WO2019202946A1 - Motor unit - Google Patents

Motor unit Download PDF

Info

Publication number
WO2019202946A1
WO2019202946A1 PCT/JP2019/013730 JP2019013730W WO2019202946A1 WO 2019202946 A1 WO2019202946 A1 WO 2019202946A1 JP 2019013730 W JP2019013730 W JP 2019013730W WO 2019202946 A1 WO2019202946 A1 WO 2019202946A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
shaft
motor
gear
drive gear
Prior art date
Application number
PCT/JP2019/013730
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 北見
山口 康夫
久嗣 藤原
中村 圭吾
隆宏 檜皮
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201980025750.5A priority Critical patent/CN112004702B/en
Publication of WO2019202946A1 publication Critical patent/WO2019202946A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • a motor unit capable of reducing the vertical dimension.
  • the direction of gravity is defined and described based on the positional relationship when the motor unit 10 is mounted on a vehicle located on a horizontal road surface.
  • “extending along the axial direction” means not only extending in the axial direction (that is, the direction parallel to the X axis) but also tilting in a range of less than 45 ° with respect to the axial direction. This includes cases extending in the other direction.
  • “extending along the axis” means extending in the axial direction around a predetermined axis.
  • the power train 9 has a motor unit 10 and an engine 2.
  • the motor unit 10 is connected to the engine 2.
  • the motor unit 10 includes a generator 4, a motor 1, and a transmission mechanism (transaxle) 5.
  • a driving battery 3 is connected to the motor unit 10.
  • the motor unit 10 is mounted on a vehicle using the motor 1 and the engine 2 as power sources, such as a hybrid vehicle (HEV) and a plug-in hybrid vehicle (PHV).
  • a vehicle using the motor 1 and the engine 2 as power sources, such as a hybrid vehicle (HEV) and a plug-in hybrid vehicle (PHV).
  • HEV hybrid vehicle
  • PHY plug-in hybrid vehicle
  • the engine 2 and the motor unit 10 are connected via a damper 2c.
  • the damper 2c functions as a torque limiter.
  • the damper 2c reduces vibrations caused by sudden torque fluctuations such as when the vehicle is suddenly accelerated by the engine.
  • the engine 2 is connected to the engine drive shaft 12 of the motor unit 10 via the damper 2c. That is, the engine 2 drives the engine drive shaft 12.
  • the motor 1 has a motor rotor 31 and a motor stator 32 surrounding the motor rotor 31.
  • the motor rotor 31 can rotate around the motor shaft J1.
  • the motor stator 32 is annular.
  • the motor stator 32 surrounds the motor rotor 31 from the outside in the radial direction of the motor shaft J1.
  • the motor rotor 31 is fixed to a motor drive shaft 11 described later.
  • the motor rotor 31 rotates around the motor shaft J1.
  • the motor rotor 31 includes a rotor magnet 31a and a rotor core 31b.
  • the rotor magnet 31a is fixed in a holding hole provided in the rotor core 31b.
  • the generator 4 is a motor generator that has both a function as a motor and a function as a generator.
  • the generator 4 functions as an electric motor (starter) when starting the engine 2, and generates electric power with engine power when the engine 2 is operating.
  • the generator rotor 41 is fixed to an engine drive shaft 12 described later.
  • the generator rotor 41 rotates around the engine axis J2.
  • the generator rotor 41 includes a rotor magnet 41a and a rotor core 41b.
  • the rotor magnet 41a is fixed in a holding hole provided in the rotor core 41b.
  • the transmission mechanism 5 transmits force between the engine 2, the generator 4 and the motor 1.
  • the transmission mechanism 5 incorporates a plurality of mechanisms responsible for power transmission between the drive source and the driven device.
  • the transmission mechanism 5 outputs the power of the engine 2 and the motor 1 from the output shaft 55.
  • the transmission mechanism 5 includes a motor drive shaft 11, a motor drive gear 21, an engine drive shaft 12, an engine drive gear 22, a counter shaft 13, a counter gear (large gear portion) 23, and a drive gear (small gear portion). ) 24, ring gear 51, output shaft (axle) 55, differential gear (differential gear) 50, and release mechanism (clutch mechanism) 60.
  • the motor drive shaft 11 extends along the motor axis J1.
  • the motor drive shaft 11 is fixed to the motor rotor 31.
  • the motor drive shaft 11 is rotated by the motor 1.
  • the engine drive shaft 12 extends along the engine axis J2.
  • the engine drive shaft 12 is connected to the crankshaft 2a of the engine 2 via the damper 2c.
  • the engine drive shaft 12 is rotated by the engine 2.
  • the engine drive shaft 12 rotates in synchronization with the crankshaft 2a.
  • a generator rotor 41 is fixed to the engine drive shaft 12.
  • the engine drive gear 22 is fixed to the engine drive shaft 12.
  • the engine drive gear 22 rotates around the engine axis J2 together with the engine drive shaft 12.
  • the engine drive gear 22 meshes with the motor drive gear 21. Therefore, the engine drive gear 22 rotates with the power of the motor 1 and the engine 2.
  • the engine drive gear 22 also meshes with the counter gear 23. That is, the engine drive gear 22 meshes with two gears (the motor drive gear 21 and the counter gear 23).
  • the engine drive gear 22 transmits the power of the motor 1 and the power of the engine 2 to the counter gear 23.
  • the drive gear 24 is fixed to the counter shaft 13.
  • the drive gear 24 rotates around the counter axis J3 together with the counter shaft 13 and the counter gear 23.
  • the ring gear 51 is fixed to the differential device 50.
  • the ring gear 51 rotates around the output shaft J4.
  • Ring gear 51 meshes with drive gear 24.
  • Ring gear 51 transmits the power of motor 1 and engine 2 transmitted via drive gear 24 to differential device 50.
  • the differential device 50 is a device for transmitting torque output from the motor 1 and the engine 2 to the wheels H of the vehicle.
  • the differential device 50 has a function of transmitting the same torque to the output shafts 55 of the left and right wheels while absorbing the speed difference between the left and right wheels H when the vehicle turns.
  • the output shaft 55 rotates around the output axis J4.
  • the power of the motor 1 is transmitted to the output shaft 55 via each gear.
  • the power of the engine 2 is transmitted to the output shaft 55 via each gear.
  • the motor unit 10 of this embodiment has a pair of output shafts 55.
  • the pair of output shafts 55 are each connected to the ring gear 51 via the differential device 50.
  • the wheels H are fixed to the tips of the pair of output shafts 55, respectively.
  • the output shaft 55 outputs power to the outside (the road surface via the wheels H).
  • the transmission mechanism 5 may have a park lock mechanism (not shown).
  • the park lock mechanism is driven based on a driver's shift operation.
  • the park lock mechanism is alternatively switched between a locked state that restricts transmission of power in the transmission mechanism 5 and an unlocked state that releases the restriction.
  • the park lock mechanism includes, for example, a parking gear fixed to the counter shaft 13, a parking lock arm that engages in a groove of the parking gear to prevent the parking gear from rotating, and a parking lock actuator that drives the parking lock arm. .
  • the first shaft portion 12A is connected to the engine 2 and the generator 4.
  • the second shaft portion 12B is located on the output side (that is, on the output shaft 55 side) with respect to the first shaft portion 12A in the path of the transmission mechanism 5. In the connected state, the power of the engine 2 is transmitted from the first shaft portion 12A to the second shaft portion 12B.
  • FIG. 4 is a cross-sectional view showing the separation mechanism 60.
  • the first shaft portion 12A has a first facing end portion 12Aa that faces the second shaft portion 12B in the axial direction.
  • the first facing end 12Aa is provided with a recess 12Ac that opens in the axial direction.
  • the first shaft portion 12A has a connection flange portion 12Ab located at the first opposing end portion 12Aa.
  • An external spline 12Ad is provided on the outer peripheral surface of the connection flange portion 12Ab.
  • the second shaft portion 12B has a second facing end portion 12Ba facing the first shaft portion 12A in the axial direction.
  • the second shaft portion 12B is accommodated in the recess 12Ac of the first shaft portion 12A at the second facing end portion 12Ba.
  • a needle bearing 12n is accommodated between the inner peripheral surface of the recess 12Ac and the second shaft portion 12B.
  • the separating mechanism 60 includes a sleeve 61, a clutch hub 62, a synchronizer ring 63, a key 64, and a drive unit (not shown).
  • the separation mechanism 60 of this embodiment is called a rotation synchronization device or a synchromesh mechanism.
  • the clutch hub 62 is fixed to the outer peripheral surface of the second shaft portion 12B. That is, the separation mechanism 60 of the present embodiment is fixed to the second shaft portion 12B.
  • the clutch hub 62 rotates about the engine shaft J2 together with the second shaft portion 12B.
  • An external spline 62 a is provided on the outer peripheral surface of the clutch hub 62.
  • the sleeve 61 is supported by the second shaft portion 12B via the clutch hub 62. Therefore, the sleeve 61 can rotate around the engine axis J2 together with the second shaft portion 12B. The sleeve 61 is moved in the axial direction of the engine shaft J2 with respect to the clutch hub 62 by a drive unit (not shown).
  • An inner tooth spline 61 a is provided on the inner peripheral surface of the sleeve 61.
  • the sleeve 61 meshes with the external spline 62 a of the clutch hub 62.
  • the internal spline 61a of the sleeve 61 is fitted into the external spline 12Ad provided on the outer peripheral surface of the connection flange portion 12Ab after the clutch hub 62 and the connection flange portion 12Ab rotate synchronously. Thereby, the first shaft portion 12A and the second shaft portion 12B are connected.
  • the key 64 is held by the sleeve 61.
  • the key 64 moves in the axial direction together with the sleeve 61.
  • the key 64 matches the phases of the internal spline 61a and the external spline 12Ad provided on the sleeve 61 and the connecting flange portion 12Ab, respectively.
  • the synchronizer ring 63 moves in the axial direction together with the sleeve 61.
  • the synchronizer ring 63 has a tapered surface that increases its inner diameter as it approaches the connection flange portion 12Ab side.
  • the connecting flange portion 12Ab is provided with a boss portion that protrudes toward the synchronizer ring 63 along the axial direction.
  • the boss portion is provided with a tapered surface facing the synchronizer ring 63.
  • the synchronizer ring 63 and the connection flange portion 12Ab rotate synchronously by bringing the tapered surfaces into contact with each other.
  • the separation mechanism 60 includes a sleeve 61 provided with an internal spline 61a and moving along the engine shaft J2. Further, the separation mechanism 60 includes a synchronizer ring 63 that is pressed against the connection flange portion 12Ab by the sleeve 61 and synchronizes the rotation of the first shaft portion 12A and the second shaft portion 12B.
  • the external spline 12Ad of the connection flange portion 12Ab and the internal spline 61a of the sleeve 61 mesh with each other after the first shaft portion 12A and the second shaft portion 12B rotate in synchronization.
  • the separation mechanism 60 separates the first shaft portion 12A and the second shaft portion 12B arranged on the same axis. For this reason, the separation mechanism 60 can be reduced in size. Moreover, the motor unit 10 can be reduced in size.
  • the separation mechanism 60 of this modification is an example. Other mechanisms may be employed as the separation mechanism. However, it is preferable that the first shaft portion 12A and the second shaft portion 12B that are separated from each other by the separation mechanism 60 are arranged coaxially.
  • the separation mechanism 60 may have a configuration in which an inner peripheral spline is provided with an internal spline that meshes with the external spline 12Ad of the connection flange portion 12Ab.
  • the disconnection mechanism of the modification is configured so that the sleeve is attached to the engine shaft at a timing when the rotation speed of the second shaft portion 12B by the power of the motor 1 and the rotation speed of the first shaft portion 12A by the power of the engine 2 are synchronized.
  • the vehicle on which the motor unit 10 is mounted has three types of travel modes, EV mode, series mode, and parallel mode. These travel modes are alternatively selected by an electronic control device (not shown) according to the vehicle state, the travel state, the driver's requested output, and the like.
  • FIG. 1 shows the power train 9 in the EV mode.
  • FIG. 2 shows the power train 9 in the series mode.
  • FIG. 3 shows the power train 9 in the parallel mode.
  • the EV mode is a traveling mode in which the vehicle is driven only by the motor 1 using the charging power of the driving battery 3 while the engine 2 and the generator 4 are stopped.
  • the EV mode is selected when the traveling load is low or when the charge level of the drive battery 3 is high.
  • the disconnecting mechanism 60 is in a disconnected state in which the power transmission path from the engine 2 to the output shaft 55 is disconnected.
  • the motor rotor 31 is rotated by supplying electric power from the drive battery 3
  • the motor drive shaft 11 is rotated by the motor drive gear 21, the engine drive gear 22, the counter gear 23, the counter shaft 13, the drive gear 24, Transmission is performed in the order of the ring gear 51 and the output shaft 55.
  • the wheel H can be rotated by the motor 1, and a vehicle can be drive
  • the series mode is a driving mode in which the generator 2 is driven by the engine 2 to generate electric power, and the vehicle is driven by the motor 1 using the electric power and the driving battery 3 is charged at the same time. It is.
  • the electric power generated by the generator 4 in the series mode is supplied to both the driving battery 3 and the motor 1, for example.
  • the series mode is selected when the traveling load is medium or when the charge level of the driving battery 3 is low.
  • the separation mechanism 60 In the series mode, the separation mechanism 60 is in a cut state in which the power transmission path from the engine 2 to the output shaft 55 is cut. In the series mode, rotation transmission from the motor 1 to the output shaft 55 is the same as in the EV mode.
  • the parallel mode is a traveling mode in which the vehicle is driven mainly by the engine 2 and the driving of the vehicle is assisted by the motor 1 as necessary, and is selected when the traveling load is high.
  • the separation mechanism 60 In the parallel mode, the separation mechanism 60 is in a connected state in which a power transmission path from the engine 2 to the output shaft 55 is connected.
  • the power of the engine 2 is transmitted to the engine drive shaft 12 via the damper 2c and rotates the engine drive shaft 12.
  • the engine drive shaft 12 rotates the generator rotor 41.
  • the rotation of the engine drive shaft 12 is transmitted to the engine drive gear 22. That is, the power of the engine 2 is transmitted to the engine drive gear 22.
  • FIG. 5 is a side view of the motor unit 10 viewed from the axial direction.
  • FIG. 5 shows an XYZ coordinate system.
  • the X-axis direction is the front-rear direction of the vehicle, and the + X direction is the front of the vehicle.
  • the Y-axis direction is the vehicle width direction.
  • the Z-axis direction is the vertical direction, and the + Z direction is the upward direction.
  • the transmission mechanism 5 has three power transmission paths.
  • the first power transmission path is a motor drive path from the motor 1 to the output shaft 55.
  • the second power transmission path is an engine drive path from the engine 2 to the output shaft 55.
  • the third power drive path is a power generation path from the engine 2 to the generator 4.
  • the power of the motor 1 is transmitted from the motor drive gear 21 to the engine drive gear 22 and further to the counter gear 23.
  • the counter gear 23 is arranged coaxially with the drive gear 24 and rotates together with the drive gear 24.
  • the power of the motor 1 is transmitted from the drive gear 24 to the ring gear 51 and is transmitted to the output shaft 55 via the differential device 50.
  • the power of the engine 2 is first transmitted from the engine drive gear 22 to the counter gear 23.
  • the power of the engine 2 transmitted to the counter gear 23 is transmitted to the output shaft 55 through the drive gear 24, the ring gear 51, and the differential device 50 similarly to the power of the motor 1.
  • the power of the engine 2 is transmitted to the engine drive shaft 12.
  • the generator rotor 41 (see FIG. 1) is fixed to the engine drive shaft 12. Therefore, the power of the engine 2 is transmitted to the generator 4 without passing through the gear. For this reason, compared with the case where a gear is interposed in the power generation path, loss related to power transmission can be suppressed, and power generation efficiency can be increased.
  • the motor unit 10 can be reduced in size and weight compared to the case where a gear is interposed in the power generation path.
  • the motor shaft J1 and the engine shaft J2 can be disposed close to each other by meshing the motor drive gear 21 and the engine drive gear 22, and the motor 1 and the engine are viewed from the axial direction. It is easy to place 2 on top of each other. Thereby, according to this embodiment, the dimension of the power train 9 can be reduced in size easily.
  • the generator rotor 41 is fixed to the engine drive shaft 12.
  • the generator 4 and the motor 1 are disposed on opposite sides of the transmission mechanism 5 in the axial direction.
  • the generator 4 can be disposed so as to overlap the motor 1 when viewed from the axial direction.
  • the generator 4 and the motor 1 have a relatively large projected area in the axial direction among the constituent elements of the motor unit 10.
  • the size of the motor unit 10 viewed from the axial direction can be reduced.
  • the motor drive gear 21 of this embodiment is disposed between the upper end of the counter gear 23 and the lower end of the ring gear 51 in the vertical direction. Thereby, the vertical dimension of the motor unit 10 can be further reduced. Further, the motor drive gear 21 of the present embodiment is disposed between the upper end and the lower end of the engine drive gear 22 in the vertical direction. Therefore, in the vertical direction, the motor 1 does not protrude from the generator 4 and the engine 2 in the vertical direction, and the vertical dimension of the motor unit 10 can be reduced more effectively.
  • the diameter of the counter gear 23 and the diameter of the engine drive gear 22 are substantially equal. More specifically, the diameter of the counter gear 23 is preferably 90% or more and 110% or less with respect to the diameter of the engine drive gear 22. More preferably, the diameter (and the number of teeth) of the counter gear 23 and the diameter (and the number of teeth) of the engine drive gear 22 are completely equal.
  • the reduction ratio in the engine drive path is determined only by the relationship between the diameters of the drive gear 24 and the ring gear 51. That is, the reduction ratio in the engine drive path does not depend on the diameters of the counter gear 23 and the engine drive gear 22.

