WO2019202947A1 - Motor unit - Google Patents

Motor unit Download PDF

Info

Publication number
WO2019202947A1
WO2019202947A1 PCT/JP2019/013733 JP2019013733W WO2019202947A1 WO 2019202947 A1 WO2019202947 A1 WO 2019202947A1 JP 2019013733 W JP2019013733 W JP 2019013733W WO 2019202947 A1 WO2019202947 A1 WO 2019202947A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
shaft
oil
gear
motor shaft
Prior art date
Application number
PCT/JP2019/013733
Other languages
French (fr)
Japanese (ja)
Inventor
山口 康夫
久嗣 藤原
中村 圭吾
隆宏 檜皮
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201980025763.2A priority Critical patent/CN111989234B/en
Publication of WO2019202947A1 publication Critical patent/WO2019202947A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/02Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • B60K6/405Housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/06Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a motor unit.
  • Patent Document 1 describes a configuration in which an output shaft passes through a hollow shaft of a motor.
  • an object of the present invention is to provide a motor unit having a structure capable of improving the amount of oil supplied into a hollow motor shaft through which an axle is passed.
  • One aspect of the motor unit of the present invention is a motor unit that rotates an axle of a vehicle, the motor having a motor shaft that rotates about the motor shaft, a speed reduction device connected to the motor shaft, and the speed reduction
  • a differential device that is connected to a device and rotates the axle around a differential shaft, a motor housing portion that houses the motor, and a gear housing that houses the speed reducer and the differential device and contains oil therein
  • a storage portion that opens upward in the vertical direction inside the gear housing portion and can store oil.
  • the differential axis coincides with the motor axis.
  • the motor shaft is a hollow shaft that opens on both sides in the axial direction.
  • the axle is passed through the motor shaft.
  • the amount of oil supplied into the hollow motor shaft through which the axle is passed can be improved.
  • FIG. 1 is a diagram schematically showing a power train including the motor unit of the present embodiment.
  • FIG. 2 is a diagram schematically illustrating a power train including the motor unit of the present embodiment.
  • FIG. 3 is a diagram schematically illustrating a power train including the motor unit of the present embodiment.
  • FIG. 4 is a perspective view showing the motor unit of the present embodiment.
  • FIG. 5 is a view of the motor unit of the present embodiment as viewed from the right side.
  • FIG. 6 is a view of a part of the motor unit of this embodiment as viewed from above.
  • FIG. 7 is a sectional view showing a part of the motor unit of the present embodiment, and is a sectional view taken along the line VII-VII in FIG.
  • FIG. 8 is a sectional view showing a part of the motor unit of the present embodiment, and is a sectional view taken along the line VIII-VIII in FIG.
  • the vertical direction is defined and described based on the positional relationship when the motor unit 10 of the present embodiment shown in each drawing is mounted on a vehicle located on a horizontal road surface.
  • an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system.
  • the Z-axis direction is the vertical direction.
  • the + Z side is the upper side in the vertical direction
  • the ⁇ Z side is the lower side in the vertical direction.
  • the upper side in the vertical direction is simply referred to as “upper side”
  • the lower side in the vertical direction is simply referred to as “lower side”.
  • the X-axis direction is a direction orthogonal to the Z-axis direction and is the front-rear direction of the vehicle on which the motor unit 10 is mounted.
  • the + X side is the front side of the vehicle
  • the ⁇ X side is the rear side of the vehicle.
  • the Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction, and is the left-right direction (vehicle width direction) of the vehicle.
  • the + Y side is the left side of the vehicle
  • the -Y side is the right side of the vehicle.
  • the right side corresponds to one side in the axial direction.
  • the positional relationship in the front-rear direction is not limited to the positional relationship of the present embodiment, and the + X side may be the rear side of the vehicle, and the ⁇ X side may be the front side of the vehicle.
  • the + Y side is the right side of the vehicle, and the -Y side is the left side of the vehicle.
  • the motor shaft J1 shown as appropriate in each drawing extends in the Y-axis direction, that is, the left-right direction of the vehicle.
  • the direction parallel to the motor shaft J1 is simply referred to as “axial direction”
  • the radial direction around the motor shaft J1 is simply referred to as “radial direction”
  • the motor shaft J1 is
  • the central circumferential direction, that is, the axis around the motor shaft J1 is simply referred to as “circumferential direction”.
  • the “parallel direction” includes a substantially parallel direction
  • the “perpendicular direction” includes a substantially orthogonal direction.
  • the motor unit 10 of the present embodiment is provided in the power train 1.
  • the power train 1 includes a motor unit 10, an engine 2, and a battery 3.
  • the powertrain 1 is mounted on a vehicle that uses the motor unit 10 and the engine 2 as power sources, such as a hybrid vehicle (HEV) and a plug-in hybrid vehicle (PHV).
  • HEV hybrid vehicle
  • PHY plug-in hybrid vehicle
  • Engine 2 is an internal combustion engine that burns fuel such as gasoline and light oil.
  • the engine 2 is, for example, a gasoline engine or a diesel engine.
  • the engine 2 of the present embodiment is a so-called horizontal engine in which the direction of the crankshaft 2a coincides with the left-right direction of the vehicle, that is, the axial direction.
  • the battery 3 supplies power to the motor unit 10.
  • the motor unit 10 of this embodiment is mounted on a vehicle including the engine 2 and rotates the axle AX of the vehicle.
  • the motor unit 10 includes a housing 11, a motor 20 having a motor shaft 22 that rotates about a motor shaft J ⁇ b> 1, a speed reduction device 30, a differential device 50, a generator 40, and a clutch mechanism 60.
  • the housing 11 accommodates the motor 20, the reduction gear 30, the differential device 50, the generator 40 and the clutch mechanism 60. As shown in FIGS. 4 to 6, the housing 11 includes a motor housing portion 12 and a gear housing portion 13.
  • the motor housing portion 12 is a portion that houses the motor 20.
  • the motor housing portion 12 has a cylindrical shape that extends in the axial direction about the motor shaft J1.
  • the gear housing portion 13 is a portion that houses the reduction gear device 30, the generator 40, and the differential device 50.
  • the gear housing part 13 is located on the right side of the motor housing part 12. The gear housing part 13 projects forward from the motor housing part 12.
  • oil O is accommodated in the housing 11. More specifically, oil O is accommodated in the motor accommodating portion 12 and the gear accommodating portion 13, respectively. In the lower region of the motor accommodating portion 12, an oil reservoir OR1 in which the oil O is accumulated is provided. An oil reservoir OR2 in which oil O is accumulated is provided in the lower region of the gear housing portion 13.
  • the oil level of the oil sump OR1 in the motor accommodating part 12 is located above the oil level of the oil sump OR2 in the gear accommodating part 13, for example.
  • the oil level of the oil reservoir OR1 is positioned below the rotor 21 described later when the motor 20 is driven. Thereby, it can suppress that rotation of the rotor 21 is inhibited by the oil O of the oil reservoir OR1.
  • the illustration of the engine shaft J2, the generator 40, and the clutch mechanism 60 is omitted.
  • the housing 11 further includes a partition wall portion 14 and a bearing holding wall portion 15.
  • the partition wall part 14 partitions the motor housing part 12 and the gear housing part 13.
  • the partition wall portion 14 has a hole portion 14a that penetrates the partition wall portion 14 in the axial direction.
  • the axle 14 and the motor shaft 22 are passed through the hole 14a.
  • a bearing 27b that rotatably supports the motor shaft 22 is fitted and held in the hole 14a.
  • the partition wall portion 14 has an oil passage 14 b that connects the inside of the motor housing portion 12 and the inside of the gear housing portion 13.
  • the oil passage 14b penetrates the partition wall portion 14 in the axial direction.
  • the oil passage 14b extends linearly along the axial direction.
  • the oil passage 14b is located below the hole 14a. The oil O in the motor housing portion 12 can move into the gear housing portion 13 through the oil passage 14b.
  • the bearing holding wall portion 15 extends radially inward from the inner peripheral surface of the motor housing portion 12.
  • the bearing holding wall portion 15 is located on the left side of a stator 24 described later.
  • the interior of the motor housing portion 12 is partitioned in the axial direction by the bearing holding wall portion 15.
  • the bearing holding wall portion 15 has a hole portion 15a penetrating the bearing holding wall portion 15 in the axial direction.
  • the axle AX and the motor shaft 22 are passed through the hole 15a.
  • a bearing 27a that rotatably supports the motor shaft 22 is fitted and held in the hole 15a.
  • the bearing holding wall portion 15 has a through portion 15b at the lower end.
  • the through portion 15 b connects the portions of the interior of the motor housing portion 12 that are partitioned in the axial direction by the bearing holding wall portion 15. Since the penetrating portion 15 b is provided, the oil reservoir OR ⁇ b> 1 is provided across the axially opposite sides of the bearing holding wall portion 15 in the motor housing portion 12.
  • the motor 20 outputs torque that rotates the axle AX.
  • the torque of the motor 20 is transmitted to the axle AX via the speed reduction device 30 and the differential device 50.
  • the motor 20 also has a function as a generator.
  • the motor 20 functions as a generator during regeneration.
  • the motor 20 has a rotor 21 and a stator 24.
  • the rotor 21 has a motor shaft 22 and a rotor body 23.
  • the rotor body 23 is fixed to the outer peripheral surface of the motor shaft 22.
  • the rotor main body 23 includes a rotor core and a rotor magnet.
  • the motor shaft 22 extends in the axial direction around the motor shaft J1.
  • the motor shaft 22 is a hollow shaft that opens on both sides in the axial direction.
  • the outer shape of the motor shaft 22 viewed along the axial direction is a circular shape centered on the motor shaft J1.
  • the motor shaft 22 is supported by bearings 27a and 27b so as to be rotatable around the motor axis J1.
  • the bearings 27a and 27b are ball bearings, for example.
  • the bearing 27 a is held by the bearing holding wall 15 and supports a portion of the motor shaft 22 on the left side of the rotor body 23.
  • the bearing 27 b is held by the partition wall portion 14 and supports a portion of the motor shaft 22 on the right side of the rotor body 23.
  • the right end of the motor shaft 22 protrudes into the gear housing 13 through the hole 14a.
  • a speed reducer 30 is connected to the right end of the motor shaft 22.
  • the left end of the motor shaft 22 projects through the hole 15a to the left side of the bearing holding wall 15 in the motor housing 12.
  • the motor shaft 22 has shaft through holes 22 a, 22 b, 22 c, and 22 d that connect the inside of the motor shaft 22 and the outer peripheral surface of the motor shaft 22.
  • a plurality of shaft through holes 22a, 22b, 22c, and 22d are provided along the circumferential direction.
  • the shaft through holes 22 a and 22 b are provided in a portion of the motor shaft 22 located between the partition wall portion 14 and the bearing holding wall portion 15 in the axial direction.
  • the shaft through hole 22 a is provided in a portion of the motor shaft 22 on the left side of the rotor body 23.
  • the shaft through hole 22 b is provided in a portion on the right side of the rotor body 23 in the motor shaft 22.
  • the shaft through holes 22a and 22b are opposed to a coil 26, which will be described later, via a gap in the radial direction.
  • the shaft through hole 22c is provided in a portion of the motor shaft 22 located in the hole 15a.
  • the shaft through hole 22c opens into the hole 15a.
  • the shaft through hole 22d is provided in a portion of the motor shaft 22 located in the hole 14a.
  • the shaft through hole 22d opens inside the hole 14a.
  • the stator 24 faces the rotor 21 in the radial direction through a gap.
  • the stator 24 is located on the radially outer side of the rotor 21.
  • the stator 24 includes a stator core 25, an insulator (not shown), and a plurality of coils 26.
  • the plurality of coils 26 are attached to the stator core 25 via an insulator (not shown).
  • the stator 24 is fixed inside the motor housing portion 12. The lower end of the stator 24 is immersed in the oil reservoir OR1.
  • the reduction gear 30 reduces the rotational speed of the motor 20 and increases the torque output from the motor 20 according to the reduction ratio.
  • the reduction gear 30 transmits the torque output from the motor 20 to the differential device 50.
  • the reduction gear device 30 includes a motor drive gear 31, a counter gear 32, a drive gear 33, and a counter shaft 34.
  • the motor drive gear 31 is fixed to the motor shaft 22. Thereby, the reduction gear device 30 is connected to the motor shaft 22. In the present embodiment, the motor drive gear 31 is fixed to the right end of the motor shaft 22.
  • the counter gear 32 rotates around a counter shaft J3 parallel to the motor shaft J1.
  • the counter shaft J3 is located on the radially outer side of the motor shaft J1.
  • the counter shaft J3 is located above the motor shaft J1.
  • the counter shaft J3 is located on the front side of the motor shaft J1.
  • the counter gear 32 meshes with the motor drive gear 31.
  • the counter gear 32 is located above the motor drive gear 31.
  • the drive gear 33 is located on the right side of the counter gear 32.
  • the drive gear 33 rotates around the counter shaft J3 together with the counter gear 32.
  • the outer diameter of the drive gear 33 is smaller than the outer diameter of the counter gear 32.
  • the counter shaft 34 extends in the axial direction around the counter axis J3.
  • the counter shaft 34 is supported by the bearings 35a and 35b so as to be rotatable around the counter axis J3.
  • the bearings 35a and 35b are ball bearings, for example.
  • the bearings 35 a and 35 b are respectively held on the wall portions on both sides in the axial direction of the gear housing portion 13.
  • a counter gear 32 and a drive gear 33 are fixed to the outer peripheral surface of the counter shaft 34. Therefore, the counter gear 32 and the drive gear 33 are connected via the counter shaft 34.
  • the torque output from the motor shaft 22 of the motor 20 is transmitted to the differential device 50 through the motor drive gear 31, the counter gear 32, and the drive gear 33 in this order.
  • the gear ratio of each gear, the number of gears, and the like can be variously changed according to the required reduction ratio.
  • the speed reduction device 30 is a parallel shaft gear type speed reducer in which the shaft cores of the respective gears are arranged in parallel.
  • the differential device 50 is connected to the speed reducer 30.
  • the differential device 50 is a device for transmitting torque output from the motor 20 to the wheels H of the vehicle.
  • the differential device 50 transmits torque to the axle AX and rotates the axle AX around the differential axis.
  • the differential shaft of the differential device 50 coincides with the motor shaft J1.
  • a pair of axles AX are provided with the differential device 50 sandwiched in the axial direction.
  • the pair of axles AX extends in the axial direction.
  • the axle AX has a columnar shape centered on the motor shaft J1.
  • the left axle AX of the pair of axles AX is passed through the inside of the motor shaft 22 that is a hollow shaft.
  • the motor unit 10 can be easily downsized in the radial direction. Therefore, according to this embodiment, the motor unit 10 including the generator 40 connected to the engine 2 can be downsized.
  • the left axle AX of the pair of axles AX penetrates the motor shaft 22 in the axial direction.
  • each of the pair of axles AX the axial end opposite to the side connected to the differential device 50 out of the axial end of the axle AX protrudes from the housing 11 in the axial direction.
  • wheels H are respectively attached to axial ends protruding from the housing 11 of the axles AX.
  • the differential device 50 includes a ring gear 51, a pair of pinion gears (not shown), a pinion shaft (not shown), and a pair of side gears (not shown).
  • the ring gear 51 is located on the right side of the motor shaft 22 and the motor drive gear 31.
  • the ring gear 51 rotates around the differential shaft (motor shaft J1).
  • Ring gear 51 meshes with drive gear 33. Thereby, the torque output from the motor 20 is transmitted to the ring gear 51 via the reduction gear 30.
  • the lower end portion of the ring gear 51 is immersed in the oil reservoir OR ⁇ b> 2 in the gear housing portion 13. Thereby, the oil O is scraped up when the ring gear 51 rotates.
  • the oil O that has been scooped up becomes mist and is sprayed inside the gear housing 13. Thereby, oil O can be supplied to each part arrange
  • the generator 40 shown in FIGS. 1 to 3 generates power by the power of the engine 2.
  • the electric power generated by the generator 40 is charged in the battery 3 that supplies electric power to the motor 20 or is supplied to the stator 24 of the motor 20 without going through the battery 3.
  • the generator 40 can supply electric power to the motor 20.
  • the generator 40 also has a function as a motor.
  • the generator 40 functions as a motor (starter) when starting the engine 2.
  • the generator 40 is connected to the reduction gear device 30 via the clutch mechanism 60.
  • the power of the engine 2 is transmitted to the differential device 50 via the generator 40, the clutch mechanism 60, and the speed reduction device 30.
  • the generator 40 is located in front of the speed reduction device 30 and the differential device 50.
  • the generator 40 includes a rotor 41 and a stator 44.
  • the rotor 41 includes an engine drive shaft 42 that rotates about an engine axis J2 that is parallel to the motor axis J1, and a rotor body 43.
  • the engine shaft J2 is located on the outer side in the radial direction of the motor shaft J1. As shown in FIG. 5, in this embodiment, the engine shaft J2 is located in front of the motor shaft J1 and the counter shaft J3. The motor shaft J1 and the engine shaft J2 are located at substantially the same position in the vertical direction. In the present embodiment, the engine shaft J2 is positioned slightly above the motor shaft J1. As shown in FIGS. 1 to 3, the rotor main body 43 is fixed to the outer peripheral surface of the engine drive shaft 42. Although illustration is omitted, the rotor main body 43 has a rotor core and a rotor magnet.
  • the engine drive shaft 42 has a cylindrical shape extending in the axial direction around the engine axis J2. As shown in FIG. 4, the right end of the engine drive shaft 42 protrudes outside the housing 11. As shown in FIGS. 1 to 3, the right end of the engine drive shaft 42 is connected to the engine 2 via a damper 2b. Thereby, the motor unit 10 is connected to the engine 2.
  • the damper 2b functions as a torque limiter.
  • the damper 2b reduces vibrations caused by sudden torque fluctuations such as when the engine 2 is suddenly accelerated by the engine 2.
  • the engine drive shaft 42 is rotated around the engine axis J2 by the engine 2. That is, the rotor 41 is rotated by the power of the engine 2. Thereby, a voltage is generated in the stator 44 by electromagnetic induction, and the generator 40 can generate power.
  • the power of the engine 2 is transmitted to the engine drive shaft 42 of the generator 40 without a gear. Therefore, the number of shafts and gears necessary for transmitting power from the engine 2 to the axle AX can be reduced. Therefore, the motor unit 10 can be further reduced in size and weight.
  • the engine drive shaft 42 has an oil passage extending in the axial direction therein. Although not shown, the engine drive shaft 42 has a shaft through hole that connects an oil passage provided inside and the outer peripheral surface of the engine drive shaft 42. A plurality of shaft through holes of the engine drive shaft 42 are provided, for example, similarly to the shaft through holes 22a, 22b, 22c, and 22d of the motor shaft 22.
