WO2019201230A1 - 一种系统控制湖泊春季蓝藻细胞快速增殖的方法 - Google Patents

一种系统控制湖泊春季蓝藻细胞快速增殖的方法 Download PDF

Info

Publication number
WO2019201230A1
WO2019201230A1 PCT/CN2019/082836 CN2019082836W WO2019201230A1 WO 2019201230 A1 WO2019201230 A1 WO 2019201230A1 CN 2019082836 W CN2019082836 W CN 2019082836W WO 2019201230 A1 WO2019201230 A1 WO 2019201230A1
Authority
WO
WIPO (PCT)
Prior art keywords
algae
floating
water
cage
culture
Prior art date
Application number
PCT/CN2019/082836
Other languages
English (en)
French (fr)
Inventor
史小丽
陈开宁
张民
阳振
于洋
Original Assignee
中国科学院南京地理与湖泊研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院南京地理与湖泊研究所 filed Critical 中国科学院南京地理与湖泊研究所
Priority to US17/047,410 priority Critical patent/US11230483B2/en
Publication of WO2019201230A1 publication Critical patent/WO2019201230A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/327Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention belongs to the water environment control and cyanobacteria bloom control technology watershed in the field of environmental science and ecology, and particularly relates to a method for systematically controlling the rapid proliferation of spring cyanobacteria cells in lakes.
  • the control methods of lake cyanobacteria bloom include mechanical algae removal, modified clay algae removal, fish control algae, plant algae inhibition, microbial algae control, preparation algae removal, etc.
  • the commonly used methods are emergency salvage measures, including manual salvage,
  • the cyanobacteria salvage vessel, the algae platform and the algae water separation station are used for the collection and disposal of cyanobacteria blooms.
  • the treatment method is emergency and passive control, which fails to effectively change the lake cyanobacteria.
  • the application effect of the above other methods is also not ideal. The main reason is that the current control cyanobacteria adopts single-item technology, ignoring the optimized combination and integration of technology, and no system solution is formed.
  • the object of the present invention is to provide a method for systematically controlling the rapid proliferation of spring cyanobacteria cells in lakes, which is coupled with physical isolation, chemical treatment, fish control algae, biological floating island algae control, plant algae inhibition, microbial algae control and the like.
  • Algae technology can strengthen the rapid proliferation of cyanobacterial cells in the spring and early summer, and reduce the frequency and area of cyanobacterial blooms in summer.
  • the present invention adopts the following technical solutions:
  • a method for controlling rapid proliferation of cyanobacterial cells in lake springs comprising:
  • Algae is killed by H 2 O 2 , and then the algae cells are adsorbed by the modified soil;
  • An ecological floating island is arranged in the closed water area, wherein the ecological floating island is composed of a floating plant floating bed, a culture cage and a biofilm; a floating cage is arranged under the floating bed, and the filter-feeding fish and shellfish are cultured; Biofilm, naturally growing plexus;
  • Snails are placed at the bottom of the lake in the waters of the algae control area.
  • the flexible enclosure is used to close the controlled water area, and the influence of exogenous sewage or adjacent water cyanobacteria on the control of the water body is intercepted, which is convenient for effective control of rapidly proliferating cyanobacteria.
  • the algae control measures for the rapid growth period of cyanobacteria are carried out from March to June each year; the sediments are treated with environmentally friendly chemical compound FeCl 3 +CaCO 3 combined with Ca(NO 3 ) 2 to control endogenous nutrition.
  • the salt is released; then the H 2 O 2 is used to kill the algae, and then the modified soil is used to adsorb and settle the algae cells; finally, the algae control is carried out by combining the biological control of algae, the control of algae by biological floating islands, the inhibition of algae by plants, and the control of algae by microorganisms.
  • the flexible enclosure structure comprises a floating body, a skirt body and a weight; the upper end of the skirt body is connected with the floating body, and the lower end is connected with the weight to form the flexible enclosure, which needs to be protected to control the water area; the weight is Stone cage or salon, with heavy weight buried in the sediment.
  • the FeCl 3 , CaCO 3 and Ca(NO 3 ) 2 treat the deposit by first injecting 40% FeCl 3 + CaCO 3 into the surface sediment such that the Fe 3+ reaches about 300 g/m 2 .
  • 50% Ca(NO 3 ) 2 is injected into the surface sediment to make NO 3 -N reach 10-12g/m 2 , control the release of phosphorus from the sediment, and provide an electron donor to promote the denitrification process to achieve nitrogen removal. efficacy.
  • the algae cells are killed by using H 2 O 2 at a concentration of 10-15 mg/L, and then the 15-30 mg/L chitosan-modified soil is added to the water body to adsorb the sedimentation algae cells;
  • the floating plant floating bed is made of a combination of water peanut, gar, and ryegrass; wherein the water peanut is a group of species, and the gar is broiled and ryegrass, and is planted at 6:2:2.
  • the floating plant floating bed can be used for shading and controlling algae, reducing water body nutrients and inhibiting algae, and utilizing allelochemicals secreted by plant roots to inhibit algae.
  • a culture cage is arranged under the floating bed of the plant, and the filter feeder fish and shellfish are cultured in the culture cage; the filter feeder fish is selected from white carp, and the culture density is controlled at 100-150 g/m 3 ;
  • the type is selected from the non-concave ridge, the pleated crown or the spinnaker, and the breeding density is controlled at 300-400 g/m 2 .
  • the culture cage has a height of 0.6-1 m, a length of 5-8 m, and a width of 3-4 m, and is connected to the plant floating bed by a polyethylene rope.
  • the small plant cage is easy to install and transport on site, while the culture cage is connected to the plant floating bed with polyethylene rope to facilitate separation from the plant floating bed to harvest fish.
  • a plastic net or a composite filler/elastic filler or a branch/bamboo branch is used to construct the suspended biofilm; when the plastic mesh is used, the plastic mesh is separated by a film of 15-20 cm; when the composite filler or the elastic filler is used to hang the film
  • the packing density is 25-35 pieces/m 2 ; it can be filled when the branches/bamboo branches are used; the biofilm is suspended to the bottom of the water.
  • the biofilm is suspended at the lower end of the culture cage for the growth of beneficial microorganisms and snails, and the algae removal effect is increased.