Abstract

An embodiment of a motor unit according to the present invention is provided with a motor and a transmitting mechanism. The transmitting mechanism has a motor drive shaft which extends along a motor axis and which is rotated by the motor, a motor drive gear which is affixed to the motor drive shaft and which rotates about the motor axis, an engine drive shaft which extends along an engine axis and which is rotated by an engine, an engine drive gear which is affixed to the engine drive shaft and which rotates about the engine axis, a counter shaft which extends along a counter axis, a counter gear which is affixed to the counter shaft, meshes with the engine drive gear, and rotates about the counter axis, a drive gear which is affixed to the counter shaft and which rotates about the counter axis, a ring gear which meshes with the drive gear and which rotates about an output axis, and an output shaft which is connected to the ring gear and which rotates about the output axis. The motor drive gear meshes with the engine drive gear.

Description

モータユニットMotor unit
 本発明は、モータユニットに関する。 The present invention relates to a motor unit.
 近年、ハイブリッド自動車に搭載される駆動装置の開発が盛んに行われている。特許文献1には、エンジン出力ギヤとモータギヤがアイドルギヤに噛み合うことで、エンジンと駆動モータの動力をデファレンシャルギヤに伝達する構造が記載されている。 In recent years, a drive device mounted on a hybrid vehicle has been actively developed. Patent Document 1 describes a structure in which the engine output gear and the motor gear mesh with the idle gear to transmit the power of the engine and the drive motor to the differential gear.
日本国公開公報:特開2008-074267号公報Japanese publication: Japanese Patent Application Laid-Open No. 2008-074267
 従来構造のギヤ構成においては、モータの動力を伝えるギヤとエンジンの動力を伝えるギヤとが1つのギヤ(アイドルギヤ)と噛み合う。このため、モータとエンジンとを上下方向にずらして配置する必要が生じ全体の上下方向の寸法が肥大化するという問題があった。 In the conventional gear structure, the gear that transmits the power of the motor and the gear that transmits the power of the engine mesh with one gear (idle gear). For this reason, it is necessary to dispose the motor and the engine in the vertical direction, and there is a problem that the overall vertical dimension is enlarged.
 本発明の一つの態様は、上下方向の寸法を小型化できるモータユニットの提供を目的の一つとする。 One aspect of the present invention is to provide a motor unit capable of reducing the vertical dimension.
 本発明のモータユニットの一つの態様は、車両に搭載されエンジンに接続されるモータユニットであって、モータと、前記エンジンおよび前記モータの動力を伝達し出力シャフトから出力する伝達機構と、を備える。前記伝達機構は、モータ軸に沿って延び前記モータにより回転させられるモータドライブシャフトと、前記モータドライブシャフトに固定され前記モータ軸周りを回転するモータドライブギヤと、エンジン軸に沿って延び前記エンジンにより回転させられるエンジンドライブシャフトと、前記エンジンドライブシャフトに固定され前記エンジン軸周りを回転するエンジンドライブギヤと、カウンタ軸に沿って延びるカウンタシャフトと、前記カウンタシャフトに固定され前記エンジンドライブギヤと噛み合い前記カウンタ軸周りを回転するカウンタギヤと、前記カウンタシャフトに固定され前記カウンタ軸周りを回転するドライブギヤと、前記ドライブギヤと噛み合い出力軸周りを回転するリングギヤと、前記リングギヤに接続され前記出力軸周りを回転する前記出力シャフトと、を有する。前記モータドライブギヤは、前記エンジンドライブギヤと噛み合う。 One aspect of the motor unit of the present invention is a motor unit that is mounted on a vehicle and connected to an engine, and includes a motor and a transmission mechanism that transmits the power of the engine and the motor and outputs it from an output shaft. . The transmission mechanism extends along a motor shaft and is rotated by the motor, a motor drive gear fixed to the motor drive shaft and rotating around the motor shaft, and extended along an engine shaft by the engine. A rotating engine drive shaft, an engine drive gear fixed to the engine drive shaft and rotating around the engine shaft, a counter shaft extending along a counter shaft, and fixed to the counter shaft and meshing with the engine drive gear A counter gear rotating around the counter shaft, a drive gear fixed to the counter shaft and rotating around the counter shaft, a ring gear meshing with the drive gear and rotating around the output shaft, and the output connected to the ring gear Having said output shaft rotating about a. The motor drive gear meshes with the engine drive gear.
 本発明の一つの態様によれば、上下方向の寸法を小型化できるモータユニットが提供される。 According to one aspect of the present invention, a motor unit capable of reducing the vertical dimension is provided.
図1は、一実施形態のモータユニットを有するパワートレイン9の概念図であり、当該パワートレインをEVモードで駆動する様子を示す。FIG. 1 is a conceptual diagram of a power train 9 having a motor unit according to an embodiment, and shows how the power train is driven in an EV mode. 図1は、一実施形態のモータユニットを有するパワートレイン9の概念図であり、当該パワートレインをシリーズモードで駆動する様子を示す。FIG. 1 is a conceptual diagram of a power train 9 having a motor unit according to an embodiment, and shows how the power train is driven in a series mode. 図1は、一実施形態のモータユニットを有するパワートレイン9の概念図であり、当該パワートレインをパラレルモードで駆動する様子を示す。FIG. 1 is a conceptual diagram of a power train 9 having a motor unit according to an embodiment, and shows how the power train is driven in a parallel mode. 図4は、一実施形態の切り離し機構を示す断面図である。FIG. 4 is a cross-sectional view illustrating a separation mechanism according to an embodiment. 図5は、一実施形態のモータユニットを軸方向から見た側面図である。FIG. 5 is a side view of the motor unit according to the embodiment as viewed from the axial direction.
 以下、図面を参照しながら、本発明の実施形態に係るモータユニットについて説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数などを異ならせる場合がある。 Hereinafter, a motor unit according to an embodiment of the present invention will be described with reference to the drawings. The scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention. Moreover, in the following drawings, in order to make each structure easy to understand, the actual structure may be different from the scale or number in each structure.
 以下の説明では、モータユニット10が水平な路面上に位置する車両に搭載された場合の位置関係を基に、重力方向を規定して説明する。
 本明細書において、「軸方向に沿って延びる」とは、厳密に軸方向(すなわち、X軸と平行な方向)に延びる場合に加えて、軸方向に対して、45°未満の範囲で傾いた方向に延びる場合も含む。本明細書において、「~軸に沿って延びる」とは、所定の軸を中心として、軸方向に延びることを意味する。また、本明細書において、「径方向に延びる」とは、厳密に径方向、すなわち、軸方向に対して垂直な方向に延びる場合に加えて、径方向に対して、45°未満の範囲で傾いた方向に延びる場合も含む。なお、本明細書において、Y軸方向は車幅方向として統一する。
In the following description, the direction of gravity is defined and described based on the positional relationship when the motor unit 10 is mounted on a vehicle located on a horizontal road surface.
In this specification, “extending along the axial direction” means not only extending in the axial direction (that is, the direction parallel to the X axis) but also tilting in a range of less than 45 ° with respect to the axial direction. This includes cases extending in the other direction. In this specification, “extending along the axis” means extending in the axial direction around a predetermined axis. Further, in this specification, “extending in the radial direction” means strictly in the range of less than 45 ° with respect to the radial direction in addition to the case of extending in the radial direction, that is, the direction perpendicular to the axial direction. Including the case of extending in an inclined direction. In the present specification, the Y-axis direction is unified as the vehicle width direction.
 図1は、一実施形態のモータユニット10を有するパワートレイン9の概念図である。図1には、Y軸を示す。Y軸方向は、車両の幅方向(左右方向)である。なお、後述するモータ軸J1、エンジン軸J2、カウンタ軸J3および出力軸J4は実際には存在しない仮想軸である。 FIG. 1 is a conceptual diagram of a power train 9 having a motor unit 10 according to an embodiment. FIG. 1 shows the Y axis. The Y-axis direction is the vehicle width direction (left-right direction). Note that a motor shaft J1, an engine shaft J2, a counter shaft J3, and an output shaft J4, which will be described later, are virtual axes that do not actually exist.
 パワートレイン9は、モータユニット10とエンジン2とを有する。モータユニット10は、エンジン2に接続される。モータユニット10は、発電機4と、モータ1と、伝達機構(トランスアクスル)5と、を備える。モータユニット10には、駆動用バッテリ3が接続される。 The power train 9 has a motor unit 10 and an engine 2. The motor unit 10 is connected to the engine 2. The motor unit 10 includes a generator 4, a motor 1, and a transmission mechanism (transaxle) 5. A driving battery 3 is connected to the motor unit 10.
 モータユニット10は、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)など、モータ1とエンジン2とを動力源とする車両に搭載される。 The motor unit 10 is mounted on a vehicle using the motor 1 and the engine 2 as power sources, such as a hybrid vehicle (HEV) and a plug-in hybrid vehicle (PHV).
 エンジン2は、ガソリンや軽油を燃焼とする内燃機関(ガソリンエンジン又はディーゼルエンジン)である。本実施形態のエンジン2は、クランクシャフト2aの向きが車両の車幅方向に一致するように横向きに配置されたいわゆる横置きエンジンである。エジン2は、モータユニット10の車幅方向一方側に配置される。クランクシャフト2aは、エンジン軸J2に沿って延びる。エンジン軸J2は、モータユニット10の出力シャフト55に対して平行に配置される。エンジン2の作動状態は、電子制御装置で制御される。 Engine 2 is an internal combustion engine (gasoline engine or diesel engine) that burns gasoline or light oil. The engine 2 of the present embodiment is a so-called horizontal engine that is disposed sideways so that the direction of the crankshaft 2a coincides with the vehicle width direction of the vehicle. The engine 2 is disposed on one side of the motor unit 10 in the vehicle width direction. The crankshaft 2a extends along the engine axis J2. The engine shaft J2 is disposed in parallel to the output shaft 55 of the motor unit 10. The operating state of the engine 2 is controlled by an electronic control unit.
 エンジン2とモータユニット10とは、ダンパ2cを介して接続される。ダンパ2cは、トルクリミッタとして機能する。ダンパ2cは、エンジンによって車両の急加速を行う場合などの急激なトルク変動による振動を低減する。エンジン2は、ダンパ2cを介してモータユニット10のエンジンドライブシャフト12に接続される。すなわち、エンジン2は、エンジンドライブシャフト12を駆動する。 The engine 2 and the motor unit 10 are connected via a damper 2c. The damper 2c functions as a torque limiter. The damper 2c reduces vibrations caused by sudden torque fluctuations such as when the vehicle is suddenly accelerated by the engine. The engine 2 is connected to the engine drive shaft 12 of the motor unit 10 via the damper 2c. That is, the engine 2 drives the engine drive shaft 12.
 モータ1は、電動機としての機能と発電機としての機能とを兼ね備えた電動発電機である。モータ1は、おもに電動機として機能して車両を駆動し、回生時には発電機として機能する。 The motor 1 is a motor generator that has both a function as a motor and a function as a generator. The motor 1 mainly functions as an electric motor to drive the vehicle, and functions as a generator during regeneration.
 モータ1は、モータ用ロータ31と、モータ用ロータ31を囲むモータ用ステータ32と、を有する。モータ用ロータ31は、モータ軸J1を中心に回転可能である。モータ用ステータ32は、環状である。モータ用ステータ32は、モータ用ロータ31をモータ軸J1の径方向外側から囲む。 The motor 1 has a motor rotor 31 and a motor stator 32 surrounding the motor rotor 31. The motor rotor 31 can rotate around the motor shaft J1. The motor stator 32 is annular. The motor stator 32 surrounds the motor rotor 31 from the outside in the radial direction of the motor shaft J1.