  • the stator 44 faces the rotor 41 in the radial direction of the engine shaft J2 through a gap.
  • the stator 44 is located outside the rotor 41 in the radial direction of the engine shaft J2.
  • the stator 24 includes a stator core 45, an insulator (not shown), and a plurality of coils 46.
  • the plurality of coils 46 are attached to the stator core 45 via an insulator (not shown).
  • the stator 44 is fixed inside the gear housing portion 13.
  • the clutch mechanism 60 switches between disconnection and connection between the generator 40 and the reduction gear 30.
  • the clutch mechanism 60 of the present embodiment is referred to as a rotation synchronization device or a synchromesh mechanism, for example.
  • the clutch mechanism 60 includes a clutch shaft 61, a first flange portion 62, a second flange portion 63, an engine drive gear 64, a movable portion 65, and a synchronizer ring (not shown). Further, as shown in FIGS. 4 to 6, the clutch mechanism 60 has a drive unit 66.
  • the drive part 66 is attached to the upper wall part of the gear housing part 13. For example, the drive unit 66 is driven by power supplied from the battery 3.
  • the clutch shaft 61 is located on the left side of the engine drive shaft 42 and extends in the axial direction about the engine axis J2. Although illustration is omitted, the clutch shaft 61 has an oil passage extending in the axial direction therein. The oil passage inside the clutch shaft 61 is connected to the oil passage inside the engine drive shaft 42 when the clutch shaft 61 and the engine drive shaft 42 are connected. Although not shown, the clutch shaft 61 has a shaft through hole that connects an oil passage provided inside and the outer peripheral surface of the clutch shaft 61. A plurality of shaft through holes of the clutch shaft 61 are provided in the same manner as the shaft through holes 22a, 22b, 22c, 22d of the motor shaft 22, for example.
  • the first flange portion 62 extends outward from the left end portion of the engine drive shaft 42 in the radial direction of the engine shaft J2.
  • the second flange portion 63 extends outward from the right end portion of the clutch shaft 61 in the radial direction of the engine shaft J2.
  • external splines are provided on the outer peripheral surface of the first flange portion 62 and the outer peripheral surface of the second flange portion 63, respectively.
  • the engine drive gear 64 is fixed to the left end of the clutch shaft 61.
  • the engine drive gear 64 rotates around the engine axis J2 together with the clutch shaft 61.
  • the clutch mechanism 60 is connected to the generator 40, the engine drive gear 64 is rotated by the engine 2 via the generator 40.
  • the engine drive gear 64 meshes with the counter gear 32. Thereby, the generator 40 is connected to the reduction gear 30.
  • the movable part 65 is moved in the axial direction by the drive part 66.
  • the movable portion 65 has a cylindrical shape surrounding the engine shaft J2.
  • an internal spline is provided on the inner peripheral surface of the movable portion 65.
  • the movable portion 65 surrounds the outside of the second flange portion 63 in the radial direction of the engine shaft J2, and the internal tooth spline meshes with the external tooth spline of the second flange portion 63. Accordingly, the movable portion 65 rotates together with the clutch shaft 61, the second flange portion 63, and the engine drive gear 64.
  • FIG. 3 shows a state in which the power generator 40 and the speed reduction device 30 are connected.
  • the movable portion 65 moves to the right from the state shown in FIGS. 1 and 2
  • the internal splines of the movable portion 65 mesh with the external splines of the first flange portion 62. Accordingly, the first flange portion 62 and the second flange portion 63 are connected via the movable portion 65, and the engine drive shaft 42 and the clutch shaft 61 are connected. Therefore, the generator 40 and the reduction gear device 30 are connected via the clutch mechanism 60.
  • the clutch mechanism 60 can switch between disconnection and connection between the generator 40 and the speed reduction device 30 by moving the movable portion 65 in the axial direction by the drive portion 66.
  • the power of the engine 2 is transmitted to the differential device 50 via the generator 40, the clutch mechanism 60, and the speed reducer 30 when the power generator 40 and the speed reducer 30 are connected by the clutch mechanism 60. Is done.
  • the clutch mechanism 60 is disconnected from the generator 40, the power of the engine 2 is not transmitted to the differential device 50.
  • a synchronizer ring (not shown) is fixed to the movable portion 65.
  • the synchronizer ring moves in the axial direction together with the movable portion 65.
  • the internal tooth spline of the movable portion 65 is engaged with the external tooth spline of the first flange portion 62.
  • a contact surface that contacts the first flange portion 62.
  • the engine drive shaft 42 and the clutch shaft 61 can be connected via the movable portion 65 in a state where the engine drive shaft 42 and the clutch shaft 61 are synchronously rotated. Therefore, when the generator 40 and the reduction gear 30 are connected by the clutch mechanism 60, it is possible to suppress a large impact from being applied to the engine drive shaft 42 and the clutch shaft 61.
  • the motor unit 10 further includes a storage unit 70.
  • the storage part 70 is located inside the gear housing part 13.
  • the reservoir 70 opens to the upper side and can store the oil O.
  • the storage unit 70 has, for example, a rectangular parallelepiped box shape that opens upward.
  • the oil O inside the gear housing part 13 is stored inside the storage part 70.
  • the lower end of the ring gear 51 is immersed in the oil reservoir OR2, so that the oil O of the oil reservoir OR2 is scraped up by the ring gear 51.
  • the oil O scraped up by the ring gear 51 is sprayed into the gear housing portion 13 and is easily collected in the storage portion 70. Therefore, the oil O in the gear housing part 13 can be efficiently collected in the storage part 70.
  • a part of the oil O that falls after being supplied to the generator 40 by an oil pump (not shown) to be described later is also stored in the storage unit 70.
  • the reservoir 70 covers the right end of the motor shaft 22. That is, the right end portion of the motor shaft 22 is located inside the storage portion 70. Accordingly, at least a part of the radial gap between the motor shaft 22 and the axle AX in the opening on the right side of the motor shaft 22 is located inside the storage unit 70. Therefore, when the oil O accumulates in the reservoir 70 and the oil level of the oil O in the reservoir 70 reaches the radial gap between the motor shaft 22 and the axle AX, the oil O in the reservoir 70 is caused by negative pressure. The air is sucked into the radial gap between the motor shaft 22 and the axle AX. Thereby, the oil O etc.
  • the supply amount of the oil O into the motor shaft 22 can be improved even when the axle AX is passed through the hollow motor shaft 22. Thereby, the motor 20 can be cooled suitably.
  • the radial clearance between the motor shaft 22 and the axle AX in the opening on the right side of the motor shaft 22 is entirely located inside the storage unit 70. Therefore, the oil O stored in the storage unit 70 is more easily sucked into the motor shaft 22. The oil O sucked into the motor shaft 22 flows to the left side through a radial gap between the motor shaft 22 and the axle AX.
  • the motor shaft 22 has shaft through holes 22 a, 22 b, 22 c, and 22 d that connect the inside of the motor shaft 22 and the outer peripheral surface of the motor shaft 22. Therefore, the oil O supplied into the motor shaft 22 is ejected to the outside in the radial direction of the motor shaft 22 through the shaft through holes 22a, 22b, 22c, and 22d. Thereby, the oil O can be supplied to the stator 24 and the bearings 27a and 27b. Therefore, the stator 24 can be suitably cooled by the oil O, and lubricating oil can be suitably supplied to the bearings 27a and 27b.
  • the oil O ejected from the shaft through holes 22 a and 22 b is supplied to the coil 26.
  • the oil O ejected from the shaft through holes 22c and 22d is supplied to the bearings 27a and 27b.
  • the oil O ejected from the shaft through-holes 22a, 22b, 22c, and 22d is supplied to each part and then falls into the oil reservoir OR1 of the motor housing part 12.
  • the oil O that has not been ejected from the shaft through holes 22 a, 22 b, 22 c, 22 d is discharged from the opening on the left side of the motor shaft 22.
  • the oil O discharged from the opening on the left side of the motor shaft 22 falls to a portion on the left side of the bearing holding wall portion 15 in the oil reservoir OR1 of the motor housing portion 12.
  • the motor drive gear 31 is accommodated in the storage unit 70.
  • the upper end portion of the motor drive gear 31 protrudes upward from the opening of the storage portion 70, for example.
  • the storage unit 70 includes a bottom wall portion 71, axial side wall portions 72 and 73, and front and rear direction side wall portions 74 and 75.
  • the bottom wall portion 71 extends to the right from a portion of the partition wall portion 14 above the oil passage 14b.
  • the bottom wall portion 71 is located above the oil level of the oil reservoir OR2 in the gear housing portion 13.
  • the axial side wall portions 72 and 73 extend upward from the end portions on both axial sides of the bottom wall portion 71.
  • the axial side wall 72 extends upward from the right end of the partition wall 14.
  • the axial side wall 72 has a hole 72 a that passes through the axial side wall 72 in the axial direction. Although not shown, the hole 72a has a circular shape centered on the motor shaft J1.
  • the axle shaft AX is passed through the hole 72a.
  • the axial side wall 73 extends upward from the left end of the bottom wall 71.
  • the axial side wall 73 is a portion of the partition wall 14 that overlaps with the axial side wall 72 when viewed in the axial direction. That is, a part of the wall part that constitutes the storage part 70 in this embodiment is a part of the partition wall part 14.
  • the axial side wall 73 is provided with a hole 14a.
  • the front and rear side wall portions 74 and 75 extend upward from the end portions on both sides in the front and rear direction of the bottom wall portion 71.
  • the front-rear direction side wall 74 extends upward from the front end of the bottom wall 71.
  • the front-rear direction side wall portion 74 connects the end portions on the front side of the axial side wall portions 72 and 73.
  • the front-rear direction side wall 75 extends upward from the rear end of the bottom wall 71.
  • the front-rear direction side wall 75 connects the end portions on the rear side of the axial side walls 72, 73.
  • the bottom wall 71, the axial side wall 72, and the front and rear side walls 74, 75 are each plate-shaped.
  • the bottom wall portion 71, the axial side wall portion 72, and the front and rear direction side wall portions 74 and 75 are part of the same single member.
  • the storage part 70 can be easily made by fixing the single member which has the bottom wall part 71, the axial direction side wall part 72, and the front-back direction side wall parts 74 and 75 to the partition wall part 14. FIG. it can.
  • the motor unit 10 further includes an oil pump (not shown).
  • the oil pump is a mechanical pump attached to the engine drive shaft 42, for example.
  • the oil pump sucks up the oil O from the oil reservoir OR2 in the gear housing 13 and supplies the oil O to an oil passage (not shown) provided in the engine drive shaft 42 and in the clutch shaft 61.
  • the oil O supplied to the oil passage inside the engine drive shaft 42 is ejected to the outside of the engine drive shaft 42 through a shaft through hole that connects the oil passage inside the engine drive shaft 42 and the outer peripheral surface of the engine drive shaft 42.
  • the jetted oil O is supplied to a bearing (not shown) that supports the stator 44 and the engine drive shaft 42 of the generator 40.
  • the stator 44 can be cooled, and lubricating oil can be supplied to a bearing (not shown).
  • the oil O supplied to the stator 44 and a bearing (not shown) falls to the oil reservoir OR2 in the gear housing portion 13.
  • the oil pump supplies oil O to the motor 20 as well.
  • the oil pump supplies oil O from the upper side to the stator 24 via an oil passage (not shown) provided in the upper wall portion of the motor housing portion 12. Thereby, the stator 24 can be cooled more.
  • the oil O supplied to the motor 20 by the oil pump falls into the oil reservoir OR1 in the motor housing portion 12.
  • the oil pump is driven by the power of the engine 2. Therefore, the oil pump can be driven freely if the engine 2 is driven even when the clutch mechanism 60 is disconnected from the generator 40.
  • the oil pump may be an electric oil pump.
  • the power train 1 further includes an inverter (not shown).
  • the inverter (not shown) is electrically connected to the stator 24 of the motor 20 and the stator 44 of the generator 40.
  • the power supplied to the stators 24 and 44 can be adjusted by the inverter.
  • the inverter is housed in, for example, an inverter case that houses the inverter.
  • the inverter case is fixed to the outer surface of the housing 11.
  • the inverter is controlled by an electronic control device (not shown).
  • the vehicle on which the motor unit 10 is mounted has three types of travel modes, EV mode, series mode, and parallel mode. These travel modes are alternatively selected by an electronic control unit (not shown) according to the vehicle state, the travel state, the driver's requested output, and the like.
  • FIG. 1 shows a power train 1 in the EV mode.
  • FIG. 2 shows the power train 1 in the series mode.
  • FIG. 3 shows the power train 1 in the parallel mode.
  • the EV mode is a traveling mode in which the vehicle is driven only by the motor 20 using the charging power of the battery 3 while the engine 2 and the generator 40 are stopped.
  • the EV mode is selected when the traveling load is low or the battery charge level is high.
  • the clutch mechanism 60 is in a state where the generator 40 and the speed reduction device 30 are disconnected.
  • the rotor 21 is rotated by supplying electric power from the battery 3
  • the rotation of the motor shaft 22 is transmitted in the order of the motor drive gear 31, the counter gear 32, the counter shaft 34, the drive gear 33, the ring gear 51, and the axle AX.
  • the axle 20 and the wheels H can be rotated by the motor 20, and the vehicle can be driven.
  • the series mode is a traveling mode in which the generator 2 is driven by the engine 2 to generate electric power, and the vehicle is driven by the motor 20 using the electric power.
  • the electric power generated by the generator 40 in the series mode is supplied to both the battery 3 and the motor 20, for example. Thereby, the battery 3 can be charged.
  • the series mode is selected when the traveling load is medium or when the battery charge level is low.
  • the clutch mechanism 60 is in a state where the generator 40 and the speed reduction device 30 are disconnected.
  • rotation transmission from the motor 20 to the axle AX is the same as in the EV mode.
  • the clutch mechanism 60 since the clutch mechanism 60 is provided, the power of the motor 20 can be prevented from being transmitted to the generator 40 and the engine 2 in the EV mode and the series mode described above. Therefore, an increase in the load applied to the motor 20 can be suppressed, and power generation can be suitably performed by the generator 40 in the series mode.
  • the parallel mode is a traveling mode in which the vehicle is driven mainly by the engine 2 and the driving of the vehicle is assisted by the motor 20 as necessary, and is selected when the traveling load is high.
  • the clutch mechanism 60 is in a state where the generator 40 and the speed reduction device 30 are connected.
  • the power of the engine 2 is transmitted to the axle AX via the generator 40, the clutch mechanism 60, the speed reduction device 30, and the differential device 50.
  • the rotor 41 of the generator 40 is rotated by the engine 2
  • the rotation of the engine drive shaft 42 is changed to the first flange portion 62, the movable portion 65, the second flange portion 63, the clutch shaft 61, and the engine drive.
  • the gear 64, the counter gear 32, the counter shaft 34, the drive gear 33, the ring gear 51, and the axle AX are transmitted in this order.
  • the axle shaft AX and the wheel H can be rotated by the engine 2, and the vehicle can be run.
  • the rotation of the motor shaft 22 is transmitted from the motor drive gear 31 to the counter gear 32.
  • the counter gear 32 since the counter gear 32 meshes with both the engine drive gear 64 and the motor drive gear 31, the counter gear 32 has the power of the engine 2 and the power of the motor 20 in the parallel mode. Both are communicated. Therefore, the power transmission path from the counter gear 32 to the axle AX can be supplied by the power transmission path from the engine 2 to the axle AX and the power transmission path from the motor 20 to the axle AX. Thereby, the number of shafts and gears necessary for transmitting power from the motor 20 and the engine 2 to the axle AX can be reduced. Therefore, the motor unit 10 can be further reduced in size and weight.
  • the reduction ratio of the rotation of the motor 20 can be changed by changing the number of teeth of the motor drive gear 31, and the rotation of the engine 2 can be changed by changing the number of teeth of the engine drive gear 64.
  • the reduction ratio can be changed. That is, by changing the number of teeth of each drive gear, the reduction ratio of the motor 20 and the reduction ratio of the engine 2 can be individually changed, and can be made different from each other. Thereby, the reduction ratio of the motor 20 and the reduction ratio of the engine 2 can be set to suitable values, respectively. Therefore, the vehicle can be driven efficiently regardless of whether the motor 20 or the engine 2 is driven by either one or both.
  • the oil pump (not shown) in the present embodiment is driven by the power of the engine 2 and is not driven in the EV mode in which the engine 2 is stopped.
  • the motor 20 since the oil O is not supplied to the motor 20 by the oil pump, the motor 20 may be insufficiently cooled.
  • the ring gear 51 since the ring gear 51 is driven in any mode, cooling using the oil O scraped up by the ring gear 51 is performed in any mode.
  • the oil O can be efficiently supplied to the gap between the motor shaft 22 and the axle AX by the storage unit 70 as described above. Therefore, the oil O scraped up by the ring gear 51 can be efficiently collected and supplied to the motor 20. Thereby, even in the EV mode and the series mode in which the oil pump is not driven, it is easy to sufficiently supply the oil 20 to the motor 20 and it is possible to suppress the cooling of the motor 20 from being insufficient.
  • the present invention is not limited to the above-described embodiment, and other configurations can be adopted.
  • the wall part which comprises a storage part does not need to contain a part of partition wall part. Only a part of the radial gap between the motor shaft and the axle of the opening on the right side of the motor shaft may be located inside the reservoir. Oil O may be supplied to the reservoir by an oil pump.
  • the housing may not have a partition wall portion.
  • the configuration of the clutch mechanism is not particularly limited.
  • the clutch mechanism may not be provided.
  • the engine power may not be transmitted to the differential device, but may be used only for power generation by the generator.
  • the configuration of the speed reduction mechanism is not particularly limited.
  • the configuration of the differential device is not particularly limited. In the reduction gear, the gear that meshes with the motor drive gear and the gear that meshes with the engine drive gear may be different gears.
  • the configuration of the generator is not particularly limited.
  • the generator may not be provided.
  • the oil pump may not be provided.
  • the vehicle on which the motor unit of the above-described embodiment is mounted may be a vehicle other than a vehicle that uses a motor unit and an engine as power sources as long as the axle is rotated by the motor unit, and is not particularly limited.
  • the motor unit of the above-described embodiment may be mounted on an electric vehicle (EV) that does not include an engine.
  • EV electric vehicle
  • each structure demonstrated in this specification can be suitably combined in the range which is not mutually contradictory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