  • the surface of the biofilm gradually grows naturally (periflora, protozoa, fungi, bacteria, etc.), secretes extracellular polymers, adsorbs suspended matter, and finally forms a membrane mainly composed of biological, organic and inorganic substances.
  • adsorbing nutrients in water releasing allelochemicals, providing a breeding ground for zooplankton, protozoa and benthic animals, providing food and shelter for fish, spawning places, shading, changing hydrological hydrodynamic fields of water bodies, etc.
  • all biofilms are suspended to the bottom to facilitate the habitat of benthic snails.
  • the round snail is placed in the water body of the control area, and the settled cyanobacteria debris and fish feces are fed, and the density is 200-300 g/m 2 .
  • the method of the invention integrates physical, biological and chemical methods to form a common control of exogenous, endogenous and cyanobacteria, and a plurality of algae control means synergistically, and can efficiently, rapidly and permanently control the rapid proliferation of cyanobacterial cells in the lake in spring, and is a lake.
  • the cyanobacterial bloom control of water bodies such as reservoirs and rivers provides technical support.
  • Figure 1 is a flow chart of the method of the present invention.
  • the three control waters are closed by a flexible enclosure, each water area is 600m 2 , and the total area is 1800m 2 .
  • the algae control measures for the rapid growth period of the cyanobacteria are carried out; firstly, 40% FeCl 3 + CaCO 3 is injected into the surface sediment using environmentally friendly chemical preparations, so that the Fe 3+ reaches about 300 g/m 2 . 50% Ca(NO 3 ) 2 was injected into the surface sediments, and NO 3 -N reached 10 g/m 2 to control the release of phosphorus from the sediment and promote the surface denitrification process.
  • the algae cells are killed by using H 2 O 2 at a concentration of 10 mg/L, and then the 20 mg/L chitosan-modified soil is added to the water body to adsorb the sedimented algae cells;
  • the floating area of the floating area is 3m ⁇ 5m, and the floating bed plant is a floating bed for the water peanut, gar, ryegrass combined community.
  • the water peanut is a group of plants, and the peanuts are planted at 6:2:2. Breeding gar and ryegrass;
  • the combined culture cage is installed under the floating bed of the plant, and the culture standard is 250-500g/tail white peony and the hornless scorpion-controlled algae, and the size is 1m, the length is 5m and the width is 3m.
  • the density of white carp culture is controlled at 100-150g/m 3
  • the density of the hornless ridge is controlled at 300-400g/m 2 ;
  • the biofilm is suspended at the lower end of the culture cage, and the surrounding fillers (algae, protozoa, fungi, bacteria, etc.) are naturally grown by using a composite filler or an elastic filler to naturally form a membrane, and the density of the combined filler or elasticity is 25-35/ m 2 ;
  • the three control waters are closed by a flexible enclosure, each water area is 100 m 2 , and the total area is 300 m 2 .
  • the algae control measures for the rapid growth period of the cyanobacteria are carried out; firstly, 40% FeCl 3 + CaCO 3 is injected into the surface sediment using environmentally friendly chemical preparations, so that the Fe 3+ reaches about 300 g/m 2 . 50% Ca(NO 3 ) 2 was injected into the surface sediments, and NO 3 -N reached 12g/m 2 , which controlled the release of phosphorus from the sediment and promoted the surface denitrification process.
  • the algae cells are killed by using H 2 O 2 at a concentration of 15 mg/L, and then the 15 mg/L chitosan-modified soil is added to the water body to adsorb the sedimented algae cells;
  • a floating bed of floating plants with a length and width of 4m ⁇ 6m is set.
  • the floating bed plants are plant floating beds for the water peanut, gar, ryegrass combined community, wherein the water peanuts are built species, and the water peanuts are planted at 6:2:2. Breeding gar and ryegrass;
  • the combined culture cage is installed under the floating bed of the plant, and the culture standard is 250-500g/tail white carp and the hornless scorpion-controlled algae, and the size is 0.6m, the length is 6m and the width is 4m. It is used to filter algae in water, the density of white carp culture is controlled at 100-150g/m 3 , and the density of scorpion scorpion is controlled at 300-400g/m 2 ;
  • the biofilm is suspended at the lower end of the culture cage, and the plastic net is used to naturally grow the surrounding forests (algae, protozoa, fungi, bacteria, etc.), so that it naturally forms a membrane, and the plastic mesh is 15-20 cm apart;
  • the combination of plant floating bed, culture cage and biofilm constitutes about 50% of the water area covered by the algae ecological floating island.
  • the monitoring results from April to August showed that compared with the water outside the control area, the algae density and biomass in the control area decreased by 76% and 65% respectively.
  • the cyanobacteria bloom did not occur in the control area during the test period; the transparency of the water body reached 1.2m or more ( transparency control regions outside only about 25cm), water TN, TP, COD Mn concentration decreased by 30% -37%, 40% -51% and 35% to 43%, the effect is significant.
  • a controlled enclosure is enclosed by a flexible enclosure with a water area of 10,000 m 2 .
  • the effect of governance was observed until September.
  • the algae control measures for the rapid growth period of the cyanobacteria are carried out; firstly, 40% FeCl 3 + CaCO 3 is injected into the surface sediment using environmentally friendly chemical preparations, so that the Fe 3+ reaches about 300 g/m 2 . 50% Ca(NO 3 ) 2 was injected into the surface sediments, and NO 3 -N reached 11 g/m 2 to control the release of phosphorus from the sediment and promote the surface denitrification process.
  • the algae cells are killed by using H 2 O 2 at a concentration of 12 mg/L, and then 30 mg/L of chitosan-modified soil is added to the water body to adsorb the sedimented algae cells;
  • the floating bed plants are plant floating beds for the water peanut, gar, and ryegrass combined communities.
  • the water peanuts are built and planted at 6:2:2. Water peanut, breeding gar and ryegrass;
  • the culture specification is 250-500g/tail white carp and the hornless scorpion-controlled algae.
  • the size is 0.8m, the length is 8m and the width is 3.5m.
  • the density of white carp culture is controlled at 100-150g/m 3
  • the density of scorpion scorpion is controlled at 300-400g/m 2 ;
  • the biofilm is suspended at the lower end of the culture cage, and the branches/bamboo branches are naturally used to grow the surrounding plexus (algae, protozoa, fungi, bacteria, etc.), so that the film is naturally formed, and the branches/bamboo branches are filled when the film is hung;