 モータ用ロータ31は後述するモータドライブシャフト11に固定される。モータ用ロータ31はモータ軸J1周りを回転する。モータ用ロータ31は、ロータマグネット31aと、ロータコア31bとを有する。ロータマグネット31aはロータコア31bに設けられた保持孔内に固定される。 The motor rotor 31 is fixed to a motor drive shaft 11 described later. The motor rotor 31 rotates around the motor shaft J1. The motor rotor 31 includes a rotor magnet 31a and a rotor core 31b. The rotor magnet 31a is fixed in a holding hole provided in the rotor core 31b.
 モータ用ステータ32は、ステータコア32aと、コイル32bと、を有する。ステータコア32aは、モータ軸J1の径方向内側に突出する複数のティースを有する。コイル32bは、ステータコア32aのティースに巻き付けられる。 The motor stator 32 has a stator core 32a and a coil 32b. The stator core 32a has a plurality of teeth protruding inward in the radial direction of the motor shaft J1. The coil 32b is wound around the teeth of the stator core 32a.
 発電機4は、モータとしての機能と発電機としての機能とを兼ね備えた電動発電機である。発電機4は、エンジン2を始動させる際に電動機(スターター)として機能し、エンジン2の作動時にはエンジン動力で発電する。 The generator 4 is a motor generator that has both a function as a motor and a function as a generator. The generator 4 functions as an electric motor (starter) when starting the engine 2, and generates electric power with engine power when the engine 2 is operating.
 発電機4は、エンジン2の動力により発電する。発電機4は、発電機用ロータ41と、発電機用ロータ41を囲む発電機用ステータ42と、を有する。発電機用ロータ41は、エンジン軸J2を中心に回転可能である。発電機用ステータ42は、環状である。発電機用ステータ42は、発電機用ロータ41をエンジン軸J2の径方向外側から囲む。 The generator 4 generates power using the power of the engine 2. The generator 4 includes a generator rotor 41 and a generator stator 42 surrounding the generator rotor 41. The generator rotor 41 is rotatable about the engine shaft J2. The generator stator 42 is annular. The generator stator 42 surrounds the generator rotor 41 from the outside in the radial direction of the engine shaft J2.
 発電機用ロータ41は後述するエンジンドライブシャフト12に固定される。発電機用ロータ41はエンジン軸J2周りを回転する。発電機用ロータ41は、ロータマグネット41aと、ロータコア41bとを有する。ロータマグネット41aはロータコア41bに設けられた保持孔内に固定される。 The generator rotor 41 is fixed to an engine drive shaft 12 described later. The generator rotor 41 rotates around the engine axis J2. The generator rotor 41 includes a rotor magnet 41a and a rotor core 41b. The rotor magnet 41a is fixed in a holding hole provided in the rotor core 41b.
 発電機用ステータ42は、ステータコア42aと、コイル42bと、を有する。ステータコア42aは、エンジン軸J2の径方向内側に突出する複数のティースを有する。コイル42bは、ステータコア42aのティースに巻き付けられる。 The generator stator 42 has a stator core 42a and a coil 42b. Stator core 42a has a plurality of teeth protruding inward in the radial direction of engine shaft J2. The coil 42b is wound around the teeth of the stator core 42a.
 モータ1および発電機4には、直流電流と交流電流とを変換するインバータ(図示略)が接続される。モータ1および発電機4の各回転速度は、インバータを制御することで制御される。モータ1、発電機4、各インバータの作動状態は、電子制御装置で制御される。 The motor 1 and the generator 4 are connected to an inverter (not shown) that converts direct current and alternating current. The rotational speeds of the motor 1 and the generator 4 are controlled by controlling the inverter. The operating state of the motor 1, the generator 4, and each inverter is controlled by an electronic control unit.
 伝達機構5は、エンジン2、発電機4およびモータ1間で力を伝達する。伝達機構5は、駆動源と被駆動装置との間の動力伝達を担う複数の機構を内蔵する。伝達機構5は、エンジン2およびモータ1の動力を出力シャフト55から出力する。 The transmission mechanism 5 transmits force between the engine 2, the generator 4 and the motor 1. The transmission mechanism 5 incorporates a plurality of mechanisms responsible for power transmission between the drive source and the driven device. The transmission mechanism 5 outputs the power of the engine 2 and the motor 1 from the output shaft 55.
 伝達機構5は、モータドライブシャフト11と、モータドライブギヤ21と、エンジンドライブシャフト12と、エンジンドライブギヤ22と、カウンタシャフト13と、カウンタギヤ(大歯車部)23と、ドライブギヤ(小歯車部)24と、リングギヤ51と、出力シャフト(車軸)55と、差動装置(デファレンシャルギヤ)50と、切り離し機構(クラッチ機構)60と、を有する。 The transmission mechanism 5 includes a motor drive shaft 11, a motor drive gear 21, an engine drive shaft 12, an engine drive gear 22, a counter shaft 13, a counter gear (large gear portion) 23, and a drive gear (small gear portion). ) 24, ring gear 51, output shaft (axle) 55, differential gear (differential gear) 50, and release mechanism (clutch mechanism) 60.
 伝達機構5の各ギヤおよび各シャフトは、それぞれモータ軸J1、エンジン軸J2、カウンタ軸J3および出力軸J4の何れかを中心として回転可能である。本実施形態において、モータ軸J1、エンジン軸J2、カウンタ軸J3および出力軸J4は、互いに平行に延びる。また、モータ軸J1、エンジン軸J2、カウンタ軸J3および出力軸J4は、車両の幅方向と平行である。以下の説明において、車幅方向を単に軸方向と呼ぶ場合がある。 Each gear and each shaft of the transmission mechanism 5 can rotate around any one of the motor shaft J1, the engine shaft J2, the counter shaft J3, and the output shaft J4. In the present embodiment, the motor shaft J1, the engine shaft J2, the counter shaft J3, and the output shaft J4 extend in parallel to each other. The motor shaft J1, the engine shaft J2, the counter shaft J3, and the output shaft J4 are parallel to the vehicle width direction. In the following description, the vehicle width direction may be simply referred to as the axial direction.
 モータドライブシャフト11は、モータ軸J1に沿って延びる。モータドライブシャフト11は、モータ用ロータ31に固定される。モータドライブシャフト11は、モータ1に回転させられる。 The motor drive shaft 11 extends along the motor axis J1. The motor drive shaft 11 is fixed to the motor rotor 31. The motor drive shaft 11 is rotated by the motor 1.
 モータドライブギヤ21は、モータドライブシャフト11に固定される。モータドライブギヤ21は、モータドライブシャフト11とともに、モータ軸J1周りを回転する。モータドライブギヤ21は、エンジンドライブギヤ22と噛み合う。 The motor drive gear 21 is fixed to the motor drive shaft 11. The motor drive gear 21 rotates around the motor axis J1 together with the motor drive shaft 11. The motor drive gear 21 meshes with the engine drive gear 22.
 エンジンドライブシャフト12は、エンジン軸J2に沿って延びる。エンジンドライブシャフト12は、ダンパ2cを介して、エンジン2のクランクシャフト2aに接続される。エンジンドライブシャフト12は、エンジン2により回転させられる。エンジン2を定常回転させる場合、エンジンドライブシャフト12は、クランクシャフト2aと同期回転する。エンジンドライブシャフト12には、発電機用ロータ41が固定される。 The engine drive shaft 12 extends along the engine axis J2. The engine drive shaft 12 is connected to the crankshaft 2a of the engine 2 via the damper 2c. The engine drive shaft 12 is rotated by the engine 2. When the engine 2 is rotated in a steady manner, the engine drive shaft 12 rotates in synchronization with the crankshaft 2a. A generator rotor 41 is fixed to the engine drive shaft 12.
 エンジンドライブシャフト12は、第1軸部12Aと第2軸部12Bとを有する。また、エンジンドライブシャフト12には、切り離し機構60が設けられる。第1軸部12Aおよび第2軸部12Bは、それぞれエンジン軸J2に沿って延びる。すなわち、第1軸部12Aと第2軸部12Bとは、同軸上に並ぶ。第1軸部12Aは、ダンパ2cを介してエンジン2に接続される。また、第1軸部12Aには、発電機用ロータ41が固定される。一方で、第2軸部12Bには、エンジンドライブギヤ22が固定される。 The engine drive shaft 12 has a first shaft portion 12A and a second shaft portion 12B. Further, the engine drive shaft 12 is provided with a separation mechanism 60. The first shaft portion 12A and the second shaft portion 12B each extend along the engine shaft J2. That is, the first shaft portion 12A and the second shaft portion 12B are arranged coaxially. The first shaft portion 12A is connected to the engine 2 via the damper 2c. Further, the generator rotor 41 is fixed to the first shaft portion 12A. On the other hand, the engine drive gear 22 is fixed to the second shaft portion 12B.
 切り離し機構60は、エンジン2の動力を出力シャフトに伝えない場合に、第1軸部12Aと第2軸部12Bとを切り離す。また、切り離し機構60は、エンジン2の動力を出力シャフトに伝えてエンジン2によって車両を駆動する場合に、第1軸部12Aと第2軸部12Bとを接続する。切り離し機構60については、後段において詳細に説明する。 The separation mechanism 60 separates the first shaft portion 12A and the second shaft portion 12B when the power of the engine 2 is not transmitted to the output shaft. Further, the separation mechanism 60 connects the first shaft portion 12A and the second shaft portion 12B when the power of the engine 2 is transmitted to the output shaft and the vehicle is driven by the engine 2. The separation mechanism 60 will be described in detail later.
 エンジンドライブギヤ22は、エンジンドライブシャフト12に固定される。エンジンドライブギヤ22は、エンジンドライブシャフト12とともに、エンジン軸J2周りを回転する。上述したように、エンジンドライブギヤ22は、モータドライブギヤ21と噛み合う。したがって、エンジンドライブギヤ22は、モータ1およびエンジン2の動力で回転する。また、エンジンドライブギヤ22は、カウンタギヤ23とも、噛み合う。すなわち、エンジンドライブギヤ22は、2つのギヤ(モータドライブギヤ21およびカウンタギヤ23)と噛み合う。エンジンドライブギヤ22は、モータ1の動力およびエンジン2の動力を、カウンタギヤ23に伝える。 The engine drive gear 22 is fixed to the engine drive shaft 12. The engine drive gear 22 rotates around the engine axis J2 together with the engine drive shaft 12. As described above, the engine drive gear 22 meshes with the motor drive gear 21. Therefore, the engine drive gear 22 rotates with the power of the motor 1 and the engine 2. The engine drive gear 22 also meshes with the counter gear 23. That is, the engine drive gear 22 meshes with two gears (the motor drive gear 21 and the counter gear 23). The engine drive gear 22 transmits the power of the motor 1 and the power of the engine 2 to the counter gear 23.
 カウンタシャフト13は、カウンタ軸J3に沿って延びる。カウンタシャフト13は、カウンタ軸J3周りを回転する。カウンタシャフト13は、例えば、伝達機構5を収容するケース(図示略)に軸受を介して回転可能に保持される。 The counter shaft 13 extends along the counter axis J3. The counter shaft 13 rotates around the counter axis J3. For example, the countershaft 13 is rotatably held via a bearing in a case (not shown) that houses the transmission mechanism 5.
 カウンタギヤ23はカウンタシャフト13に固定される。カウンタギヤ23は、カウンタシャフト13とともに、カウンタ軸J3周りを回転する。上述のように、カウンタギヤ23はエンジンドライブギヤ22と噛み合う。 The counter gear 23 is fixed to the counter shaft 13. The counter gear 23 rotates around the counter axis J3 together with the counter shaft 13. As described above, the counter gear 23 meshes with the engine drive gear 22.
 ドライブギヤ24は、カウンタシャフト13に固定される。ドライブギヤ24は、カウンタシャフト13およびカウンタギヤ23とともに、カウンタ軸J3周りを回転する。 The drive gear 24 is fixed to the counter shaft 13. The drive gear 24 rotates around the counter axis J3 together with the counter shaft 13 and the counter gear 23.
 リングギヤ51は、差動装置50に固定される。リングギヤ51は、出力軸J4周りを回転する。リングギヤ51は、ドライブギヤ24と噛み合う。リングギヤ51は、ドライブギヤ24を介して伝達されるモータ1およびエンジン2の動力を差動装置50に伝達する。 The ring gear 51 is fixed to the differential device 50. The ring gear 51 rotates around the output shaft J4. Ring gear 51 meshes with drive gear 24. Ring gear 51 transmits the power of motor 1 and engine 2 transmitted via drive gear 24 to differential device 50.
 差動装置50は、モータ1およびエンジン2から出力されるトルクを車両の車輪Hに伝達するための装置である。差動装置50は、車両の旋回時に、左右の車輪Hの速度差を吸収しつつ、左右両輪の出力シャフト55に同トルクを伝える機能を有する。 The differential device 50 is a device for transmitting torque output from the motor 1 and the engine 2 to the wheels H of the vehicle. The differential device 50 has a function of transmitting the same torque to the output shafts 55 of the left and right wheels while absorbing the speed difference between the left and right wheels H when the vehicle turns.
