WO2019200850A1 - 一种合金的制备方法 - Google Patents
一种合金的制备方法 Download PDFInfo
- Publication number
- WO2019200850A1 WO2019200850A1 PCT/CN2018/109571 CN2018109571W WO2019200850A1 WO 2019200850 A1 WO2019200850 A1 WO 2019200850A1 CN 2018109571 W CN2018109571 W CN 2018109571W WO 2019200850 A1 WO2019200850 A1 WO 2019200850A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silica
- ore
- powder
- alloy
- hearth furnace
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/24—Binding; Briquetting ; Granulating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B5/00—General methods of reducing to metals
- C22B5/02—Dry methods smelting of sulfides or formation of mattes
- C22B5/12—Dry methods smelting of sulfides or formation of mattes by gases
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
Definitions
- the invention belongs to the technical field of alloy materials, and in particular relates to a method for preparing an alloy.
- the structure and properties of the constituent phases of the alloy play a decisive role in the properties of the alloy.
- the change of the alloy structure ie the relative amount of phases in the alloy, the grain size, shape and distribution of the phases, also affect the properties of the alloy.
- the use of a combination of various elements to form a variety of different alloy phases, and then appropriate treatment may meet a variety of different performance requirements.
- the invention provides a method for preparing an alloy, comprising:
- Step (1) grinding molybdenum ore and silica
- Step (2) uniformly mixing chromite powder, aluminum ore powder, magnesium ore powder, and forming a pellet by pressure ball molding;
- Step (3) pouring the pellet into a rotary hearth furnace
- Step (4) introducing a reducing gas to the bottom of the rotary hearth furnace
- Step (5) introducing a protective gas to the bottom of the rotary hearth furnace, and uniformly mixing the molybdenum ore and silica;
- Step (6) Melting and separating at a high temperature to obtain an alloy.
- the mass ratio of the molybdenum ore to the silica is from 1:0.1 to 1:5.
- the mass ratio of the chromite powder, the aluminum ore powder, the magnesium ore fines, the molybdenum ore and the silica is from 75 to 85:2 to 5:3 to 10:2 to 4:1. 12.
- the reducing gas comprises: hydrogen, or carbon monoxide.
- the time for introducing the reducing gas is 60 to 90 minutes.
- step (4) the time for the protective gas to pass is 30 to 60 minutes.
- step (4) the particle size of the molybdenum ore and silica is screened prior to mixing the molybdenum ore and silica.
- the screening tool is a 900-1300 mesh screen.
- the ball forming comprises specifically two ball forming.
- the pressure for the first ball forming is 10 to 15 MPa, and the pressure for the second ball molding is 16 to 20 MPa.
- the invention can solve the problem of segregation of raw materials by adding anti-segregation agent made of silica and molybdenum ore powder in the smelting process, and the scheme is simple in operation, low in cost and has good application prospect.
- a method for preparing an alloy comprising the steps of:
- Step (1) grinding molybdenum ore and silica
- Step (2) uniformly mixing chromite powder, aluminum ore powder, magnesium ore powder, and forming a pellet by pressure ball molding;
- Step (3) pouring the pellet into a rotary hearth furnace
- Step (4) introducing a reducing gas to the bottom of the rotary hearth furnace
- Step (5) introducing a protective gas to the bottom of the rotary hearth furnace, and uniformly mixing the molybdenum ore and silica;
- Step (6) Melting and separating at a high temperature to obtain an alloy.
- the mass ratio of the molybdenum ore to the silica is 1:0.1 to 1:5. Further, the mass ratio of molybdenum ore to silica is 1:1.
- the mass ratio of the chromite powder, the aluminum ore powder, the magnesium ore powder, the molybdenum ore and the silica is from 75 to 85:2 to 5:3 to 10:2 to 4:1 to 12. Further, the mass ratio of chromite powder, aluminum ore powder, magnesium ore fines, molybdenum ore and silica is: 80:4:6:3:7.
- the reducing gas comprises: hydrogen, or carbon monoxide.
- the time for introducing the reducing gas is 60 to 90 minutes. Further, the time for introducing the reducing gas is 60 to 80 minutes.
- the time for introducing the protective gas is 30 to 60 minutes. Further, the time for introducing the protective gas is 40 to 60 minutes.