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

一种系统控制湖泊春季蓝藻细胞快速增殖的方法,包括采用柔性围隔封闭控制水域,采用FeCl 3、CaCO 3和Ca(NO 3) 2处理沉积物;采用H 2O 2杀藻,之后利用改性土壤吸附沉降藻细胞;在封闭水域中设置生态浮岛,所述生态浮岛由漂浮植物浮床、养殖网箱和生物膜组成;漂浮植物浮床下设置养殖网箱,养殖滤食性鱼类和贝类;养殖网箱下端悬挂生物膜,自然生长周丛生物;在控藻区水域湖底投放螺类。

Description

一种系统控制湖泊春季蓝藻细胞快速增殖的方法 技术领域
本发明属于环境科学、生态学领域的水环境治理与蓝藻水华控制技术流域,具体涉及一种系统控制湖泊春季蓝藻细胞快速增殖的方法。
背景技术
我国湖泊环境问题严重,特别是水体富营养化问题,据调查我国超过40%的湖泊存在富营养化,蓝藻水华持续暴发,水质和生态环境恶化未得到明显遏制,影响供水安全。近年来,尽管政府已加大治理力度,如太湖、巢湖等重要湖泊水体中氮磷及COD有了一定的下降,但是蓝藻水华暴发的频次和规模仍然未减,大量蓝藻堆积湖滨带和重要湖湾,腐烂发臭,并诱发次生生态灾害。目前湖泊蓝藻水华的控制方法包括机械除藻、改性粘土除藻、鱼类控藻、植物抑藻、微生物控藻、制剂除藻等,其中常用的方法是应急打捞措施,包括人工打捞、利用蓝藻打捞船、捞藻平台和藻水分离站等进行蓝藻水华的收集处置,尽管在防范次生灾害方面起到一定作用,但该处理方法是应急和被动控制,未能有效改变湖泊蓝藻水华频发的现象。上述其他方法的应用效果也不够理想,主要原因是当前控制蓝藻多采用单项技术,忽略了技术的优化组合、集成运用,未形成系统解决方案。针对湖泊、水库等是一类水域生态系统,其治理没有“一招鲜”的灵丹妙药,必须采用系统的方法、整装集成技术才能取得显著成效。近年来的研究表明,蓝藻冬季会在底泥表面“休眠”越冬,春季复苏生长,上浮至水表层进行快速增殖,并导致在春末和整个夏季、甚至直到秋季末蓝藻水华大面积暴发,其中蓝藻水华暴发的关键过程是其春季复苏并快速生长期,若采取有效方法控制春季蓝藻快速增殖,可以在水华夏季暴发前预先压制其发展势头,显著削减水华发生的频次和面积。然而目前有关春季蓝藻快速生长期治理技术几乎未见报道。
发明内容
本发明的目的是提供一种系统控制湖泊春季蓝藻细胞快速增殖的方法,耦合了物理隔离、化学制剂处理、鱼类控藻、生物浮岛控藻、植物抑藻、微生物控藻等多种控藻技术,可强化控制春季夏初蓝藻细胞快速增殖,减少夏季蓝藻水华暴发的频次和面积。
为实现上述目的,本发明采用如下技术方案:
一种系统控制湖泊春季蓝藻细胞快速增殖的方法,包括:
确定控藻区水域,采用柔性围隔封闭控制水域;
采用FeCl 3、CaCO 3和Ca(NO 3) 2处理沉积物;
采用H 2O 2杀藻,之后利用改性土壤吸附沉降藻细胞;
在封闭水域中设置生态浮岛,所述生态浮岛由漂浮植物浮床、养殖网箱和生物膜组成;漂浮植物浮床下设置养殖网箱,养殖滤食性鱼类和贝类;养殖网箱下端悬挂生物膜,自然生长周丛生物;
在控藻区水域湖底投放螺类。
首先依据湖泊现场调查和实际需求,确定要保护和控制的水域位置和范围,同时确定越冬蓝藻复苏并快速增殖的水域,针对性开展控制;
确定保护控制区后,采用柔性围隔封闭控制水域,截断外源性污水或邻近水域蓝藻对控制水体的影响,便于对快速增殖的蓝藻开展有效控制。
完成控制区水域封闭后,于每年3-6月份实施蓝藻快速生长期的控藻措施;利用环境友好化学制剂FeCl 3+CaCO 3联合Ca(NO 3) 2对沉积物进行处置,控制内源营养盐释放;之后采用H 2O 2杀藻,之后利用改性土壤吸附沉降藻细胞;最后联合鱼类控藻、生物浮岛控藻、植物抑藻、微生物控藻等生物手段进行控藻。
进一步的,所述柔性围隔结构包括浮体、裙体和配重块;裙体上端连接浮体,下端连接配重块形成所述柔性围隔,将需要保护控制水域封闭;所述配重块为石笼或沙龙,配重块埋入底泥。