 差動装置50は、リングギヤ51に固定されるギヤハウジング(不図示)と、一対のピニオンギヤ(不図示)と、ピニオンシャフト(不図示)と、一対のサイドギヤ(不図示)と、を有する。ギヤハウジングは、リングギヤ51とともに出力軸J4を中心として回転する。ギヤハウジングは、一対のピニオンギヤ、ピニオンシャフトおよび一対のサイドギヤを収容する。一対のピニオンギヤは、互いに向かい合う傘歯車である。一対のピニオンギヤは、ピニオンシャフトに支持される。一対のサイドギヤは、一対のピニオンギヤに直角に噛み合う傘歯車である。一対のサイドギヤは、それぞれ出力シャフト55に固定される。 The differential device 50 includes a gear housing (not shown) fixed to the ring gear 51, a pair of pinion gears (not shown), a pinion shaft (not shown), and a pair of side gears (not shown). The gear housing rotates around the output shaft J4 together with the ring gear 51. The gear housing accommodates a pair of pinion gears, a pinion shaft, and a pair of side gears. The pair of pinion gears are bevel gears facing each other. The pair of pinion gears are supported by the pinion shaft. The pair of side gears are bevel gears that mesh at right angles with the pair of pinion gears. The pair of side gears are fixed to the output shaft 55, respectively.
 出力シャフト55は出力軸J4周りを回転する。出力シャフト55には、各ギヤを介して、モータ1の動力が伝達される。同様に出力シャフト55には、各ギヤを介して、エンジン2の動力が伝達される。 The output shaft 55 rotates around the output axis J4. The power of the motor 1 is transmitted to the output shaft 55 via each gear. Similarly, the power of the engine 2 is transmitted to the output shaft 55 via each gear.
 本実施形態のモータユニット10には一対の出力シャフト55がある。一対の出力シャフト55はそれぞれ差動装置50を介してリングギヤ51に接続される。一対の出力シャフト55の先端にそれぞれ車輪Hが固定される。出力シャフト55は動力を外部(車輪Hを介して路面)に出力する。 The motor unit 10 of this embodiment has a pair of output shafts 55. The pair of output shafts 55 are each connected to the ring gear 51 via the differential device 50. The wheels H are fixed to the tips of the pair of output shafts 55, respectively. The output shaft 55 outputs power to the outside (the road surface via the wheels H).
 なお、伝達機構5は、図示略のパークロック機構を有していてもよい。パークロック機構は、ドライバーのシフト操作に基づいて駆動される。パークロック機構は、伝達機構5における動力の伝達を制限するロック状態と、制限を解除するアンロック状態との間で択一的に切り替えられる。パークロック機構は、例えばカウンタシャフト13に固定されるパーキングギヤと、パーキングギヤの溝に噛みこんでパーキングギヤの回転を阻止するパークロックアームと、パークロックアームを駆動させるパークロックアクチュエータと、を有する。 Note that the transmission mechanism 5 may have a park lock mechanism (not shown). The park lock mechanism is driven based on a driver's shift operation. The park lock mechanism is alternatively switched between a locked state that restricts transmission of power in the transmission mechanism 5 and an unlocked state that releases the restriction. The park lock mechanism includes, for example, a parking gear fixed to the counter shaft 13, a parking lock arm that engages in a groove of the parking gear to prevent the parking gear from rotating, and a parking lock actuator that drives the parking lock arm. .
切り離し機構60は、エンジンドライブシャフト12において、エンジン2の動力の伝達経路(エンジン駆動経路)を切断可能である。上述したように、エンジンドライブシャフト12は、第1軸部12Aおよび第2軸部12Bを有する。切り離し機構60は、第1軸部12Aと第2軸部12Bとを繋ぐ接続状態と、第1軸部12Aと第2軸部12Bとを切り離す切断状態と、を択一的に切り替える。 The separation mechanism 60 can cut the power transmission path (engine drive path) of the engine 2 in the engine drive shaft 12. As described above, the engine drive shaft 12 has the first shaft portion 12A and the second shaft portion 12B. The separation mechanism 60 selectively switches between a connection state that connects the first shaft portion 12A and the second shaft portion 12B and a cutting state that separates the first shaft portion 12A and the second shaft portion 12B.
 第1軸部12Aは、エンジン2および発電機4に接続される。第2軸部12Bは、伝達機構5の経路中において第1軸部12Aに対し出力側(すなわち、出力シャフト55側)に位置する。接続状態において、エンジン2の動力は、第1軸部12Aから第2軸部12Bに伝わる。 The first shaft portion 12A is connected to the engine 2 and the generator 4. The second shaft portion 12B is located on the output side (that is, on the output shaft 55 side) with respect to the first shaft portion 12A in the path of the transmission mechanism 5. In the connected state, the power of the engine 2 is transmitted from the first shaft portion 12A to the second shaft portion 12B.
 図4は、切り離し機構60を示す断面図である。
 第1軸部12Aは、第2軸部12Bと軸方向に対向する第1対向端部12Aaを有する。第1対向端部12Aaには、軸方向に開口する凹部12Acが設けられる。また、第1軸部12Aは、第1対向端部12Aaに位置する接続フランジ部12Abを有する。接続フランジ部12Abの外周面には、外歯スプライン12Adが設けられる。
FIG. 4 is a cross-sectional view showing the separation mechanism 60.
The first shaft portion 12A has a first facing end portion 12Aa that faces the second shaft portion 12B in the axial direction. The first facing end 12Aa is provided with a recess 12Ac that opens in the axial direction. In addition, the first shaft portion 12A has a connection flange portion 12Ab located at the first opposing end portion 12Aa. An external spline 12Ad is provided on the outer peripheral surface of the connection flange portion 12Ab.
 第2軸部12Bは、第1軸部12Aと軸方向に対向する第2対向端部12Baを有する。第2軸部12Bは、第2対向端部12Baにおいて、第1軸部12Aの凹部12Acに収容される。凹部12Acの内周面と、第2軸部12Bとの間には、ニードルベアリング12nが収容される。 The second shaft portion 12B has a second facing end portion 12Ba facing the first shaft portion 12A in the axial direction. The second shaft portion 12B is accommodated in the recess 12Ac of the first shaft portion 12A at the second facing end portion 12Ba. A needle bearing 12n is accommodated between the inner peripheral surface of the recess 12Ac and the second shaft portion 12B.
 切り離し機構60は、スリーブ61と、クラッチハブ62と、シンクロナイザリング63と、キー64と、駆動部(図示略)とを有する。本実施形態の切り離し機構60は回転同期装置又はシンクロメッシュ機構と称される。 The separating mechanism 60 includes a sleeve 61, a clutch hub 62, a synchronizer ring 63, a key 64, and a drive unit (not shown). The separation mechanism 60 of this embodiment is called a rotation synchronization device or a synchromesh mechanism.
 クラッチハブ62は、第2軸部12Bの外周面に固定される。すなわち、本実施形態の切り離し機構60は、第2軸部12Bに固定される。クラッチハブ62は、第2軸部12Bとともにエンジン軸J2を中心として回転する。クラッチハブ62の外周面には、外歯スプライン62aが設けられる。 The clutch hub 62 is fixed to the outer peripheral surface of the second shaft portion 12B. That is, the separation mechanism 60 of the present embodiment is fixed to the second shaft portion 12B. The clutch hub 62 rotates about the engine shaft J2 together with the second shaft portion 12B. An external spline 62 a is provided on the outer peripheral surface of the clutch hub 62.
 スリーブ61は、クラッチハブ62を介して第2軸部12Bに支持される。したがって、スリーブ61は、第2軸部12Bとともに、エンジン軸J2周りを回転可能である。スリーブ61は、駆動部(図示略)によって、クラッチハブ62に対しエンジン軸J2の軸方向に移動させられる。 The sleeve 61 is supported by the second shaft portion 12B via the clutch hub 62. Therefore, the sleeve 61 can rotate around the engine axis J2 together with the second shaft portion 12B. The sleeve 61 is moved in the axial direction of the engine shaft J2 with respect to the clutch hub 62 by a drive unit (not shown).
 スリーブ61の内周面には、内歯スプライン61aが設けられる。スリーブ61は、クラッチハブ62の外歯スプライン62aと噛み合っている。スリーブ61の内歯スプライン61aは、クラッチハブ62と接続フランジ部12Abとが同期回転した後に、接続フランジ部12Abの外周面に設けられた外歯スプライン12Adに嵌る。これにより、第1軸部12Aと第2軸部12Bとを連結させる。 An inner tooth spline 61 a is provided on the inner peripheral surface of the sleeve 61. The sleeve 61 meshes with the external spline 62 a of the clutch hub 62. The internal spline 61a of the sleeve 61 is fitted into the external spline 12Ad provided on the outer peripheral surface of the connection flange portion 12Ab after the clutch hub 62 and the connection flange portion 12Ab rotate synchronously. Thereby, the first shaft portion 12A and the second shaft portion 12B are connected.
 キー64は、スリーブ61に保持される。キー64は、スリーブ61とともに軸方向に移動する。キー64は、スリーブ61および接続フランジ部12Abにそれぞれ設けられた内歯スプライン61aおよび外歯スプライン12Adの位相を一致させる。 The key 64 is held by the sleeve 61. The key 64 moves in the axial direction together with the sleeve 61. The key 64 matches the phases of the internal spline 61a and the external spline 12Ad provided on the sleeve 61 and the connecting flange portion 12Ab, respectively.
 シンクロナイザリング63は、スリーブ61とともに軸方向に移動する。シンクロナイザリング63は、接続フランジ部12Ab側に近づくに従い内径を大きくするテーパ面を有する。一方で、接続フランジ部12Abには、軸方向に沿ってシンクロナイザリング63側に突出するボス部が設けられる。ボス部は、シンクロナイザリング63と対向するテーパ面が設けられる。シンクロナイザリング63と接続フランジ部12Abは、互いのテーパ面同士を接触させることで同期回転する。 The synchronizer ring 63 moves in the axial direction together with the sleeve 61. The synchronizer ring 63 has a tapered surface that increases its inner diameter as it approaches the connection flange portion 12Ab side. On the other hand, the connecting flange portion 12Ab is provided with a boss portion that protrudes toward the synchronizer ring 63 along the axial direction. The boss portion is provided with a tapered surface facing the synchronizer ring 63. The synchronizer ring 63 and the connection flange portion 12Ab rotate synchronously by bringing the tapered surfaces into contact with each other.
 本実施形態において切り離し機構60は、内歯スプライン61aが設けられエンジン軸J2に沿って移動するスリーブ61を有する。また、切り離し機構60は、スリーブ61によって接続フランジ部12Abに押し当てられて第1軸部12Aと第2軸部12Bとの回転を同期させるシンクロナイザリング63と、を有する。接続フランジ部12Abの外歯スプライン12Adと、スリーブ61の内歯スプライン61aとは、第1軸部12Aと第2軸部12Bが同期回転した後に互いに噛み合う。 In the present embodiment, the separation mechanism 60 includes a sleeve 61 provided with an internal spline 61a and moving along the engine shaft J2. Further, the separation mechanism 60 includes a synchronizer ring 63 that is pressed against the connection flange portion 12Ab by the sleeve 61 and synchronizes the rotation of the first shaft portion 12A and the second shaft portion 12B. The external spline 12Ad of the connection flange portion 12Ab and the internal spline 61a of the sleeve 61 mesh with each other after the first shaft portion 12A and the second shaft portion 12B rotate in synchronization.
 本実施形態によれば、切り離し機構60がシンクロナイザリング63を有するため、第1軸部12Aと第2軸部12Bとの接続時に第1軸部12Aと第2軸部12Bとを同期回転させることができる。このため、切り離し機構60の接続時に第1軸部12Aおよび第2軸部12Bに大きな衝撃が加わることを抑制できる。 According to this embodiment, since the separation mechanism 60 has the synchronizer ring 63, the first shaft portion 12A and the second shaft portion 12B are synchronously rotated when the first shaft portion 12A and the second shaft portion 12B are connected. Can do. For this reason, it is possible to suppress a large impact from being applied to the first shaft portion 12A and the second shaft portion 12B when the separation mechanism 60 is connected.
 本実施形態によれば、切り離し機構60が、同軸上に並ぶ第1軸部12Aと第2軸部12Bとを切り離す。このため、切り離し機構60を小型化できる。また、モータユニット10を小型化することができる。なお、本変形例の切り離し機構60は一例である。切り離し機構としては、他の機構を採用してもよい。しかし、切り離し機構60により互いに切り離される第1軸部12Aと第2軸部12Bとが同軸上に配置されることが好ましい。 According to the present embodiment, the separation mechanism 60 separates the first shaft portion 12A and the second shaft portion 12B arranged on the same axis. For this reason, the separation mechanism 60 can be reduced in size. Moreover, the motor unit 10 can be reduced in size. The separation mechanism 60 of this modification is an example. Other mechanisms may be employed as the separation mechanism. However, it is preferable that the first shaft portion 12A and the second shaft portion 12B that are separated from each other by the separation mechanism 60 are arranged coaxially.
