WO2015117515A1 - 一种充放电电路及相应的移动终端 - Google Patents

一种充放电电路及相应的移动终端 Download PDF

Info

Publication number
WO2015117515A1
WO2015117515A1 PCT/CN2014/094543 CN2014094543W WO2015117515A1 WO 2015117515 A1 WO2015117515 A1 WO 2015117515A1 CN 2014094543 W CN2014094543 W CN 2014094543W WO 2015117515 A1 WO2015117515 A1 WO 2015117515A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
cell
charging
circuit
cell battery
Prior art date
Application number
PCT/CN2014/094543
Other languages
English (en)
French (fr)
Inventor
刘学政
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015117515A1 publication Critical patent/WO2015117515A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits

Definitions

  • the present invention relates to the field of charging and discharging technologies, and in particular, to a charging and discharging circuit and a corresponding mobile terminal.
  • the technical problem to be solved by the present invention is how to reduce the heat generation amount of the charging path without increasing the charging time; and in the case where the heat generation is not serious, the charging time can also be shortened.
  • a charge and discharge circuit that uses a multi-cell battery, including a charging chip, a battery connector, and a switching module, wherein:
  • the charging chip is configured to: provide electrical energy when an external power source is connected;
  • the battery connector is configured to: input power provided by the charging chip to the multi-cell battery;
  • the switching module is configured to: when the multi-cell battery is charged, switch each of the multi-cell batteries into a series state to be connected to the battery connector; when the multi-cell battery is not charged At the time, each of the cells in the multi-cell battery is switched to a parallel state to be connected to the battery connector.
  • the circuit further includes a high voltage adaptation circuit, wherein
  • the high voltage adapting circuit is connected between the external power source and the charging chip.
  • the circuit further includes a buck conversion circuit, wherein
  • the battery connector is further configured to: supply power output by the multi-cell battery to a system circuit of the mobile terminal; and when the multi-cell battery is charged, pass the buck conversion circuit to the mobile terminal
  • the system circuit supplies power; when the multi-cell battery is not charged, power is directly supplied to the system circuit of the mobile terminal.
  • the circuit further includes a temperature sensor and a current adjustment circuit, wherein
  • the temperature sensor is configured to: measure a temperature of the multi-cell battery
  • the current regulating circuit is connected between the charging chip and the battery connector, and is configured to increase a charging current of the multi-cell battery when a temperature measured by the temperature sensor is less than a predetermined threshold.
  • the switching module includes N-1 switches, where
  • N is the number of cells in the multi-cell battery; each of the switches includes a first end, a second end, a third end, and a fourth end;
  • any switch i When receiving a control signal indicating that the multi-cell battery starts charging, any switch i is switched to connect the first end and the second end, and the third end and the fourth end are suspended;
  • any switch i When receiving a control signal indicating that the multi-cell battery stops charging, any switch i is switched to connect the first end to the third end, and the second end is connected to the fourth end;
  • any switch i is connected to the anode of the i+1th cell; the first end of any switch i is connected to the negative terminal of the i-th cell; the third end and the last of any switch i A negative electrode of one battery cell is connected together to a negative electrode of the battery connector; a fourth end of either switch i and a positive electrode of the first battery core are connected together to a positive electrode of the battery connector; wherein i is 1 to N An integer of -1.
  • a mobile terminal a charging and discharging circuit.
  • the charging and discharging circuit includes a charging chip, a battery connector, and a switching module, wherein
  • the charging chip is configured to: provide electrical energy when an external power source is connected, and notify the system circuit; notify the system circuit when the external power source is disconnected;
  • the battery connector is configured to: input power provided by the charging chip to the multi-cell battery, and input power provided by the multi-cell battery to the system circuit;
  • the switching module is configured to: when receiving a control signal sent by the system circuit indicating that the multi-cell battery starts charging, switching each battery cell in the multi-cell battery to a series state and the battery Connected to the connector; when receiving a control signal from the system circuit indicating that the multi-cell battery stops charging, switching each of the cells in the multi-cell battery to a parallel state and connecting to the battery connector .
  • the mobile terminal further includes a high voltage adaptation circuit, where
  • the high voltage adapting circuit is connected between the external power source and the charging chip.
  • the mobile terminal further includes a buck conversion circuit, where
  • the battery connector is configured to input the electrical energy provided by the multi-cell battery to the system circuit as follows:
  • the battery connector When the multi-cell battery is charged, the battery connector supplies power to a system circuit of the mobile terminal through the buck conversion circuit; when the multi-cell battery is not charged, the battery connector is directly Power is supplied to the system circuitry of the mobile terminal.
  • the mobile terminal further includes a temperature sensor and a current adjustment circuit, where
  • the temperature sensor is configured to: measure a temperature of the multi-cell battery
  • the current regulating circuit is connected between the charging chip and the battery connector, and is configured to increase a charging current of the multi-cell battery when a temperature measured by the temperature sensor is less than a predetermined threshold.
  • the switching module includes N-1 switches, where
  • N is the number of cells in the multi-cell battery; each of the switches includes a first end, a second end, a third end, and a fourth end;
