが、修正用基板5の表面へ塗布後に、乾燥させて流動性を低減させる工程を加えてもよい。 In the above embodiment, a liquid material is used as the metal nanoparticle ink 8, but after applying to the surface of the correction substrate 5, a step of reducing the fluidity by drying may be added.
 LB レーザビーム
 1 配線修正装置
 2 インク供給部
 3 インク加熱部
 4 ドライアイス噴射部
 5 修正用基板(基板)
 7 配線パターン
 7A 欠損箇所
 8 金属ナノ粒子インク
 8A 焼成領域
 8B 領域(未焼成領域)
 43 吸引部
 44 噴流
 
LB Laser beam 1 Wiring correction device 2 Ink supply unit 3 Ink heating unit 4 Dry ice jet unit 5 Correction substrate (substrate)
7 Wiring pattern 7A Defect location 8 Metal nanoparticle ink 8A Firing area 8B area (unfired area)
43 Suction part 44 Jet

Claims (6)

  1.  基板の表面に形成された配線パターンの欠損箇所を修正する配線修正装置であって、
     前記欠損箇所を包含する領域に金属ナノ粒子インクを塗布するインク供給部と、
     前記基板の表面に塗布された前記金属ナノ粒子インクに対して、レーザビームを選択的に照射して焼成を行うインク加熱部と、
     前記基板の表面に向けてドライアイス粒子を噴射させ、前記レーザビームが照射されていない領域の前記金属ナノ粒子インクを除去する、ドライアイス噴射部と、
     を備える、配線修正装置。
    A wiring correction device for correcting a defective portion of a wiring pattern formed on a surface of a substrate,
    An ink supply unit that applies metal nanoparticle ink to a region including the defect portion; and
    An ink heating unit that selectively irradiates a laser beam to the metal nanoparticle ink applied to the surface of the substrate to perform baking; and
    A dry ice spraying unit that sprays dry ice particles toward the surface of the substrate and removes the metal nanoparticle ink in a region not irradiated with the laser beam;
    A wiring correction device.
  2.  前記金属ナノ粒子インクは、金、銀、銅、アルミニウムのいずれかでなる金属ナノ粒子を含む液状体である、請求項1に記載の配線修正装置。 The wiring correction device according to claim 1, wherein the metal nanoparticle ink is a liquid containing metal nanoparticles made of gold, silver, copper, or aluminum.
  3.  前記インク供給部は、インクジェット法、ディスペンサ、静電吐出法のいずれかを用いて前記金属ナノ粒子インクを供給する、請求項1または請求項2に記載の配線修正装置。 The wiring correction device according to claim 1 or 2, wherein the ink supply unit supplies the metal nanoparticle ink using any one of an inkjet method, a dispenser, and an electrostatic discharge method.
  4.  前記ドライアイス噴射部から噴射された前記ドライアイス粒子の噴流により前記基板から剥離された未焼成の前記金属ナノ粒子インクを吸引する吸引部を備える、請求項1から請求項3のいずれか一項に記載の配線修正装置。 4. The apparatus according to claim 1, further comprising: a suction unit that sucks the unfired metal nanoparticle ink peeled from the substrate by a jet of the dry ice particles ejected from the dry ice ejection unit. Wiring correction device described in 1.
  5.  基板の表面に形成された配線パターンの欠損箇所を包含する領域に金属ナノ粒子を含む金属ナノ粒子インクを塗布する工程と、
     前記基板の表面に塗布された前記金属ナノ粒子インクに対して、レーザビームを照射して選択的に焼成を行う工程と、
     前記レーザビームが照射された後の前記金属ナノ粒子インクに向けて、ドライアイス粒子を噴射して、前記レーザビームが照射されていない領域の前記金属ナノ粒子インクを除去する工程と、
     を備える、配線修正方法。
    Applying a metal nanoparticle ink containing metal nanoparticles to a region including a defect portion of a wiring pattern formed on the surface of the substrate;
    A step of selectively firing the metal nanoparticle ink applied to the surface of the substrate by irradiating a laser beam;
    Spraying dry ice particles toward the metal nanoparticle ink after being irradiated with the laser beam, and removing the metal nanoparticle ink in a region not irradiated with the laser beam;
    A wiring correction method comprising:
  6.  前記金属ナノ粒子インクは、金、銀、銅、アルミニウムのいずれかでなる金属ナノ粒子を含む液状体である、請求項5に記載の配線修正方法。 The wiring correction method according to claim 5, wherein the metal nanoparticle ink is a liquid containing metal nanoparticles made of gold, silver, copper, or aluminum.
PCT/JP2019/015346 2018-04-16 2019-04-08 Wiring correction device and wiring correction method WO2019203050A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-078101 2018-04-16
JP2018078101A JP2019186464A (en) 2018-04-16 2018-04-16 Wiring correction device and wiring correction method