进一步的,所述FeCl 3、CaCO 3和Ca(NO 3) 2处理沉积物的方式为,先将40%FeCl 3+CaCO 3注射至表层沉积物中,使得Fe 3+达到300g/m 2左右,再将50%Ca(NO 3) 2注射至表层沉积物中,使NO 3-N达到10-12g/m 2,控制底泥磷释放,同时提供电子供体促进反硝化过程,实现脱氮功效。
进一步的,采用浓度为10-15mg/L的H 2O 2杀灭藻细胞,之后将15-30mg/L的壳聚糖改性土壤投加水体中,吸附沉降藻细胞;
进一步的,所述漂浮植物浮床采用水花生、雀稗、黑麦草组合群落制作;其中水花生为建群种,配种雀稗和黑麦草,按6:2:2配植。漂浮植物浮床可用于遮光控藻,削减水体营养盐抑藻,利用植物根系分泌的化感物质抑藻。
进一步的,植物浮床下设置养殖网箱,所述养殖网箱内养殖滤食性鱼类和贝类;所述滤食性鱼类选用白鲢,养殖密度控制在100-150g/m 3;滤食性贝类选用背角无齿蚌、褶纹冠蚌或三角帆蚌,养殖密度控制在300-400g/m 2。优选的,养殖网箱尺寸为高0.6-1m、长5-8m、宽3-4m,通过聚乙烯绳与植物浮床相连。小型的植物网箱便于现场安装和运输,同时养殖网箱用聚乙烯 绳与植物浮床连接,方便与植物浮床分离来收获鱼类。
进一步的,养殖网箱下端采用塑料网或组合填料/弹性填料或树枝/竹枝构建悬挂生物膜;采用塑料网挂膜时,塑料网间隔15-20cm挂膜;采用组合填料或弹性填料挂膜时,填料密度为25-35个/m 2;采用树枝/竹枝挂膜时可以填满;所述生物膜悬挂至水底。养殖网箱下端悬挂生物膜供有益微生物和螺类栖息生长,增加除藻效果。生物膜表面逐渐自然生长周丛生物(藻类、原生动物、真菌、细菌等),并分泌胞外聚合物、吸附悬浮物,最终形成一层以生物、有机物和无机物为主的膜状物,通过吸附水体中的营养物质,释放化感物质,为浮游动物、原生动物和底栖动物提供繁衍生息场所,为鱼类提供食物和庇护、产卵场所,遮光,改变水体的水文水动力场等等,从而改善水质,提高水体透明度,抑制藻类生长繁殖,进而达到控制藻类水华暴发的目的;所有生物膜悬挂至水底,方便底栖动物螺类攀爬栖息。
进一步的,将上述组合的生态浮岛制作完成后,利用木桩和聚乙烯绳固定;生态浮岛覆盖水域面积要求达到30%-50%。
进一步的,向控制区水体中投放圆田螺,摄食沉降的蓝藻碎屑和鱼类粪便,投放密度为200-300g/m 2
本发明的方法将物理、生物和化学方法集成协同运用,形成外源、内源、蓝藻共同控制,多种控藻手段协同作用,可以高效、快速、持久控制湖泊春季蓝藻细胞快速增殖,为湖泊、水库、河流等水体蓝藻水华控制提供了技术支撑。
附图说明
图1是本发明方法流程图。
具体实施方式
以下结合实施例对本发明的技术方案作进一步详细描述。
实施例1
2017年3-6月,选择巢湖西半湖半封闭的圩堰内开展蓝藻快速生长期藻类控制技术示范。
采用柔性围隔封闭3个控制水域,每个水域面积为600m 2,合计面积1800m 2
完成控制区水域封闭后,实施蓝藻快速生长期的控藻措施;先利用环境友好化学制剂,将40%FeCl 3+CaCO 3注射至表层沉积物中,使得Fe 3+达到300g/m 2左右,再将50%Ca(NO 3) 2注射至表层沉积物中,NO 3-N达到10g/m 2,控制底泥磷释放,促进沉积物表面脱氮过程;
上述措施完成后,采用浓度为10mg/L的H 2O 2杀灭藻细胞,然后将20mg/L的壳聚糖改性土壤投加水体中,吸附沉降藻细胞;
控制区水域设置长宽为3m×5m的漂浮植物浮床,浮床植物为水花生、雀稗、黑麦草组合群落制作植物浮床,其中水花生为建群种,按6:2:2种植水花生、配种雀稗和黑麦草;
植物浮床制作完成后,在植物浮床下安装组合养殖网箱,养殖规格为250-500g/尾白鲢和背角无齿蚌控藻,尺寸为高1m、长5m和宽3m的养殖网箱,用以滤食水体中藻类,白鲢养殖密度控制在100-150g/m 3,背角无齿蚌的密度控制在300-400g/m 2
养殖网箱下端悬挂生物膜,采用组合填料或弹性填料自然生长周丛生物(藻类、原生动物、真菌、细菌等),使之自然形成膜状物,组合填料或弹性的密度25-35个/m 2
植物浮床、养殖网箱和生物膜组成的组合净化控藻生态浮岛覆盖水域面积近40%。
最后向控制区水体中投放圆田螺,摄食沉降的蓝藻碎屑和鱼类粪便,投放密度为250g/m 2