  • any switch i When receiving a control signal indicating that the multi-cell battery starts charging, any switch i is switched to connect the first end to the second end, and the third end and the fourth end are suspended;
  • any switch i When receiving a control signal indicating that the multi-cell battery stops charging, any switch i is switched to connect the first end to the third end, and the second end is connected to the fourth end;
  • any switch i is connected to the anode of the i+1th cell; the first end of any switch i is connected to the negative terminal of the i-th cell; the third end and the last of any switch i A negative electrode of one battery cell is connected together to a negative electrode of the battery connector; a fourth end of either switch i and a positive electrode of the first battery core are connected together to a positive electrode of the battery connector; wherein i is 1 to N An integer of -1.
  • the technical solution of the present invention can enable the mobile terminal with the multi-cell battery to maintain the charging time without increasing, and can reduce the charging current, thereby reducing the energy loss on the charging path and reducing the charging path.
  • the heat is generated so that the temperature of the whole machine is not too high; when the heat of the whole machine is not very serious, the charging current can be appropriately increased, the charging time is further shortened, and the user experience and practicability are improved.
  • FIG. 1 is a partial schematic view of a charge and discharge circuit in an embodiment of Embodiment 1;
  • FIG. 2 is a system block diagram of an example of the first embodiment
  • FIG. 3 is a system block diagram of the above example when charging
  • Figure 4 is a block diagram of the system when the above example is not charged
  • Figure 5 is a block diagram of the system power supply during the above example charging.
  • Embodiment 1 A charging and discharging circuit of a mobile terminal using a multi-cell battery, as shown in FIG. 5, includes:
  • the charging chip 501 is configured to: provide electrical energy
  • the battery connector 502 is configured to: input power provided by the charging chip to the multi-cell battery;
  • the switching module 503 is configured to: when the multi-cell battery is charged, switch each of the multi-cell batteries into a series state to be connected to the battery connector; when the multi-cell battery is not charged At the time, each of the cells in the multi-cell battery is switched to a parallel state to be connected to the battery connector.
  • the circuit when the multi-cell battery is charged, the circuit is switched into a series connection of the cells, and compared with the parallel connection of the cells, the overall voltage of the battery is improved, and the charging time is kept constant (compared with the parallel connection of the cells).
  • the current Under the current, the current can be reduced to about 1/N (N is the number of cells) in parallel with the cells, so that the energy lost in the charging path is reduced, and the heat is reduced.
  • the charging current when the cells are charged in series, the charging current can be reduced to 1/N of the charging current when the cells are connected in parallel, and the charging time can be kept constant, and the charging path is greatly reduced.
  • the energy loss reduces heat generation.
  • the charging and discharging circuit may further include:
  • the high voltage adapter circuit 504 is connected between the external power source and the charging chip.
  • the high voltage adapting circuit 504 is for satisfying the requirement that the voltage is NV when the cells are connected in series; the high voltage adapting circuit can also be integrated into the charger of the mobile terminal or be made into a separate device.
  • the charging and discharging circuit may further include:
  • Step-down conversion circuit 505
  • the battery connector 502 is further configured to: supply power output by the multi-cell battery to a system circuit of the mobile terminal; when the multi-cell battery is charged, pass through the buck conversion circuit 505 The system circuit of the mobile terminal is powered; when the multi-cell battery is not charged, power is directly supplied to the system circuit of the mobile terminal.
  • the buck conversion circuit 505 is a BUCK circuit; the system circuit of the mobile terminal refers to a circuit other than the charging and discharging circuit in the mobile terminal; of course, an independent switching module 503 may also be used. To switch the connection of the battery connector 502 and the system circuit.
  • the charging and discharging circuit may further include:
  • a temperature sensor (not shown) configured to: measure a temperature of the multi-cell battery
  • a current regulating circuit 506 is connected between the charging chip 501 and the battery connector 502; and is configured to increase a charging current of the multi-cell battery when a temperature measured by the temperature sensor is less than a predetermined threshold.
  • the switching module may specifically include:
  • N-1 switches N is the number of cells in the multi-cell battery; each of the switches includes a first end, a second end, a third end, and a fourth end; When the multi-cell battery starts to charge the control signal, switching to the first end and the second end are connected, the third end and the fourth end are suspended; when receiving the control indicating that the multi-cell battery stops charging Switching, the first end is connected to the third end, and the second end is connected to the fourth end;
  • the second end 12 of the switch i is connected to the anode of the i+1th cell; the first end 11 is connected to the cathode of the i-th cell; the third end 13 and the last cell (electricity in FIG. 1) Negative electrode 1 of core N) Connecting to the negative pole of the battery connector; the fourth end 14 and the positive pole of the first battery core (cell 1 in FIG. 1) are connected together to the positive pole of the battery connector; i is 1 to N-1 Each integer.
  • control signal indicating start/stop charging may be, but is not limited to, generated by a system circuit of the mobile terminal according to a notification signal of the charging chip.
  • the first and second ends of each switch are connected, which is equivalent to the connection of the anode of the first battery cell to the positive electrode of the battery connector, and the negative electrode of the last battery cell to the negative electrode of the battery connector.