One aspect of this motor unit is a motor unit that rotates a wheel axle of a vehicle, the motor unit comprising: a motor having a motor shaft that rotates about a motor axle; a speed reducer connected to the motor shaft; a differential device that is connected to the speed reducer and that rotates the wheel axle about a differential axle; a housing having a motor-accommodating part that accommodates the motor, and a gear-accommodating part which accommodates the speed reducer and the differential device and inside of which oil is accommodated; and a storage part which opens vertically upward inside the gear-accommodating part, and which can store oil. The differential axle aligns with the motor axle. The motor shaft is a hollow shaft that opens at both sides in an axial direction. The wheel axle is passed through the interior of the motor shaft. One axial end of the motor shaft protrudes into the gear-accommodating part. Within the opening in one axial side of the motor shaft, a diametral gap between the motor shaft and the wheel axle is at least partially positioned inside the storage part.

Description

モータユニットMotor unit
 本発明は、モータユニットに関する。 The present invention relates to a motor unit.
 車両を駆動する電気駆動装置が知られる。例えば、特許文献1には、出力軸がモータの中空軸を貫通する構成が記載される。 An electric drive device for driving a vehicle is known. For example, Patent Document 1 describes a configuration in which an output shaft passes through a hollow shaft of a motor.
日本国公開公報:特開2017-534032号公報Japanese publication: JP 2017-534032 A
 上記のような構成においては、中空軸の内部にオイルを供給してモータを冷却することが考えられる。しかし、中空軸には出力軸が通されるため、中空軸と出力軸との隙間にオイルを供給する必要があり、オイルを中空軸の内部に供給しにくい。したがって、モータへのオイルの供給量を十分に確保しにくい問題があった。 In the above configuration, it is conceivable to cool the motor by supplying oil into the hollow shaft. However, since the output shaft is passed through the hollow shaft, it is necessary to supply oil to the gap between the hollow shaft and the output shaft, and it is difficult to supply oil to the inside of the hollow shaft. Therefore, there is a problem that it is difficult to secure a sufficient amount of oil to be supplied to the motor.
 本発明は、上記事情に鑑みて、車軸が通された中空のモータシャフト内へのオイルの供給量を向上させることができる構造を有するモータユニットを提供することを目的の一つとする。 In view of the above circumstances, an object of the present invention is to provide a motor unit having a structure capable of improving the amount of oil supplied into a hollow motor shaft through which an axle is passed.
 本発明のモータユニットの一つの態様は、車両の車軸を回転させるモータユニットであって、モータ軸を中心として回転するモータシャフトを有するモータと、前記モータシャフトに接続される減速装置と、前記減速装置に接続され、前記車軸を差動軸回りに回転させる差動装置と、前記モータを収容するモータ収容部と、前記減速装置および前記差動装置を収容し内部にオイルが収容されるギヤ収容部と、を有するハウジングと、前記ギヤ収容部の内部において鉛直方向上側に開口し、オイルを貯留可能な貯留部と、を備える。前記差動軸は、前記モータ軸と一致する。前記モータシャフトは、軸方向両側に開口する中空のシャフトである。前記モータシャフトの内部には、前記車軸が通される。前記モータシャフトの軸方向一方側の端部は、前記ギヤ収容部内に突出する。前記モータシャフトの軸方向一方側の開口のうち前記モータシャフトと前記車軸との径方向の隙間は、少なくとも一部が前記貯留部の内部に位置する。 One aspect of the motor unit of the present invention is a motor unit that rotates an axle of a vehicle, the motor having a motor shaft that rotates about the motor shaft, a speed reduction device connected to the motor shaft, and the speed reduction A differential device that is connected to a device and rotates the axle around a differential shaft, a motor housing portion that houses the motor, and a gear housing that houses the speed reducer and the differential device and contains oil therein And a storage portion that opens upward in the vertical direction inside the gear housing portion and can store oil. The differential axis coincides with the motor axis. The motor shaft is a hollow shaft that opens on both sides in the axial direction. The axle is passed through the motor shaft. One end of the motor shaft in the axial direction protrudes into the gear housing portion. At least a part of the radial clearance between the motor shaft and the axle in the opening on one side in the axial direction of the motor shaft is located inside the storage portion.
 本発明の一つの態様によれば、モータユニットにおいて、車軸が通された中空のモータシャフト内へのオイルの供給量を向上させることができる。 According to one aspect of the present invention, in the motor unit, the amount of oil supplied into the hollow motor shaft through which the axle is passed can be improved.
図1は、本実施形態のモータユニットを備えるパワートレインを模式的に示す図である。FIG. 1 is a diagram schematically showing a power train including the motor unit of the present embodiment. 図2は、本実施形態のモータユニットを備えるパワートレインを模式的に示す図である。FIG. 2 is a diagram schematically illustrating a power train including the motor unit of the present embodiment. 図3は、本実施形態のモータユニットを備えるパワートレインを模式的に示す図である。FIG. 3 is a diagram schematically illustrating a power train including the motor unit of the present embodiment. 図4は、本実施形態のモータユニットを示す斜視図である。FIG. 4 is a perspective view showing the motor unit of the present embodiment. 図5は、本実施形態のモータユニットを右側から視た図である。FIG. 5 is a view of the motor unit of the present embodiment as viewed from the right side. 図6は、本実施形態のモータユニットの一部を上側から視た図である。FIG. 6 is a view of a part of the motor unit of this embodiment as viewed from above. 図7は、本実施形態のモータユニットの一部を示す断面図であって、図6におけるVII-VII断面図である。FIG. 7 is a sectional view showing a part of the motor unit of the present embodiment, and is a sectional view taken along the line VII-VII in FIG. 図8は、本実施形態のモータユニットの一部を示す断面図であって、図7におけるVIII-VIII断面図である。FIG. 8 is a sectional view showing a part of the motor unit of the present embodiment, and is a sectional view taken along the line VIII-VIII in FIG.
 以下の説明では、各図に示す本実施形態のモータユニット10が水平な路面上に位置する車両に搭載された場合の位置関係を基に、鉛直方向を規定して説明する。また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、Z軸方向は、鉛直方向である。+Z側は、鉛直方向上側であり、-Z側は、鉛直方向下側である。以下の説明では、鉛直方向上側を単に「上側」と呼び、鉛直方向下側を単に「下側」と呼ぶ。X軸方向は、Z軸方向と直交する方向であってモータユニット10が搭載される車両の前後方向である。本実施形態において、+X側は、車両の前側であり、-X側は、車両の後側である。Y軸方向は、X軸方向とZ軸方向との両方と直交する方向であって、車両の左右方向(車幅方向)である。本実施形態において、+Y側は、車両の左側であり、-Y側は、車両の右側である。本実施形態において右側は、軸方向一方側に相当する。 In the following description, the vertical direction is defined and described based on the positional relationship when the motor unit 10 of the present embodiment shown in each drawing is mounted on a vehicle located on a horizontal road surface. In the drawings, an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system. In the XYZ coordinate system, the Z-axis direction is the vertical direction. The + Z side is the upper side in the vertical direction, and the −Z side is the lower side in the vertical direction. In the following description, the upper side in the vertical direction is simply referred to as “upper side”, and the lower side in the vertical direction is simply referred to as “lower side”. The X-axis direction is a direction orthogonal to the Z-axis direction and is the front-rear direction of the vehicle on which the motor unit 10 is mounted. In the present embodiment, the + X side is the front side of the vehicle, and the −X side is the rear side of the vehicle. The Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction, and is the left-right direction (vehicle width direction) of the vehicle. In the present embodiment, the + Y side is the left side of the vehicle, and the -Y side is the right side of the vehicle. In the present embodiment, the right side corresponds to one side in the axial direction.
 なお、前後方向の位置関係は、本実施形態の位置関係に限られず、+X側が車両の後側であり、-X側が車両の前側であってもよい。この場合には、+Y側は、車両の右側であり、-Y側は、車両の左側である。 Note that the positional relationship in the front-rear direction is not limited to the positional relationship of the present embodiment, and the + X side may be the rear side of the vehicle, and the −X side may be the front side of the vehicle. In this case, the + Y side is the right side of the vehicle, and the -Y side is the left side of the vehicle.
 各図に適宜示すモータ軸J1は、Y軸方向、すなわち車両の左右方向に延びる。以下の説明においては、特に断りのない限り、モータ軸J1に平行な方向を単に「軸方向」と呼び、モータ軸J1を中心とする径方向を単に「径方向」と呼び、モータ軸J1を中心とする周方向、すなわち、モータ軸J1の軸回りを単に「周方向」と呼ぶ。なお、本明細書において、「平行な方向」は略平行な方向も含み、「直交する方向」は略直交する方向も含む。 The motor shaft J1 shown as appropriate in each drawing extends in the Y-axis direction, that is, the left-right direction of the vehicle. In the following description, unless otherwise specified, the direction parallel to the motor shaft J1 is simply referred to as “axial direction”, the radial direction around the motor shaft J1 is simply referred to as “radial direction”, and the motor shaft J1 is The central circumferential direction, that is, the axis around the motor shaft J1 is simply referred to as “circumferential direction”. In the present specification, the “parallel direction” includes a substantially parallel direction, and the “perpendicular direction” includes a substantially orthogonal direction.
 図1から図3に示すように、本実施形態のモータユニット10は、パワートレイン1に設けられる。パワートレイン1は、モータユニット10と、エンジン2と、バッテリ3と、を備える。パワートレイン1は、ハイブリッド自動車(HEV)およびプラグインハイブリッド自動車(PHV)等、モータユニット10とエンジン2とを動力源とする車両に搭載される。 As shown in FIGS. 1 to 3, the motor unit 10 of the present embodiment is provided in the power train 1. The power train 1 includes a motor unit 10, an engine 2, and a battery 3. The powertrain 1 is mounted on a vehicle that uses the motor unit 10 and the engine 2 as power sources, such as a hybrid vehicle (HEV) and a plug-in hybrid vehicle (PHV).
 エンジン2は、ガソリンおよび軽油等の燃料を燃焼させる内燃機関である。エンジン2は、例えば、ガソリンエンジンまたはディーゼルエンジンである。本実施形態のエンジン2は、クランクシャフト2aの向きが車両の左右方向、すなわち軸方向に一致するいわゆる横置きエンジンである。バッテリ3は、モータユニット10に電力を供給する。 Engine 2 is an internal combustion engine that burns fuel such as gasoline and light oil. The engine 2 is, for example, a gasoline engine or a diesel engine. The engine 2 of the present embodiment is a so-called horizontal engine in which the direction of the crankshaft 2a coincides with the left-right direction of the vehicle, that is, the axial direction. The battery 3 supplies power to the motor unit 10.
 本実施形態のモータユニット10は、エンジン2を備える車両に搭載され、車両の車軸AXを回転させる。モータユニット10は、ハウジング11と、モータ軸J1を中心として回転するモータシャフト22を有するモータ20と、減速装置30と、差動装置50と、発電機40と、クラッチ機構60と、を備える。 The motor unit 10 of this embodiment is mounted on a vehicle including the engine 2 and rotates the axle AX of the vehicle. The motor unit 10 includes a housing 11, a motor 20 having a motor shaft 22 that rotates about a motor shaft J <b> 1, a speed reduction device 30, a differential device 50, a generator 40, and a clutch mechanism 60.
 ハウジング11は、モータ20、減速装置30、差動装置50、発電機40およびクラッチ機構60を収容する。図4から図6に示すように、ハウジング11は、モータ収容部12と、ギヤ収容部13と、を有する。モータ収容部12は、モータ20を収容する部分である。モータ収容部12は、モータ軸J1を中心として軸方向に延びる筒状である。ギヤ収容部13は、減速装置30、発電機40および差動装置50を収容する部分である。ギヤ収容部13は、モータ収容部12の右側に位置する。ギヤ収容部13は、モータ収容部12よりも前側に突出する。 The housing 11 accommodates the motor 20, the reduction gear 30, the differential device 50, the generator 40 and the clutch mechanism 60. As shown in FIGS. 4 to 6, the housing 11 includes a motor housing portion 12 and a gear housing portion 13. The motor housing portion 12 is a portion that houses the motor 20. The motor housing portion 12 has a cylindrical shape that extends in the axial direction about the motor shaft J1. The gear housing portion 13 is a portion that houses the reduction gear device 30, the generator 40, and the differential device 50. The gear housing part 13 is located on the right side of the motor housing part 12. The gear housing part 13 projects forward from the motor housing part 12.
 図7に示すように、ハウジング11の内部には、オイルOが収容される。より詳細には、モータ収容部12の内部およびギヤ収容部13の内部には、それぞれオイルOが収容される。モータ収容部12の下側の領域には、オイルOが溜まるオイル溜りOR1が設けられる。ギヤ収容部13の下側の領域には、オイルOが溜まるオイル溜りOR2が設けられる。図7では、モータ収容部12におけるオイル溜りOR1の油面は、例えば、ギヤ収容部13におけるオイル溜りOR2の油面よりも上側に位置する。オイル溜りOR1の油面は、例えば、モータ20の駆動時において後述するロータ21よりも下側に位置する。これにより、ロータ21の回転がオイル溜りOR1のオイルOによって阻害されることを抑制できる。なお、図7においては、エンジン軸J2、発電機40およびクラッチ機構60の図示を省略する。 As shown in FIG. 7, oil O is accommodated in the housing 11. More specifically, oil O is accommodated in the motor accommodating portion 12 and the gear accommodating portion 13, respectively. In the lower region of the motor accommodating portion 12, an oil reservoir OR1 in which the oil O is accumulated is provided. An oil reservoir OR2 in which oil O is accumulated is provided in the lower region of the gear housing portion 13. In FIG. 7, the oil level of the oil sump OR1 in the motor accommodating part 12 is located above the oil level of the oil sump OR2 in the gear accommodating part 13, for example. For example, the oil level of the oil reservoir OR1 is positioned below the rotor 21 described later when the motor 20 is driven. Thereby, it can suppress that rotation of the rotor 21 is inhibited by the oil O of the oil reservoir OR1. In FIG. 7, the illustration of the engine shaft J2, the generator 40, and the clutch mechanism 60 is omitted.
 ハウジング11は、仕切壁部14と、ベアリング保持壁部15と、をさらに有する。仕切壁部14は、モータ収容部12とギヤ収容部13とを仕切る。仕切壁部14は、仕切壁部14を軸方向に貫通する孔部14aを有する。孔部14aには、車軸AXおよびモータシャフト22が通される。孔部14aには、モータシャフト22を回転可能に支持するベアリング27bが嵌め合わされて保持される。 The housing 11 further includes a partition wall portion 14 and a bearing holding wall portion 15. The partition wall part 14 partitions the motor housing part 12 and the gear housing part 13. The partition wall portion 14 has a hole portion 14a that penetrates the partition wall portion 14 in the axial direction. The axle 14 and the motor shaft 22 are passed through the hole 14a. A bearing 27b that rotatably supports the motor shaft 22 is fitted and held in the hole 14a.