4-6月份监测结果表明,与控制区外水体对比,控制区内藻类密度和生物量分别下降60%和80%以上,试验阶段控制区内未发生蓝藻水华;水体透明度达到1m以上(控制区外透明度仅为30cm左右),水体TN、TP、COD Mn浓度分别下降28%-35%、32%-48%和55%-60%,效果显著。
实施例2
2015年3-6月,选择中国科学院南京地理与湖泊研究所太湖站实验围隔开展蓝藻快速生长期藻类控制技术验证。治理效果观测至8月份。
采用柔性围隔封闭3个控制水域,每个水域面积为100m 2,合计面积300m 2
完成控制区水域封闭后,实施蓝藻快速生长期的控藻措施;先利用环境友好化学制剂,将40%FeCl 3+CaCO 3注射至表层沉积物中,使得Fe 3+达到300g/m 2左右,再将50%Ca(NO 3) 2注射至表层沉积物中,NO 3-N达到12g/m 2,控制底泥磷释放,促进沉积物表面脱氮过程;
上述措施完成后,采用浓度为15mg/L的H 2O 2杀灭藻细胞,然后将15mg/L的壳聚糖改性土壤投加水体中,吸附沉降藻细胞;
控制区水域设置长宽为4m×6m的漂浮植物浮床,浮床植物为水花生、雀稗、黑麦草组合群落制作植物浮床,其中水花生为建群种,按6:2:2种植水花生、配种雀稗和黑麦草;
植物浮床制作完成后,在植物浮床下安装组合养殖网箱,养殖规格为250-500g/尾白鲢和背角无齿蚌控藻,尺寸为高0.6m、长6m和宽4m的养殖网箱,用以滤食水体中藻类,白鲢养殖密度控制在100-150g/m 3,背角无齿蚌的密度控制在300-400g/m 2
养殖网箱下端悬挂生物膜,采用塑料网自然生长周丛生物(藻类、原生动物、真菌、细菌等),使之自然形成膜状物,塑料网间隔15-20cm挂膜;
植物浮床、养殖网箱和生物膜组成的组合净化控藻生态浮岛覆盖水域面积约50%。
最后向控制区水体中投放圆田螺,摄食沉降的蓝藻碎屑和鱼类粪便,投放密度为200g/m 2
4-8月份监测结果表明,与控制区外水体对比,控制区内藻类密度和生物量分别下降76%和65%以上,试验阶段控制区内未发生蓝藻水华;水体透明度达到1.2m以上(控制区外透明度仅为25cm左右),水体TN、TP、COD Mn浓度分别下降30%-37%、40%-51%和35%-43%,效果显著。
实施例3
2016年3-6月,选择巢湖南淝河入湖口水域开展蓝藻快速生长期藻类控制技术示范。
采用柔性围隔封闭1个控制水域,水域面积为10000m 2。治理效果观测至9月份。
完成控制区水域封闭后,实施蓝藻快速生长期的控藻措施;先利用环境友好化学制剂,将40%FeCl 3+CaCO 3注射至表层沉积物中,使得Fe 3+达到300g/m 2左右,再将50%Ca(NO 3) 2注射至表层沉积物中,NO 3-N达到11g/m 2,控制底泥磷释放,促进沉积物表面脱氮过程;
上述措施完成后,采用浓度为12mg/L的H 2O 2杀灭藻细胞,然后将30mg/L的壳聚糖改性土壤投加水体中,吸附沉降藻细胞;
控制区水域设置长宽为3.5m×8m的漂浮植物浮床96个,浮床植物为水花生、雀稗、黑麦草组合群落制作植物浮床,其中水花生为建群种,按6:2:2种植水花生、配种雀稗和黑麦草;
植物浮床制作完成后,在植物浮床下安装组合养殖网箱,养殖规格为250-500g/尾白鲢和背角无齿蚌控藻,尺寸为高0.8m、长8m和宽3.5m的养殖网箱,用以滤食水体中藻类,白鲢养殖密度控制在100-150g/m 3,背角无齿蚌的密度控制在300-400g/m 2
养殖网箱下端悬挂生物膜,采用树枝/竹枝自然生长周丛生物(藻类、原生动物、真菌、细菌等),使之自然形成膜状物,树枝/竹枝挂膜时填满;
植物浮床、养殖网箱和生物膜组成的组合净化控藻生态浮岛覆盖水域面积近30%。
最后向控制区水体中投放圆田螺,摄食沉降的蓝藻碎屑和鱼类粪便,投放密度为300g/m 2。4-9月份监测结果表明,与控制区外水体对比,控制区内藻类密度和生物量分别下降63%和55%以上,试验阶段控制区内未发生蓝藻水华;水体透明度达到0.8m以上(控制区外透明度仅为30cm左右),水体TN、TP、COD Mn浓度分别下降26%-34%、34%-43%和42%-55%,效果显著。