  • the negative poles of each battery core are connected to the positive pole of the next battery core, so that the batteries are connected in series; when the charging is stopped, the first and third ends of the switch are connected, which is equivalent to connecting the battery connector to the negative pole of each battery core.
  • the negative poles are connected to the second and fourth ends of the switches, and the positive poles of the respective batteries are connected together to the positive pole of the battery connector, so that the cells are connected in parallel.
  • the battery connector, the switch, and the battery core are used as the battery side
  • the system circuit, the charging chip, and the BUCK circuit are used as the mobile phone side.
  • the system circuit of the mobile terminal may also send a control signal indicating start/stop charging to the battery connector to determine whether the current multi-cell battery is currently charging.
  • the control signal sent to the battery connector may be the same as that sent to each switch, or may be two independent control signals.
  • each battery core i 1, 2, ..., N-1
  • the anode of the battery 1 is connected to the anode of the battery connector;
  • the third end of the third end of each switch Connect to the connection point of cell 1 and the positive terminal of the battery connector.
  • Each switch switches between the first end, the second end, the third end, and the fourth end according to a first control signal sent by the system circuit of the mobile terminal.
  • the battery connector is directly connected to the system circuit of the mobile terminal according to a second control signal sent by the system circuit of the mobile terminal (ie, the second system power supply path in FIG. 2), or connected and moved through the BUCK circuit.
  • the system circuitry of the terminal is connected (ie, the first system power supply path in Figure 2).
  • the system circuit of the mobile terminal generates first and second control signals indicating start charging or stopping charging according to the notification signal of the charging chip.
  • the high voltage adapter supplies the voltage supplied from the external power source to the battery connector through the charging chip.
  • the current coming in from the positive terminal of the battery connector first flows to the positive pole of the battery cell 1, then from the positive electrode of the battery cell 1 to the switch 1, and then to the battery cell 2... and so on until it flows to the battery cell N, from the negative electrode of the battery cell N. Return to the negative terminal of the battery connector. It can be seen that the cells are charged in series.
  • a BUCK circuit When charging and need to power the system, a BUCK circuit is needed to reduce the high voltage to a suitable value to ensure that the system is working properly. As shown in FIG. 4, the battery connector is connected to the system circuit through a BUCK circuit.
  • Embodiment 2 A mobile terminal using a multi-cell battery includes:
  • the circuit includes:
  • the charging chip is configured to: provide power when the external power source is connected, and notify the system circuit; notify the system circuit when the external power source is disconnected;
  • a battery connector configured to: input power provided by the charging chip to the multi-cell battery, and input power provided by the multi-cell battery to the system circuit;
  • a switching module configured to: when receiving a control signal sent by the system circuit indicating that the multi-cell battery starts charging, switching each of the cells in the multi-cell battery to a series state and connecting the battery Connected to the system circuit when received, indicating that the multi-cell battery stops charging When the control signal is received, each of the cells in the multi-cell battery is switched to a parallel state to be connected to the battery connector.
  • the terminal may further include:
  • the high voltage adapter circuit is connected between the external power source and the charging chip.
  • the terminal may further include:
  • the battery connector inputting the power provided by the multi-cell battery to the system circuit means:
  • the battery connector supplies power to a system circuit of the mobile terminal through the buck conversion circuit when the multi-cell battery is charged; directly to the mobile terminal when the multi-cell battery is not charged The system circuit is powered.
  • the terminal may further include:
  • a temperature sensor configured to: measure a temperature of the multi-cell battery
  • a current regulating circuit connected between the charging chip and the battery connector; configured to increase a charging current of the multi-cell battery when the measured temperature is less than a predetermined threshold.
  • the switching module may specifically include:
  • N-1 switches N is the number of cells in the multi-cell battery; each of the switches includes a first end, a second end, a third end, and a fourth end; When the multi-cell battery starts to charge the control signal, switching to the first end and the second end are connected, the third end and the fourth end are suspended; when receiving the control indicating that the multi-cell battery stops charging Switching, the first end is connected to the third end, and the second end is connected to the fourth end;
  • the second end of the switch i is connected to the positive pole of the i+1th cell; the first end is connected to the negative pole of the i-th battery; the third end is connected to the battery connection together with the negative pole of the last cell.
  • the negative electrode of the device; the fourth end and the positive electrode of the first cell are connected together to the positive electrode of the battery connector; i is an integer of 1 to N-1.
  • the amount of heat generated in the charging path can be reduced without increasing the charging time; and in the case where the heat is not severe, the charging time can be shortened. Therefore, the present invention has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种充放电电路及相应的移动终端,充放电电路包括:充电芯片(501),设置成当连接外接电源时提供电能;电池连接器(502),设置成将充电芯片提供的电能输入给多电芯电池(1-N);切换模块(503),设置成当多电芯电池充电时,将多电芯电池中的各电芯切换为串联状态与电池连接器相连;当多电芯电池不充电时,将多电芯电池中的各电芯切换为并联状态与电池连接器相连;充放电电路能够在保持充电时间不增加的情况下,减少充电通路的发热量;在发热不严重的情况下,还可以缩短充电时间。