 仕切壁部14は、モータ収容部12の内部とギヤ収容部13の内部とを繋ぐ油路14bを有する。油路14bは、仕切壁部14を軸方向に貫通する。本実施形態において油路14bは、軸方向に沿って直線状に延びる。油路14bは、孔部14aよりも下側に位置する。モータ収容部12内のオイルOは、油路14bを介してギヤ収容部13の内部に移動可能である。 The partition wall portion 14 has an oil passage 14 b that connects the inside of the motor housing portion 12 and the inside of the gear housing portion 13. The oil passage 14b penetrates the partition wall portion 14 in the axial direction. In the present embodiment, the oil passage 14b extends linearly along the axial direction. The oil passage 14b is located below the hole 14a. The oil O in the motor housing portion 12 can move into the gear housing portion 13 through the oil passage 14b.
 ベアリング保持壁部15は、モータ収容部12の内周面から径方向内側に拡がる。ベアリング保持壁部15は、後述するステータ24の左側に位置する。ベアリング保持壁部15によってモータ収容部12の内部は、軸方向に仕切られる。ベアリング保持壁部15は、ベアリング保持壁部15を軸方向に貫通する孔部15aを有する。孔部15aには、車軸AXおよびモータシャフト22が通される。孔部15aには、モータシャフト22を回転可能に支持するベアリング27aが嵌め合わされて保持される。ベアリング保持壁部15は、下側の端部に貫通部15bを有する。貫通部15bは、モータ収容部12の内部のうちベアリング保持壁部15によって軸方向に仕切られた部分同士を繋ぐ。貫通部15bが設けられるため、オイル溜りOR1は、モータ収容部12の内部のうちベアリング保持壁部15の軸方向両側の部分に跨って設けられる。 The bearing holding wall portion 15 extends radially inward from the inner peripheral surface of the motor housing portion 12. The bearing holding wall portion 15 is located on the left side of a stator 24 described later. The interior of the motor housing portion 12 is partitioned in the axial direction by the bearing holding wall portion 15. The bearing holding wall portion 15 has a hole portion 15a penetrating the bearing holding wall portion 15 in the axial direction. The axle AX and the motor shaft 22 are passed through the hole 15a. A bearing 27a that rotatably supports the motor shaft 22 is fitted and held in the hole 15a. The bearing holding wall portion 15 has a through portion 15b at the lower end. The through portion 15 b connects the portions of the interior of the motor housing portion 12 that are partitioned in the axial direction by the bearing holding wall portion 15. Since the penetrating portion 15 b is provided, the oil reservoir OR <b> 1 is provided across the axially opposite sides of the bearing holding wall portion 15 in the motor housing portion 12.
 モータ20は、車軸AXを回転させるトルクを出力する。モータ20のトルクは、減速装置30および差動装置50を介して車軸AXに伝達される。本実施形態においてモータ20は、発電機としての機能も兼ね備える。モータ20は、例えば、回生時には発電機として機能する。 The motor 20 outputs torque that rotates the axle AX. The torque of the motor 20 is transmitted to the axle AX via the speed reduction device 30 and the differential device 50. In the present embodiment, the motor 20 also has a function as a generator. For example, the motor 20 functions as a generator during regeneration.
 モータ20は、ロータ21と、ステータ24と、を有する。ロータ21は、モータシャフト22と、ロータ本体23と、を有する。ロータ本体23は、モータシャフト22の外周面に固定される。図示は省略するが、ロータ本体23は、ロータコアと、ロータマグネットと、を有する。 The motor 20 has a rotor 21 and a stator 24. The rotor 21 has a motor shaft 22 and a rotor body 23. The rotor body 23 is fixed to the outer peripheral surface of the motor shaft 22. Although illustration is omitted, the rotor main body 23 includes a rotor core and a rotor magnet.
 モータシャフト22は、モータ軸J1を中心として軸方向に延びる。モータシャフト22は、軸方向両側に開口する中空のシャフトである。図8に示すように、モータシャフト22の軸方向に沿って視た外形は、モータ軸J1を中心とする円形状である。図7に示すように、モータシャフト22は、ベアリング27a,27bによってモータ軸J1回りに回転可能に支持される。ベアリング27a,27bは、例えば、ボールベアリングである。ベアリング27aは、ベアリング保持壁部15に保持され、モータシャフト22のうちロータ本体23よりも左側の部分を支持する。ベアリング27bは、仕切壁部14に保持され、モータシャフト22のうちロータ本体23よりも右側の部分を支持する。 The motor shaft 22 extends in the axial direction around the motor shaft J1. The motor shaft 22 is a hollow shaft that opens on both sides in the axial direction. As shown in FIG. 8, the outer shape of the motor shaft 22 viewed along the axial direction is a circular shape centered on the motor shaft J1. As shown in FIG. 7, the motor shaft 22 is supported by bearings 27a and 27b so as to be rotatable around the motor axis J1. The bearings 27a and 27b are ball bearings, for example. The bearing 27 a is held by the bearing holding wall 15 and supports a portion of the motor shaft 22 on the left side of the rotor body 23. The bearing 27 b is held by the partition wall portion 14 and supports a portion of the motor shaft 22 on the right side of the rotor body 23.
 モータシャフト22の右側の端部は、孔部14aを通ってギヤ収容部13内に突出する。モータシャフト22の右側の端部には減速装置30が接続される。モータシャフト22の左側の端部は、孔部15aを通ってモータ収容部12の内部のうちベアリング保持壁部15より左側の部分に突出する。 The right end of the motor shaft 22 protrudes into the gear housing 13 through the hole 14a. A speed reducer 30 is connected to the right end of the motor shaft 22. The left end of the motor shaft 22 projects through the hole 15a to the left side of the bearing holding wall 15 in the motor housing 12.
 モータシャフト22は、モータシャフト22の内部とモータシャフト22の外周面とを繋ぐシャフト貫通孔22a,22b,22c,22dを有する。本実施形態において各シャフト貫通孔22a,22b,22c,22dは、周方向に沿って複数設けられる。シャフト貫通孔22a,22bは、モータシャフト22のうち仕切壁部14とベアリング保持壁部15との軸方向の間に位置する部分に設けられる。シャフト貫通孔22aは、モータシャフト22のうちロータ本体23よりも左側の部分に設けられる。シャフト貫通孔22bは、モータシャフト22のうちロータ本体23よりも右側の部分に設けられる。シャフト貫通孔22a,22bは、後述するコイル26と径方向に隙間を介して対向する。 The motor shaft 22 has shaft through holes 22 a, 22 b, 22 c, and 22 d that connect the inside of the motor shaft 22 and the outer peripheral surface of the motor shaft 22. In the present embodiment, a plurality of shaft through holes 22a, 22b, 22c, and 22d are provided along the circumferential direction. The shaft through holes 22 a and 22 b are provided in a portion of the motor shaft 22 located between the partition wall portion 14 and the bearing holding wall portion 15 in the axial direction. The shaft through hole 22 a is provided in a portion of the motor shaft 22 on the left side of the rotor body 23. The shaft through hole 22 b is provided in a portion on the right side of the rotor body 23 in the motor shaft 22. The shaft through holes 22a and 22b are opposed to a coil 26, which will be described later, via a gap in the radial direction.
 シャフト貫通孔22cは、モータシャフト22のうち孔部15aに位置する部分に設けられる。シャフト貫通孔22cは孔部15aの内部に開口する。シャフト貫通孔22dはモータシャフト22のうち孔部14aに位置する部分に設けられる。シャフト貫通孔22dは孔部14aの内部に開口する。 The shaft through hole 22c is provided in a portion of the motor shaft 22 located in the hole 15a. The shaft through hole 22c opens into the hole 15a. The shaft through hole 22d is provided in a portion of the motor shaft 22 located in the hole 14a. The shaft through hole 22d opens inside the hole 14a.
 ステータ24は、ロータ21と隙間を介して径方向に対向する。ステータ24は、ロータ21の径方向外側に位置する。ステータ24は、ステータコア25と、図示しないインシュレータと、複数のコイル26と、を有する。複数のコイル26は、図示しないインシュレータを介してステータコア25に装着される。ステータ24は、モータ収容部12の内部に固定される。ステータ24の下側の端部は、オイル溜りOR1に浸漬される。 The stator 24 faces the rotor 21 in the radial direction through a gap. The stator 24 is located on the radially outer side of the rotor 21. The stator 24 includes a stator core 25, an insulator (not shown), and a plurality of coils 26. The plurality of coils 26 are attached to the stator core 25 via an insulator (not shown). The stator 24 is fixed inside the motor housing portion 12. The lower end of the stator 24 is immersed in the oil reservoir OR1.
 減速装置30は、モータ20の回転速度を減じて、モータ20から出力されるトルクを減速比に応じて増大させる。減速装置30は、モータ20から出力されるトルクを差動装置50へ伝達する。減速装置30は、モータドライブギヤ31と、カウンタギヤ32と、ドライブギヤ33と、カウンタシャフト34と、を有する。モータドライブギヤ31は、モータシャフト22に固定される。これにより、減速装置30は、モータシャフト22に接続される。本実施形態においてモータドライブギヤ31は、モータシャフト22の右側の端部に固定される。 The reduction gear 30 reduces the rotational speed of the motor 20 and increases the torque output from the motor 20 according to the reduction ratio. The reduction gear 30 transmits the torque output from the motor 20 to the differential device 50. The reduction gear device 30 includes a motor drive gear 31, a counter gear 32, a drive gear 33, and a counter shaft 34. The motor drive gear 31 is fixed to the motor shaft 22. Thereby, the reduction gear device 30 is connected to the motor shaft 22. In the present embodiment, the motor drive gear 31 is fixed to the right end of the motor shaft 22.
 カウンタギヤ32は、モータ軸J1と平行なカウンタ軸J3を中心として回転する。カウンタ軸J3は、モータ軸J1の径方向外側に位置する。本実施形態においてカウンタ軸J3は、モータ軸J1よりも上側に位置する。図5に示すように、カウンタ軸J3は、モータ軸J1よりも前側に位置する。 The counter gear 32 rotates around a counter shaft J3 parallel to the motor shaft J1. The counter shaft J3 is located on the radially outer side of the motor shaft J1. In the present embodiment, the counter shaft J3 is located above the motor shaft J1. As shown in FIG. 5, the counter shaft J3 is located on the front side of the motor shaft J1.
 図7に示すように、カウンタギヤ32は、モータドライブギヤ31に噛み合う。カウンタギヤ32は、モータドライブギヤ31の上側に位置する。ドライブギヤ33は、カウンタギヤ32の右側に位置する。ドライブギヤ33は、カウンタギヤ32と共に、カウンタ軸J3を中心として回転する。ドライブギヤ33の外径は、カウンタギヤ32の外径よりも小さい。 As shown in FIG. 7, the counter gear 32 meshes with the motor drive gear 31. The counter gear 32 is located above the motor drive gear 31. The drive gear 33 is located on the right side of the counter gear 32. The drive gear 33 rotates around the counter shaft J3 together with the counter gear 32. The outer diameter of the drive gear 33 is smaller than the outer diameter of the counter gear 32.
 カウンタシャフト34はカウンタ軸J3を中心として軸方向に延びる。カウンタシャフト34は、ベアリング35a,35bによってカウンタ軸J3回りに回転可能に支持される。ベアリング35a,35bは、例えばボールベアリングである。ベアリング35a,35bは、ギヤ収容部13の軸方向両側の壁部にそれぞれ保持される。カウンタシャフト34の外周面には、カウンタギヤ32とドライブギヤ33とが固定される。よってカウンタシャフト34を介して、カウンタギヤ32とドライブギヤ33とが連結される。 The counter shaft 34 extends in the axial direction around the counter axis J3. The counter shaft 34 is supported by the bearings 35a and 35b so as to be rotatable around the counter axis J3. The bearings 35a and 35b are ball bearings, for example. The bearings 35 a and 35 b are respectively held on the wall portions on both sides in the axial direction of the gear housing portion 13. A counter gear 32 and a drive gear 33 are fixed to the outer peripheral surface of the counter shaft 34. Therefore, the counter gear 32 and the drive gear 33 are connected via the counter shaft 34.
 モータ20のモータシャフト22から出力されるトルクは、モータドライブギヤ31、カウンタギヤ32およびドライブギヤ33をこの順に介して差動装置50に伝達される。各ギヤのギヤ比およびギヤの個数等は、必要とされる減速比に応じて種々変更可能である。本実施形態において減速装置30は、各ギヤの軸芯が平行に配置される平行軸歯車タイプの減速機である。 The torque output from the motor shaft 22 of the motor 20 is transmitted to the differential device 50 through the motor drive gear 31, the counter gear 32, and the drive gear 33 in this order. The gear ratio of each gear, the number of gears, and the like can be variously changed according to the required reduction ratio. In the present embodiment, the speed reduction device 30 is a parallel shaft gear type speed reducer in which the shaft cores of the respective gears are arranged in parallel.
 差動装置50は、減速装置30に接続される。差動装置50は、モータ20から出力されるトルクを車両の車輪Hに伝達するための装置である。差動装置50は、車軸AXにトルクを伝達し、車軸AXを差動軸回りに回転させる。差動装置50の差動軸は、モータ軸J1と一致する。車軸AXは、差動装置50を軸方向に挟んで一対設けられる。一対の車軸AXは、軸方向に延びる。車軸AXは、モータ軸J1を中心とする円柱状である。一対の車軸AXのうち左側の車軸AXは、中空シャフトであるモータシャフト22の内部に通される。そのため、モータ軸J1と差動軸とが同軸に配置されない場合に比べて、モータユニット10を径方向に小型化しやすい。したがって、本実施形態によれば、エンジン2に接続される発電機40を備えるモータユニット10を小型化できる。一対の車軸AXのうち左側の車軸AXは、モータシャフト22を軸方向に貫通する。 The differential device 50 is connected to the speed reducer 30. The differential device 50 is a device for transmitting torque output from the motor 20 to the wheels H of the vehicle. The differential device 50 transmits torque to the axle AX and rotates the axle AX around the differential axis. The differential shaft of the differential device 50 coincides with the motor shaft J1. A pair of axles AX are provided with the differential device 50 sandwiched in the axial direction. The pair of axles AX extends in the axial direction. The axle AX has a columnar shape centered on the motor shaft J1. The left axle AX of the pair of axles AX is passed through the inside of the motor shaft 22 that is a hollow shaft. Therefore, compared with the case where the motor shaft J1 and the differential shaft are not coaxially arranged, the motor unit 10 can be easily downsized in the radial direction. Therefore, according to this embodiment, the motor unit 10 including the generator 40 connected to the engine 2 can be downsized. The left axle AX of the pair of axles AX penetrates the motor shaft 22 in the axial direction.
 一対の車軸AXのそれぞれにおいて、車軸AXの軸方向端部のうち差動装置50と接続される側と逆側の軸方向端部は、ハウジング11から軸方向に突出する。図1から図3に示すように、一対の車軸AXのそれぞれにおいて、車軸AXのうちハウジング11から突出する軸方向端部には、それぞれ車輪Hが取り付けられる。 In each of the pair of axles AX, the axial end opposite to the side connected to the differential device 50 out of the axial end of the axle AX protrudes from the housing 11 in the axial direction. As shown in FIGS. 1 to 3, in each of the pair of axles AX, wheels H are respectively attached to axial ends protruding from the housing 11 of the axles AX.