 本実施形態において、第2軸部12Bにスリーブ61が支持され、第1軸部12Aに接続フランジ部12Abが設けられる。しかし第1軸部12Aおよび第2軸部12Bの何れか一方にスリーブ61が支持され、第1軸部12Aおよび第2軸部12Bの他方に接続フランジ部が設けられていればよい。 In this embodiment, the sleeve 61 is supported on the second shaft portion 12B, and the connection flange portion 12Ab is provided on the first shaft portion 12A. However, the sleeve 61 may be supported by one of the first shaft portion 12A and the second shaft portion 12B, and the connection flange portion may be provided on the other of the first shaft portion 12A and the second shaft portion 12B.
 本実施形態によれば、エンジン2と発電機4と切り離し機構60とが同軸に配置される。このため、エンジンドライブシャフト12が、発電機4の回転シャフトとクラッチシャフトの機能を併せ持つ。これにより、軸方向から見て、発電機4と切り離し機構60とを重ねて配置することができ、モータユニット10の軸方向から見た寸法を小型化することができる。 According to the present embodiment, the engine 2, the generator 4, and the separation mechanism 60 are arranged coaxially. For this reason, the engine drive shaft 12 has both functions of a rotating shaft and a clutch shaft of the generator 4. Thereby, seeing from the axial direction, the generator 4 and the separation mechanism 60 can be arranged in an overlapping manner, and the size of the motor unit 10 seen from the axial direction can be reduced.
 切り離し機構60の変形例として、シンクロナイザリングを有さない構造を採用してもよい。すなわち、切り離し機構は、内周面に、接続フランジ部12Abの外歯スプライン12Adと噛み合う内歯スプラインが設けられたスリーブを有する構成としてもよい。この場合、変形例の切り離し機構は、モータ1の動力による第2軸部12Bの回転速度と、エンジン2の動力による第1軸部12Aの回転速度と、が同期したタイミングで、スリーブをエンジン軸J2に沿って移動させてスリーブの内歯スプラインを接続フランジ部12Abの外歯スプライン12Adと噛み合わせる。なお、第2軸部12Bの回転速度と第1軸部12Aの回転速度との同期は、モータ1およびエンジン2の動作を制御する電子制御装置(図示略)によって行う。 As a modification of the separation mechanism 60, a structure without a synchronizer ring may be adopted. That is, the separation mechanism may have a configuration in which an inner peripheral spline is provided with an internal spline that meshes with the external spline 12Ad of the connection flange portion 12Ab. In this case, the disconnection mechanism of the modification is configured so that the sleeve is attached to the engine shaft at a timing when the rotation speed of the second shaft portion 12B by the power of the motor 1 and the rotation speed of the first shaft portion 12A by the power of the engine 2 are synchronized. The sleeve is moved along J2, and the internal spline of the sleeve meshes with the external spline 12Ad of the connecting flange portion 12Ab. The rotation speed of the second shaft portion 12B and the rotation speed of the first shaft portion 12A are synchronized by an electronic control device (not shown) that controls the operation of the motor 1 and the engine 2.
 モータユニット10が搭載された車両には、EVモード、シリーズモード、パラレルモードの三種類の走行モードが用意される。これらの走行モードは、図示しない電子制御装置により、車両状態、走行状態、運転者の要求出力などに応じて択一的に選択される。図1は、EVモード時のパワートレイン9を示す。図2は、シリーズモード時のパワートレイン9を示す。図3は、パラレルモード時のパワートレイン9を示す。 The vehicle on which the motor unit 10 is mounted has three types of travel modes, EV mode, series mode, and parallel mode. These travel modes are alternatively selected by an electronic control device (not shown) according to the vehicle state, the travel state, the driver's requested output, and the like. FIG. 1 shows the power train 9 in the EV mode. FIG. 2 shows the power train 9 in the series mode. FIG. 3 shows the power train 9 in the parallel mode.
 図1に示すように、EVモードは、エンジン2および発電機4を停止させたまま、駆動用バッテリ3の充電電力を用いてモータ1のみで車両を駆動する走行モードである。EVモードは、走行負荷が低い場合、又は駆動用バッテリ3の充電レベルが高い場合に選択される。 As shown in FIG. 1, the EV mode is a traveling mode in which the vehicle is driven only by the motor 1 using the charging power of the driving battery 3 while the engine 2 and the generator 4 are stopped. The EV mode is selected when the traveling load is low or when the charge level of the drive battery 3 is high.
 EVモードにおいて切り離し機構60は、エンジン2から出力シャフト55に至る動力伝達経路を切断させた切断状態である。駆動用バッテリ3から電力が供給されることでモータ用ロータ31が回転すると、モータドライブシャフト11の回転が、モータドライブギヤ21、エンジンドライブギヤ22、カウンタギヤ23、カウンタシャフト13、ドライブギヤ24、リングギヤ51、出力シャフト55の順に伝達される。これにより、モータ1によって車輪Hを回転させることができ、車両を走行させることができる。 In the EV mode, the disconnecting mechanism 60 is in a disconnected state in which the power transmission path from the engine 2 to the output shaft 55 is disconnected. When the motor rotor 31 is rotated by supplying electric power from the drive battery 3, the motor drive shaft 11 is rotated by the motor drive gear 21, the engine drive gear 22, the counter gear 23, the counter shaft 13, the drive gear 24, Transmission is performed in the order of the ring gear 51 and the output shaft 55. Thereby, the wheel H can be rotated by the motor 1, and a vehicle can be drive | worked.
 図2に示すように、シリーズモードは、エンジン2で発電機4を駆動して発電しつつ、その電力を利用してモータ1で車両を駆動するとともに駆動用バッテリ3の充電も同時に行う走行モードである。シリーズモードにおいて発電機4によって発電された電力は、例えば、駆動用バッテリ3とモータ1との両方に供給される。シリーズモードは、走行負荷が中程度の場合、又は駆動用バッテリ3の充電レベルが低い場合に選択される。 As shown in FIG. 2, the series mode is a driving mode in which the generator 2 is driven by the engine 2 to generate electric power, and the vehicle is driven by the motor 1 using the electric power and the driving battery 3 is charged at the same time. It is. The electric power generated by the generator 4 in the series mode is supplied to both the driving battery 3 and the motor 1, for example. The series mode is selected when the traveling load is medium or when the charge level of the driving battery 3 is low.
 シリーズモードにおいて切り離し機構60はエンジン2から出力シャフト55に至る動力伝達経路を切断させた切断状態である。シリーズモードで、モータ1から出力シャフト55への回転の伝達はEVモードと同様である。 In the series mode, the separation mechanism 60 is in a cut state in which the power transmission path from the engine 2 to the output shaft 55 is cut. In the series mode, rotation transmission from the motor 1 to the output shaft 55 is the same as in the EV mode.
 本実施形態では、切り離し機構60が設けられるため、上述したEVモードおよびシリーズモードにおいて、モータ1の動力が発電機4およびエンジン2に伝達されることを抑制できる。そのため、モータ1に加えられる負荷が大きくなることを抑制でき、かつ、シリーズモードにおいては発電機4によって好適に発電を行うことができる。 In the present embodiment, since the separation mechanism 60 is provided, the power of the motor 1 can be suppressed from being transmitted to the generator 4 and the engine 2 in the EV mode and the series mode described above. Therefore, an increase in the load applied to the motor 1 can be suppressed, and power can be suitably generated by the generator 4 in the series mode.
 図3に示すように、パラレルモードは、おもにエンジン2で車両を駆動し、必要に応じてモータ1で車両の駆動をアシストする走行モードであり、走行負荷が高い場合に選択される。 As shown in FIG. 3, the parallel mode is a traveling mode in which the vehicle is driven mainly by the engine 2 and the driving of the vehicle is assisted by the motor 1 as necessary, and is selected when the traveling load is high.
 パラレルモードにおいて切り離し機構60は、エンジン2から出力シャフト55に至る動力伝達経路を接続させた接続状態である。パラレルモードにおいて、エンジン2の動力は、ダンパ2cを介してエンジンドライブシャフト12に伝わりエンジンドライブシャフト12を回転させる。エンジンドライブシャフト12は、発電機用ロータ41を回転させる。また、エンジンドライブシャフト12の回転は、エンジンドライブギヤ22に伝わる。すなわち、エンジン2の動力は、エンジンドライブギヤ22に伝わる。 In the parallel mode, the separation mechanism 60 is in a connected state in which a power transmission path from the engine 2 to the output shaft 55 is connected. In the parallel mode, the power of the engine 2 is transmitted to the engine drive shaft 12 via the damper 2c and rotates the engine drive shaft 12. The engine drive shaft 12 rotates the generator rotor 41. The rotation of the engine drive shaft 12 is transmitted to the engine drive gear 22. That is, the power of the engine 2 is transmitted to the engine drive gear 22.
 一方で、モータ1の動力は、モータドライブシャフト11、モータドライブギヤ21を介してエンジンドライブギヤ22に伝達される。したがって、パラレルモードにおいて、エンジンドライブギヤ22には、エンジン2の動力に加えて、モータ1の動力が伝わる。これにより、モータ1は、エンジン2の回転動作を補助する。エンジンドライブギヤ22の回転は、カウンタギヤ23、カウンタシャフト13、ドライブギヤ24、リングギヤ51、出力シャフト55の順に伝達される。これにより、エンジン2によって車輪Hを回転させることができ、車両を走行させることができる。 On the other hand, the power of the motor 1 is transmitted to the engine drive gear 22 via the motor drive shaft 11 and the motor drive gear 21. Therefore, in the parallel mode, the power of the motor 1 is transmitted to the engine drive gear 22 in addition to the power of the engine 2. Thereby, the motor 1 assists the rotation operation of the engine 2. The rotation of the engine drive gear 22 is transmitted in the order of the counter gear 23, the counter shaft 13, the drive gear 24, the ring gear 51, and the output shaft 55. Thereby, the wheel H can be rotated by the engine 2, and a vehicle can be drive | worked.
 図5は、モータユニット10を軸方向から見た側面図である。図5には、XYZ座標系を示す。X軸方向は、車両の前後方向であり、+X方向が車両前方である。Y軸方向は、車両の幅方向である。Z軸方向は、上下方向であり、+Z方向が上方向である。 FIG. 5 is a side view of the motor unit 10 viewed from the axial direction. FIG. 5 shows an XYZ coordinate system. The X-axis direction is the front-rear direction of the vehicle, and the + X direction is the front of the vehicle. The Y-axis direction is the vehicle width direction. The Z-axis direction is the vertical direction, and the + Z direction is the upward direction.
 伝達機構5は3つの動力伝達経路を有する。1つ目の動力伝達経路は、モータ1から出力シャフト55に至るモータ駆動経路である。2つ目の動力伝達経路は、エンジン2から出力シャフト55に至るエンジン駆動経路である。3つ目の動力駆動経路はエンジン2から発電機4に至る発電経路である。 The transmission mechanism 5 has three power transmission paths. The first power transmission path is a motor drive path from the motor 1 to the output shaft 55. The second power transmission path is an engine drive path from the engine 2 to the output shaft 55. The third power drive path is a power generation path from the engine 2 to the generator 4.
 モータ駆動経路においてモータ1の動力は、モータドライブギヤ21からエンジンドライブギヤ22に伝達され、さらにカウンタギヤ23に伝達される。カウンタギヤ23は、ドライブギヤ24と同軸上に配置されドライブギヤ24とともに回転する。モータ1の動力はドライブギヤ24からリングギヤ51に伝達され差動装置50を介して出力シャフト55に伝達される。 In the motor drive path, the power of the motor 1 is transmitted from the motor drive gear 21 to the engine drive gear 22 and further to the counter gear 23. The counter gear 23 is arranged coaxially with the drive gear 24 and rotates together with the drive gear 24. The power of the motor 1 is transmitted from the drive gear 24 to the ring gear 51 and is transmitted to the output shaft 55 via the differential device 50.
 エンジン駆動経路において、エンジン2の動力は、まず、エンジンドライブギヤ22からカウンタギヤ23に伝達される。カウンタギヤ23に伝わったエンジン2の動力は、モータ1の動力と同様に、ドライブギヤ24、リングギヤ51および差動装置50を介して出力シャフト55に伝達される。 In the engine drive path, the power of the engine 2 is first transmitted from the engine drive gear 22 to the counter gear 23. The power of the engine 2 transmitted to the counter gear 23 is transmitted to the output shaft 55 through the drive gear 24, the ring gear 51, and the differential device 50 similarly to the power of the motor 1.