Description

一种充放电电路及相应的移动终端 技术领域
本发明涉及充放电技术领域,尤其涉及一种充放电电路及相应的移动终端。
背景技术
移动终端作为重要的通讯和娱乐设备,已渐渐成为人们日常生活中不可或缺的产品。随着上网、游戏、视频、摄像等应用越来越多,耗电情况越来越严重,有些大屏的移动终端为了满足其续航的要求,采用多电芯电池,提升了电池整体容量,增加了续航时间。但此多电芯电池采用的是电芯并联方式,在设计中需要采用大电流充电才能满足充电时间的要求,但大电流充电引入了发热问题,大电流充电使整个充电通路发热严重,从而使手机整体在充电时发热严重,用户体验不佳。
发明内容
本发明要解决的技术问题是如何在保持充电时间不增加的情况下,减少充电通路的发热量;在发热不严重的情况下,还可以缩短充电时间。
为了解决上述问题,采用如下技术方案:
一种充放电电路,该电路使用多电芯电池,包括充电芯片、电池连接器和切换模块,其中:
所述充电芯片设置成:当连接外接电源时提供电能;
所述电池连接器设置成:将所述充电芯片提供的电能输入给所述多电芯电池;
所述切换模块设置成:当所述多电芯电池充电时,将所述多电芯电池中的各电芯切换为串联状态与所述电池连接器相连;当所述多电芯电池不充电时,将所述多电芯电池中的各电芯切换为并联状态与所述电池连接器相连。
可选地,该电路还包括高压适配电路,其中,
所述高压适配电路,连接在外接电源和所述充电芯片之间。
可选地,该电路还包括降压式变换电路,其中,
所述电池连接器还设置成:将所述多电芯电池输出的电能提供给移动终端的系统电路;当所述多电芯电池充电时,通过所述降压式变换电路向所述移动终端的系统电路供电;当所述多电芯电池不充电时,直接向所述移动终端的系统电路供电。
可选地,该电路还包括温度传感器和电流调节电路,其中,
所述温度传感器设置成:测量所述多电芯电池的温度;
所述电流调节电路,连接在所述充电芯片和所述电池连接器之间,设置成:当所述温度传感器所测量的温度小于预定阈值时,增大所述多电芯电池的充电电流。
可选地,所述切换模块包括N-1个开关,其中,
N为所述多电芯电池中电芯的个数;每个所述开关均包括第一端、第二端、第三端和第四端;
当收到表示所述多电芯电池开始充电的控制信号时,任一开关i切换成将所述第一端和第二端相连,所述第三端、第四端悬空;
当收到表示所述多电芯电池停止充电的控制信号时,任一开关i切换成将所述第一端与所述第三端相连,所述第二端与所述第四端相连;
其中,任一开关i的第二端与第i+1个电芯的正极相连;任一开关i的第一端与第i个电芯的负极相连;任一开关i的第三端和最后一个电芯的负极一起连接到所述电池连接器的负极;任一开关i的第四端和第一个电芯的正极一起连接到所述电池连接器的正极;其中,i为1到N-1的整数。
一种移动终端,充放电电路。
所述充放电电路包括充电芯片、电池连接器和切换模块,其中,
所述充电芯片设置成:当连接外接电源时提供电能,并通知所述系统电路;当外接电源断开时通知所述系统电路;
所述电池连接器设置成:将所述充电芯片提供的电能输入给所述多电芯电池,以及将所述多电芯电池的提供的电能输入给所述系统电路;
所述切换模块设置成:当收到所述系统电路发出的表示所述多电芯电池开始充电的控制信号时,将所述多电芯电池中的各电芯切换为串联状态与所述电池连接器相连;当收到所述系统电路发出的表示所述多电芯电池停止充电的控制信号时,将所述多电芯电池中的各电芯切换为并联状态与所述电池连接器相连。
可选地,该移动终端还包括高压适配电路,其中,
所述高压适配电路,连接在外接电源和所述充电芯片之间。
可选地,该移动终端还包括降压式变换电路,其中,
所述电池连接器设置成按照如下方式将所述多电芯电池的提供的电能输入给所述系统电路:
当所述多电芯电池充电时,所述电池连接器通过所述降压式变换电路向所述移动终端的系统电路供电;当所述多电芯电池不充电时,所述电池连接器直接向所述移动终端的系统电路供电。
可选地,该移动终端还包括温度传感器和电流调节电路,其中,
所述温度传感器设置成:测量所述多电芯电池的温度;
所述电流调节电路,连接在所述充电芯片和所述电池连接器之间,设置成:当所述温度传感器所测量的温度小于预定阈值时,增大所述多电芯电池的充电电流。
可选地,所述切换模块包括N-1个开关,其中,
N为所述多电芯电池中电芯的个数;每个所述开关均包括第一端、第二端、第三端和第四端;
当收到表示所述多电芯电池开始充电的控制信号时,任一开关i切换成将所述第一端与所述第二端相连,所述第三端、第四端悬空;
当收到表示所述多电芯电池停止充电的控制信号时,任一开关i切换成将所述第一端与所述第三端相连,所述第二端与所述第四端相连;
其中,任一开关i的第二端与第i+1个电芯的正极相连;任一开关i的第一端与第i个电芯的负极相连;任一开关i的第三端和最后一个电芯的负极一起连接到所述电池连接器的负极;任一开关i的第四端和第一个电芯的正极一起连接到所述电池连接器的正极;其中,i为1到N-1的整数。