 差動装置50は、リングギヤ51と、図示しない一対のピニオンギヤと、図示しないピニオンシャフトと、図示しない一対のサイドギヤと、を有する。本実施形態においてリングギヤ51は、モータシャフト22およびモータドライブギヤ31の右側に位置する。リングギヤ51は、差動軸(モータ軸J1)を中心として回転する。リングギヤ51は、ドライブギヤ33と噛み合う。これにより、リングギヤ51には、モータ20から出力されるトルクが減速装置30を介して伝えられる。図7に示すように、リングギヤ51の下側の端部は、ギヤ収容部13内のオイル溜りOR2に浸漬される。これにより、リングギヤ51が回転することで、オイルOが掻き上げられる。掻き上げられたオイルOは、霧状になり、ギヤ収容部13の内部に散布される。これにより、ギヤ収容部13の内部に配置された各部にオイルOを供給することができる。 The differential device 50 includes a ring gear 51, a pair of pinion gears (not shown), a pinion shaft (not shown), and a pair of side gears (not shown). In the present embodiment, the ring gear 51 is located on the right side of the motor shaft 22 and the motor drive gear 31. The ring gear 51 rotates around the differential shaft (motor shaft J1). Ring gear 51 meshes with drive gear 33. Thereby, the torque output from the motor 20 is transmitted to the ring gear 51 via the reduction gear 30. As shown in FIG. 7, the lower end portion of the ring gear 51 is immersed in the oil reservoir OR <b> 2 in the gear housing portion 13. Thereby, the oil O is scraped up when the ring gear 51 rotates. The oil O that has been scooped up becomes mist and is sprayed inside the gear housing 13. Thereby, oil O can be supplied to each part arrange | positioned inside the gear accommodating part 13. FIG.
 図1から図3に示す発電機40は、エンジン2の動力によって発電する。発電機40によって発電された電力は、モータ20に電力を供給するバッテリ3に充電される、またはバッテリ3を介さずにモータ20のステータ24に供給される。このように、発電機40は、電力をモータ20に供給可能である。本実施形態において発電機40は、モータとしての機能も兼ね備える。発電機40は、例えば、エンジン2を始動させる際にモータ(スターター)として機能する。 The generator 40 shown in FIGS. 1 to 3 generates power by the power of the engine 2. The electric power generated by the generator 40 is charged in the battery 3 that supplies electric power to the motor 20 or is supplied to the stator 24 of the motor 20 without going through the battery 3. Thus, the generator 40 can supply electric power to the motor 20. In the present embodiment, the generator 40 also has a function as a motor. For example, the generator 40 functions as a motor (starter) when starting the engine 2.
 図6に示すように、本実施形態において発電機40は、クラッチ機構60を介して減速装置30に接続される。これにより、エンジン2の動力は、発電機40、クラッチ機構60、および減速装置30を介して差動装置50に伝達される。発電機40は、減速装置30および差動装置50よりも前側に位置する。図1から図3に示すように、発電機40は、ロータ41と、ステータ44と、を有する。ロータ41は、モータ軸J1と平行なエンジン軸J2を中心として回転するエンジンドライブシャフト42と、ロータ本体43と、を有する。 As shown in FIG. 6, in this embodiment, the generator 40 is connected to the reduction gear device 30 via the clutch mechanism 60. Thus, the power of the engine 2 is transmitted to the differential device 50 via the generator 40, the clutch mechanism 60, and the speed reduction device 30. The generator 40 is located in front of the speed reduction device 30 and the differential device 50. As shown in FIGS. 1 to 3, the generator 40 includes a rotor 41 and a stator 44. The rotor 41 includes an engine drive shaft 42 that rotates about an engine axis J2 that is parallel to the motor axis J1, and a rotor body 43.
 エンジン軸J2は、モータ軸J1の径方向外側に位置する。図5に示すように、本実施形態においてエンジン軸J2は、モータ軸J1およびカウンタ軸J3よりも前側に位置する。モータ軸J1とエンジン軸J2とは、鉛直方向においてほぼ同じ位置に位置する。本実施形態においてエンジン軸J2は、モータ軸J1よりも僅かに上側に位置する。図1から図3に示すように、ロータ本体43は、エンジンドライブシャフト42の外周面に固定される。図示は省略するが、ロータ本体43は、ロータコアと、ロータマグネットと、を有する。 The engine shaft J2 is located on the outer side in the radial direction of the motor shaft J1. As shown in FIG. 5, in this embodiment, the engine shaft J2 is located in front of the motor shaft J1 and the counter shaft J3. The motor shaft J1 and the engine shaft J2 are located at substantially the same position in the vertical direction. In the present embodiment, the engine shaft J2 is positioned slightly above the motor shaft J1. As shown in FIGS. 1 to 3, the rotor main body 43 is fixed to the outer peripheral surface of the engine drive shaft 42. Although illustration is omitted, the rotor main body 43 has a rotor core and a rotor magnet.
 エンジンドライブシャフト42は、エンジン軸J2を中心として軸方向に延びる円柱状である。図4に示すように、エンジンドライブシャフト42の右側の端部は、ハウジング11の外部に突出する。図1から図3に示すように、エンジンドライブシャフト42の右側の端部は、ダンパ2bを介してエンジン2と接続される。これにより、モータユニット10は、エンジン2と接続される。ダンパ2bは、トルクリミッタとして機能する。ダンパ2bは、エンジン2によって車両の急加速を行う場合などの急激なトルク変動による振動を低減する。エンジンドライブシャフト42は、エンジン2によってエンジン軸J2回りに回転させられる。すなわち、ロータ41は、エンジン2の動力により回転させられる。これにより、電磁誘導によってステータ44に電圧が生じ、発電機40は発電することができる。 The engine drive shaft 42 has a cylindrical shape extending in the axial direction around the engine axis J2. As shown in FIG. 4, the right end of the engine drive shaft 42 protrudes outside the housing 11. As shown in FIGS. 1 to 3, the right end of the engine drive shaft 42 is connected to the engine 2 via a damper 2b. Thereby, the motor unit 10 is connected to the engine 2. The damper 2b functions as a torque limiter. The damper 2b reduces vibrations caused by sudden torque fluctuations such as when the engine 2 is suddenly accelerated by the engine 2. The engine drive shaft 42 is rotated around the engine axis J2 by the engine 2. That is, the rotor 41 is rotated by the power of the engine 2. Thereby, a voltage is generated in the stator 44 by electromagnetic induction, and the generator 40 can generate power.
 このように、本実施形態によれば、エンジン2の動力は、発電機40のエンジンドライブシャフト42にギヤを介することなく伝達される。そのため、エンジン2から車軸AXまで動力を伝達するために必要なシャフトおよびギヤの数を低減することができる。したがって、モータユニット10をより小型化および軽量化することができる。 Thus, according to this embodiment, the power of the engine 2 is transmitted to the engine drive shaft 42 of the generator 40 without a gear. Therefore, the number of shafts and gears necessary for transmitting power from the engine 2 to the axle AX can be reduced. Therefore, the motor unit 10 can be further reduced in size and weight.
 図示は省略するが、エンジンドライブシャフト42は、軸方向に延びる油路を内部に有する。また、図示は省略するが、エンジンドライブシャフト42は、内部に設けられた油路とエンジンドライブシャフト42の外周面とを繋ぐシャフト貫通孔を有する。エンジンドライブシャフト42のシャフト貫通孔は、例えば、モータシャフト22のシャフト貫通孔22a,22b,22c,22dと同様に複数設けられる。 Although illustration is omitted, the engine drive shaft 42 has an oil passage extending in the axial direction therein. Although not shown, the engine drive shaft 42 has a shaft through hole that connects an oil passage provided inside and the outer peripheral surface of the engine drive shaft 42. A plurality of shaft through holes of the engine drive shaft 42 are provided, for example, similarly to the shaft through holes 22a, 22b, 22c, and 22d of the motor shaft 22.
 ステータ44は、ロータ41と隙間を介してエンジン軸J2の径方向に対向する。ステータ44は、エンジン軸J2の径方向においてロータ41の外側に位置する。ステータ24は、ステータコア45と、図示しないインシュレータと、複数のコイル46と、を有する。複数のコイル46は、図示しないインシュレータを介してステータコア45に装着される。ステータ44は、ギヤ収容部13の内部に固定される。 The stator 44 faces the rotor 41 in the radial direction of the engine shaft J2 through a gap. The stator 44 is located outside the rotor 41 in the radial direction of the engine shaft J2. The stator 24 includes a stator core 45, an insulator (not shown), and a plurality of coils 46. The plurality of coils 46 are attached to the stator core 45 via an insulator (not shown). The stator 44 is fixed inside the gear housing portion 13.
 クラッチ機構60は、発電機40と減速装置30との切断と接続とを切り換える。本実施形態のクラッチ機構60は、例えば、回転同期装置、またはシンクロメッシュ機構と称される。クラッチ機構60は、クラッチシャフト61と、第1フランジ部62と、第2フランジ部63と、エンジンドライブギヤ64と、可動部65と、図示しないシンクロナイザリングと、を有する。また、図4から図6に示すように、クラッチ機構60は、駆動部66を有する。駆動部66は、ギヤ収容部13の上側の壁部に取り付けられる。駆動部66は、例えば、バッテリ3から電力が供給されて駆動される。 The clutch mechanism 60 switches between disconnection and connection between the generator 40 and the reduction gear 30. The clutch mechanism 60 of the present embodiment is referred to as a rotation synchronization device or a synchromesh mechanism, for example. The clutch mechanism 60 includes a clutch shaft 61, a first flange portion 62, a second flange portion 63, an engine drive gear 64, a movable portion 65, and a synchronizer ring (not shown). Further, as shown in FIGS. 4 to 6, the clutch mechanism 60 has a drive unit 66. The drive part 66 is attached to the upper wall part of the gear housing part 13. For example, the drive unit 66 is driven by power supplied from the battery 3.
 図1から図3に示すように、クラッチシャフト61は、エンジンドライブシャフト42の左側に離れて位置し、エンジン軸J2を中心として軸方向に延びる。図示は省略するが、クラッチシャフト61は、軸方向に延びる油路を内部に有する。クラッチシャフト61の内部の油路は、クラッチシャフト61とエンジンドライブシャフト42とが連結された際に、エンジンドライブシャフト42の内部の油路と繋がる。また、図示は省略するが、クラッチシャフト61は、内部に設けられた油路とクラッチシャフト61の外周面とを繋ぐシャフト貫通孔を有する。クラッチシャフト61のシャフト貫通孔は、例えば、モータシャフト22のシャフト貫通孔22a,22b,22c,22dと同様に複数設けられる。 As shown in FIGS. 1 to 3, the clutch shaft 61 is located on the left side of the engine drive shaft 42 and extends in the axial direction about the engine axis J2. Although illustration is omitted, the clutch shaft 61 has an oil passage extending in the axial direction therein. The oil passage inside the clutch shaft 61 is connected to the oil passage inside the engine drive shaft 42 when the clutch shaft 61 and the engine drive shaft 42 are connected. Although not shown, the clutch shaft 61 has a shaft through hole that connects an oil passage provided inside and the outer peripheral surface of the clutch shaft 61. A plurality of shaft through holes of the clutch shaft 61 are provided in the same manner as the shaft through holes 22a, 22b, 22c, 22d of the motor shaft 22, for example.
 第1フランジ部62は、エンジンドライブシャフト42の左側の端部から、エンジン軸J2の径方向において外側に拡がる。第2フランジ部63は、クラッチシャフト61の右側の端部から、エンジン軸J2の径方向において外側に拡がる。図示は省略するが、第1フランジ部62の外周面および第2フランジ部63の外周面には、それぞれ外歯スプラインが設けられる。 The first flange portion 62 extends outward from the left end portion of the engine drive shaft 42 in the radial direction of the engine shaft J2. The second flange portion 63 extends outward from the right end portion of the clutch shaft 61 in the radial direction of the engine shaft J2. Although not shown, external splines are provided on the outer peripheral surface of the first flange portion 62 and the outer peripheral surface of the second flange portion 63, respectively.
 エンジンドライブギヤ64は、クラッチシャフト61の左側の端部に固定される。エンジンドライブギヤ64は、クラッチシャフト61と共にエンジン軸J2回りに回転する。クラッチ機構60が発電機40と接続された場合において、エンジンドライブギヤ64は、発電機40を介してエンジン2によって回転させられる。エンジンドライブギヤ64は、カウンタギヤ32に噛み合う。これにより、発電機40は、減速装置30と接続される。 The engine drive gear 64 is fixed to the left end of the clutch shaft 61. The engine drive gear 64 rotates around the engine axis J2 together with the clutch shaft 61. When the clutch mechanism 60 is connected to the generator 40, the engine drive gear 64 is rotated by the engine 2 via the generator 40. The engine drive gear 64 meshes with the counter gear 32. Thereby, the generator 40 is connected to the reduction gear 30.
 可動部65は、駆動部66によって軸方向に移動させられる。図示は省略するが、可動部65は、エンジン軸J2を囲む筒状である。図示は省略するが、可動部65の内周面には、内歯スプラインが設けられる。可動部65は、エンジン軸J2の径方向において第2フランジ部63の外側を囲み、内歯スプラインが第2フランジ部63の外歯スプラインに噛み合う。これにより、可動部65は、クラッチシャフト61、第2フランジ部63およびエンジンドライブギヤ64と共に回転する。 The movable part 65 is moved in the axial direction by the drive part 66. Although illustration is omitted, the movable portion 65 has a cylindrical shape surrounding the engine shaft J2. Although illustration is omitted, an internal spline is provided on the inner peripheral surface of the movable portion 65. The movable portion 65 surrounds the outside of the second flange portion 63 in the radial direction of the engine shaft J2, and the internal tooth spline meshes with the external tooth spline of the second flange portion 63. Accordingly, the movable portion 65 rotates together with the clutch shaft 61, the second flange portion 63, and the engine drive gear 64.
 可動部65が駆動部66によって軸方向に移動させられることで、クラッチ機構60と発電機40との切断と接続とが切り換えられる。図1および図2では、発電機40と減速装置30とが切断された状態を示し、図3では、発電機40と減速装置30とが接続された状態を示す。図3に示すように、可動部65が図1および図2に示す状態から右側に移動すると、可動部65の内歯スプラインが第1フランジ部62の外歯スプラインに噛み合う。これにより、可動部65を介して、第1フランジ部62と第2フランジ部63とが接続され、エンジンドライブシャフト42とクラッチシャフト61とが接続される。よって、クラッチ機構60を介して、発電機40と減速装置30とが接続される。 When the movable part 65 is moved in the axial direction by the drive part 66, the disconnection and connection between the clutch mechanism 60 and the generator 40 are switched. 1 and 2 show a state in which the generator 40 and the speed reduction device 30 are disconnected, and FIG. 3 shows a state in which the power generator 40 and the speed reduction device 30 are connected. As shown in FIG. 3, when the movable portion 65 moves to the right from the state shown in FIGS. 1 and 2, the internal splines of the movable portion 65 mesh with the external splines of the first flange portion 62. Accordingly, the first flange portion 62 and the second flange portion 63 are connected via the movable portion 65, and the engine drive shaft 42 and the clutch shaft 61 are connected. Therefore, the generator 40 and the reduction gear device 30 are connected via the clutch mechanism 60.
 一方、図1および図2に示すように、可動部65が図2に示す状態から左側に移動すると、可動部65の内歯スプラインが第1フランジ部62の外歯スプラインから外れ、第1フランジ部62と第2フランジ部63との接続が切断される。よってエンジンドライブシャフト42とクラッチシャフト61との接続が切断され、発電機40と減速装置30との接続が切断される。 On the other hand, as shown in FIGS. 1 and 2, when the movable portion 65 moves to the left from the state shown in FIG. 2, the internal tooth spline of the movable portion 65 is disengaged from the external tooth spline of the first flange portion 62. The connection between the portion 62 and the second flange portion 63 is disconnected. Therefore, the connection between the engine drive shaft 42 and the clutch shaft 61 is disconnected, and the connection between the generator 40 and the reduction gear 30 is disconnected.
 以上のようにして、クラッチ機構60は、駆動部66によって可動部65を軸方向に移動させることで、発電機40と減速装置30との切断と接続とを切り換えることができる。本実施形態においてエンジン2の動力は、クラッチ機構60によって発電機40と減速装置30とが接続された際に、発電機40、クラッチ機構60、および減速装置30を介して差動装置50に伝達される。一方、クラッチ機構60が発電機40から切断された際には、エンジン2の動力は差動装置50に伝達されない。 As described above, the clutch mechanism 60 can switch between disconnection and connection between the generator 40 and the speed reduction device 30 by moving the movable portion 65 in the axial direction by the drive portion 66. In this embodiment, the power of the engine 2 is transmitted to the differential device 50 via the generator 40, the clutch mechanism 60, and the speed reducer 30 when the power generator 40 and the speed reducer 30 are connected by the clutch mechanism 60. Is done. On the other hand, when the clutch mechanism 60 is disconnected from the generator 40, the power of the engine 2 is not transmitted to the differential device 50.