Publications (1)

Publication Number Publication Date
WO2019203050A1 true WO2019203050A1 (en) 2019-10-24

Family

ID=68240041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015346 WO2019203050A1 (en) 2018-04-16 2019-04-08 Wiring correction device and wiring correction method

Country Status (3)

Country Link
JP (1) JP2019186464A (en)
TW (1) TW201944868A (en)
WO (1) WO2019203050A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112557417A (en) * 2021-02-28 2021-03-26 深圳宜美智科技股份有限公司 PCB laser repairing method and device based on image detection

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7365047B2 (en) * 2020-01-14 2023-10-19 株式会社ブイ・テクノロジー Surface analysis method, surface analysis device
KR102468061B1 (en) * 2020-11-24 2022-11-18 참엔지니어링(주) Repairing apparatus and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144697A (en) * 1987-11-30 1989-06-06 Aisin Seiki Co Ltd Method of repairing wiring pattern of circuit board
JP2005109156A (en) * 2003-09-30 2005-04-21 Renesas Technology Corp Manufacturing method of semiconductor device
JP2009071037A (en) * 2007-09-13 2009-04-02 Konica Minolta Holdings Inc Method for forming conductive film pattern
JP2013102021A (en) * 2011-11-08 2013-05-23 Toppan Printing Co Ltd Printed wiring board and manufacturing method therefor
JP2017218469A (en) * 2016-06-03 2017-12-14 株式会社Dnpファインケミカル Composition for conductive pattern printing and method for manufacturing substrate having conductive pattern

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144697A (en) * 1987-11-30 1989-06-06 Aisin Seiki Co Ltd Method of repairing wiring pattern of circuit board
JP2005109156A (en) * 2003-09-30 2005-04-21 Renesas Technology Corp Manufacturing method of semiconductor device
JP2009071037A (en) * 2007-09-13 2009-04-02 Konica Minolta Holdings Inc Method for forming conductive film pattern
JP2013102021A (en) * 2011-11-08 2013-05-23 Toppan Printing Co Ltd Printed wiring board and manufacturing method therefor
JP2017218469A (en) * 2016-06-03 2017-12-14 株式会社Dnpファインケミカル Composition for conductive pattern printing and method for manufacturing substrate having conductive pattern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112557417A (en) * 2021-02-28 2021-03-26 深圳宜美智科技股份有限公司 PCB laser repairing method and device based on image detection

Also Published As

Publication number Publication date
JP2019186464A (en) 2019-10-24
TW201944868A (en) 2019-11-16

Similar Documents

Publication Publication Date Title
WO2019203050A1 (en) Wiring correction device and wiring correction method
TWI466733B (en) Laser decal transfer of electronic materials
TWI426964B (en) Organic EL display cleaning device, organic EL display manufacturing device, organic EL display and organic EL mask cleaning method
US20130164506A1 (en) Apparatus for the selective separation of two layers of material using an ultrashort pulse source of electromagnetic radiation
JPH0588191A (en) Repair device using laser and method of boring passivation layer
KR20160039241A (en) A system and method for producing a conductive path on a substrate
US10864730B2 (en) Electrohydrodynamic printing apparatus
JP2013182902A (en) Liquid ejection apparatus, nanoimprint system and liquid ejection method
KR20160144152A (en) Apparatus and Method for Repairing Substrate
KR100786211B1 (en) Droplet ejection apparatus
JP2010027660A (en) Method and apparatus for repairing wire of circuit board
KR20180068367A (en) Mask cleaning method and mask cleaning apparatus for performing the same
JPH10309516A (en) Method for removing coating by laser and laser processor
JPH10309899A (en) Laser treating apparatus and method for removing coat ing
JP7440954B2 (en) Thin film forming apparatus and thin film forming method
KR20150138964A (en) Apparatus and Method for drying or sintering material
JP2008200582A (en) Method of applying ink coating and ink coating machine
CN107225857B (en) Pattern line forming apparatus and method
JP2011064909A (en) Spacer arrangement correction method
JP7436262B2 (en) Wiring printing head and wiring printing device
TWI834283B (en) Coating device and droplet discharge inspection method
JP2010082614A (en) Coating unit, pattern correcting device and pattern correcting method using the same
JP2007226990A (en) Pattern correction method and device
JP2007227021A (en) Pattern correction method and pattern correction device
JP2008044804A (en) Cutting unit and cutting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19789462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19789462

Country of ref document: EP

Kind code of ref document: A1