与相关技术相比,本发明技术方案能使具有多电芯电池的移动终端充电时保持充电时间不增加的同时,可以减小充电电流,从而减小充电通路上的能量损耗,减小充电通路的发热,使整机温度不至于太高;当整机的发热不很严重时,可以适当增大充电电流,进一步缩短充电时间,提高用户体验和实用性。
附图概述
图1实施例一的一种实施方式中充放电电路的局部示意图;
图2为实施例一的例子的系统框图;
图3为上述例子充电时的系统框图;
图4为上述例子不充电时的系统框图;
图5为上述例子充电时系统供电框图。
本发明的较佳实施方式
下面将结合附图及实施例对本发明的技术方案进行更详细的说明。
需要说明的是,如果不冲突,本发明实施例以及实施例中的各个特征可以相互结合,均在本发明的保护范围之内。另外,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
实施例一、一种使用多电芯电池的移动终端的充放电电路,如图5所示,包括:
充电芯片501,设置成:提供电能;
电池连接器502,设置成:将所述充电芯片提供的电能输入给所述多电芯电池;
切换模块503,设置成:当所述多电芯电池充电时,将所述多电芯电池中的各电芯切换为串联状态与所述电池连接器相连;当所述多电芯电池不充电时,将所述多电芯电池中的各电芯切换为并联状态与所述电池连接器相连。
本实施例中,当多电芯电池充电时,电路切换成电芯串联,与电芯并联相比较,提高了电池的整体电压,在维持充电时间不变(与电芯并联相比较)的情况下,电流可以大约减小到电芯并联的1/N(N为电芯的个数),从而使充电通路上损耗的能量减少,发热减小。理论分析如下所示:
设共有N个电芯,并联时电压为V,则串联时电压为NV。设电芯并联时充电的电流为I,电芯串联时充电的电流为I,电芯并联充电和电芯串联充电使用相同的时间T,根据能量公式E=U*I*T可得在电芯并联充电和电芯串联充电两种情况下充满电所用的能量分别为:
E=V*I*T;
E=NV*I*T;
因为两种充电模式充满电时所用的能量相同,即E=E,所以可得I=I/N。
再假设充电通路上电阻为R,则根据公式E=I2*R,可得电芯并联充电和电芯串联充电在充电通路上消耗的能量分别为:
E并耗=I 2*R;
E串耗=I 2*R;
因为I=I/N,所以可得E串耗=E并耗/N2
可见,充电通路上的能量损耗会大大减少,从而减小了终端整体的发热。
根据上面推理过程可以得出,当电芯串联充电的时候,充电电流可以降至电芯并联时充电电流的1/N,也能够保证充电时间维持不变,同时,大大减小了充电通路上的能量损耗,减小了发热。
本实施例的一种实施方式中,所述充放电电路还可以包括:
高压适配电路504,连接在外接电源和所述充电芯片之间。
该高压适配电路504是为了满足电芯串联时电压为NV的需求;该高压适配电路也可以集成到所述移动终端的充电器中,或做成一个独立的装置。
本实施例的一种实施方式中,所述充放电电路还可以包括:
降压式变换电路505;
所述电池连接器502还设置成:将所述多电芯电池输出的电能提供给所述移动终端的系统电路;当所述多电芯电池充电时,通过所述降压式变换电路505向所述移动终端的系统电路供电;当所述多电芯电池不充电时,直接向所述移动终端的系统电路供电。
本实施方式中,所述降压式变换电路505即BUCK电路;所述移动终端的系统电路是指所述移动终端中充放电电路以外的电路;当然,也可以采用一个独立的切换模块503,来切换所述电池连接器502和系统电路的连接方式。
本实施例的一种实施方式中,所述充放电电路还可以包括:
温度传感器(图中未示出),设置成:测量所述多电芯电池的温度;
电流调节电路506,连接在所述充电芯片501和所述电池连接器502之间;设置成:当温度传感器所测量的温度小于预定阈值时,增大所述多电芯电池的充电电流。
本实施方式中,根据公式E=U*I*T,如果在发热能够满足要求的条件下,适当增加充电电流的话,则充电时间能够进一步减小。
本实施例的一种实施方式中,所述切换模块具体可以包括:
N-1个开关;N为所述多电芯电池中电芯的个数;各所述开关包括第一端、第二端、第三端、第四端;所述开关当收到表示所述多电芯电池开始充电的控制信号时,切换成所述第一端、第二端相连,所述第三端、第四端悬空;当收到表示所述多电芯电池停止充电的控制信号时,切换成所述第一端与所述第三端相连,所述第二端与所述第四端相连;
其中,开关i的第二端12与第i+1个电芯的正极相连;第一端11与第i个电芯的负极相连;第三端13和最后一个电芯(图1中的电芯N)的负极一 起连接到所述电池连接器的负极;第四端14和第一个电芯(图1中的电芯1)的正极一起连接到所述电池连接器的正极;i为1到N-1的各整数。
如图1所示,假设只有两个电芯,一个开关,则该开关的第三端13和电芯2的负极一起连接到所述电池连接器的负极;第四端14和电芯1的正极一起连接到所述电池连接器的正极;第二端12与电芯2的正极相连;第一端11与电芯1的负极相连。
本实施方式中,所述表示开始/停止充电的控制信号可以但不限于由所述移动终端的系统电路根据所述充电芯片的通知信号生成。当开始充电时,各开关的第一、第二端相连,相当于除了第一个电芯的正极连接到所述电池连接器的正极、最后一个电芯的负极连接电池连接器的负极以外,各电芯的负极均连接到下一个电芯的正极,从而使各电芯形成串联;当停止充电时,开关的第一、第三端相连,相当于各电芯的负极均连接电池连接器的负极,各开关的第二、第四端相连,相当于各电芯的正极一起连接到所述电池连接器的正极,从而使各电芯形成并联。