 図示しないシンクロナイザリングは、可動部65に固定される。シンクロナイザリングは、可動部65と共に軸方向に移動する。シンクロナイザリングは、可動部65が右側に移動して発電機40と減速装置30とを接続させる際において、可動部65の内歯スプラインが第1フランジ部62の外歯スプラインに噛み合うよりも前に、第1フランジ部62と接触する接触面を有する。これにより、シンクロナイザリングと第1フランジ部62との間の摩擦力により、シンクロナイザリングと第1フランジ部62とが同期回転し、エンジンドライブシャフト42とクラッチシャフト61とが同期回転する。そのため、エンジンドライブシャフト42とクラッチシャフト61とが同期回転した状態で、可動部65を介して、エンジンドライブシャフト42とクラッチシャフト61とを接続できる。したがって、クラッチ機構60によって発電機40と減速装置30とを接続する際に、エンジンドライブシャフト42とクラッチシャフト61とに大きな衝撃が加わることを抑制できる。 A synchronizer ring (not shown) is fixed to the movable portion 65. The synchronizer ring moves in the axial direction together with the movable portion 65. In the synchronizer ring, when the movable portion 65 moves to the right side to connect the generator 40 and the speed reducer 30, the internal tooth spline of the movable portion 65 is engaged with the external tooth spline of the first flange portion 62. And a contact surface that contacts the first flange portion 62. Thereby, the synchronizer ring and the first flange portion 62 are synchronously rotated by the frictional force between the synchronizer ring and the first flange portion 62, and the engine drive shaft 42 and the clutch shaft 61 are synchronously rotated. Therefore, the engine drive shaft 42 and the clutch shaft 61 can be connected via the movable portion 65 in a state where the engine drive shaft 42 and the clutch shaft 61 are synchronously rotated. Therefore, when the generator 40 and the reduction gear 30 are connected by the clutch mechanism 60, it is possible to suppress a large impact from being applied to the engine drive shaft 42 and the clutch shaft 61.
 図7に示すように、モータユニット10は、貯留部70をさらに備える。貯留部70は、ギヤ収容部13の内部に位置する。貯留部70は、上側に開口し、オイルOを貯留可能である。本実施形態において貯留部70は、例えば、上側に開口する直方体箱状である。貯留部70の内部には、ギヤ収容部13の内部のオイルOが貯留される。ここで、本実施形態では、上述したように、リングギヤ51の下側の端部がオイル溜りOR2に浸漬するため、オイル溜りOR2のオイルOがリングギヤ51によって掻き上げられる。これにより、リングギヤ51によって掻き上げられたオイルOがギヤ収容部13内に散布され、貯留部70に溜まりやすい。したがって、ギヤ収容部13内のオイルOを効率よく貯留部70に集めることができる。貯留部70の内部には、後述する図示しないオイルポンプによって発電機40に供給された後に落下するオイルOの一部等も貯留される。 As shown in FIG. 7, the motor unit 10 further includes a storage unit 70. The storage part 70 is located inside the gear housing part 13. The reservoir 70 opens to the upper side and can store the oil O. In the present embodiment, the storage unit 70 has, for example, a rectangular parallelepiped box shape that opens upward. The oil O inside the gear housing part 13 is stored inside the storage part 70. Here, in the present embodiment, as described above, the lower end of the ring gear 51 is immersed in the oil reservoir OR2, so that the oil O of the oil reservoir OR2 is scraped up by the ring gear 51. Thereby, the oil O scraped up by the ring gear 51 is sprayed into the gear housing portion 13 and is easily collected in the storage portion 70. Therefore, the oil O in the gear housing part 13 can be efficiently collected in the storage part 70. A part of the oil O that falls after being supplied to the generator 40 by an oil pump (not shown) to be described later is also stored in the storage unit 70.
 貯留部70は、モータシャフト22の右側の端部を覆う。すなわち、モータシャフト22の右側の端部は、貯留部70の内部に位置する。これにより、モータシャフト22の右側の開口のうちモータシャフト22と車軸AXとの径方向の隙間は、少なくとも一部が貯留部70の内部に位置する。そのため、貯留部70内にオイルOが溜まり、貯留部70内のオイルOの油面がモータシャフト22と車軸AXとの径方向の隙間まで達すると、負圧により貯留部70内のオイルOがモータシャフト22と車軸AXとの径方向の隙間に吸い込まれる。これにより、リングギヤ51によってギヤ収容部13内に散布されたオイルO等を効率的に集め、モータシャフト22の内部へと供給することができる。したがって、本実施形態によれば、中空のモータシャフト22に車軸AXが通された構成であっても、モータシャフト22内へのオイルOの供給量を向上させることができる。これにより、モータ20を好適に冷却することができる。 The reservoir 70 covers the right end of the motor shaft 22. That is, the right end portion of the motor shaft 22 is located inside the storage portion 70. Accordingly, at least a part of the radial gap between the motor shaft 22 and the axle AX in the opening on the right side of the motor shaft 22 is located inside the storage unit 70. Therefore, when the oil O accumulates in the reservoir 70 and the oil level of the oil O in the reservoir 70 reaches the radial gap between the motor shaft 22 and the axle AX, the oil O in the reservoir 70 is caused by negative pressure. The air is sucked into the radial gap between the motor shaft 22 and the axle AX. Thereby, the oil O etc. which were spread | dispersed in the gear accommodating part 13 by the ring gear 51 can be collected efficiently, and it can supply to the inside of the motor shaft 22. FIG. Therefore, according to the present embodiment, the supply amount of the oil O into the motor shaft 22 can be improved even when the axle AX is passed through the hollow motor shaft 22. Thereby, the motor 20 can be cooled suitably.
 本実施形態においてモータシャフト22の右側の開口のうちモータシャフト22と車軸AXとの径方向の隙間は、全体が貯留部70の内部に位置する。そのため、貯留部70に貯留されたオイルOは、よりモータシャフト22内に吸い込まれやすい。モータシャフト22内に吸い込まれたオイルOは、モータシャフト22と車軸AXとの径方向の隙間を通って左側に流れる。 In the present embodiment, the radial clearance between the motor shaft 22 and the axle AX in the opening on the right side of the motor shaft 22 is entirely located inside the storage unit 70. Therefore, the oil O stored in the storage unit 70 is more easily sucked into the motor shaft 22. The oil O sucked into the motor shaft 22 flows to the left side through a radial gap between the motor shaft 22 and the axle AX.
 ここで、本実施形態によれば、モータシャフト22は、モータシャフト22の内部とモータシャフト22の外周面とを繋ぐシャフト貫通孔22a,22b,22c,22dを有する。そのため、モータシャフト22内に供給されたオイルOが、シャフト貫通孔22a,22b,22c,22dを介して、モータシャフト22の径方向外側に噴出する。これにより、オイルOをステータ24およびベアリング27a,27bに供給することができる。したがって、ステータ24をオイルOによって好適に冷却することができ、ベアリング27a,27bに好適に潤滑油を供給できる。本実施形態では、シャフト貫通孔22a,22bから噴出されたオイルOは、コイル26に供給される。シャフト貫通孔22c,22dから噴出されたオイルOは、ベアリング27a,27bに供給される。 Here, according to the present embodiment, the motor shaft 22 has shaft through holes 22 a, 22 b, 22 c, and 22 d that connect the inside of the motor shaft 22 and the outer peripheral surface of the motor shaft 22. Therefore, the oil O supplied into the motor shaft 22 is ejected to the outside in the radial direction of the motor shaft 22 through the shaft through holes 22a, 22b, 22c, and 22d. Thereby, the oil O can be supplied to the stator 24 and the bearings 27a and 27b. Therefore, the stator 24 can be suitably cooled by the oil O, and lubricating oil can be suitably supplied to the bearings 27a and 27b. In the present embodiment, the oil O ejected from the shaft through holes 22 a and 22 b is supplied to the coil 26. The oil O ejected from the shaft through holes 22c and 22d is supplied to the bearings 27a and 27b.
 シャフト貫通孔22a,22b,22c,22dから噴出されたオイルOは、各部に供給された後、モータ収容部12のオイル溜りOR1に落下する。また、モータシャフト22内に供給されたオイルOのうちシャフト貫通孔22a,22b,22c,22dから噴出されなかったオイルOは、モータシャフト22の左側の開口から排出される。モータシャフト22の左側の開口から排出されたオイルOは、モータ収容部12のオイル溜りOR1のうちベアリング保持壁部15よりも左側の部分に落下する。モータ収容部12に貯められたオイルOの少なくとも一部、すなわちオイル溜りOR1のオイルOの少なくとも一部は、油路14bを介して、ギヤ収容部13内に流入する。これにより、ギヤ収容部13内のオイル溜りOR2からモータ20に供給されたオイルOをギヤ収容部13内に戻すことができる。 The oil O ejected from the shaft through- holes 22a, 22b, 22c, and 22d is supplied to each part and then falls into the oil reservoir OR1 of the motor housing part 12. Of the oil O supplied into the motor shaft 22, the oil O that has not been ejected from the shaft through holes 22 a, 22 b, 22 c, 22 d is discharged from the opening on the left side of the motor shaft 22. The oil O discharged from the opening on the left side of the motor shaft 22 falls to a portion on the left side of the bearing holding wall portion 15 in the oil reservoir OR1 of the motor housing portion 12. At least a portion of the oil O stored in the motor housing portion 12, that is, at least a portion of the oil O in the oil reservoir OR1 flows into the gear housing portion 13 through the oil passage 14b. Thereby, the oil O supplied to the motor 20 from the oil reservoir OR <b> 2 in the gear housing portion 13 can be returned to the gear housing portion 13.
 本実施形態において貯留部70の内部には、モータドライブギヤ31が収容される。本実施形態においてモータドライブギヤ31の上側の端部は、例えば、貯留部70の開口から上側に突出する。図7および図8に示すように、本実施形態において貯留部70は、底壁部71と、軸方向側壁部72,73と、前後方向側壁部74,75と、を有する。図7に示すように、底壁部71は、仕切壁部14のうち油路14bよりも上側の部分から右側に延びる。底壁部71は、ギヤ収容部13におけるオイル溜りOR2の油面よりも上側に位置する。 In this embodiment, the motor drive gear 31 is accommodated in the storage unit 70. In the present embodiment, the upper end portion of the motor drive gear 31 protrudes upward from the opening of the storage portion 70, for example. As shown in FIG. 7 and FIG. 8, in the present embodiment, the storage unit 70 includes a bottom wall portion 71, axial side wall portions 72 and 73, and front and rear direction side wall portions 74 and 75. As shown in FIG. 7, the bottom wall portion 71 extends to the right from a portion of the partition wall portion 14 above the oil passage 14b. The bottom wall portion 71 is located above the oil level of the oil reservoir OR2 in the gear housing portion 13.
 軸方向側壁部72,73は、底壁部71の軸方向両側の端部から上側に延びる。軸方向側壁部72は、仕切壁部14の右側の端部から上側に延びる。軸方向側壁部72は、軸方向側壁部72を軸方向に貫通する孔部72aを有する。図示は省略するが、孔部72aは、モータ軸J1を中心とする円形状である。孔部72aには、車軸AXが通される。 The axial side wall portions 72 and 73 extend upward from the end portions on both axial sides of the bottom wall portion 71. The axial side wall 72 extends upward from the right end of the partition wall 14. The axial side wall 72 has a hole 72 a that passes through the axial side wall 72 in the axial direction. Although not shown, the hole 72a has a circular shape centered on the motor shaft J1. The axle shaft AX is passed through the hole 72a.
 軸方向側壁部73は、底壁部71の左側の端部から上側に延びる。本実施形態において軸方向側壁部73は、仕切壁部14のうち軸方向に沿って視て軸方向側壁部72と重なる部分である。すなわち、本実施形態において貯留部70を構成する壁部の一部は、仕切壁部14の一部である。このように、仕切壁部14の一部を利用して貯留部70を作れるため、貯留部70の作製が容易である。軸方向側壁部73には、孔部14aが設けられる。 The axial side wall 73 extends upward from the left end of the bottom wall 71. In the present embodiment, the axial side wall 73 is a portion of the partition wall 14 that overlaps with the axial side wall 72 when viewed in the axial direction. That is, a part of the wall part that constitutes the storage part 70 in this embodiment is a part of the partition wall part 14. Thus, since the storage part 70 can be made using a part of the partition wall part 14, the preparation of the storage part 70 is easy. The axial side wall 73 is provided with a hole 14a.
 図8に示すように、前後方向側壁部74,75は、底壁部71の前後方向両側の端部から上側に延びる。前後方向側壁部74は、底壁部71の前側の端部から上側に延びる。前後方向側壁部74は、軸方向側壁部72,73の前側の端部同士を繋ぐ。前後方向側壁部75は、底壁部71の後側の端部から上側に延びる。前後方向側壁部75は、軸方向側壁部72,73の後側の端部同士を繋ぐ。 As shown in FIG. 8, the front and rear side wall portions 74 and 75 extend upward from the end portions on both sides in the front and rear direction of the bottom wall portion 71. The front-rear direction side wall 74 extends upward from the front end of the bottom wall 71. The front-rear direction side wall portion 74 connects the end portions on the front side of the axial side wall portions 72 and 73. The front-rear direction side wall 75 extends upward from the rear end of the bottom wall 71. The front-rear direction side wall 75 connects the end portions on the rear side of the axial side walls 72, 73.
 底壁部71と軸方向側壁部72と前後方向側壁部74,75とは、それぞれ板状である。底壁部71と軸方向側壁部72と前後方向側壁部74,75とは、同一の単一部材の一部である。本実施形態においては、底壁部71と軸方向側壁部72と前後方向側壁部74,75とを有する単一部材を仕切壁部14に固定することで、容易に貯留部70を作ることができる。 The bottom wall 71, the axial side wall 72, and the front and rear side walls 74, 75 are each plate-shaped. The bottom wall portion 71, the axial side wall portion 72, and the front and rear direction side wall portions 74 and 75 are part of the same single member. In this embodiment, the storage part 70 can be easily made by fixing the single member which has the bottom wall part 71, the axial direction side wall part 72, and the front-back direction side wall parts 74 and 75 to the partition wall part 14. FIG. it can.
 モータユニット10は、図示しないオイルポンプをさらに備える。オイルポンプは、例えばエンジンドライブシャフト42に取り付けられた機械式ポンプである。オイルポンプは、ギヤ収容部13内のオイル溜りOR2からオイルOを吸い上げ、エンジンドライブシャフト42の内部およびクラッチシャフト61の内部に設けられた図示しない油路にオイルOを供給する。これにより、発電機40のロータ41を冷却できる。エンジンドライブシャフト42の内部の油路に供給されたオイルOは、エンジンドライブシャフト42の内部の油路とエンジンドライブシャフト42の外周面とを繋ぐシャフト貫通孔からエンジンドライブシャフト42の外部に噴出される。噴出されたオイルOは、発電機40のステータ44およびエンジンドライブシャフト42を支持する図示しないベアリングに供給される。これにより、ステータ44を冷却することができ、かつ、図示しないベアリングに潤滑油を供給できる。ステータ44および図示しないベアリングに供給されたオイルOは、ギヤ収容部13内のオイル溜りOR2に落下する。 The motor unit 10 further includes an oil pump (not shown). The oil pump is a mechanical pump attached to the engine drive shaft 42, for example. The oil pump sucks up the oil O from the oil reservoir OR2 in the gear housing 13 and supplies the oil O to an oil passage (not shown) provided in the engine drive shaft 42 and in the clutch shaft 61. Thereby, the rotor 41 of the generator 40 can be cooled. The oil O supplied to the oil passage inside the engine drive shaft 42 is ejected to the outside of the engine drive shaft 42 through a shaft through hole that connects the oil passage inside the engine drive shaft 42 and the outer peripheral surface of the engine drive shaft 42. The The jetted oil O is supplied to a bearing (not shown) that supports the stator 44 and the engine drive shaft 42 of the generator 40. Thereby, the stator 44 can be cooled, and lubricating oil can be supplied to a bearing (not shown). The oil O supplied to the stator 44 and a bearing (not shown) falls to the oil reservoir OR2 in the gear housing portion 13.