 本実施形態によれば、エンジンドライブギヤ22には、モータ1の動力とエンジン2の動力とが伝達される。したがって、エンジンドライブギヤ22から出力シャフト55に至る動力伝達の経路を、モータ駆動経路とエンジン駆動経路とで共有することができる。結果的に、伝達機構5に設けられるシャフトおよびギヤの数を減らして、モータユニット10を小型化および軽量化することができる。 According to this embodiment, the power of the motor 1 and the power of the engine 2 are transmitted to the engine drive gear 22. Therefore, the power transmission path from the engine drive gear 22 to the output shaft 55 can be shared by the motor drive path and the engine drive path. As a result, the number of shafts and gears provided in the transmission mechanism 5 can be reduced, and the motor unit 10 can be reduced in size and weight.
 発電経路において、エンジン2の動力は、エンジンドライブシャフト12に伝わる。発電機用ロータ41(図1参照)は、エンジンドライブシャフト12に固定される。したがって、エンジン2の動力は、ギヤを介することなく発電機4に伝達される。このため、発電経路にギヤを介在させる場合と比較して、動力伝達に係る損失を抑制することができ、発電効率を高めることができる。加えて、発電経路にギヤを介在させる場合と比較して、モータユニット10を小型化および軽量化することができる。 In the power generation path, the power of the engine 2 is transmitted to the engine drive shaft 12. The generator rotor 41 (see FIG. 1) is fixed to the engine drive shaft 12. Therefore, the power of the engine 2 is transmitted to the generator 4 without passing through the gear. For this reason, compared with the case where a gear is interposed in the power generation path, loss related to power transmission can be suppressed, and power generation efficiency can be increased. In addition, the motor unit 10 can be reduced in size and weight compared to the case where a gear is interposed in the power generation path.
 本実施形態によれば、モータドライブギヤ21は、エンジンドライブギヤ22と噛み合う。モータドライブギヤ21は、モータ1によって駆動され軸方向から見てモータ1と重なる。同様に、エンジンドライブギヤ22は、エンジン2によって駆動され軸方向から見てエンジン2と重なる。モータ1とエンジン2とは、伝達機構5に対して互いに軸方向の反対側に配置されている。また、モータ1およびエンジン2は、パワートレイン9の各構成要素の中で軸方向への投影面積が比較的大きい。このため、モータ1とエンジン2とを軸方向からみて重ねて配置することで、パワートレイン9全体の軸方向から見た寸法を小型化することができる。本実施形態によれば、モータドライブギヤ21とエンジンドライブギヤ22とを噛み合わせることで、モータ軸J1とエンジン軸J2とを近づけて配置することができ、軸方向から見て、モータ1とエンジン2とを重ねて配置しやすい。これにより、本実施形態によれば、パワートレイン9の寸法を容易に小型化することができる。 According to this embodiment, the motor drive gear 21 meshes with the engine drive gear 22. The motor drive gear 21 is driven by the motor 1 and overlaps the motor 1 when viewed from the axial direction. Similarly, the engine drive gear 22 is driven by the engine 2 and overlaps the engine 2 when viewed from the axial direction. The motor 1 and the engine 2 are arranged on opposite sides of the transmission mechanism 5 in the axial direction. The motor 1 and the engine 2 have a relatively large projected area in the axial direction among the components of the power train 9. For this reason, the dimension seen from the axial direction of the whole powertrain 9 can be reduced in size by arranging the motor 1 and the engine 2 so as to overlap each other when viewed from the axial direction. According to the present embodiment, the motor shaft J1 and the engine shaft J2 can be disposed close to each other by meshing the motor drive gear 21 and the engine drive gear 22, and the motor 1 and the engine are viewed from the axial direction. It is easy to place 2 on top of each other. Thereby, according to this embodiment, the dimension of the power train 9 can be reduced in size easily.
 なお、特許文献1の構成と類似の構成として、モータドライブギヤ21およびエンジンドライブギヤ22が、カウンタギヤ23と噛み合う構成を採用する場合においても、軸方向から見てモータ1とエンジン2とを部分的に重ねて配置することは可能である。しかしながらこの場合、カウンタギヤ23の周方向に沿って、モータドライブギヤ21とエンジンドライブギヤ22とを上下にずらして配置する必要が生じ、結果的にモータユニット10の上下方向の寸法が大きくなる。本実施形態によれば、モータドライブギヤ21がエンジンドライブギヤ22と噛み合う構成を採用したことで、モータドライブギヤ21とエンジンドライブギヤ22とを水平方向に並べて配置できる。これにより、モータユニット10の上下方向の寸法を小型化できる。 Note that, as a configuration similar to the configuration of Patent Document 1, even when the motor drive gear 21 and the engine drive gear 22 are configured to mesh with the counter gear 23, the motor 1 and the engine 2 are partly viewed from the axial direction. It is possible to arrange them overlapping each other. However, in this case, the motor drive gear 21 and the engine drive gear 22 need to be shifted up and down along the circumferential direction of the counter gear 23. As a result, the vertical dimension of the motor unit 10 increases. According to the present embodiment, the configuration in which the motor drive gear 21 meshes with the engine drive gear 22 allows the motor drive gear 21 and the engine drive gear 22 to be arranged in the horizontal direction. Thereby, the dimension of the up-down direction of the motor unit 10 can be reduced in size.
 本実施形態によれば、発電機用ロータ41は、エンジンドライブシャフト12に固定される。発電機4とモータ1とは、伝達機構5に対して互いに軸方向の反対側に配置されている。モータドライブギヤ21をエンジンドライブギヤ22に噛み合わせるとともに、発電機用ロータ41をエンジンドライブシャフトに固定することで、軸方向から見て、発電機4をモータ1と重ねて配置することができる。発電機4およびモータ1は、モータユニット10の各構成要素の中で軸方向への投影面積が比較的大きい。発電機4が、軸方向から見て、モータ1と重なることで、モータユニット10の軸方向から見た寸法を小型化することができる。 According to the present embodiment, the generator rotor 41 is fixed to the engine drive shaft 12. The generator 4 and the motor 1 are disposed on opposite sides of the transmission mechanism 5 in the axial direction. When the motor drive gear 21 is engaged with the engine drive gear 22 and the generator rotor 41 is fixed to the engine drive shaft, the generator 4 can be disposed so as to overlap the motor 1 when viewed from the axial direction. The generator 4 and the motor 1 have a relatively large projected area in the axial direction among the constituent elements of the motor unit 10. When the generator 4 overlaps with the motor 1 when viewed from the axial direction, the size of the motor unit 10 viewed from the axial direction can be reduced.
 本実施形態によれば、モータ軸J1、エンジン軸J2、カウンタ軸J3および出力軸J4は、互いに平行であり、上下方向から見て車両の前後方向にこの順で並ぶ。このため、各軸J1、J2、J3、J4を中心として回転する各ギヤ21、22、23、24、51を、車両の前後方向に並べて配置できる。すなわち、何れかのギヤが、上下方向に突出して配置されることがなく、モータユニット10の上下方向の寸法を小型化できる。 According to the present embodiment, the motor shaft J1, the engine shaft J2, the counter shaft J3, and the output shaft J4 are parallel to each other and are arranged in this order in the front-rear direction of the vehicle as viewed from the up-down direction. Therefore, the gears 21, 22, 23, 24, 51 that rotate about the axes J1, J2, J3, and J4 can be arranged side by side in the vehicle front-rear direction. That is, any of the gears does not protrude in the vertical direction, and the vertical dimension of the motor unit 10 can be reduced.
 図5に示すように、本実施形態のモータドライブギヤ21は、上下方向において、カウンタギヤ23の上端と、リングギヤ51の下端と、の間に配置される。これにより、モータユニット10の上下方向の寸法をより小型化できる。さらに、本実施形態のモータドライブギヤ21は、上下方向において、エンジンドライブギヤ22の上端と下端との間に配置される。このため、上下方向において、モータ1が、発電機4およびエンジン2から上下方向に突出して配置されることがなく、モータユニット10の上下方向の寸法をより効果的に小型化できる。 As shown in FIG. 5, the motor drive gear 21 of this embodiment is disposed between the upper end of the counter gear 23 and the lower end of the ring gear 51 in the vertical direction. Thereby, the vertical dimension of the motor unit 10 can be further reduced. Further, the motor drive gear 21 of the present embodiment is disposed between the upper end and the lower end of the engine drive gear 22 in the vertical direction. Therefore, in the vertical direction, the motor 1 does not protrude from the generator 4 and the engine 2 in the vertical direction, and the vertical dimension of the motor unit 10 can be reduced more effectively.
 本実施形態において、カウンタギヤ23の直径とエンジンドライブギヤ22の直径とは、略等しい。より具体的には、カウンタギヤ23の直径は、エンジンドライブギヤ22の直径に対して、90%以上110%以下であることが好ましい。また、カウンタギヤ23の直径(および歯数)とエンジンドライブギヤ22の直径(および歯数)とは、完全に等しいことが、より好ましい。カウンタギヤ23の直径とエンジンドライブギヤ22の直径とを等しくすることで、エンジン駆動経路においける減速比が、ドライブギヤ24とリングギヤ51との直径の関係のみで決定される。すなわち、エンジン駆動経路における減速比は、カウンタギヤ23およびエンジンドライブギヤ22の直径に依存しない。したがって、モータ駆動経路の減速比を決定する過程で、モータドライブギヤ21に噛み合うエンジンドライブギヤ22の直径(すなわち歯数)を適宜設定することができる。結果的に、効率の良いエンジン2の回転数およびモータ1の回転数を考慮して、エンジン駆動経路およびモータ駆動経路の減速比をそれぞれ最適に設定できる。なお、本実施形態において、エンジン駆動経路の減速比は、2.5~3.5とされる。一方で、モータ駆動経路の減速比は、9~11とされる。 In the present embodiment, the diameter of the counter gear 23 and the diameter of the engine drive gear 22 are substantially equal. More specifically, the diameter of the counter gear 23 is preferably 90% or more and 110% or less with respect to the diameter of the engine drive gear 22. More preferably, the diameter (and the number of teeth) of the counter gear 23 and the diameter (and the number of teeth) of the engine drive gear 22 are completely equal. By making the diameter of the counter gear 23 equal to the diameter of the engine drive gear 22, the reduction ratio in the engine drive path is determined only by the relationship between the diameters of the drive gear 24 and the ring gear 51. That is, the reduction ratio in the engine drive path does not depend on the diameters of the counter gear 23 and the engine drive gear 22. Therefore, in the process of determining the reduction ratio of the motor drive path, the diameter (that is, the number of teeth) of the engine drive gear 22 that meshes with the motor drive gear 21 can be set as appropriate. As a result, the engine drive path and the reduction ratio of the motor drive path can be set optimally in consideration of the efficient engine 2 speed and motor 1 speed. In this embodiment, the reduction ratio of the engine drive path is 2.5 to 3.5. On the other hand, the reduction ratio of the motor drive path is 9-11.
 以上に、本発明の実施形態および変形例を説明したが、実施形態および変形例における各構成およびそれらの組み合わせなどは一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 Although the embodiments and modifications of the present invention have been described above, the configurations and combinations thereof in the embodiments and modifications are examples, and additions and omissions of configurations are within the scope that does not depart from the spirit of the present invention. , Substitutions and other changes are possible. Further, the present invention is not limited by the embodiment.
1…モータ、2…エンジン、2c…ダンパ、4…発電機、5…伝達機構(トランスアクスル)、10…モータユニット、11…モータドライブシャフト、12…エンジンドライブシャフト、12A…第1軸部、12B…第2軸部、13…カウンタシャフト、21…モータドライブギヤ、22…エンジンドライブギヤ、23…カウンタギヤ(大歯車部)、24…ドライブギヤ(小歯車部)、41…発電機用ロータ、42…発電機用ステータ、50…差動装置(デファレンシャルギヤ)、51…リングギヤ、55…出力シャフト(車軸)、60…切り離し機構(クラッチ機構)、J1…モータ軸、J2…エンジン軸、J3…カウンタ軸、J4…出力軸 DESCRIPTION OF SYMBOLS 1 ... Motor, 2 ... Engine, 2c ... Damper, 4 ... Generator, 5 ... Transmission mechanism (transaxle), 10 ... Motor unit, 11 ... Motor drive shaft, 12 ... Engine drive shaft, 12A ... 1st shaft part, 12B ... second shaft part, 13 ... counter shaft, 21 ... motor drive gear, 22 ... engine drive gear, 23 ... counter gear (large gear part), 24 ... drive gear (small gear part), 41 ... rotor for generator , 42 ... Generator stator, 50 ... Differential gear (differential gear), 51 ... Ring gear, 55 ... Output shaft (axle), 60 ... Decoupling mechanism (clutch mechanism), J1 ... Motor shaft, J2 ... Engine shaft, J3 ... Counter axis, J4 ... Output axis