本实施方式的一个备选方案如图2所示,为更加清楚,将电池连接器及开关、电芯作为电池侧,系统电路、充电芯片和BUCK电路作为手机侧。
所述移动终端的系统电路还可以发送表示开始/停止充电的控制信号发送给所述电池连接器,以使其确定当前所述多电芯电池是否在充电。发给所述电池连接器的控制信号和发给各开关的可以是同一个,也可以是各自独立的两个控制信号。
图2中,各电芯i(i=1、2、……、N-1)的负极连接到开关i的第一端,电芯N的负极连接到所述电池连接器的负极;各电芯i(i=2、3、……、N)的正极连接到开关i-1的切换端;电芯1的正极与所述电池连接器的正极相连;各开关的第三端第四端连接到电芯1和电池连接器正极的连接点上。各开关根据移动终端的系统电路发出的第一控制信号切换第一端、第二端、第三端、第四端之间的通断。
所述电池连接器根据移动终端的系统电路发出的第二控制信号,直接与所述移动终端的系统电路相连(即图2中的第二系统供电通路),或通过BUCK电路连接与所述移动终端的系统电路相连(即图2中的第一系统供电通路)。
所述移动终端的系统电路根据所述充电芯片的通知信号生成表示开始充电或停止充电的第一、第二控制信号。
当外接电源充电时,如图3所示,高压适配器将外接电源提供的电压提高后通过所述充电芯片供给所述电池连接器。从电池连接器正极进来的电流首先流向电芯1的正极,然后从电芯1的正极到达开关1,再流向电芯2……以此类推,直到流向电芯N,从电芯N的负极返回电池连接器的负极。可以看出,各电芯以串联的方式进行充电。
当停止充电时,如图4所示,除了电芯1的正极直接连接电池连接器的正极、电芯N的负极直接连接电池连接器的负极以外,各电芯的正极通过所连接的开关(为了更加清楚看出连接关系,图4中未画出开关)汇集到电芯1的正极与电池连接器正极的连接线上,各电芯的负极通过所连接的开关汇集到电芯N的负极与电池连接器负极的连接线上;各电芯以并联的方式给系统电路供电。
当正在充电并且需要给系统供电的时候,需要一个BUCK电路把高电压降低到合适值提供给系统,保证系统正常工作。如图4所示,电池连接器通过BUCK电路和系统电路连接。
实施例二、一种使用多电芯电池的移动终端,包括:
系统电路和如上所述的任意的充放电电路;
为了更加清楚移动终端的结构,下面将对所述充放电电路的结构进行进一步描述,该电路包括:
充电芯片,设置成:当连接外接电源时提供电能,并通知所述系统电路;当外接电源断开时通知所述系统电路;
电池连接器,设置成:将所述充电芯片提供的电能输入给所述多电芯电池,以及将所述多电芯电池的提供的电能输入给所述系统电路;
切换模块,设置成:当收到所述系统电路发出的表示所述多电芯电池开始充电的控制信号时,将所述多电芯电池中的各电芯切换为串联状态与所述电池连接器相连;当收到所述系统电路发出的表示所述多电芯电池停止充电 的控制信号时,将所述多电芯电池中的各电芯切换为并联状态与所述电池连接器相连。
本实施例的一种实施方式中,所述终端还可以包括:
高压适配电路,连接在外接电源和所述充电芯片之间。
本实施例的一种实施方式中,所述终端还可以包括:
降压式变换电路;
所述电池连接器将所述多电芯电池的提供的电能输入给所述系统电路是指:
所述电池连接器当所述多电芯电池充电时,通过所述降压式变换电路向所述移动终端的系统电路供电;当所述多电芯电池不充电时,直接向所述移动终端的系统电路供电。
本实施例的一种实施方式中,所述终端还可以包括:
温度传感器,设置成:测量所述多电芯电池的温度;
电流调节电路,连接在所述充电芯片和所述电池连接器之间;设置成:当所测量的温度小于预定阈值时,增大所述多电芯电池的充电电流。
本实施例的一种实施方式中,所述切换模块具体可以包括:
N-1个开关;N为所述多电芯电池中电芯的个数;各所述开关包括第一端、第二端、第三端、第四端;所述开关当收到表示所述多电芯电池开始充电的控制信号时,切换成所述第一端、第二端相连,所述第三端、第四端悬空;当收到表示所述多电芯电池停止充电的控制信号时,切换成所述第一端与所述第三端相连,所述第二端与所述第四端相连;
其中,开关i的第二端与第i+1个电芯的正极相连;第一端与第i个电芯的负极相连;第三端和最后一个电芯的负极一起连接到所述电池连接器的负极;第四端和第一个电芯的正极一起连接到所述电池连接器的正极;i为1到N-1的各整数。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本发明不限制于任何特定形式的硬件和软件的结合。
当然,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明的权利要求的保护范围。
工业实用性
本发明技术方案能够在保持充电时间不增加的情况下,减少充电通路的发热量;在发热不严重的情况下,还可以缩短充电时间。因此本发明具有很强的工业实用性。