Claims (13)

  1. 一种系统控制湖泊春季蓝藻细胞快速增殖的方法,其特征在于,包括:
    确定控藻区水域,采用柔性围隔封闭控制水域;
    采用FeCl 3、CaCO 3和Ca(NO 3) 2处理沉积物;
    采用H 2O 2杀藻,之后利用改性土壤吸附沉降藻细胞;
    在封闭水域中设置生态浮岛,所述生态浮岛由漂浮植物浮床、养殖网箱和生物膜组成;漂浮植物浮床下设置养殖网箱,养殖滤食性鱼类和贝类;养殖网箱下端悬挂生物膜,自然生长周丛生物;
    在控藻区水域湖底投放螺类。
  2. 根据权利要求1所述的方法,其特征在于,所述柔性围隔结构包括浮体、裙体和配重块;裙体上端连接浮体,下端连接配重块形成所述柔性围隔,将需要保护控制水域封闭;所述配重块为石笼或沙龙,配重块埋入底泥。
  3. 根据权利要求1所述的方法,其特征在于,先将40%FeCl 3和CaCO 3注射至表层沉积物中,使得Fe 3+达到300g/m 2左右,再将50%Ca(NO 3) 2注射至表层沉积物中,使NO 3-N达到10-12g/m 2,控制底泥磷释放。
  4. 根据权利要求1所述的方法,其特征在于,先采用浓度为10-15mg/L的H 2O 2杀灭蓝藻细胞,然后将15-30mg/L的壳聚糖改性土壤投加水体中,吸附沉降藻细胞。
  5. 根据权利要求1所述的方法,其特征在于,所述漂浮植物浮床采用水花生、雀稗、黑麦草组合群落制作;其中水花生为建群种,配种雀稗和黑麦草,按6:2:2配植。
  6. 根据权利要求1所述的方法,其特征在于,所述养殖网箱尺寸为高0.6-1m、长5-8m、宽3-4m,通过聚乙烯绳与植物浮床相连。
  7. 根据权利要求1所述的方法,其特征在于,所述养殖网箱内养殖滤食性鱼类和贝类;所述滤食性鱼类选用白鲢,养殖密度控制在100-150g/m 3;滤食性贝类选用背角无齿蚌、褶纹冠蚌或三角帆蚌,养殖密度控制在300-400g/m 2
  8. 根据权利要求5所述的方法,其特征在于,所述养殖网箱内养殖滤食性鱼类和贝类;所述滤食性鱼类选用白鲢,养殖密度控制在100-150g/m 3;滤食性贝类选用背角无齿蚌、褶纹冠蚌或三角帆蚌,养殖密度控制在300-400g/m 2
  9. 根据权利要求1所述的方法,其特征在于,养殖网箱下端采用塑料网或组合填料/弹性填料或树枝/竹枝构建悬挂生物膜;采用塑料网挂膜时,塑料网间隔15-20cm挂膜;采用组合 填料或弹性填料挂膜时,填料密度为25-35个/m 2;采用树枝/竹枝挂膜时可以填满;所述生物膜悬挂至水底。
  10. 根据权利要求1所述的方法,其特征在于,所述生态浮岛覆盖水域面积达到30%-50%。
  11. 根据权利要求1所述的方法,其特征在于,湖底螺类的投放密度为200-300g/m 2
  12. 根据权利要求1所述的方法,其特征在于,所述螺类选用圆田螺。
  13. 根据权利要求12所述的方法,其特征在于,所述螺类选用圆田螺。
PCT/CN2019/082836 2018-04-16 2019-04-16 一种系统控制湖泊春季蓝藻细胞快速增殖的方法 WO2019201230A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/047,410 US11230483B2 (en) 2018-04-16 2019-04-16 Method for systematically controlling rapid proliferation of cyanobacteria cells in lakes in spring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810339017.8 2018-04-16
CN201810339017.8A CN108409047B (zh) 2018-04-16 2018-04-16 一种系统控制湖泊春季蓝藻细胞快速增殖的方法