 オイルポンプは、モータ20にもオイルOを供給する。オイルポンプは、モータ収容部12の上側の壁部に設けられた図示しない油路を介して、ステータ24に上側からオイルOを供給する。これにより、ステータ24をより冷却できる。オイルポンプによってモータ20に供給されたオイルOは、モータ収容部12内のオイル溜りOR1に落下する。 The oil pump supplies oil O to the motor 20 as well. The oil pump supplies oil O from the upper side to the stator 24 via an oil passage (not shown) provided in the upper wall portion of the motor housing portion 12. Thereby, the stator 24 can be cooled more. The oil O supplied to the motor 20 by the oil pump falls into the oil reservoir OR1 in the motor housing portion 12.
 本実施形態においてオイルポンプは、エンジン2の動力によって駆動される。そのため、オイルポンプは、クラッチ機構60が発電機40と切断された状態であっても、エンジン2を駆動すれば自由に駆動することができる。なお、オイルポンプは、電動オイルポンプでもよい。 In this embodiment, the oil pump is driven by the power of the engine 2. Therefore, the oil pump can be driven freely if the engine 2 is driven even when the clutch mechanism 60 is disconnected from the generator 40. The oil pump may be an electric oil pump.
 パワートレイン1は図示しないインバータをさらに備える。図示しないインバータは、モータ20のステータ24および発電機40のステータ44と電気的に接続される。インバータによって、ステータ24,44に供給される電力を調整可能である。インバータは、例えばインバータを収容するインバータケースに収容される。インバータケースはハウジング11の外側面に固定される。インバータは図示しない電子制御装置によって制御される。 The power train 1 further includes an inverter (not shown). The inverter (not shown) is electrically connected to the stator 24 of the motor 20 and the stator 44 of the generator 40. The power supplied to the stators 24 and 44 can be adjusted by the inverter. The inverter is housed in, for example, an inverter case that houses the inverter. The inverter case is fixed to the outer surface of the housing 11. The inverter is controlled by an electronic control device (not shown).
 モータユニット10が搭載された車両には、EVモード、シリーズモード、パラレルモードの三種類の走行モードが用意される。これらの走行モードは、図示しない電子制御装置によって、車両状態、走行状態、運転者の要求出力などに応じて択一的に選択される。図1は、EVモード時のパワートレイン1を示す。図2は、シリーズモード時のパワートレイン1を示す。図3は、パラレルモード時のパワートレイン1を示す。 The vehicle on which the motor unit 10 is mounted has three types of travel modes, EV mode, series mode, and parallel mode. These travel modes are alternatively selected by an electronic control unit (not shown) according to the vehicle state, the travel state, the driver's requested output, and the like. FIG. 1 shows a power train 1 in the EV mode. FIG. 2 shows the power train 1 in the series mode. FIG. 3 shows the power train 1 in the parallel mode.
 図1に示すように、EVモードは、エンジン2および発電機40を停止させたまま、バッテリ3の充電電力を用いてモータ20のみで車両を駆動する走行モードである。EVモードは、走行負荷が低い場合、またはバッテリの充電レベルが高い場合に選択される。EVモードにおいてクラッチ機構60は、発電機40と減速装置30とを切断させた状態である。バッテリ3から電力が供給されることでロータ21が回転すると、モータシャフト22の回転が、モータドライブギヤ31、カウンタギヤ32、カウンタシャフト34、ドライブギヤ33、リングギヤ51、車軸AXの順に伝達される。これにより、モータ20によって車軸AXおよび車輪Hを回転させることができ、車両を走行させることができる。 As shown in FIG. 1, the EV mode is a traveling mode in which the vehicle is driven only by the motor 20 using the charging power of the battery 3 while the engine 2 and the generator 40 are stopped. The EV mode is selected when the traveling load is low or the battery charge level is high. In the EV mode, the clutch mechanism 60 is in a state where the generator 40 and the speed reduction device 30 are disconnected. When the rotor 21 is rotated by supplying electric power from the battery 3, the rotation of the motor shaft 22 is transmitted in the order of the motor drive gear 31, the counter gear 32, the counter shaft 34, the drive gear 33, the ring gear 51, and the axle AX. . As a result, the axle 20 and the wheels H can be rotated by the motor 20, and the vehicle can be driven.
 図2に示すように、シリーズモードは、エンジン2で発電機40を駆動して発電しつつ、その電力を利用してモータ20で車両を駆動する走行モードである。シリーズモードにおいて発電機40によって発電された電力は、例えば、バッテリ3とモータ20との両方に供給される。これにより、バッテリ3を充電することができる。シリーズモードは、走行負荷が中程度の場合、またはバッテリの充電レベルが低い場合に選択される。シリーズモードにおいてクラッチ機構60は、発電機40と減速装置30とを切断させた状態である。シリーズモードにおいて、モータ20から車軸AXへの回転の伝達は、EVモードと同様である。 As shown in FIG. 2, the series mode is a traveling mode in which the generator 2 is driven by the engine 2 to generate electric power, and the vehicle is driven by the motor 20 using the electric power. The electric power generated by the generator 40 in the series mode is supplied to both the battery 3 and the motor 20, for example. Thereby, the battery 3 can be charged. The series mode is selected when the traveling load is medium or when the battery charge level is low. In the series mode, the clutch mechanism 60 is in a state where the generator 40 and the speed reduction device 30 are disconnected. In the series mode, rotation transmission from the motor 20 to the axle AX is the same as in the EV mode.
 本実施形態では、クラッチ機構60が設けられるため、上述したEVモードおよびシリーズモードにおいて、モータ20の動力が発電機40およびエンジン2に伝達されることを抑制できる。そのため、モータ20に加えられる負荷が大きくなることを抑制でき、かつ、シリーズモードにおいては発電機40によって好適に発電を行うことができる。 In this embodiment, since the clutch mechanism 60 is provided, the power of the motor 20 can be prevented from being transmitted to the generator 40 and the engine 2 in the EV mode and the series mode described above. Therefore, an increase in the load applied to the motor 20 can be suppressed, and power generation can be suitably performed by the generator 40 in the series mode.
 図3に示すように、パラレルモードは、おもにエンジン2で車両を駆動し、必要に応じてモータ20で車両の駆動をアシストする走行モードであり、走行負荷が高い場合に選択される。パラレルモードにおいてクラッチ機構60は、発電機40と減速装置30とを接続させた状態である。これにより、エンジン2の動力が、発電機40、クラッチ機構60、減速装置30および差動装置50を介して、車軸AXに伝達される。より詳細には、エンジン2によって発電機40のロータ41が回転されると、エンジンドライブシャフト42の回転が、第1フランジ部62、可動部65、第2フランジ部63、クラッチシャフト61、エンジンドライブギヤ64、カウンタギヤ32、カウンタシャフト34、ドライブギヤ33、リングギヤ51、車軸AXの順に伝達される。これにより、エンジン2によって車軸AXおよび車輪Hを回転させることができ、車両を走行させることができる。 As shown in FIG. 3, the parallel mode is a traveling mode in which the vehicle is driven mainly by the engine 2 and the driving of the vehicle is assisted by the motor 20 as necessary, and is selected when the traveling load is high. In the parallel mode, the clutch mechanism 60 is in a state where the generator 40 and the speed reduction device 30 are connected. As a result, the power of the engine 2 is transmitted to the axle AX via the generator 40, the clutch mechanism 60, the speed reduction device 30, and the differential device 50. More specifically, when the rotor 41 of the generator 40 is rotated by the engine 2, the rotation of the engine drive shaft 42 is changed to the first flange portion 62, the movable portion 65, the second flange portion 63, the clutch shaft 61, and the engine drive. The gear 64, the counter gear 32, the counter shaft 34, the drive gear 33, the ring gear 51, and the axle AX are transmitted in this order. Thereby, the axle shaft AX and the wheel H can be rotated by the engine 2, and the vehicle can be run.
 パラレルモードにおいてモータシャフト22の回転は、モータドライブギヤ31からカウンタギヤ32に伝達される。これにより、モータ20によってエンジン2の回転動作を補助できる。このように、本実施形態によれば、カウンタギヤ32がエンジンドライブギヤ64とモータドライブギヤ31との両方に噛み合うため、パラレルモードにおいてカウンタギヤ32には、エンジン2の動力とモータ20の動力との両方が伝達される。そのため、カウンタギヤ32から車軸AXまでの動力伝達経路を、エンジン2から車軸AXまでの動力伝達経路と、モータ20から車軸AXまでの動力伝達経路と、で供給することができる。これにより、モータ20およびエンジン2から車軸AXまで動力を伝達するために必要なシャフトおよびギヤの数を低減することができる。したがって、モータユニット10をより小型化および軽量化することができる。 In the parallel mode, the rotation of the motor shaft 22 is transmitted from the motor drive gear 31 to the counter gear 32. Thereby, the rotation operation of the engine 2 can be assisted by the motor 20. Thus, according to the present embodiment, since the counter gear 32 meshes with both the engine drive gear 64 and the motor drive gear 31, the counter gear 32 has the power of the engine 2 and the power of the motor 20 in the parallel mode. Both are communicated. Therefore, the power transmission path from the counter gear 32 to the axle AX can be supplied by the power transmission path from the engine 2 to the axle AX and the power transmission path from the motor 20 to the axle AX. Thereby, the number of shafts and gears necessary for transmitting power from the motor 20 and the engine 2 to the axle AX can be reduced. Therefore, the motor unit 10 can be further reduced in size and weight.
 また、本実施形態によれば、モータドライブギヤ31の歯数を変えることで、モータ20の回転の減速比を変えることができ、エンジンドライブギヤ64の歯数を変えることで、エンジン2の回転の減速比を変えることができる。すなわち、各ドライブギヤの歯数を変えることで、モータ20の減速比とエンジン2の減速比とを個別に変えることができ、互いに異ならせることができる。これにより、モータ20の減速比とエンジン2の減速比とを、それぞれ好適な値にすることができる。したがって、モータ20およびエンジン2のいずれか一方、または両方で駆動するいずれの場合であっても、車両を効率的に駆動させることができる。 Further, according to the present embodiment, the reduction ratio of the rotation of the motor 20 can be changed by changing the number of teeth of the motor drive gear 31, and the rotation of the engine 2 can be changed by changing the number of teeth of the engine drive gear 64. The reduction ratio can be changed. That is, by changing the number of teeth of each drive gear, the reduction ratio of the motor 20 and the reduction ratio of the engine 2 can be individually changed, and can be made different from each other. Thereby, the reduction ratio of the motor 20 and the reduction ratio of the engine 2 can be set to suitable values, respectively. Therefore, the vehicle can be driven efficiently regardless of whether the motor 20 or the engine 2 is driven by either one or both.
 また、上述したように、本実施形態において図示しないオイルポンプは、エンジン2の動力によって駆動されるため、エンジン2が停止されたEVモードにおいては駆動されない。この場合、オイルポンプによるモータ20へのオイルOの供給が行われないため、モータ20の冷却が不十分になる虞がある。一方、リングギヤ51は、いずれのモードにおいても駆動されるため、リングギヤ51によって掻き上げられたオイルOを利用した冷却は、いずれのモードにおいても行われる。しかし、単にリングギヤ51によってオイルOが掻き上げられるだけでは、モータシャフト22と車軸AXとの隙間にオイルOを供給しにくい。 Also, as described above, the oil pump (not shown) in the present embodiment is driven by the power of the engine 2 and is not driven in the EV mode in which the engine 2 is stopped. In this case, since the oil O is not supplied to the motor 20 by the oil pump, the motor 20 may be insufficiently cooled. On the other hand, since the ring gear 51 is driven in any mode, cooling using the oil O scraped up by the ring gear 51 is performed in any mode. However, it is difficult to supply the oil O to the gap between the motor shaft 22 and the axle AX by simply scooping up the oil O by the ring gear 51.
 これに対して、本実施形態によれば、上述したように貯留部70によってモータシャフト22と車軸AXとの隙間へ効率的にオイルOを供給できる。そのため、リングギヤ51によって掻き上げられたオイルOを効率的に集めて、モータ20に供給できる。これにより、オイルポンプが駆動されないEVモードおよびシリーズモードにおいても、モータ20にオイルOを十分に供給しやすく、モータ20の冷却が不十分になることを抑制できる。 In contrast, according to the present embodiment, the oil O can be efficiently supplied to the gap between the motor shaft 22 and the axle AX by the storage unit 70 as described above. Therefore, the oil O scraped up by the ring gear 51 can be efficiently collected and supplied to the motor 20. Thereby, even in the EV mode and the series mode in which the oil pump is not driven, it is easy to sufficiently supply the oil 20 to the motor 20 and it is possible to suppress the cooling of the motor 20 from being insufficient.
 本発明は上述の実施形態に限られず、他の構成を採用することもできる。貯留部を構成する壁部は、仕切壁部の一部を含まなくてもよい。貯留部の内部には、モータシャフトの右側の開口のうちモータシャフトと車軸との径方向の隙間の一部のみが位置してもよい。オイルポンプによって、貯留部にオイルOが供給されてもよい。ハウジングは、仕切壁部を有しなくてもよい。クラッチ機構の構成は、特に限定されない。クラッチ機構は、設けられなくてもよい。この場合、エンジンの動力は、差動装置に伝達されず、発電機の発電のみに用いられてもよい。減速機構の構成は、特に限定されない。差動装置の構成は、特に限定されない。減速装置において、モータドライブギヤが噛み合うギヤと、エンジンドライブギヤが噛み合うギヤとは、異なるギヤであってもよい。発電機の構成は、特に限定されない。発電機は、設けられなくてもよい。オイルポンプは、設けられなくてもよい。 The present invention is not limited to the above-described embodiment, and other configurations can be adopted. The wall part which comprises a storage part does not need to contain a part of partition wall part. Only a part of the radial gap between the motor shaft and the axle of the opening on the right side of the motor shaft may be located inside the reservoir. Oil O may be supplied to the reservoir by an oil pump. The housing may not have a partition wall portion. The configuration of the clutch mechanism is not particularly limited. The clutch mechanism may not be provided. In this case, the engine power may not be transmitted to the differential device, but may be used only for power generation by the generator. The configuration of the speed reduction mechanism is not particularly limited. The configuration of the differential device is not particularly limited. In the reduction gear, the gear that meshes with the motor drive gear and the gear that meshes with the engine drive gear may be different gears. The configuration of the generator is not particularly limited. The generator may not be provided. The oil pump may not be provided.
 上述した実施形態のモータユニットが搭載される車両は、モータユニットによって車軸が回転させられる車両であれば、モータユニットとエンジンとを動力源とする車両以外の車両であってもよく、特に限定されない。例えば、上述した実施形態のモータユニットは、エンジンを備えない電気自動車(EV)に搭載されてもよい。また、本明細書において説明した各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 The vehicle on which the motor unit of the above-described embodiment is mounted may be a vehicle other than a vehicle that uses a motor unit and an engine as power sources as long as the axle is rotated by the motor unit, and is not particularly limited. . For example, the motor unit of the above-described embodiment may be mounted on an electric vehicle (EV) that does not include an engine. Moreover, each structure demonstrated in this specification can be suitably combined in the range which is not mutually contradictory.