Claims (8)

  1.  車両に搭載されエンジンに接続されるモータユニットであって、
     モータと、
     前記エンジンおよび前記モータの動力を伝達し出力シャフトから出力する伝達機構と、
    を備え、
     前記伝達機構は、
      モータ軸に沿って延び前記モータにより回転させられるモータドライブシャフトと、
      前記モータドライブシャフトに固定され前記モータ軸周りを回転するモータドライブギヤと、
      エンジン軸に沿って延び前記エンジンにより回転させられるエンジンドライブシャフトと、
      前記エンジンドライブシャフトに固定され前記エンジン軸周りを回転するエンジンドライブギヤと、
      カウンタ軸に沿って延びるカウンタシャフトと、
      前記カウンタシャフトに固定され前記エンジンドライブギヤと噛み合い前記カウンタ軸周りを回転するカウンタギヤと、
      前記カウンタシャフトに固定され前記カウンタ軸周りを回転するドライブギヤと、
      前記ドライブギヤと噛み合い出力軸周りを回転するリングギヤと、
      前記リングギヤに接続され前記出力軸周りを回転する前記出力シャフトと、を有し、
     前記モータ軸、前記エンジン軸、前記カウンタ軸および前記出力軸は、互いに平行に延び、
     前記モータドライブギヤは、前記エンジンドライブギヤと噛み合う、
    モータユニット。
    A motor unit mounted on a vehicle and connected to an engine,
    A motor,
    A transmission mechanism for transmitting the power of the engine and the motor and outputting from the output shaft;
    With
    The transmission mechanism is
    A motor drive shaft extending along the motor shaft and rotated by the motor;
    A motor drive gear fixed to the motor drive shaft and rotating around the motor shaft;
    An engine drive shaft extending along the engine axis and rotated by the engine;
    An engine drive gear fixed to the engine drive shaft and rotating around the engine axis;
    A countershaft extending along the countershaft;
    A counter gear fixed to the counter shaft and meshing with the engine drive gear and rotating around the counter shaft;
    A drive gear fixed to the countershaft and rotating around the countershaft;
    A ring gear meshing with the drive gear and rotating around an output shaft;
    The output shaft connected to the ring gear and rotating around the output shaft,
    The motor shaft, the engine shaft, the counter shaft and the output shaft extend in parallel to each other,
    The motor drive gear meshes with the engine drive gear;
    Motor unit.
  2.  前記モータ軸、前記エンジン軸、前記カウンタ軸および前記出力軸は、上下方向から見て車両の前後方向にこの順で並ぶ、
    請求項1に記載のモータユニット。
    The motor shaft, the engine shaft, the counter shaft, and the output shaft are arranged in this order in the front-rear direction of the vehicle when viewed from above and below.
    The motor unit according to claim 1.
  3.  前記モータドライブギヤは、上下方向において、前記カウンタギヤの上端と、前記リングギヤの下端と、の間に配置される、
    請求項1又は2に記載のモータユニット。
    The motor drive gear is arranged between the upper end of the counter gear and the lower end of the ring gear in the vertical direction.
    The motor unit according to claim 1.
  4.  前記モータドライブギヤは、上下方向において、前記エンジンドライブギヤの上端と下端との間に配置される、
    請求項1~3の何れか一項に記載のモータユニット。
    The motor drive gear is disposed between an upper end and a lower end of the engine drive gear in the up-down direction.
    The motor unit according to any one of claims 1 to 3.
  5.  前記エンジンの動力により発電する発電機を備え、
     前記発電機は、
      発電機用ロータと、
      前記発電機用ロータを囲む発電機用ステータと、を有し、
     前記発電機用ロータは、前記エンジンドライブシャフトに固定され前記エンジン軸周りに回転し、
     前記発電機は、前記エンジン軸の軸方向から見て、前記モータと重なる、
    請求項1~4の何れか一項に記載のモータユニット。
    A generator for generating power by the power of the engine;
    The generator is
    A generator rotor;
    A generator stator surrounding the generator rotor;
    The generator rotor is fixed to the engine drive shaft and rotates around the engine shaft,
    The generator overlaps with the motor when viewed from the axial direction of the engine shaft.
    The motor unit according to any one of claims 1 to 4.
  6.  前記カウンタギヤの直径は、前記エンジンドライブギヤの直径と等しい、
    請求項1~5の何れか一項に記載のモータユニット。
    The diameter of the counter gear is equal to the diameter of the engine drive gear,
    The motor unit according to any one of claims 1 to 5.
  7.  前記伝達機構は、切り離し機構を有し、
     前記エンジンドライブシャフトは、同軸上に並ぶ第1軸部および第2軸部を有し、
     前記第1軸部には、前記エンジンに接続され、
     前記第2軸部には、前記エンジンドライブギヤが固定され、
     前記切り離し機構は、前記第1軸部と前記第2軸部とを繋ぐ接続状態と、前記第1軸部と前記第2軸部とを切り離す切断状態と、を択一的に切り替える、
    請求項1~6の何れか一項に記載のモータユニット。
    The transmission mechanism has a separation mechanism;
    The engine drive shaft has a first shaft portion and a second shaft portion arranged on the same axis,
    The first shaft portion is connected to the engine,
    The engine drive gear is fixed to the second shaft portion,
    The disconnection mechanism selectively switches between a connection state connecting the first shaft portion and the second shaft portion and a disconnection state disconnecting the first shaft portion and the second shaft portion.
    The motor unit according to any one of claims 1 to 6.
  8.  前記エンジンドライブシャフトは、ダンパを介して前記エンジンに接続される、
    請求項1~7の何れか一項に記載のモータユニット。
    The engine drive shaft is connected to the engine via a damper;
    The motor unit according to any one of claims 1 to 7.
PCT/JP2019/013730 2018-04-20 2019-03-28 Motor unit WO2019202946A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980025750.5A CN112004702B (en) 2018-04-20 2019-03-28 Motor unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862660297P 2018-04-20 2018-04-20
US62/660,297 2018-04-20
JP2018125243 2018-06-29
JP2018-125243 2018-06-29