Publications (1)

Publication Number Publication Date
WO2019201230A1 true WO2019201230A1 (zh) 2019-10-24

Family

ID=63135550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082836 WO2019201230A1 (zh) 2018-04-16 2019-04-16 一种系统控制湖泊春季蓝藻细胞快速增殖的方法

Country Status (3)

Country Link
US (1) US11230483B2 (zh)
CN (1) CN108409047B (zh)
WO (1) WO2019201230A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108409047B (zh) * 2018-04-16 2020-05-05 中国科学院南京地理与湖泊研究所 一种系统控制湖泊春季蓝藻细胞快速增殖的方法
CN109930561B (zh) * 2019-03-29 2021-01-08 郑州大学 一种生物滤水器透水坝
CN110330106B (zh) * 2019-07-16 2022-02-18 生态环境部南京环境科学研究所 一种湖泊底泥越冬蓝藻的原位去除装置及去除方法
CN110294576A (zh) * 2019-07-29 2019-10-01 新余山海企业服务有限公司 一种河流生态水源净化漂浮平台
CN110723873A (zh) * 2019-12-02 2020-01-24 江苏和而同环境建设有限公司 一种河道生态水环境整治方法
CN111115833A (zh) * 2020-01-02 2020-05-08 北京市市政工程设计研究总院有限公司 一种景观水体控制丝状藻生长增加水体观赏性的方法
CN111285469A (zh) * 2020-03-02 2020-06-16 陈华 一种控制及资源化利用蓝藻的方法
CN113197151B (zh) * 2021-04-15 2023-09-26 集美大学 一种池塘养殖水体生态控制蓝藻水华的方法及系统
CN113516373B (zh) * 2021-06-18 2023-07-25 中国科学院南京地理与湖泊研究所 蓝藻水华防控集成技术体系的构建方法
CN114219674B (zh) * 2021-12-15 2022-09-06 中国农业科学院农业资源与农业区划研究所 流域畜禽最大允许养殖规模的确定方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026932A1 (en) * 1994-04-05 1995-10-12 Metz Jean Paul Novel compositions and methods for water treatment
CN101811811A (zh) * 2010-05-10 2010-08-25 南京师范大学 一种抑制富营养化水体底泥营养盐释放的方法
CN101880100A (zh) * 2010-07-06 2010-11-10 中国科学院水生生物研究所 一种复合生态环保控藻剂控藻改善水质的方法
CN102674556A (zh) * 2012-05-24 2012-09-19 河海大学 一种提供生境的复合生态浮床
CN105540808A (zh) * 2016-01-18 2016-05-04 北京绿景行科技发展有限公司 一种中等富营养水体除磷控藻的方法
CN108409047A (zh) * 2018-04-16 2018-08-17 中国科学院南京地理与湖泊研究所 一种系统控制湖泊春季蓝藻细胞快速增殖的方法
CN108675454A (zh) * 2018-04-28 2018-10-19 中国科学院南京地理与湖泊研究所 一种大型浅水湖泊蓝藻水华发展全过程控制方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960003924B1 (ko) * 1993-09-01 1996-03-23 서윤 폐수 처리용 미생물 정화제의 제조방법
US6893567B1 (en) * 2001-07-13 2005-05-17 The United States Of America As Represented By The Secretary Of Agriculture Wastewater treatment system
US6881338B2 (en) * 2002-06-17 2005-04-19 Dharma Living Systems, Inc. Integrated tidal wastewater treatment system and method
KR100551144B1 (ko) * 2004-02-25 2006-02-13 학교법인 건국대학교 담수산 패류를 이용한 저수지 수질 개선 방법
CN1272264C (zh) * 2004-11-10 2006-08-30 中国科学院南京地理与湖泊研究所 修复富营养化湖泊水体水生生态系统的方法
US20100077654A1 (en) * 2008-09-23 2010-04-01 LiveFuels, Inc. Systems and methods for producing biofuels from algae
CN101591040B (zh) * 2009-07-01 2011-02-09 四川宜可环保技术有限公司 富营养化水体水华污染生物防治方法
CN102892293A (zh) * 2010-02-16 2013-01-23 凯敏工业公司 改善水生生态系统中的水质的方法
CA2810992A1 (en) * 2010-09-10 2013-03-15 Jere Northrop Process for the treatment of biological materials and wastewater
GB201019086D0 (en) * 2010-11-11 2010-12-29 Imp Innovations Ltd Bacterial methods
US20120145645A1 (en) * 2010-12-13 2012-06-14 Halosource, Inc. Clarification of hydrocarbons and suspended matter from an aqueous medium
CN102249429B (zh) * 2011-05-12 2014-04-09 泉州师范学院 一种物理肺式增氧生物礁及其使用方法
CA2889513C (fr) * 2012-10-26 2016-09-20 Centre De Recherche Industrielle Du Quebec Systeme et methode de traitement d'eau usee utilisant la capture passive de phosphore
CN102976492B (zh) * 2012-11-22 2014-02-19 深圳市恒源浩科技有限公司 水体生态净化系统和水体生态净化方法
CN104828948A (zh) * 2015-04-21 2015-08-12 中国科学院南京地理与湖泊研究所 净水浮床养殖装置和净水方法
MX2017016189A (es) * 2015-06-19 2018-08-15 Earth Science Laboratories Producto base de quelacion para uso en tratamientos de sistemas a base de agua y metodo para producir el producto base.
US10093564B2 (en) * 2015-06-19 2018-10-09 Earth Science Laboratories Chelating base product for use in water-based system treatments
CN106277577A (zh) * 2016-08-15 2017-01-04 贵州师范大学 一种综合改善富营养化水体水质的方法
US10647600B2 (en) * 2016-11-09 2020-05-12 Blue Frog Technologies Llc Systems and methods for formation of biologically active granules and biologically active granules
CN106915798A (zh) * 2017-03-09 2017-07-04 复旦大学 一种绿色无污染的预氧化强化混凝高效除藻的方法
WO2019135965A1 (en) * 2018-01-08 2019-07-11 Arch Chemicals, Inc. Water treatment composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026932A1 (en) * 1994-04-05 1995-10-12 Metz Jean Paul Novel compositions and methods for water treatment
CN101811811A (zh) * 2010-05-10 2010-08-25 南京师范大学 一种抑制富营养化水体底泥营养盐释放的方法
CN101880100A (zh) * 2010-07-06 2010-11-10 中国科学院水生生物研究所 一种复合生态环保控藻剂控藻改善水质的方法
CN102674556A (zh) * 2012-05-24 2012-09-19 河海大学 一种提供生境的复合生态浮床
CN105540808A (zh) * 2016-01-18 2016-05-04 北京绿景行科技发展有限公司 一种中等富营养水体除磷控藻的方法
CN108409047A (zh) * 2018-04-16 2018-08-17 中国科学院南京地理与湖泊研究所 一种系统控制湖泊春季蓝藻细胞快速增殖的方法
CN108675454A (zh) * 2018-04-28 2018-10-19 中国科学院南京地理与湖泊研究所 一种大型浅水湖泊蓝藻水华发展全过程控制方法