Claims (10)

  1. 一种充放电电路,该电路使用多电芯电池,包括充电芯片、电池连接器和切换模块,其中:
    所述充电芯片设置成:当连接外接电源时提供电能;
    所述电池连接器设置成:将所述充电芯片提供的电能输入给所述多电芯电池;
    所述切换模块设置成:当所述多电芯电池充电时,将所述多电芯电池中的各电芯切换为串联状态与所述电池连接器相连;当所述多电芯电池不充电时,将所述多电芯电池中的各电芯切换为并联状态与所述电池连接器相连。
  2. 如权利要求1所述的充放电电路,该电路还包括高压适配电路,其中,
    所述高压适配电路,连接在外接电源和所述充电芯片之间。
  3. 如权利要求1所述的充放电电路,该电路还包括降压式变换电路,其中,
    所述电池连接器还设置成:将所述多电芯电池输出的电能提供给移动终端的系统电路;当所述多电芯电池充电时,通过所述降压式变换电路向所述移动终端的系统电路供电;当所述多电芯电池不充电时,直接向所述移动终端的系统电路供电。
  4. 如权利要求1所述的充放电电路,该电路还包括温度传感器和电流调节电路,其中,
    所述温度传感器设置成:测量所述多电芯电池的温度;
    所述电流调节电路,连接在所述充电芯片和所述电池连接器之间,设置成:当所述温度传感器所测量的温度小于预定阈值时,增大所述多电芯电池的充电电流。
  5. 如权利要求1所述的充放电电路,其中,所述切换模块包括N-1个开关,其中,
    N为所述多电芯电池中电芯的个数;每个所述开关均包括第一端、第二端、第三端和第四端;
    当收到表示所述多电芯电池开始充电的控制信号时,任一开关i切换成将所述第一端和第二端相连,所述第三端、第四端悬空;
    当收到表示所述多电芯电池停止充电的控制信号时,任一开关i切换成将所述第一端与所述第三端相连,所述第二端与所述第四端相连;
    其中,任一开关i的第二端与第i+1个电芯的正极相连;任一开关i的第一端与第i个电芯的负极相连;任一开关i的第三端和最后一个电芯的负极一起连接到所述电池连接器的负极;任一开关i的第四端和第一个电芯的正极一起连接到所述电池连接器的正极;其中,i为1到N-1的整数。
  6. 一种移动终端,充放电电路,
    所述充放电电路包括充电芯片、电池连接器和切换模块,其中,
    所述充电芯片设置成:当连接外接电源时提供电能,并通知所述系统电路;当外接电源断开时通知所述系统电路;
    所述电池连接器设置成:将所述充电芯片提供的电能输入给所述多电芯电池,以及将所述多电芯电池的提供的电能输入给所述系统电路;
    所述切换模块设置成:当收到所述系统电路发出的表示所述多电芯电池开始充电的控制信号时,将所述多电芯电池中的各电芯切换为串联状态与所述电池连接器相连;当收到所述系统电路发出的表示所述多电芯电池停止充电的控制信号时,将所述多电芯电池中的各电芯切换为并联状态与所述电池连接器相连。
  7. 如权利要求6所述的移动终端,该移动终端还包括高压适配电路,其中,
    所述高压适配电路,连接在外接电源和所述充电芯片之间。
  8. 如权利要求6所述的终端,该移动终端还包括降压式变换电路,其中,
    所述电池连接器设置成按照如下方式将所述多电芯电池的提供的电能输入给所述系统电路:
    当所述多电芯电池充电时,所述电池连接器通过所述降压式变换电路向所述移动终端的系统电路供电;当所述多电芯电池不充电时,所述电池连接器直接向所述移动终端的系统电路供电。
  9. 如权利要求6所述的移动终端,该移动终端还包括温度传感器和电流调节电路,其中,
    所述温度传感器设置成:测量所述多电芯电池的温度;
    所述电流调节电路,连接在所述充电芯片和所述电池连接器之间,设置成:当所述温度传感器所测量的温度小于预定阈值时,增大所述多电芯电池的充电电流。
  10. 如权利要求6所述的移动终端,所述切换模块包括N-1个开关,其中,
    N为所述多电芯电池中电芯的个数;每个所述开关均包括第一端、第二端、第三端和第四端;
    当收到表示所述多电芯电池开始充电的控制信号时,任一开关i切换成将所述第一端与所述第二端相连,所述第三端、第四端悬空;
    当收到表示所述多电芯电池停止充电的控制信号时,任一开关i切换成将所述第一端与所述第三端相连,所述第二端与所述第四端相连;
    其中,任一开关i的第二端与第i+1个电芯的正极相连;任一开关i的第一端与第i个电芯的负极相连;任一开关i的第三端和最后一个电芯的负极一起连接到所述电池连接器的负极;任一开关i的第四端和第一个电芯的正极一起连接到所述电池连接器的正极;其中,i为1到N-1的整数。
PCT/CN2014/094543 2014-08-19 2014-12-22 一种充放电电路及相应的移动终端 WO2015117515A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410410305.X 2014-08-19
CN201410410305.XA CN105471001A (zh) 2014-08-19 2014-08-19 一种使用多电芯电池的移动终端及其充放电电路

Publications (1)

Publication Number Publication Date
WO2015117515A1 true WO2015117515A1 (zh) 2015-08-13

Family

ID=53777318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094543 WO2015117515A1 (zh) 2014-08-19 2014-12-22 一种充放电电路及相应的移动终端

Country Status (2)

Country Link
CN (1) CN105471001A (zh)
WO (1) WO2015117515A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105978049A (zh) * 2015-10-26 2016-09-28 乐视移动智能信息技术(北京)有限公司 电池倍压充电电路和移动终端
CN106712157A (zh) * 2016-11-02 2017-05-24 上海传英信息技术有限公司 一种充电管理系统
CN109193881A (zh) * 2018-11-23 2019-01-11 北斗航天汽车(北京)有限公司 带有快速充电功能的电池包及快速充电方法
CN112311037A (zh) * 2019-07-31 2021-02-02 北京小米移动软件有限公司 终端设备
CN112448424A (zh) * 2019-08-29 2021-03-05 北京小米移动软件有限公司 终端
CN112952217A (zh) * 2019-11-25 2021-06-11 北京新能源汽车股份有限公司 一种电芯电压采集装置、方法及电动汽车
CN113315186A (zh) * 2020-02-27 2021-08-27 Oppo广东移动通信有限公司 充电控制电路及电子设备