- step (4) the particle size of the molybdenum ore and silica is screened prior to mixing the molybdenum ore and silica.
- the screening means is a 900-1300 mesh screen, and further a 1000-1100 mesh screen.
- the ball forming comprises specifically two ball forming.
- the pressure of the first ball forming is 10-15 MPa, and the pressure of the second ball forming is 16-20 MPa.
- the contact between the materials is made closer by the external force, which is beneficial to the subsequent reduction and smelting.
- Embodiment 1 Step (1): grinding molybdenum ore and silica; step (2): uniformly mixing chromite powder, aluminum ore powder, magnesium ore powder, and forming a pellet by pulverization, chromite
- the mass ratio of powder, aluminum ore powder, magnesium ore powder, molybdenum ore and silica is: 75:5:10:3:7; step (3): pouring the pellet into the rotary hearth furnace; step (4): The hydrogen gas is introduced into the bottom of the rotary hearth furnace, and the reducing gas is introduced for 60 minutes.
- the gas time is 30 minutes; step (6): high temperature melting separation, to obtain an alloy.
- step (1) grinding molybdenum ore and silica
- step (2) uniformly mixing chromite powder, aluminum ore powder, magnesium ore powder, and forming a pellet by pulverization, chromite
- the mass ratio of powder, aluminum ore powder, magnesium ore powder, molybdenum ore and silica is: 85:2:3:4:6
- step (3) pouring the pellet into the rotary hearth furnace
- the time is 40 minutes
- step (6) high temperature melting separation, to obtain an alloy.
- step (1) grinding molybdenum ore and silica
- step (2) uniformly mixing chromite powder, aluminum ore powder, magnesium ore powder, and forming a pellet by pulverization, chromite
- the mass ratio of powder, aluminum ore powder, magnesium ore powder, molybdenum ore and silica is: 80:5:4:2:9
- step (3) pour the pellet into the rotary hearth furnace
- step (4) Carbon monoxide is introduced into the bottom of the rotary hearth furnace, and the reducing gas is introduced for 90 minutes
- step (5) nitrogen gas is introduced into the bottom of the rotary hearth furnace, and the molybdenum ore and silica are uniformly mixed, and nitrogen gas is introduced.
- the time is 60 minutes
- step (6) high temperature melting separation, to obtain an alloy.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
一种合金的制备方法,包括:步骤(1):将钼矿石和硅石进行磨细处理;步骤(2):将铬铁矿粉、铝矿粉、镁矿粉均匀混合,压球成型得到球团;步骤(3):将球团倒入转底炉;步骤(4):向转底炉底部通入还原性气体;步骤(5):向转底炉底部通入保护性气体,以及,均匀地混入所述钼矿石和硅石;步骤(6):高温熔化分离,得到合金。
Description
本发明属于合金材料技术领域,尤其涉及一种合金的制备方法。
合金中组成相的结构和性质对合金的性能起决定性的作用,同时,合金组织的变化即合金中相的相对数量、各相的晶粒大小,形状和分布的变化,对合金的性能也发生很大的影响。因此,利用各种元素的结合以形成各种不同的合金相,再经过合适的处理可能满足各种不同的性能要求。
提升合金质量已成为企业增强产品竞争力的重要途径。然而,合金中的元素分布不均,即产生所谓的偏析现象,使得钢中局部的成分差别增大,强度波动范围增宽。偏析常常伴随疏松发生,严重的偏析和疏松影响组织结构,使强度失常,因受力不均易使钢材提前失效或完全不能使用。目前,国内对高端合金产品的生产仍存在很大的劣势,偏析、疏松缺陷得不到有效改善。因此,对于偏析、疏松的改善尤为重要。
现有的改善偏析、疏松的方法包括:控制合金成分和纯净度;结晶器电磁搅拌;二冷区电磁搅拌;凝固末端强冷;二冷制度优化;动态轻压下技术等。以上技术操作复杂,实现成本高,不利于推广。
发明内容
本发明提供了一种合金的制备方法,包括:
步骤(1):将钼矿石和硅石进行磨细处理;
步骤(2):将铬铁矿粉、铝矿粉、镁矿粉均匀混合,压球成型得到球团;
步骤(3):将所述球团倒入转底炉;
步骤(4):向转底炉底部通入还原性气体;
步骤(5):向转底炉底部通入保护性气体,以及,均匀地混入所述钼矿石和硅石;
步骤(6):高温熔化分离,得到合金。
根据本发明的一方面,所述钼矿石与硅石的质量比为1:0.1~1:5。
根据本发明的另一方面,所述铬铁矿粉、铝矿粉、镁矿粉、钼矿石和硅石的质量比为:75~85:2~5:3~10:2~4:1~12。
根据本发明的另一方面,所述还原性气体包括:氢气、或一氧化碳。
根据本发明的另一方面,在步骤(3)中,通入还原性气体的时间为60~90分钟。
根据本发明的另一方面,在步骤(4)中,通入保护性气体的时间为30~60分钟。
根据本发明的另一方面,在步骤(4)中,混入所述钼矿石和硅石之前,对所述钼矿石和硅石的粒径进行筛选。
根据本发明的另一方面,筛选工具为900~1300目筛。
根据本发明的另一方面,所述压球成型具体包括两次压球成型。
根据本发明的另一方面,第一次压球成型的压力为10~15Mpa,第二次压球成型的压力为16~20Mpa。
本发明通过在冶炼过程中添加由硅石和钼矿粉制成的防偏析剂,能够解决原料偏析的问题,并且,该方案操作简便,成本低,具有良好的应用前景。
一种合金的制备方法,包括如下步骤:
步骤(1):将钼矿石和硅石进行磨细处理;
步骤(2):将铬铁矿粉、铝矿粉、镁矿粉均匀混合,压球成型得到球团;
步骤(3):将所述球团倒入转底炉;
步骤(4):向转底炉底部通入还原性气体;
步骤(5):向转底炉底部通入保护性气体,以及,均匀地混入所述钼矿石和硅石;
步骤(6):高温熔化分离,得到合金。
较佳地,所述钼矿石与硅石的质量比为1:0.1~1:5。进一步地,钼矿石与硅石的质量比为1:1。
较佳地,所述铬铁矿粉、铝矿粉、镁矿粉、钼矿石和硅石的质量比为:75~85:2~5:3~10:2~4:1~12。进一步地,铬铁矿粉、铝矿粉、镁矿粉、钼矿石和硅石的质量比为:80:4:6:3:7。
较佳地,所述还原性气体包括:氢气、或一氧化碳。
较佳地,在步骤(3)中,通入还原性气体的时间为60~90分钟。进一步地,通入还原性气体的时间为60~80分钟。
较佳地,在步骤(4)中,通入保护性气体的时间为30~60分钟。进一步地,通入保护性气体的时间为40~60分钟。
较佳地,在步骤(4)中,混入所述钼矿石和硅石之前,对所述钼矿石和硅石的粒径进行筛选。
较佳地,筛选工具为900~1300目筛,进一步地,为1000~1100目筛。
较佳地,所述压球成型具体包括两次压球成型。
较佳地,第一次压球成型的压力为10~15Mpa,第二次压球成型的压力为16~20Mpa。在球团成型处理时,通过外力作用使得物料间的接触更为紧密,有利于后续还原和冶炼的进行。
实施例一、步骤(1):将钼矿石和硅石进行磨细处理;步骤(2):将铬铁矿粉、铝矿粉、镁矿粉均匀混合,压球成型得到球团,铬铁矿粉、铝矿粉、镁矿粉、钼矿石和硅石的质量比为:75:5:10:3:7;步骤(3):将所述球团倒入转底炉;步骤(4):向转底炉底部通入氢气,通入还原性气体的时间为60分钟;步骤(5):向转底炉底部通入一氧化碳,以及,均匀地混入所述钼矿石和硅石, 通入保护性气体的时间为30分钟;步骤(6):高温熔化分离,得到合金。
实施例二、步骤(1):将钼矿石和硅石进行磨细处理;步骤(2):将铬铁矿粉、铝矿粉、镁矿粉均匀混合,压球成型得到球团,铬铁矿粉、铝矿粉、镁矿粉、钼矿石和硅石的质量比为:85:2:3:4:6;步骤(3):将所述球团倒入转底炉;步骤(4):向转底炉底部通入氢气,通入还原性气体的时间为80分钟;步骤(5):向转底炉底部通入氮气,以及,均匀地混入所述钼矿石和硅石,通入氮气的时间为40分钟;步骤(6):高温熔化分离,得到合金。
实施例三、步骤(1):将钼矿石和硅石进行磨细处理;步骤(2):将铬铁矿粉、铝矿粉、镁矿粉均匀混合,压球成型得到球团,铬铁矿粉、铝矿粉、镁矿粉、钼矿石和硅石的质量比为:80:5:4:2:9;步骤(3):将所述球团倒入转底炉;步骤(4):向转底炉底部通入一氧化碳,通入还原性气体的时间为90分钟;步骤(5):向转底炉底部通入氮气,以及,均匀地混入所述钼矿石和硅石,通入氮气的时间为60分钟;步骤(6):高温熔化分离,得到合金。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
Claims (10)
- 一种合金的制备方法,其特征在于,包括:步骤(1):将钼矿石和硅石进行磨细处理;步骤(2):将铬铁矿粉、铝矿粉、镁矿粉均匀混合,压球成型得到球团;步骤(3):将所述球团倒入转底炉;步骤(4):向转底炉底部通入还原性气体;步骤(5):向转底炉底部通入保护性气体,以及,均匀地混入所述钼矿石和硅石;步骤(6):高温熔化分离,得到合金。
- 如权利要求1所述的方法,其特征在于,所述钼矿石与硅石的质量比为1:0.1~1:5。
- 如权利要求1所述的方法,其特征在于,所述铬铁矿粉、铝矿粉、镁矿粉、钼矿石和硅石的质量比为:75~85:2~5:3~10:2~4:1~12。
- 如权利要求1所述的方法,其特征在于,所述还原性气体包括:氢气、或一氧化碳。
- 如权利要求1所述的方法,其特征在于,在步骤(3)中,通入还原性气体的时间为60~90分钟。
- 如权利要求1所述的方法,其特征在于,在步骤(4)中,通入保护性气体的时间为30~60分钟。
- 如权利要求1所述的方法,其特征在于,在步骤(4)中,混入所述钼矿石和硅石之前,对所述钼矿石和硅石的粒径进行筛选。
- 如权利要求7所述的方法,其特征在于,筛选工具为900~1300目筛。
- 如权利要求1所述的方法,其特征在于,所述压球成型具体包括两次压球成型。
- 如权利要求9所述的方法,其特征在于,第一次压球成型的压力为10~15Mpa,第二次压球成型的压力为16~20Mpa。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810337275.2 | 2018-04-16 | ||
CN201810337275.2A CN108531822A (zh) | 2018-04-16 | 2018-04-16 | 一种合金的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019200850A1 true WO2019200850A1 (zh) | 2019-10-24 |
Family
ID=63481201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/109571 WO2019200850A1 (zh) | 2018-04-16 | 2018-10-10 | 一种合金的制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108531822A (zh) |
WO (1) | WO2019200850A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108531822A (zh) * | 2018-04-16 | 2018-09-14 | 盐城市鑫洋电热材料有限公司 | 一种合金的制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4731112A (en) * | 1986-02-19 | 1988-03-15 | Midrex International, B.V. Rotterdam, Zurich Branch | Method of producing ferro-alloys |
CN103667690A (zh) * | 2013-12-16 | 2014-03-26 | 江苏大学 | 铬钼金属自还原球团及其制备和直接合金化钢液的方法 |
CN105908061A (zh) * | 2016-06-12 | 2016-08-31 | 江苏省冶金设计院有限公司 | 一种生产高碳铬铁的方法 |
CN107267854A (zh) * | 2017-06-19 | 2017-10-20 | 徐州宏阳新材料科技有限公司 | 一种高碳铬铁的冶炼方法及产品 |
CN107385205A (zh) * | 2017-08-09 | 2017-11-24 | 江苏省冶金设计院有限公司 | 一种生产硅铬合金的方法和系统 |
CN107699685A (zh) * | 2017-08-09 | 2018-02-16 | 江苏省冶金设计院有限公司 | 一种硅铬合金的生产方法 |
CN108531822A (zh) * | 2018-04-16 | 2018-09-14 | 盐城市鑫洋电热材料有限公司 | 一种合金的制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105132674B (zh) * | 2015-09-06 | 2018-08-21 | 神雾科技集团股份有限公司 | 制备铬铁合金的方法 |