Claims (5)

  1.  車両の車軸を回転させるモータユニットであって、
     モータ軸を中心として回転するモータシャフトを有するモータと、
     前記モータシャフトに接続される減速装置と、
     前記減速装置に接続され、前記車軸を差動軸回りに回転させる差動装置と、
     前記モータを収容するモータ収容部と、前記減速装置および前記差動装置を収容し内部にオイルが収容されるギヤ収容部と、を有するハウジングと、
     前記ギヤ収容部の内部において鉛直方向上側に開口し、オイルを貯留可能な貯留部と、
     を備え、
     前記差動軸は、前記モータ軸と一致し、
     前記モータシャフトは、軸方向両側に開口する中空のシャフトであり、
     前記モータシャフトの内部には、前記車軸が通され、
     前記モータシャフトの軸方向一方側の端部は、前記ギヤ収容部内に突出し、
     前記モータシャフトの軸方向一方側の開口のうち前記モータシャフトと前記車軸との径方向の隙間は、少なくとも一部が前記貯留部の内部に位置する、モータユニット。
    A motor unit for rotating the axle of a vehicle,
    A motor having a motor shaft that rotates about the motor shaft;
    A reduction gear connected to the motor shaft;
    A differential device connected to the speed reducer and rotating the axle around a differential axis;
    A housing having a motor housing portion that houses the motor, and a gear housing portion that houses the speed reduction device and the differential device and in which oil is housed.
    A storage portion that opens upward in the vertical direction inside the gear housing portion and can store oil; and
    With
    The differential axis coincides with the motor axis;
    The motor shaft is a hollow shaft that opens on both sides in the axial direction,
    The axle is passed through the motor shaft,
    One end of the motor shaft in the axial direction protrudes into the gear housing portion,
    A motor unit in which at least a part of a radial clearance between the motor shaft and the axle in the opening on one side in the axial direction of the motor shaft is located inside the storage portion.
  2.  前記差動装置は、前記差動軸を中心として回転するリングギヤを有し、
     前記ギヤ収容部の鉛直方向下側の領域には、オイルが溜まるオイル溜りが設けられ、
     前記リングギヤの鉛直方向下側の端部は、前記オイル溜りに浸漬される、請求項1に記載のモータユニット。
    The differential device has a ring gear that rotates about the differential axis,
    An oil sump for storing oil is provided in a region on the lower side in the vertical direction of the gear housing portion,
    The motor unit according to claim 1, wherein an end of the ring gear on a lower side in the vertical direction is immersed in the oil reservoir.
  3.  モータシャフトは、前記モータシャフトの内部と前記モータシャフトの外周面とを繋ぐシャフト貫通孔を有する、請求項1または2に記載のモータユニット。 3. The motor unit according to claim 1, wherein the motor shaft has a shaft through hole that connects the inside of the motor shaft and the outer peripheral surface of the motor shaft.
  4.  前記ハウジングは、前記モータ収容部と前記ギヤ収容部とを仕切る仕切壁部を有し、
     前記貯留部を構成する壁部の一部は、前記仕切壁部の一部である、請求項1から3のいずれか一項に記載のモータユニット。
    The housing has a partition wall portion that partitions the motor housing portion and the gear housing portion,
    The motor unit according to any one of claims 1 to 3, wherein a part of the wall part constituting the storage part is a part of the partition wall part.
  5.  前記モータ収容部の内部には、オイルが収容され、
     前記仕切壁部は、前記モータ収容部の内部と前記ギヤ収容部の内部とを繋ぐ油路を有し、
     前記モータ収容部内のオイルは、前記油路を介して前記ギヤ収容部の内部に移動可能である、
    請求項4に記載のモータユニット。
    Oil is stored inside the motor storage portion,
    The partition wall has an oil passage that connects the inside of the motor housing and the inside of the gear housing,
    The oil in the motor housing portion is movable to the inside of the gear housing portion through the oil passage.
    The motor unit according to claim 4.
PCT/JP2019/013733 2018-04-20 2019-03-28 Motor unit WO2019202947A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980025763.2A CN111989234B (en) 2018-04-20 2019-03-28 Motor unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862660297P 2018-04-20 2018-04-20
US62/660,297 2018-04-20
JP2018-125244 2018-06-29
JP2018125244 2018-06-29

Publications (1)

Publication Number Publication Date
WO2019202947A1 true WO2019202947A1 (en) 2019-10-24

Family

ID=68240039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013733 WO2019202947A1 (en) 2018-04-20 2019-03-28 Motor unit

Country Status (2)

Country Link
CN (1) CN111989234B (en)
WO (1) WO2019202947A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023274448A1 (en) * 2021-06-29 2023-01-05 Schaeffler Technologies AG & Co. KG Drive train for a motor vehicle
WO2023162154A1 (en) * 2022-02-25 2023-08-31 武蔵精密工業株式会社 Transmission device and power unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016101879A (en) * 2014-11-28 2016-06-02 マツダ株式会社 Drive device for vehicle and assembly method of the same
JP2017056841A (en) * 2015-09-16 2017-03-23 トヨタ自動車株式会社 Power transmission device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4293263B2 (en) * 2007-04-19 2009-07-08 トヨタ自動車株式会社 Power transmission device for vehicle
JP6196827B2 (en) * 2013-07-16 2017-09-13 本田技研工業株式会社 Drive device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016101879A (en) * 2014-11-28 2016-06-02 マツダ株式会社 Drive device for vehicle and assembly method of the same
JP2017056841A (en) * 2015-09-16 2017-03-23 トヨタ自動車株式会社 Power transmission device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023274448A1 (en) * 2021-06-29 2023-01-05 Schaeffler Technologies AG & Co. KG Drive train for a motor vehicle
WO2023162154A1 (en) * 2022-02-25 2023-08-31 武蔵精密工業株式会社 Transmission device and power unit

Also Published As

Publication number Publication date
CN111989234B (en) 2023-10-27
CN111989234A (en) 2020-11-24

Similar Documents

Publication Publication Date Title
US6770005B2 (en) Power transmission system and operation method therefor
KR101233396B1 (en) Drive device
JP4867491B2 (en) Driving device and automobile equipped with the same
JP2004180477A (en) Cooling structure of motor in front and rear wheel drive vehicle
KR20060087412A (en) Hybrid vehicle
JPWO2020067259A1 (en) Drive device
JP5379541B2 (en) Electric drive system
JP7468349B2 (en) Motor unit
WO2019202947A1 (en) Motor unit
US11598410B2 (en) Drive device
WO2019202945A1 (en) Motor unit
JP2008256075A (en) Power transmission device
CN111936336B (en) Motor unit
CN113098191B (en) Driving device
JPWO2020067260A1 (en) Drive device
CN108463368B (en) Power transmission device
CN111936339B (en) Motor unit
US20220352790A1 (en) Drive device
WO2019156068A1 (en) Motor unit
JP2013208990A (en) Power transmission device
WO2019202946A1 (en) Motor unit
JP2011201387A (en) Hybrid driving unit
WO2019156069A1 (en) Motor unit
CN111936338B (en) Motor unit
JP2021066237A (en) Vehicle driving device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19787954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19787954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP