WO2019201085A1 - 一种电池管理装置和移动终端 - Google Patents

一种电池管理装置和移动终端 Download PDF

Info

Publication number
WO2019201085A1
WO2019201085A1 PCT/CN2019/080883 CN2019080883W WO2019201085A1 WO 2019201085 A1 WO2019201085 A1 WO 2019201085A1 CN 2019080883 W CN2019080883 W CN 2019080883W WO 2019201085 A1 WO2019201085 A1 WO 2019201085A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
circuit
charging
isolation
unit
Prior art date
Application number
PCT/CN2019/080883
Other languages
English (en)
French (fr)
Inventor
曾宪铮
张爱同
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/040,334 priority Critical patent/US11522369B2/en
Priority to EP19789075.9A priority patent/EP3764453A4/en
Publication of WO2019201085A1 publication Critical patent/WO2019201085A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0026
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0034Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/108Parallel operation of dc sources using diodes blocking reverse current flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery management, but is not limited to the field of battery management, and more particularly to a battery management device and a mobile terminal.
  • some mobile terminals such as mobile phones have adopted a dual battery (cell) design.
  • the 6020mAh battery of a domestic brand of mobile phone uses a design scheme in which two batteries are packaged into one battery module.
  • a well-known foreign mobile phone brand has adopted a design scheme in which one large and one small battery are connected in series. It seems that dual-battery and even more batteries have gradually become a technological trend to increase battery capacity while ensuring safety. Since the power supply voltage required by most circuits inside the mobile terminal is very low, the parallel connection of multiple batteries to the mobile terminal power supply system should be the main direction for the development of future multi-cell solutions.
  • the embodiment of the present application provides a battery management device and a mobile terminal.
  • the embodiment of the present application provides a battery management device, including a charging unit, a battery unit, and a power management circuit, and further includes an isolation unit, where
  • the charging unit, the battery unit, the isolation unit and the power management circuit are sequentially connected, the battery unit includes at least two batteries, and the isolation unit is configured to connect one or more batteries to the power management circuit and block The reverse current between the batteries.
  • the embodiment of the present application further provides a mobile terminal, including the foregoing battery management device.
  • the battery management device of the embodiment of the present application includes a charging unit, a battery unit, and a power management circuit, and further includes an isolation unit, wherein the charging unit, the battery unit, the isolation unit, and the power management circuit are sequentially connected, and the battery unit includes at least Two cells, the isolation unit being configured to communicate one or more batteries with the power management circuit and to block a reverse current flow between the batteries.
  • the high-voltage battery is used to prevent the low-voltage battery from sinking current by using the isolation unit, and one or more batteries can be used to supply power to the mobile terminal, and the maximum battery allowed by the mobile terminal can be improved without increasing the safety risk. Capacity, which can extend battery life.
  • FIG. 1 is a schematic diagram of a battery management device according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a battery management device according to another embodiment of the present application.
  • FIG. 3 is a schematic diagram of an ideal diode circuit according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a differential input inverting amplifier as an ideal diode control module according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a charging method 1 of an application example of the present application.
  • FIG. 7 is a schematic diagram of a charging method 2 according to an application example of the present application.
  • FIG. 8 is a schematic diagram of a charging method 3 according to an application example of the present application.
  • the multi-battery management circuits currently used in mobile terminals are mostly digital load switches with peripheral voltage detection circuits, precision voltage reference sources, comparators, and GPIO (General Purpose Input Output) connected to the mobile terminal.
  • the logic control circuit of the pin is constructed. Disadvantages of such schemes include: complicated circuit; poor scalability; long switching time; it is very difficult to switch between batteries safely and smoothly under the premise of ensuring uninterrupted power supply, instantaneous voltage drop and reverse current between two batteries are difficult to simultaneously Elimination; only one battery can be connected at a time.
  • the small-capacity battery is difficult to be used for the scenario of powering the mobile terminal due to insufficient maximum output current.
  • the battery management device provided in the embodiment of the present application can isolate a plurality of batteries in a scenario in which multiple batteries are connected in parallel to power the mobile terminal. Under the premise of ensuring that each battery can normally supply power to the mobile terminal, the current flowing from the high voltage battery to the low voltage battery when the voltages are not equal due to various reasons is isolated. At the same time, it is also possible to automatically isolate the battery that has been discharged earlier (the voltage is already low) from other batteries, so as not to affect the continued operation of the mobile terminal.
  • the battery management device of the embodiment of the present application includes: a charging unit 11 , a battery unit 12 , an isolation unit 13 and a power management circuit 14 connected in sequence, and the battery unit 12 includes at least two batteries 121.
  • the isolation unit 13 is configured to cause one or more batteries 121 to communicate with the power management circuit 14 and to block the reverse current between the batteries 121.
  • the high-voltage battery is used to prevent the low-voltage battery from sinking current by using the isolation unit, and one or more batteries can be used to supply power to the mobile terminal, and the maximum battery allowed by the mobile terminal can be improved without increasing the safety risk. Capacity, which can extend battery life.
  • the circuit since the circuit is simple, the internal space utilization efficiency is improved, and if necessary, part of the battery space can be given to the functional modules such as the antenna, thereby improving the performance of the mobile terminal.
  • the embodiments of the present application can be applied to a mobile phone or tablet computer, a portable PC, and the like, which are similar to consumer portable mobile terminal products, which require more than one battery to be used in parallel due to large battery capacity or structural space limitation.
  • the charging unit 11 charges the battery 121 by using the power source introduced from the external power supply interface of the mobile terminal; and can also have the functions and performances of the temperature of the battery 121, the remaining available power, the charging current, the discharging current, and the internal impedance. Parameters are monitored.
  • the charging unit 11 may also provide a report or information display of battery status and performance related content to the user in cooperation with the corresponding software module.
  • the battery unit 12 includes at least two batteries 121.
  • the battery 121 serves as an energy storage component, and provides power for the mobile terminal such as a mobile phone to be disconnected from the external power supply system, so that the mobile terminal can continue to move in the moving scene away from the external power supply. Users provide a variety of features and services.
  • Isolation unit 13 This is a unit proposed in the embodiment of the present application.
  • the isolation unit reliably and effectively blocks the reverse current between the batteries under the premise of ensuring continuous and reliable power supply to the internal circuit of the mobile terminal. That is, the battery whose voltage is too low due to the end of discharge or due to internal faults is isolated from other batteries, thereby avoiding the influence on the power supply of the mobile terminal.
  • This unit can be realized by an electronic component having a unidirectional conductive property such as a diode, or can be realized by using various circuits or software in conjunction with corresponding switch components.
  • the power management circuit 14 is generally composed of a multi-way switching power supply and a linear power supply and a matching control circuit for converting the power supplied from the external input power source or the battery into different voltages required for each functional circuit inside the mobile terminal.
  • the isolation unit 13 will be described in detail below.
  • the isolation unit 13 can connect one or more batteries 12 having the highest voltage to the power management circuit 14, and includes at least two isolation circuits 131, each isolation circuit.
  • 131 is in one-to-one correspondence with the battery 121, that is, the number of the isolation circuits 131 is equal to the number of batteries.
  • the isolation circuit 131 is connected in series between the corresponding battery 121 and the power management circuit 14. When the voltage of the isolation circuit 131 and the battery connection terminal is greater than a voltage specified threshold of the isolation circuit 131 and the power management circuit connection end, the isolation circuit When the voltage of the isolation circuit 131 and the battery connection end is less than or equal to the voltage designation threshold of the connection end of the isolation circuit and the power management circuit, the isolation circuit 131 is turned off.
  • the isolation circuit 131 can be implemented by using various circuits or chips. For example, it can be realized by an electronic component having a unidirectional conductive property such as a diode, or can be realized by using various circuits or software in combination with corresponding switch components.
  • the isolation circuit 131 is an ideal diode circuit.
  • the anode end of the ideal diode circuit is connected to the anode of the corresponding battery, and the cathode end is connected to the power management circuit.
  • the unidirectional conductivity of the diode can be utilized to isolate the current between the cells of the simultaneous access system, and the unidirectional conductivity of the diode can block the current flowing into the battery and allow the battery to move.
  • the current supplied by the terminal passes normally, but the parameters such as the forward voltage drop, reverse leakage current, and heat dissipation power of the actual semiconductor power diode and other components are difficult to meet the stringent requirements of the mobile terminal (for example, the forward voltage drop is required).
  • the reverse leakage current is within tens of microamps
  • the heat dissipation power is within tens of milliwatts).
  • Ideal Diode An ideal circuit component model that features current transfer from only one direction. When its anode voltage is higher than the cathode voltage, the component conducts and current flows from the anode to the cathode. On the contrary, the component is turned off and the current cannot flow.
  • the ideal diode circuit can be implemented by using a dedicated ideal diode circuit chip, or an ideal diode control module and a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
  • the ideal diode control module can be a dedicated control chip or a discrete amplifier circuit. Due to its very small on-resistance, MOSFETs can reach levels of only a few milliohms, making the ideal diode forward voltage drop for analogs much smaller than semiconductor power diodes.
  • the ideal diode circuit of the embodiment of the present application may include a MOSFET and an ideal diode control module 31.
  • the output of the ideal diode control module 31 is connected to the gate of the MOSFET, and the ideal diode control module
  • the two input terminals of 31 are respectively connected to the positive pole of the corresponding battery and the power management circuit, the two ends of the ideal diode circuit are respectively the drain and the source of the MOSFET, and the ideal diode control module 31 is based on the two inputs.
  • the voltage difference controls the MOSFET to turn on or off.
  • the transmission characteristic diagram of the ideal diode circuit of the embodiment of the present application the reverse leakage current of the simulated ideal diode is in the order of micro-amps, almost 0, and the forward voltage drop is generally 30 millivolts. In this case, it is much smaller than the semiconductor diode under the same current, thereby avoiding the negative influence of the current semiconductor diode device with reverse leakage current and the forward voltage drop which increases with the current. Moreover, when there is a difference in the voltage of each battery, only the battery with the highest voltage is connected to the power management circuit, and the battery with a relatively low voltage is isolated under the single-conduction of the diode, and does not affect other batteries with higher voltages.