CN107022679A (zh) * | 2017-04-14 | 2017-08-08 | 江苏省冶金设计院有限公司 | 一种钒钛磁铁矿的固态还原方法 |
CN107190139A (zh) * | 2017-05-31 | 2017-09-22 | 江苏省冶金设计院有限公司 | 一种含镍铬铁合金冶炼的方法 |
-
2018
- 2018-04-16 CN CN201810337275.2A patent/CN108531822A/zh active Pending
- 2018-10-10 WO PCT/CN2018/109571 patent/WO2019200850A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4731112A (en) * | 1986-02-19 | 1988-03-15 | Midrex International, B.V. Rotterdam, Zurich Branch | Method of producing ferro-alloys |
CN103667690A (zh) * | 2013-12-16 | 2014-03-26 | 江苏大学 | 铬钼金属自还原球团及其制备和直接合金化钢液的方法 |
CN105908061A (zh) * | 2016-06-12 | 2016-08-31 | 江苏省冶金设计院有限公司 | 一种生产高碳铬铁的方法 |
CN107267854A (zh) * | 2017-06-19 | 2017-10-20 | 徐州宏阳新材料科技有限公司 | 一种高碳铬铁的冶炼方法及产品 |
CN107385205A (zh) * | 2017-08-09 | 2017-11-24 | 江苏省冶金设计院有限公司 | 一种生产硅铬合金的方法和系统 |
CN107699685A (zh) * | 2017-08-09 | 2018-02-16 | 江苏省冶金设计院有限公司 | 一种硅铬合金的生产方法 |
CN108531822A (zh) * | 2018-04-16 | 2018-09-14 | 盐城市鑫洋电热材料有限公司 | 一种合金的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108531822A (zh) | 2018-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105837233B (zh) | 特种钢用金属结合刚玉超低碳质下水口及生产工艺 | |
CN104878233A (zh) | 一种铝钛硼合金锭的制备方法 | |
CN109020571A (zh) | 一种抗侵蚀镁碳砖及其制备方法 | |
CN109678479A (zh) | 冶炼高纯净高锰钢的钢包底吹氩透气砖 | |
CN107759207A (zh) | 以铝铬渣为主料的高炉出铁沟用浇注料及其制备方法 | |
CN106588048A (zh) | 炼钢中间包护板及其用浇注料 | |
CN111925189A (zh) | 一种复合镁碳砖及其制备方法 | |
WO2019200850A1 (zh) | 一种合金的制备方法 | |
CN110408852A (zh) | 高温合金粉末的废料回收方法 | |
CN110423100B (zh) | 一种添加镁碳超细粉的高纯镁碳砖及其制备方法 | |
CN111218557B (zh) | 钒铁合金的浇铸方法 | |
CN110964968B (zh) | 一种高效蠕墨铸铁用蠕化剂、其制备及生产方法 | |
CN103408309B (zh) | 一种不粘结中间包干式料及其生产方法 | |
CN110903077A (zh) | 炼钢中间包包盖用浇注料 | |
CN106111976A (zh) | 一种粉末冶金 | |
CN103215464A (zh) | 一种利用钒铝合金和铝制造铝钒中间合金的方法 | |
CN101486537B (zh) | 一种利用钢铁废渣生产骨料的方法 | |
CN101486582A (zh) | 一种低成本废料回收生产铁水沟捣打料的方法 | |
CN110172544B (zh) | 调渣剂及其使用方法 | |
CN104311082B (zh) | 一种镁碳钢包渣线砖及其生产方法 | |
CN103011850A (zh) | 一种鱼雷罐车铁水区用红柱石-SiC-C砖及其生产方法 | |
CN101486583A (zh) | 一种铁水沟捣打料 | |
CN104878273A (zh) | 采用铁粒与钢屑冶炼钒铁的方法 | |
CN105908070A (zh) | 一种抗脆性破裂性好的汽车用弹簧材料 | |
CN104550877A (zh) | 一种高锰钢铸件细晶化铸造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18915552 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18915552 Country of ref document: EP Kind code of ref document: A1 |