Also Published As

Publication number Publication date
CN108409047B (zh) 2020-05-05
US20210114906A1 (en) 2021-04-22
CN108409047A (zh) 2018-08-17
US11230483B2 (en) 2022-01-25

Similar Documents

Publication Publication Date Title
WO2019201230A1 (zh) 一种系统控制湖泊春季蓝藻细胞快速增殖的方法
Yang et al. Growth of Gracilaria lemaneiformis under different cultivation conditions and its effects on nutrient removal in Chinese coastal waters
CN103922478B (zh) 一种水库深水水体富营养化治理的方法
CN103332790B (zh) 同步原位修复富营养化河湖水体和沉积物的可增光富氧生物组构系统
CN110590061A (zh) 一种适宜于内陆淡水养殖池塘尾水生态净化循环系统
CN103749145B (zh) 沉水植物模块化生长床及恢复水底沉水植物生长的方法
CN102976492B (zh) 水体生态净化系统和水体生态净化方法
CN102976495B (zh) 一种用于精养鱼池水质控制的无机固定化生物浮床
CN103960193B (zh) 模拟自然生态环境的松江鲈鱼繁养水处理系统及运作管理方法
WO2020147201A1 (zh) 一种利用桉树控制水域蓝藻生长的方法
CN105016488A (zh) 一种治理蓝藻的方法
CN101461337A (zh) 石斑鱼池塘养殖方法
CN104058545B (zh) 将生物载体与生态修复技术结合治理养殖污水的方法
CN113213710A (zh) 海水工厂化大棚养殖南美白对虾尾水处理系统和方法
CN103011412A (zh) 一种旋转式水生态修复装置及应用
CN203683234U (zh) 沉水植物模块化生长床
CN101397166A (zh) 天然水域饮用水源地靶环式生态修复及水质改良技术
CN1530336A (zh) 富营养化浅水小水体的生态修复方法
CN115490333A (zh) 一种富营养化水体生态修复与景观提升的构建方法
CN106561526A (zh) 一种构建水产生态养殖池塘的方法
CN207574030U (zh) 一种水下原位生态修复沉水水草培植装载系统
CN217677008U (zh) 一种原位修复水生态系统的生物孵化净水平台
CN215798745U (zh) 一种带水作业水体综合修复系统
CN207404949U (zh) 半封闭型海区的生态修复装置
CN109329132B (zh) 红树林区大弹涂鱼的养殖方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788134

Country of ref document: EP

Kind code of ref document: A1