  • each battery supplies power to the power management circuit at the same time, and the current output by each battery depends on the internal discharge characteristics such as internal resistance, and is distributed according to a certain ratio. In this way, whether each battery is connected to the power supply system can be completely determined by the hardware circuit automatically, and the current load can be automatically distributed between the respective batteries without software intervention.
  • an embodiment of an ideal diode control module 31 is employed in the ideal diode circuit, wherein the Anode is the anode of the ideal diode and the cathode is the cathode.
  • the characteristics of this ideal diode circuit simulate an ideal diode that is turned on when the anode voltage is higher than the cathode voltage, and vice versa.
  • the MOSFET T1 in this example is a P-channel enhancement type MOSFET, the drain of the MOSFET T1 is the anode terminal of the ideal diode circuit, and the source of the MOSFET T1 is the cathode end of the ideal diode circuit.
  • the differential input inverting amplifier includes an operational amplifier U1 and six resistors R1 R R6.
  • one end of the resistor R1 is connected to the drain of the MOSFET T1, the other end is connected to the negative input terminal of the operational amplifier U1 and the resistor R2; one end of the resistor R2 is connected to the negative input terminal of the operational amplifier U1 and the resistor R1, and the other end is connected to the operational amplifier
  • the output of U1 and the gate of MOSFET T1; one end of resistor R3 is connected to the source of MOSFET T1, the other end is connected to the forward input terminal of operational amplifier U1 and resistor R4; the end of resistor R4 is connected to the positive input terminal of operational amplifier U1 and Resistor R3, the other end is connected between resistors R5 and R6; one end of resistor R5 is connected to power supply VCC, the other end is connected to resistors R4 and R6; one end of resistor R6 is connected to resistors R4 and R6, and the other end is grounded; the negative input terminal of operational amplifier U1 Connected between resistors R1 and R2, the positive
  • a dedicated ideal diode control chip or a dedicated ideal diode circuit chip can be used to achieve the desired diode function.
  • the ideal diode circuit realized by the dedicated ideal diode control chip with external MOSFET or the dedicated ideal diode circuit chip with built-in MOSFET has the insensitivity to the discreteness of the components of the components and the consistency of the finished circuit parameters. It has the advantages of high straight-through rate and simple and convenient maintenance in mass production.
  • the above ideal diode circuit can have various forms, and the ideal diode circuit of the present application includes but is not limited to the above solution.
  • an isolation unit 13 implemented with an ideal diode circuit is connected in series between each battery to power management circuit 14. Since the diode blocks the current flowing into the battery, the path between the charging unit 11 and the battery 121 is directly connected to the battery without passing through an ideal diode.
  • the charging unit 11 can include a charging interface and one or more charging circuits. There are many options for the charging scheme of the multi-battery mobile terminal. For example, the following methods can be used:
  • Method 1 All batteries share a charging circuit and switch to the corresponding battery charging through the load switch.
  • the charging unit 11 includes an associated charging interface 111 and a charging circuit 112.
  • the battery unit 12 further includes at least two load switches 122, and each load switch 122 has a one-to-one correspondence with the battery 121.
  • One end of the load switch 122 is connected to the charging circuit 112, and the other end is connected to the positive pole of the corresponding battery 121.
  • only one charging circuit 112 is used to charge the designated one or more batteries 121 by controlling the switching state of the load switch 122.
  • the charging unit 11 includes a charging interface 111 and at least two charging circuits 112 .
  • Each charging circuit 112 is in one-to-one correspondence with the battery 121 .
  • One end of the charging circuit 112 and the charging interface 111 Connected to the other end and connected to the positive electrode of the corresponding battery 121.
  • a plurality of charging circuits 112 are employed, each of which corresponds to a battery 121, eliminating the need for a load switch in mode one, but increasing the number of charging circuits 112.
  • Mode 3 The combination scheme of mode one and mode two divides the battery into several groups, each group is configured with one charging circuit, and the group switches with the load switch.
  • the number of charging circuits 112 is reduced relative to the second mode, and the load switch 122 is added.
  • the battery unit 12 further includes at least two fuel gauges 123, each of which has a one-to-one correspondence with the battery 121 for collecting the power of the corresponding battery 121.
  • the embodiment of the present application further provides a mobile terminal, where the mobile terminal includes the foregoing battery management device.
  • the mobile terminal can be implemented in various forms.
  • the mobile terminal described in the embodiments of the present application may include, for example, a mobile phone, a smart phone, a notebook computer, a digital broadcast receiver, a PDA (Personal Digital Assistant), a PAD (tablet computer), and a PMP (Portable Media Player). , portable multimedia player), navigation device, etc. mobile terminal.
  • PDA Personal Digital Assistant
  • PAD tablet computer
  • PMP Portable Media Player
  • portable multimedia player portable multimedia player
  • navigation device etc. mobile terminal.
  • fixed type terminals in addition to elements that are specifically for mobile purposes.
  • fixed terminals such as digital TVs, desktop computers, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例公开了一种电池管理装置和移动终端,其中,所述电池管理装置,包括充电单元、电池单元和电源管理电路,还包括隔离单元,其中,所述充电单元、电池单元、隔离单元和电源管理电路依次相连,所述电池单元包括至少两块电池,所述隔离单元配置为使一块或多块电池与所述电源管理电路连通,并阻断电池之间的倒灌电流。

Description

一种电池管理装置和移动终端
相关申请的交叉引用
本申请基于申请号为201810356296.9、申请日为2018年04月19日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电池管理领域但不限于电池管理领域,尤指一种电池管理装置和移动终端。
背景技术
随着智能手机等移动终端的功能与性能不断演进与发展,整机耗电也不断增加。为了改善移动终端的续航时间,此类产品内部的电池的容量与体积也在不断增加。但容量和体积过大的单个电池电芯的安全风险也在日益加大。近几年来国内外多起手机起火事故,尤其是某国外大品牌手机多次发生起火最终都认定为大容量电池内部缺陷导致。为了适当规避安全风险,双电池乃至多电池成为了一种可行的解决途径。
目前市面上已有部分手机等移动终端采用了双电池(电芯)设计。例如国内某品牌的手机的6020mAh电池就采用了两个电芯封装成一个电池模组的设计方案。国外某知名手机品牌在其最新推出一个机型也采用了一大一小两个电池串联供电的设计方案。这样看来双电池乃至多电池逐步成为一种在保证安全的前提下提升电池容量的技术趋势。由于移动终端内部绝大多数电路所需的供电电压都很低,多电池并联接入移动终端供电系统应该会是未来多电池方案发展的主要方向。
但多个电池并联同时接入移动终端供电系统时,如果各电池的电压存 在差异,就不能直接并接在一起,否则电池间的电压差会形成从电压高的电池流向电压较低电池的倒灌电流,这有可能形成严重的安全隐患。
发明内容
本申请实施例提供了一种电池管理装置和移动终端。
本申请实施例提供了一种电池管理装置,包括充电单元、电池单元和电源管理电路,还包括隔离单元,其中,
所述充电单元、电池单元、隔离单元和电源管理电路依次相连,所述电池单元包括至少两块电池,所述隔离单元配置为使一块或多块电池与所述电源管理电路连通,并阻断电池之间的倒灌电流。
本申请实施例还提供了一种移动终端,包括上述的电池管理装置。
本申请实施例的电池管理装置,包括充电单元、电池单元和电源管理电路,还包括隔离单元,其中,所述充电单元、电池单元、隔离单元和电源管理电路依次相连,所述电池单元包括至少两块电池,所述隔离单元配置为使一块或多块电池与所述电源管理电路连通,并阻断电池之间的倒灌电流。
本申请实施例中,通过采用隔离单元避免高电压电池对低电压电池倒灌电流,而且,可以使一块或多块电池为移动终端供电,在不增加安全风险的前提下提高移动终端允许的最大电池容量,从而可以延长续航时间。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请实施例的电池管理装置的示意图;
图2是本申请另一实施例的电池管理装置的示意图;
图3为本申请实施例的理想二极管电路的示意图;
图4为本申请实施例的理想二极管电路的传输特性图;
图5为本申请实施例的采用差分输入反相放大器作为理想二极管控制模块的示意图;
图6为本申请应用实例的充电方式一的示意图;
图7为本申请应用实例的充电方式二的示意图;
图8为本申请应用实例的充电方式三的示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
目前应用在移动终端中的多电池管理电路多为数字式负载开关配合外围的电压检测电路、精密电压基准源、比较器以及连接移动终端内部处理器芯片GPIO(General Purpose Input Output,通用输入/输出)管脚的逻辑控制电路构成。此类方案的缺点包括:电路复杂;可扩展性差;切换时间较长;非常难以在保证供电不间断的前提下安全平稳的在各电池间切换,瞬时电压跌落和两电池间倒灌电流很难同时消除;一次只能有一个电池接入,当移动终端内部个功能电路系统需要的电流比较大时,由于最大输出电流不足,小容量电池就难以用于为移动终端供电的场景。
本申请实施例提供的电池管理装置,可以在多电池并联为移动终端供电的场景下对多个电池之间进行隔离。在保证各电池能够正常为移动终端供电的前提下,隔离各电池间由于种种原因引起电压不相等时从高电压的 电池流向低电压的电池的倒灌电流。同时还可以将较早放电完的电池(电压已经很低)自动与其他电池隔离开来,从而不影响移动终端的继续运作。
如图1所示,本申请实施例的电池管理装置包括:依次相连的充电单元11、电池单元12、隔离单元13和电源管理电路14,所述电池单元12包括至少两块电池121,所述隔离单元13配置为使一块或多块电池121与所述电源管理电路14连通,并阻断电池121之间的倒灌电流。
本申请实施例中,通过采用隔离单元避免高电压电池对低电压电池倒灌电流,而且,可以使一块或多块电池为移动终端供电,在不增加安全风险的前提下提高移动终端允许的最大电池容量,从而可以延长续航时间。另外,由于电路简单,提高了内部空间利用效率,必要时可以让出部分电池空间给天线等功能模块,从而可以改善移动终端的性能。
本申请实施例可以应用于由于电池容量较大或结构空间限制,需要将多于一个电池并联使用的手机或平板电脑、便携式PC机等类似消费类便携移动终端产品。
下面对每个单元进行说明。
充电单元11:利用从移动终端外部供电接口引入的电源经其处理后对电池121进行充电;还可兼具对电池121的温度、剩余可用电量、充电电流、放电电流、内部阻抗等功能与性能参数进行监测。
在另一些实施例中,所述充电单元11还可在对应软件模块的配合下可以向用户提供电池状态和性能相关内容的报告或信息显示。
电池单元12:包括至少两块电池121,电池121作为储能元件,为手机等移动终端在与外部供电系统断开的情况下提供电源,使得移动终端得以在脱离外部电源的移动场景下继续为用户提供各种功能与服务。
隔离单元13:这是本申请实施例提出的单元,该隔离单元在保证连续可靠地为移动终端内部电路供电的前提下,可靠而有效的阻断各个电池间 的倒灌电流。也就是将放电结束或由于内部故障等原因导致电压过低的电池与其他电池隔离,避免对移动终端供电造成影响。此单元可以用二极管等具备单向导电特性的电子元器件实现,也可利用各种电路或软件配合相应的开关类元器件实现。
电源管理电路14:通常由多路开关电源和线性电源以及配套的控制电路构成,用于将外部输入电源或电池提供的电源变换为移动终端内部各功能电路所需的不同电压。
下面对隔离单元13进行详细介绍。
如图2所示,在一实施例中,所述隔离单元13可以使电压最高的一块或多块电池12与所述电源管理电路14连通,其包括至少两个隔离电路131,每个隔离电路131与所述电池121一一对应,也就是说,所述隔离电路131的数量与电池的数量相等。所述隔离电路131串联在对应的电池121和电源管理电路14之间,所述隔离电路131与电池连接端的电压大于所述隔离电路131与电源管理电路连接端的电压指定阈值时,所述隔离电路131导通;所述隔离电路131与电池连接端的电压小于等于所述隔离电路与电源管理电路连接端的电压指定阈值时,所述隔离电路131关断。
所述隔离电路131可以采用多种电路或芯片实现,例如,可以用二极管等具备单向导电特性的电子元器件实现,也可利用各种电路或软件配合相应的开关类元器件实现。
在本申请一实施例中,所述隔离电路131为理想二极管电路,所述理想二极管电路的阳极端与对应的电池的正极相连,阴极端与电源管理电路相连。
本申请实施例中,可以利用二极管的单向导电性来实现对同时接入系统的电池间倒灌电流的隔离,二极管的单向导电性既可以阻断流入电池的倒灌电流又可以允许电池为移动终端供电的电流正常通过,但实际的半导 体功率二极管等元器件的正向压降、反向漏电流、热耗散功率等参数很难满足移动终端的严苛要求(例如要求正向压降在数十毫伏之内,反向漏电流在数十微安之内,热耗散功率在数十毫瓦之内)。
理想二极管一种理想中的电路元件模型,其特点是:只能从一个方向传输电流,当其阳极电压高于阴极电压时,元件导通,电流沿从阳极到阴极方向流动。反之元件关断,电流无法流动。
在本申请实施例中,所述理想二极管电路可以采用专用理想二极管电路芯片实现,也可以采用理想二极管控制模块与MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金属-氧化物半导体场效应晶体管)配合实现,其中,理想二极管控制模块可以是专用控制芯片,也可以采用分立放大器电路实现。MOSFET由于其导通电阻非常小,可以达到仅有几毫欧的水平,使得模拟的理想二极管正向导通压降远小于半导体功率二极管。
如图3所示,本申请实施例的所述理想二极管电路可包括MOSFET和理想二极管控制模块31,所述理想二极管控制模块31的输出端连接所述MOSFET的栅极,所述理想二极管控制模块31的两个输入端分别连接对应的电池的正极和电源管理电路,所述理想二极管电路的两端分别为所述MOSFET的漏极和源极,所述理想二极管控制模块31根据两个输入端的电压差控制所述MOSFET导通或关断。
如图4所示,为本申请实施例的理想二极管电路的传输特性图,模拟出来的理想二极管的反向漏电流为微安量级,几乎为0,正向压降一般在三十毫伏之内,比同样电流下半导体二极管小很多,从而避免了目前实际半导体二极管器件存在反向漏电流以及随电流上而升增加的正向压降带来的负面影响。而且各个电池电压存在差异时,只有电压最高的电池才会与电源管理电路接通,电压比较低的电池在二极管的单向导通作用下被隔离开, 不会影响其他电压较高的电池。当电压相同时,各个电池同时对电源管理电路供电,各个电池输出的电流取决于其内阻等内部放电特性,按照一定比例分配。这样各个电池接入供电系统与否可以完全由硬件电路自动确定,并且能够自动在各个电池之间平衡分配电流负荷,无需软件干预。
如图5所示,为理想二极管电路中采用差分输入反相放大器作为理想二极管控制模块31的一实施例,其中Anode为理想二极管的阳极,Cathode为阴极。此理想二极管电路的特性模拟了理想二极管,当阳极电压高于阴极电压时此电路导通,反之则关断。本例中的MOSFET T1为P沟道增强型MOSFET,所述MOSFET T1的漏极为所述理想二极管电路的阳极端,所述MOSFET T1的源极为所述理想二极管电路的阴极端。所述差分输入反相放大器包括运算放大器U1和六个电阻R1~R6。其中,电阻R1的一端接MOSFET T1的漏极,另一端接运算放大器U1的负向输入端和电阻R2;电阻R2的一端接运算放大器U1的负向输入端和电阻R1,另一端接运算放大器U1的输出端和MOSFET T1的栅极;电阻R3的一端接MOSFET T1的源极,另一端接运算放大器U1的正向输入端和电阻R4;电阻R4一端接运算放大器U1的正向输入端和电阻R3,另一端接在电阻R5和R6之间;电阻R5一端接电源VCC,另一端接电阻R4和R6;电阻R6一端接电阻R4和R6,另一端接地;运算放大器U1的负向输入端接在电阻R1和R2之间,正向输入端接在电阻R3和R4之间,输出接电阻R2和MOSFET T1的栅极。差分输入反相放大器的输入信号就是MOSFET两端的电压差,输出信号用于驱动P沟道MOSFET T1。
当MOSFET T1左侧电压高于右侧时,放大器输出电压接近0V,P沟道MOSFET T1导通,反之放大器输出电压接近电源电压,P沟道MOSFET T1关断。电路的行为特征非常接近理想二极管。
除了用分立元件构成的理想二极管实现电路之外,还可以选用专用的 理想二极管控制芯片,或专用的理想二极管电路芯片来实现理想二极管功能。通过配合外接MOSFET的专用的理想二极管控制芯片,或具有内置MOSFET的专用的理想二极管电路芯片,实现的理想二极管电路具有对组成电路的各元器件参数离散性不敏感、成品电路参数一致性较好、大批量生产时直通率高,维修简单便利等优点。
需要说明的是,上述理想二极管电路可以有多种形式,本申请的理想二极管电路包括但不限于上述方案。
如图6~8所示,用理想二极管电路实现的隔离单元13串联在每个电池到电源管理电路14之间。由于二极管会阻断流入电池的电流,充电单元11和电池121之间的通路不经过理想二极管,直接连接到电池。
充电单元11可包括充电接口和一个或多个充电电路。对于多电池移动终端的充电方案有多种选择,例如,可采用如下几种方式:
方式一:所有电池共用一个充电电路,通过负载开关来切换为对应的电池充电。
如图6所示,所述充电单元11包括相连的充电接口111和充电电路112;所述电池单元12还包括至少两个负载开关122,每个负载开关122与所述电池121一一对应,所述负载开关122的一端与所述充电电路112相连,另一端与对应的电池121的正极相连。
在这种方式中,仅使用一个充电电路112,通过控制负载开关122的开关状态以对指定的一块或多块电池121充电。
方式二:每个电池配备一个对应的充电电路
如图7所示,所述充电单元11包括充电接口111和至少两个充电电路112,每个充电电路112与所述电池121一一对应,所述充电电路112的一端与所述充电接口111相连,另一端与对应的电池121的正极相连。
在这种方式中,采用多个充电电路112,每个充电电路112对应一电池121,无需方式一中的负载开关,但是增加了充电电路112的数量。
方式三:方式一和方式二的结合方案,将电池分成几组,每一组配置一个充电电路,组内用负载开关切换。
如图8所示,所述电池单元12包括至少两组电池组,每组电池组包括一块或多个块电池121以及与所述电池121一一对应的负载开关122;所述充电单元11包括充电接口111和至少两个充电电路112,每个充电电路112与所述电池组一一对应,所述充电电路112的一端与所述充电接口111相连,另一端与对应的电池组相连;所述负载开关122的一端与对应的充电电路112相连,另一端与对应的电池121的正极相连。
在这种方式中,通过采用电池组的方式,相对于方式二来说,减少了充电电路112数量,增加了负载开关122。
另外,如图6~8所示,电池单元12还包括至少两个电量计123,每个电量计与所述电池121一一对应,用于采集对应电池121的电量。
本申请实施例还提供一种移动终端,所述移动终端包括上述的电池管理装置。
移动终端可以以各种形式来实施。例如,本申请实施例中描述的移动终端可以包括诸如移动电话、智能电话、笔记本电脑、数字广播接收器、PDA(Personal Digital Assistant,个人数字助理)、PAD(平板电脑)、PMP(Portable Media Player,便携式多媒体播放器)、导航装置等等的移动终端。然而,本领域技术人员将理解的是,除了特别用于移动目的的元件之外,根据本申请的实施方式的构造也能够应用于固定类型的终端。以及诸如数字TV、台式计算机等等的固定终端。
虽然本申请所揭露的实施方式如上,但所述的内容仅为便于理解本申请而采用的实施方式,并非用以限定本申请。任何本申请所属领域内的技 术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (10)

  1. 一种电池管理装置,包括充电单元、电池单元、电源管理电路,及隔离单元,其中,
    所述充电单元、电池单元、隔离单元和电源管理电路依次相连,所述电池单元包括至少两块电池,所述隔离单元配置为使一块或多块电池与所述电源管理电路连通,并阻断电池之间的倒灌电流。
  2. 如权利要求1所述的装置,其中,所述隔离单元配置为使电压最高的一块或多块电池与所述电源管理电路连通,所述隔离单元包括至少两个隔离电路,每个隔离电路与所述电池一一对应,所述隔离电路串联在对应的电池和电源管理电路之间,所述隔离电路与电池连接端的电压大于所述隔离电路与电源管理电路连接端的电压指定阈值时,所述隔离电路导通;所述隔离电路与电池连接端的电压小于等于所述隔离电路与电源管理电路连接端的电压指定阈值时,所述隔离电路关断。
  3. 如权利要求2所述的装置,其中,所述隔离电路为理想二极管电路,所述理想二极管电路的阳极端与对应的电池的正极相连,阴极端与电源管理电路相连。
  4. 如权利要求3所述的装置,其中,所述理想二极管电路包括金属-氧化物半导体场效应晶体管MOSFET和理想二极管控制模块,所述理想二极管控制模块的输出端连接所述MOSFET的栅极,所述理想二极管控制模块的两个输入端分别连接对应的电池的正极和电源管理电路,所述理想二极管电路的两端分别为所述MOSFET的漏极和源极,所述理想二极管控制模块根据两个输入端的电压差控制所述MOSFET导通或关断。
  5. 如权利要求3所述的装置,其中,所述理想二极管控制模块为差分输入反相放大器或理想二极管控制芯片。
  6. 如权利要求4或5所述的装置,其中,所述MOSFET为P沟道增强型MOSFET,所述MOSFET的漏极为所述理想二极管电路的阳极端,所述MOSFET的源极为所述理想二极管电路的阴极端。
  7. 如权利要求1~5中任意一项所述的装置,其中,所述充电单元包括相连的充电接口和充电电路;所述电池单元还包括至少两个负载开关,每个负载开关与所述电池一一对应,所述负载开关的一端与所述充电电路相连,另一端与对应的电池的正极相连。
  8. 如权利要求1~5中任意一项所述的装置,其中,所述充电单元包括充电接口和至少两个充电电路,每个充电电路与所述电池一一对应,所述充电电路的一端与所述充电接口相连,另一端与对应的电池的正极相连。
  9. 如权利要求1~5中任意一项所述的装置,其中,所述电池单元包括至少两组电池组,每组电池组包括一块或多个块电池以及与所述电池一一对应的负载开关;所述充电单元包括充电接口和至少两个充电电路,每个充电电路与所述电池组一一对应,所述充电电路的一端与所述充电接口相连,另一端与对应的电池组相连;所述负载开关的一端与对应的充电电路相连,另一端与对应的电池的正极相连。
  10. 一种移动终端,包括如权利要求1~9中任意一项所述的电池管理装置。
PCT/CN2019/080883 2018-04-19 2019-04-01 一种电池管理装置和移动终端 WO2019201085A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/040,334 US11522369B2 (en) 2018-04-19 2019-04-01 Battery management device and mobile terminal
EP19789075.9A EP3764453A4 (en) 2018-04-19 2019-04-01 BATTERY AND MOBILE TERMINAL MANAGEMENT DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810356296.9A CN110391472B (zh) 2018-04-19 2018-04-19 一种电池管理装置和移动终端
CN201810356296.9 2018-04-19

Publications (1)

Publication Number Publication Date
WO2019201085A1 true WO2019201085A1 (zh) 2019-10-24

Family

ID=68238796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080883 WO2019201085A1 (zh) 2018-04-19 2019-04-01 一种电池管理装置和移动终端

Country Status (4)

Country Link
US (1) US11522369B2 (zh)
EP (1) EP3764453A4 (zh)
CN (1) CN110391472B (zh)
WO (1) WO2019201085A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110718944B (zh) * 2018-07-12 2023-08-04 中兴通讯股份有限公司 一种双电池充放电的方法、装置、终端和存储介质
CN113659643A (zh) * 2020-05-12 2021-11-16 深圳市特安电子有限公司 一种双电池充放电管理装置及气体探测器
DE102020207055A1 (de) 2020-06-05 2021-12-09 Continental Teves Ag & Co. Ohg Überwachung einer idealen Diode
CN112531814A (zh) * 2020-11-18 2021-03-19 深圳市道通智能航空技术有限公司 一种多电池充电管理系统及方法
US20240178688A1 (en) * 2022-11-30 2024-05-30 Microsoft Technology Licensing, Llc Load dependent method to reduce quiescent current during multi-cell to single-cell battery regulation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206077010U (zh) * 2016-09-29 2017-04-05 北京百度网讯科技有限公司 多电池并联应用电路及电动车
CN206452153U (zh) * 2017-02-14 2017-08-29 深圳市维创尼克科技有限公司 一种用单片机实现的防倒灌理想二极管

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302594C (zh) 2002-04-04 2007-02-28 广达电脑股份有限公司 用于配备多电池的电子装置的供电控制装置
US7745025B2 (en) * 2006-02-14 2010-06-29 Mti Microfuel Cells Inc. Fuel cell based rechargable power pack system and associated methods for controlling same
CN201663458U (zh) * 2009-12-31 2010-12-01 中兴通讯股份有限公司 一种太阳能充电器电路
JP2013153545A (ja) * 2010-08-06 2013-08-08 Sanyo Electric Co Ltd 電池並列処理回路及び電池システム
CA2845684A1 (en) * 2013-03-13 2014-09-13 Manitoba Hydro International Ltd. Heterogeneous energy storage system and associated methods
US9583794B2 (en) * 2013-08-26 2017-02-28 Dell International L.L.C. Scalable highly available modular battery system
CN104917245A (zh) * 2015-06-19 2015-09-16 深圳天珑无线科技有限公司 充电管理电路、移动终端以及移动终端的充电控制方法
DE102016101081A1 (de) 2016-01-22 2017-07-27 Eberspächer Controls Landau Gmbh & Co. Kg Bordnetz für ein Fahrzeug
JP2019130924A (ja) * 2016-05-26 2019-08-08 日立オートモティブシステムズ株式会社 ブレーキシステムおよび電動ブレーキ駆動装置
US10135269B2 (en) * 2016-07-15 2018-11-20 GM Global Technology Operations LLC Minimize bulk capacitance and prevent controller resets due to the voltage drop associated with a fault condition
EP3273560B1 (en) 2016-07-19 2020-09-23 ABB Schweiz AG Ideal diode with active reverse voltage protection
CN106712174B (zh) * 2016-12-23 2020-12-15 天津力神特种电源科技股份公司 锂离子蓄电池组供电及通信自动切换方法
CN107891760A (zh) * 2017-12-26 2018-04-10 北京交通大学 一种城市轨道车辆用车载太阳能供电系统
US10944274B2 (en) * 2018-01-19 2021-03-09 Microsoft Technology Licensing, Llc Ideal diode function implemented with existing battery protection FETs

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206077010U (zh) * 2016-09-29 2017-04-05 北京百度网讯科技有限公司 多电池并联应用电路及电动车
CN206452153U (zh) * 2017-02-14 2017-08-29 深圳市维创尼克科技有限公司 一种用单片机实现的防倒灌理想二极管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3764453A4 *

Also Published As

Publication number Publication date
EP3764453A4 (en) 2021-05-05
CN110391472A (zh) 2019-10-29
US20210021137A1 (en) 2021-01-21
CN110391472B (zh) 2021-04-06
US11522369B2 (en) 2022-12-06
EP3764453A1 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
WO2019201085A1 (zh) 一种电池管理装置和移动终端
CN102195314B (zh) 电池均衡电路及方法
WO2015117515A1 (zh) 一种充放电电路及相应的移动终端
CN202218050U (zh) 双电池充放电管理电路
WO2020224467A1 (zh) 一种充电控制电路及电子设备
CN103762650B (zh) 一种基于平衡充电技术的单usb口备用电源
US8436580B2 (en) Battery control circuit
CN115085302A (zh) 双电池充放电电路及控制方法、电子设备
CN103403643B (zh) 充放电管理装置及移动终端
WO2022213767A1 (zh) 充电装置、电子设备及充电方法
US20110316471A1 (en) Battery control system
CN106033908B (zh) 一种电源电路及其工作方法、电子设备
CN105610233B (zh) 多电源并联供电系统及电源短路保护电路
CN101562345B (zh) 一种电压均衡开关驱动电路
CN211183521U (zh) 双电池选择电路以及电子设备
CN214280983U (zh) 串联电池组的均衡芯片及电池管理系统
JP3188317U (ja) エリア分け充電及びエリア直列放電を行うポータブル型電源
TW202119692A (zh) 一種鋰電池保護系統
CN208062815U (zh) 一种锂电池电路和装置
CN101436783A (zh) 一种充电电路及装置
CN201349136Y (zh) 电阻钳位电压均衡开关驱动电路
JP2003079058A (ja) 電池パック
WO2024007983A1 (zh) 一种双电池切换装置及电子设备
CN112350390B (zh) 充电电路、充电芯片、终端和充电系统
CN115800447B (zh) 一种电池主动均衡asic芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19789075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019789075

Country of ref document: EP

Effective date: 20201005