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105896670A (zh) * 2016-05-25 2016-08-24 乐视控股(北京)有限公司 一种充电装置及移动终端
CN106169798A (zh) * 2016-09-28 2016-11-30 北京小米移动软件有限公司 高压充电系统、高压充电电池及终端设备
WO2018068243A1 (zh) 2016-10-12 2018-04-19 广东欧珀移动通信有限公司 移动终端
CN107947252B (zh) 2016-10-12 2020-09-22 Oppo广东移动通信有限公司 终端和设备
WO2018068461A1 (zh) * 2016-10-12 2018-04-19 广东欧珀移动通信有限公司 待充电设备和充电方法
US10259336B2 (en) * 2016-10-18 2019-04-16 Ford Global Technologies, Llc Charging a battery using interpack switch
JP6952127B2 (ja) 2017-04-07 2021-10-20 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 無線充電装置、被充電機器及びその制御方法
JP7059290B2 (ja) 2017-04-07 2022-04-25 オッポ広東移動通信有限公司 無線充電装置、無線充電方法及び被充電機器
DK3462565T3 (da) 2017-04-13 2021-04-26 Guangdong Oppo Mobile Telecommunications Corp Ltd Anordning, der skal oplades, og opladningsfremgangsmåde
CN107181306A (zh) * 2017-06-29 2017-09-19 深圳市泰衡诺科技有限公司上海分公司 一种快充系统
CN109560335B (zh) * 2017-09-27 2020-10-09 北京小米移动软件有限公司 电池及其充放电方法、装置、终端、存储介质
CN108964184A (zh) * 2018-07-20 2018-12-07 中新国际电子有限公司 一种电池包、笔记本电脑充电系统及方法
WO2020124588A1 (zh) * 2018-12-21 2020-06-25 Oppo广东移动通信有限公司 电池供电电路、待充电设备及充电控制方法
CN109861361A (zh) * 2019-04-04 2019-06-07 南昌黑鲨科技有限公司 电池充放电管理系统
KR20210064736A (ko) 2019-11-26 2021-06-03 삼성전자주식회사 전자 장치 및 이의 충전 방법
CN111327097B (zh) * 2020-03-09 2023-08-08 Oppo广东移动通信有限公司 充电电路及电子设备
CN114094647B (zh) * 2020-12-29 2022-11-11 荣耀终端有限公司 一种电芯的连接状态切换方法、电源系统和电子设备
CN114123385A (zh) * 2021-10-30 2022-03-01 荣耀终端有限公司 一种充电和放电电路、充电的方法以及电子设备
CN216389527U (zh) * 2021-11-25 2022-04-26 宁德时代新能源科技股份有限公司 电池加热系统、电池包和用电装置
CN114336857B (zh) * 2021-12-30 2024-05-03 深圳市沃特沃德信息有限公司 串联充电并联供电的转换电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101816110A (zh) * 2007-10-02 2010-08-25 吉列公司 具有多个电池的电路布置
CN103187737A (zh) * 2011-12-30 2013-07-03 祥业科技股份有限公司 微控制器整合型电池充/放电器
CN103532203A (zh) * 2013-10-30 2014-01-22 薛可扬 一种电池组应用节点及矩阵电池管理系统与实现方法
CN104022542A (zh) * 2013-02-28 2014-09-03 三美电机株式会社 充放电控制电路以及充放电控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07212980A (ja) * 1994-01-13 1995-08-11 Fujitsu Ltd バッテリの充・放電装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101816110A (zh) * 2007-10-02 2010-08-25 吉列公司 具有多个电池的电路布置
CN103187737A (zh) * 2011-12-30 2013-07-03 祥业科技股份有限公司 微控制器整合型电池充/放电器
CN104022542A (zh) * 2013-02-28 2014-09-03 三美电机株式会社 充放电控制电路以及充放电控制方法
CN103532203A (zh) * 2013-10-30 2014-01-22 薛可扬 一种电池组应用节点及矩阵电池管理系统与实现方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105978049A (zh) * 2015-10-26 2016-09-28 乐视移动智能信息技术(北京)有限公司 电池倍压充电电路和移动终端
CN106712157A (zh) * 2016-11-02 2017-05-24 上海传英信息技术有限公司 一种充电管理系统
CN106712157B (zh) * 2016-11-02 2024-02-20 上海传英信息技术有限公司 一种充电管理系统
CN109193881A (zh) * 2018-11-23 2019-01-11 北斗航天汽车(北京)有限公司 带有快速充电功能的电池包及快速充电方法
CN112311037A (zh) * 2019-07-31 2021-02-02 北京小米移动软件有限公司 终端设备
CN112311037B (zh) * 2019-07-31 2022-05-06 北京小米移动软件有限公司 终端设备
CN112448424A (zh) * 2019-08-29 2021-03-05 北京小米移动软件有限公司 终端
CN112952217A (zh) * 2019-11-25 2021-06-11 北京新能源汽车股份有限公司 一种电芯电压采集装置、方法及电动汽车
CN113315186A (zh) * 2020-02-27 2021-08-27 Oppo广东移动通信有限公司 充电控制电路及电子设备
CN113315186B (zh) * 2020-02-27 2024-02-27 Oppo广东移动通信有限公司 充电控制电路及电子设备

Also Published As

Publication number Publication date
CN105471001A (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
WO2015117515A1 (zh) 一种充放电电路及相应的移动终端
WO2023000732A1 (zh) 一种充放电电路和电子设备
CN204407954U (zh) 多输入输出快充移动电源
CN102856612A (zh) 混合动力电源系统
KR101630002B1 (ko) 에너지 저장 시스템
TW201535928A (zh) 行動電源電路及其方法
CN106464006A (zh) 不间断供电电源装置
WO2024193196A1 (zh) 电压均衡模块、方法和储能装置、可读存储介质
US11539226B2 (en) Charging circuit and electronic device
CN202333884U (zh) 并联型锂离子电池组的充放电控制系统
CN116707051B (zh) 双电池充放电电路及双电池充放电方法、电子设备和介质
CN201222661Y (zh) 具有存储期零放电功能的锂电池保护装置
CN113036880A (zh) 充电装置、电子设备及充电方法
CN206195384U (zh) 一种可通信的锂电池组智能均衡充放电电路装置
CN103501036B (zh) 一种锂电池充放电控制电路
JP2011147203A (ja) 充電電池の過充電保護装置
CN109638904A (zh) 锂电池保护板
WO2016090852A1 (zh) 终端电池及其充放电的控制方法
CN108599353A (zh) 一种高压锂电池储能柜并联扩容系统
RU98071U1 (ru) Система автоматического контроля и заряда аккумуляторных батарей
CN110400982A (zh) 一种充放电方法及电子设备
KR20120056752A (ko) 휴대용 전자기기 충전 장치 및 방법
JP2011154925A (ja) リチウムイオン組電池の充電システムおよび充電方法
CN214479704U (zh) 供电装置和电子设备
CN203522276U (zh) 一种锂电池充放电控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881664

Country of ref document: EP

Kind code of ref document: A1