Publications (1)

Publication Number Publication Date
WO2019202946A1 true WO2019202946A1 (en) 2019-10-24

Family

ID=68240019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013730 WO2019202946A1 (en) 2018-04-20 2019-03-28 Motor unit

Country Status (2)

Country Link
CN (1) CN112004702B (en)
WO (1) WO2019202946A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286247A (en) * 2007-05-15 2008-11-27 Toyota Motor Corp Oil level adjusting device
JP2013147048A (en) * 2012-01-17 2013-08-01 Gkn Driveline Japan Ltd Driving device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5042973B2 (en) * 2008-12-01 2012-10-03 本田技研工業株式会社 Power transmission device for hybrid vehicle
JP5375378B2 (en) * 2009-07-06 2013-12-25 マツダ株式会社 Hybrid vehicle drive device
JP2011183946A (en) * 2010-03-09 2011-09-22 Aisin Aw Co Ltd Hybrid driving device
JP6394622B2 (en) * 2016-02-19 2018-09-26 トヨタ自動車株式会社 Drive device for hybrid vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286247A (en) * 2007-05-15 2008-11-27 Toyota Motor Corp Oil level adjusting device
JP2013147048A (en) * 2012-01-17 2013-08-01 Gkn Driveline Japan Ltd Driving device

Also Published As

Publication number Publication date
CN112004702A (en) 2020-11-27
CN112004702B (en) 2023-11-10

Similar Documents

Publication Publication Date Title
JP5252122B1 (en) Hybrid vehicle drive device
JP6036700B2 (en) Power transmission device for vehicle
WO2013140527A1 (en) Transmission for vehicle
JP6070522B2 (en) Vehicle drive device
JP2008302892A (en) Vehicle driving system
WO2017217066A1 (en) Transaxle device
JP6263889B2 (en) Hybrid vehicle drive device
JP2015054683A (en) Power transmission device for hybrid vehicle
JP2008256075A (en) Power transmission device
JP5359660B2 (en) Hybrid vehicle
JP2012091759A (en) Vehicle drive device
JP2014046860A (en) Hybrid system
JP2012056510A (en) Drive device of hybrid vehicle
WO2019202945A1 (en) Motor unit
WO2019156068A1 (en) Motor unit
WO2019202947A1 (en) Motor unit
WO2019202946A1 (en) Motor unit
JP2008062679A (en) Automotive drive device
JP2014019328A (en) Control device for hybrid vehicle
WO2013183164A1 (en) Control device for hybrid vehicle
WO2019156069A1 (en) Motor unit
JP2006082748A (en) Power output device and automobile equipped with the same
JP5282811B2 (en) Hybrid vehicle drive system
JP5198357B2 (en) Power transmission device for hybrid vehicle
JP2017043236A (en) Vehicle drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP