WO2019199068A1 - 화합물 및 이를 포함하는 유기 발광 소자 - Google Patents

화합물 및 이를 포함하는 유기 발광 소자 Download PDF

Info

Publication number
WO2019199068A1
WO2019199068A1 PCT/KR2019/004337 KR2019004337W WO2019199068A1 WO 2019199068 A1 WO2019199068 A1 WO 2019199068A1 KR 2019004337 W KR2019004337 W KR 2019004337W WO 2019199068 A1 WO2019199068 A1 WO 2019199068A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
independently
compound
Prior art date
Application number
PCT/KR2019/004337
Other languages
English (en)
French (fr)
Inventor
하재승
김연환
이성재
문현진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980006584.4A priority Critical patent/CN111511733B/zh
Publication of WO2019199068A1 publication Critical patent/WO2019199068A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/96Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings spiro-condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Definitions

  • the present specification relates to a compound represented by Formula 1 and an organic light emitting device including the same.
  • the organic light emitting device has a structure in which an organic thin film is disposed between two electrodes. When voltage is applied to the organic light emitting device having such a structure, electrons and holes injected from two electrodes are combined in the organic thin film to form a pair, then disappear and emit light.
  • the organic thin film may be composed of a single layer or multiple layers as necessary.
  • the materials used in the organic light emitting device are pure organic materials or complex compounds in which organic materials and metals are complexed, and depending on the purpose, hole injection materials, hole transport materials, light emitting materials, electron transport materials, electron injection materials, etc. It can be divided into.
  • the hole injection material or the hole transport material an organic material having a p-type property, that is, an organic material which is easily oxidized and has an electrochemically stable state during oxidation, is mainly used.
  • organic materials having n-type properties that is, organic materials that are easily reduced and have an electrochemically stable state at the time of reduction are mainly used.
  • the light emitting layer material a material having a p-type property and an n-type property at the same time, that is, a material having a stable form in both oxidation and reduction states, and excitons formed by recombination of holes and electrons in the light emitting layer are formed. It is preferable that a material having high luminous efficiency converting the light into light when it is used.
  • the present specification provides a compound represented by Formula 1 and an organic light emitting device including the same.
  • An exemplary embodiment of the present specification provides a compound represented by the following formula (1).
  • X 1 is O or S
  • R1 to R6 are each independently hydrogen; heavy hydrogen; Nitrile group; Nitro group; Hydroxyl group; Carbonyl group; Ester group; Imide group; Amide group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkylthioxy group; Substituted or unsubstituted arylthioxy group; Substituted or unsubstituted alkyl sulfoxy group; Substituted or unsubstituted aryl sulfoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted boron group; Substituted or un
  • L1 and L2 are each independently a direct bond; Substituted or unsubstituted arylene group; Or a substituted or unsubstituted divalent heterocyclic group,
  • Ar1 and Ar2 each independently represent a nitrile group; Nitro group; Substituted or unsubstituted silyl group; Substituted or unsubstituted aryl phosphine group; Substituted or unsubstituted phosphine oxide group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • a, b, d and e are each independently an integer of 0 to 4,
  • c and f are each independently an integer of 0 to 3
  • z1 and z2 are each independently an integer of 0 to 4,
  • z1 + z2 is an integer from 1 to 4,
  • substituents in parentheses may be the same as or different from each other, or adjacent substituents may be bonded to each other to form a ring.
  • an exemplary embodiment of the present specification includes an anode, a cathode, and at least one organic material layer disposed between the anode and the cathode, and at least one of the organic material layers includes a compound of Formula 1 To provide.
  • the compound described herein can be used as the material of the organic material layer of the organic light emitting device.
  • the compound according to at least one embodiment may improve efficiency, low driving voltage, or lifetime characteristics in the organic light emitting device.
  • the compounds described herein can be used as the material of the electron injection layer, electron transport layer or electron control layer.
  • an organic light emitting element is shown.
  • substituted means that a hydrogen atom bonded to a carbon atom of the compound is replaced with another substituent, and the position to be substituted is not limited to a position where the hydrogen atom is replaced, that is, a position where the substituent can be substituted, if two or more are substituted , Two or more substituents may be the same or different from each other.
  • substituted or unsubstituted is deuterium; Halogen group; Cyano group; Silyl groups; An alkyl group; Cycloalkyl group; Aryl group; And it means that it is substituted with one or two or more substituents selected from the group consisting of a heterocyclic group or substituted with a substituent to which two or more substituents in the above-described substituents are connected, or does not have any substituents.
  • a substituent to which two or more substituents are linked may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent to which two phenyl groups are linked.
  • examples of the halogen group include fluorine (F), chlorine (Cl), bromine (Br) or iodine (I).
  • the silyl group may be represented by the formula of -SiRaRbRc, wherein Ra, Rb and Rc are each hydrogen; Substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group.
  • Specific examples of the silyl group include trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, and phenylsilyl group. Do not.
  • carbon number of an ester group is not specifically limited, It is preferable that it is C1-C50. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
  • carbon number of a carbonyl group in this specification is not specifically limited, It is preferable that it is C1-C50. Specifically, it may be a compound having a structure as follows, but is not limited thereto.
  • carbon number of an imide group is not specifically limited, It is preferable that it is C1-C30. Specifically, it may be a compound having a structure as follows, but is not limited thereto.
  • the amide group may be substituted with nitrogen of the amide group is hydrogen, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
  • the alkoxy group may be linear, branched or cyclic. Although carbon number of an alkoxy group is not specifically limited, It is preferable that it is C1-C20. Specifically, methoxy, ethoxy, n-propoxy, isopropoxy, i-propyloxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, neopentyloxy, Isopentyloxy, n-hexyloxy, 3,3-dimethylbutyloxy, 2-ethylbutyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, benzyloxy, p-methylbenzyloxy and the like It may be, but is not limited thereto.
  • the boron group may be -BR 100 R 101 , wherein R 100 and R 101 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen; Nitrile group; A substituted or unsubstituted monocyclic or polycyclic cycloalkyl group having 3 to 30 carbon atoms; A substituted or unsubstituted linear or branched alkyl group having 1 to 30 carbon atoms; Substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 30 carbon atoms; And it may be selected from the group consisting of a substituted or unsubstituted monocyclic or polycyclic heteroaryl group having 2 to 30 carbon atoms.
  • the phosphine oxide group specifically includes a diphenylphosphine oxide group, a dinaphthylphosphine oxide group, and the like, but is not limited thereto.
  • the amine group is -NH 2 ; Alkylamine group; N-arylalkylamine group; Arylamine group; N-aryl heteroaryl amine group; It may be selected from the group consisting of an N-alkylheteroarylamine group and a heteroarylamine group, and carbon number is not particularly limited, but is preferably 1 to 30.
  • Specific examples of the amine group include methylamine group, dimethylamine group, ethylamine group, diethylamine group, phenylamine group, naphthylamine group, biphenylamine group, anthracenylamine group, and 9-methyl-anthracenylamine group. , Diphenylamine group, N-phenylnaphthylamine group, ditolylamine group, N-phenyltolylamine group, triphenylamine group and the like, but is not limited thereto.
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 60. According to an exemplary embodiment, the alkyl group has 1 to 40 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 20 carbon atoms.
  • Specific examples include methyl group, ethyl group, propyl group, n-propyl group, isopropyl group, butyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, 1-methyl-butyl group, 1- Ethyl-butyl, pentyl, n-pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl- 2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, heptyl group, n-heptyl group, 1-methylhexyl group, cyclopentylmethyl group, cyclohexylmethyl group, octyl group, n-octyl group, tert -Octyl
  • the alkenyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 2 to 30.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2- ( Naphthyl-1-yl) vinyl-1-yl, 2,2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but is preferably 3 to 60 carbon atoms. According to an exemplary embodiment, the cycloalkyl group has 3 to 40 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms.
  • the aryl group is a monocyclic aryl group
  • carbon number is not particularly limited, but preferably 6 to 60 carbon atoms.
  • the aryl group has 6 to 30 carbon atoms.
  • the monocyclic aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc., but is not limited thereto.
  • Carbon number is not particularly limited when the aryl group is a polycyclic aryl group. It is preferable that it is C10-60. According to an exemplary embodiment, the aryl group has 10 to 30 carbon atoms.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and adjacent substituents may be bonded to each other to form a ring.
  • alkyl group of the alkylthioxy group, the alkyl sulfoxy group, the alkylamine group, and the N-alkylheteroarylamine group may be described with respect to the above-described alkyl group.
  • Alkyl thioxy groups include methyl thioxy group, ethyl thioxy group, tert-butyl thioxy group, hexyl thioxy group, octyl thioxy group and the like
  • alkyl sulfoxy groups include mesyl, ethyl sulfoxy, propyl sulfoxy and butyl sulfoxy groups
  • the present invention is not limited thereto.
  • the heterocyclic group includes one or more of N, O, S, Si, and Se as hetero atoms, and the carbon number is not particularly limited, but is preferably 2 to 60 carbon atoms. According to an exemplary embodiment, the heterocyclic group has 2 to 30 carbon atoms. According to another exemplary embodiment, the heterocyclic group has 2 to 20 carbon atoms.
  • heterocyclic groups include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, triazole group, Acridyl group, pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group , Indole group, carbazole group, benzoxazole group, benzimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, dibenzofuran group, benzofur
  • heterocyclic group may be applied except that the heteroaryl group is aromatic.
  • heteroaryl group the heteroaryl group of the heteroarylamine group, the description of the aforementioned heterocyclic group may be applied.
  • adjacent The group may mean a substituent substituted with an atom directly connected to an atom in which the corresponding substituent is substituted, a substituent positioned closest in structural conformation to the substituent, or another substituent substituted in the atom in which the substituent is substituted.
  • two substituents substituted at the ortho position in the benzene ring and two substituents substituted at the same carbon in the aliphatic ring may be interpreted as "adjacent" to each other.
  • ring in a substituted or unsubstituted ring in which adjacent groups are bonded to each other, a “ring” means a hydrocarbon ring; Or heterocycle.
  • the hydrocarbon ring may be an aromatic, aliphatic or a condensed ring of aromatic and aliphatic, and may be selected from examples of the cycloalkyl group or aryl group except for the above-mentioned monovalent one.
  • the description of the aryl group may be applied except that the aromatic hydrocarbon ring is monovalent.
  • the heterocycle includes one or more atoms other than carbon and heteroatoms, and specifically, the heteroatoms include one or more atoms selected from the group consisting of N, O, P, S, Si, Se, and the like. can do.
  • the heterocycle may be monocyclic or polycyclic, and may be aromatic, aliphatic or a condensed ring of aromatic and aliphatic, and the aromatic heterocycle may be selected from examples of the heteroaryl group except that it is not monovalent.
  • Chemical Formula 1 is represented by any one of the following Chemical Formulas 1-1 to 1-4.
  • X1, L1, Ar1, R1 to R6 and a to f are as defined above.
  • Chemical Formula 1 is represented by any one of the following Chemical Formulas 2-1 to 2-4.
  • X1, L2, Ar2, R1 to R6 and a to f are as defined above.
  • R1 to R6 are each independently hydrogen; heavy hydrogen; Nitrile group; Nitro group; Hydroxyl group; Carbonyl group; Ester group; Imide group; Amide group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkylthioxy group; Substituted or unsubstituted arylthioxy group; Substituted or unsubstituted alkyl sulfoxy group; Substituted or unsubstituted aryl sulfoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted boron group;
  • R1 to R6 are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; Substituted or unsubstituted amine group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroring group.
  • R1 to R6 are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 60 carbon atoms; Substituted or unsubstituted amine group having 1 to 60 carbon atoms; Substituted or unsubstituted aryl group having 6 to 60 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 60 carbon atoms.
  • R1 to R6 are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms; Substituted or unsubstituted amine group having 1 to 30 carbon atoms; Substituted or unsubstituted aryl group having 6 to 30 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 30 carbon atoms.
  • R1 to R6 are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 15 carbon atoms; A substituted or unsubstituted amine group having 1 to 15 carbon atoms; Substituted or unsubstituted aryl group having 6 to 20 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 20 carbon atoms.
  • R1 to R6 are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 15 carbon atoms; A substituted or unsubstituted amine group having 1 to 15 carbon atoms; Substituted or unsubstituted aryl group having 6 to 20 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 20 carbon atoms.
  • R1 to R6 are each independently hydrogen; Or deuterium.
  • L1 and L2 are each independently a direct bond; Substituted or unsubstituted arylene group; Or a substituted or unsubstituted divalent heterocyclic group.
  • L1 and L2 are each independently a direct bond; A substituted or unsubstituted arylene group having 6 to 60 carbon atoms; Or a substituted or unsubstituted divalent heterocyclic group having 2 to 60 carbon atoms.
  • L1 and L2 are each independently a direct bond; A substituted or unsubstituted arylene group having 6 to 30 carbon atoms; Or a substituted or unsubstituted divalent heterocyclic group having 2 to 30 carbon atoms.
  • L1 and L2 are each independently a direct bond; A substituted or unsubstituted arylene group having 6 to 15 carbon atoms; Or a substituted or unsubstituted divalent heterocyclic group having 2 to 15 carbon atoms.
  • L1 and L2 are each independently a direct bond; Or a substituted or unsubstituted arylene group having 6 to 15 carbon atoms.
  • L1 and L2 are each independently a direct bond; Or a phenylene group.
  • Ar1 and Ar2 are each independently a nitrile group; Nitro group; Substituted or unsubstituted silyl group; Substituted or unsubstituted aryl phosphine group; Substituted or unsubstituted phosphine oxide group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroring group.
  • Ar1 and Ar2 are each independently a nitrile group; Substituted or unsubstituted silyl group; Substituted or unsubstituted aryl phosphine group having 6 to 60 carbon atoms; Substituted or unsubstituted phosphine oxide group; Substituted or unsubstituted aryl group having 6 to 60 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 60 carbon atoms.
  • Ar1 and Ar2 are each independently a nitrile group; Substituted or unsubstituted silyl group; A substituted or unsubstituted arylphosphine group having 6 to 30 carbon atoms; Substituted or unsubstituted phosphine oxide group; Substituted or unsubstituted aryl group having 6 to 30 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 30 carbon atoms.
  • Ar1 and Ar2 are each independently a nitrile group; Substituted or unsubstituted silyl group; Substituted or unsubstituted C6-C20 aryl phosphine group; Substituted or unsubstituted phosphine oxide group; Substituted or unsubstituted aryl group having 6 to 20 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 20 carbon atoms.
  • Ar1 and Ar2 are each independently a phosphine oxide group unsubstituted or substituted with an aryl group; Substituted or unsubstituted aryl group having 6 to 20 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 20 carbon atoms.
  • Ar1 and Ar2 are each independently, a diaryl phosphine oxide group having 12 to 60 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 20 carbon atoms.
  • Ar1 and Ar2 are each independently any one selected from the following structural formulas.
  • Y1 to Y3 are each independently N or CR ',
  • At least one of Y1 to Y3 is N,
  • L3 and L4 are each independently a direct bond; Or a substituted or unsubstituted arylene group,
  • Ar3 and Ar4 are each independently hydrogen; heavy hydrogen; Nitrile group; Nitro group; Substituted or unsubstituted silyl group; Substituted or unsubstituted aryl phosphine group; Substituted or unsubstituted phosphine oxide group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • A1 to A10 and R ' are each independently hydrogen; heavy hydrogen; Nitrile group; Nitro group; Hydroxyl group; Carbonyl group; Ester group; Imide group; Amide group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkylthioxy group; Substituted or unsubstituted arylthioxy group; Substituted or unsubstituted alkyl sulfoxy group; Substituted or unsubstituted aryl sulfoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted boron group; Substit
  • a1, a2, a9 and a10 are each independently an integer of 0 to 5
  • a3, a7 and a8 are each independently an integer of 0 to 7,
  • a4 to a6 are each independently an integer of 0 to 4,
  • A9, A10 and R ' is hydrogen.
  • A1 to A8 are each independently hydrogen; Or a substituted or unsubstituted aryl group.
  • A1 to A8 are each independently hydrogen; Phenyl group; Biphenyl group; Or a naphthyl group.
  • L3 and L4 are each independently, a direct bond; Phenylene group; Naphthylene group; Or a biphenylene group.
  • Ar3 and Ar4 are each independently a nitrile group; Nitro group; Substituted or unsubstituted silyl group; Substituted or unsubstituted aryl phosphine group; Substituted or unsubstituted phosphine oxide group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroring group.
  • Ar3 and Ar4 are each independently a nitrile group; Substituted or unsubstituted phosphine oxide group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroring group.
  • Ar3 and Ar4 are each independently a nitrile group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroring group.
  • Ar3 and Ar4 are each independently a nitrile group; Phenyl group; Biphenyl group; Naphthyl group; Triphenylene group; Phenanthrene group; Fluorenyl groups substituted from the group consisting of a phenyl group and a methyl group; Pyridine group; Dibenzofuran group; Dibenzothiophene group; Or a carbazole group unsubstituted or substituted with an aryl group.
  • the compound represented by Formula 1 is any one of the following structures.
  • An exemplary embodiment of the present specification includes an anode, a cathode, and one or more organic material layers disposed between the anode and the cathode, and one or more layers of the organic material layers provide an organic light emitting device including the compound.
  • One or more organic material layers of the organic light emitting device of the present specification may be formed of a single layer structure, but may be formed of a multilayer structure in which two or more organic material layers are stacked.
  • the organic material layer of the present specification may be composed of 1 to 3 layers.
  • the organic light emitting device of the present specification may have a structure including a hole injection layer, a light emitting layer, an electron transport layer and the like as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic material layer may include an electron injection layer, an electron transport layer, or an electron control layer, and the electron injection layer, the electron transport layer, or the electron control layer may include the compound of Formula 1. .
  • the organic light emitting device may further include one or two or more layers selected from the group consisting of a hole injection layer and a hole transport layer.
  • the compound may be included in one layer of the two or more electron injection layers, the electron transport layers, or the electron control layer, and each of the two or more electron injection layers, the electron transport layer, or the electron control layer. It can be included in the layer.
  • the compound when the compound is included in each of the two or more electron injection layers, the electron transport layer or the electron control layer, other materials except for the compound may be the same or different from each other.
  • the organic light emitting diode may be an organic light emitting diode having a structure in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting diode may be an organic light emitting diode having an inverted type in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • FIG. 1 the structure of the organic light emitting device according to the exemplary embodiment of the present specification is illustrated in FIG. 1.
  • FIG. 1 shows a substrate 1, an anode 2, a hole transport layer 5, a light emitting layer 3, an electron control layer 8, an electron transport layer 7, an electron injection layer 6, and a cathode 4 sequentially.
  • the structure of the stacked organic light emitting device is illustrated. In such a structure, the compound may be included in the electron control layer 8, the electron transport layer 7, or the electron injection layer 6.
  • the organic light emitting device of the present specification may be manufactured by materials and methods known in the art, except that at least one layer of the organic material layer includes the compound of the present specification, that is, the compound.
  • the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device of the present specification may be manufactured by materials and methods known in the art, except that at least one layer of the organic material layer includes the compound, that is, the compound represented by Chemical Formula 1.
  • the organic light emitting device of the present specification may be manufactured by sequentially stacking an anode, an organic material layer, and a cathode on a substrate.
  • a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation
  • a metal or conductive metal oxide or an alloy thereof is deposited on the substrate to form an anode.
  • an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer thereon, and then depositing a material that can be used as a cathode thereon.
  • the compound of Formula 1 may be formed of an organic material layer by a solution coating method as well as a vacuum deposition method in the manufacture of the organic light emitting device.
  • the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, etc., but is not limited thereto.
  • an organic light emitting device may be fabricated by sequentially depositing an organic material layer and an anode material on a substrate (International Patent Publication No. 2003/012890).
  • the manufacturing method is not limited thereto.
  • the anode material a material having a large work function is usually preferred to facilitate hole injection into the organic material layer.
  • the positive electrode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); ZnO: Al or SnO 2 : Combination of metals and oxides such as Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDOT), polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like, but are not limited thereto.
  • the hole injection layer is a layer for injecting holes from an electrode.
  • the hole injection material has a capability of transporting holes to have a hole injection effect at an anode, and has an excellent hole injection effect for a light emitting layer or a light emitting material.
  • the compound which prevents the excitons from moving to the electron injection layer or the electron injection material, and is excellent in thin film formation ability is preferable.
  • the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based Organic materials, anthraquinone, and polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the hole transport layer is a layer for receiving holes from the hole injection layer and transporting holes to the light emitting layer.
  • the hole transport material is a material that can transport holes from an anode or a hole injection layer and transfer them to the light emitting layer.
  • the material is suitable. Specific examples thereof include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together, but are not limited thereto.
  • the light emitting material is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency with respect to fluorescence or phosphorescence is preferable.
  • Specific examples include 8-hydroxyquinoline aluminum complex (Alq 3); Carbazole series compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole series compounds; Poly (p-phenylenevinylene) (PPV) -based polymers; Spiro compounds; Polyfluorene, rubrene and the like, but are not limited thereto.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports the electrons to the light emitting layer, except for the compound according to the exemplary embodiment of the present specification as an electron transporting material, electrons are well injected from the cathode and transferred to the light emitting layer.
  • a substance a substance with high mobility with respect to the electron is suitable. Specific examples thereof include Al complexes of 8-hydroxyquinoline; Complexes including Alq3; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the electron transport layer can be used with any desired cathode material as used in accordance with the prior art.
  • suitable cathode materials are conventional materials having a low work function followed by an aluminum or silver layer. Specifically cesium, barium, calcium, ytterbium and samarium, followed by aluminum layers or silver layers in each case.
  • the electron injection layer is a layer for injecting electrons from the electrode, the electron injection material has the ability to transport electrons, except for the compound according to one embodiment of the present specification, the electron injection effect from the cathode, the light emitting layer or light emission
  • generated in the light emitting layer to the hole injection layer, and is excellent in thin film formation ability is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone and the derivatives thereof and metals Complex compounds, nitrogen-containing five-membered ring derivatives, and the like, but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese, Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-cresolato) gallium, bis (2-methyl-8-quinolinato) (1-naphtolato) aluminum, bis (2-methyl-8-quinolinato) (2-naphtolato) gallium, It is not limited to this.
  • the electron control layer is a layer for preventing the arrival of the cathode of the hole
  • the electron control material may be formed under the same conditions as the hole injection layer in general, except for the compound according to one embodiment of the present specification.
  • the compound according to one embodiment of the present specification there are oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, BCP, aluminum complexes, and the like, but are not limited thereto.
  • the organic light emitting device may be a top emission type, a bottom emission type, or a double side emission type according to a material used.
  • X 1 is S or O and X is a leaving group.
  • X 1 is S or O and X is a leaving group.
  • X 1 is S or O and X is a leaving group.
  • X1 is S or O
  • L1, L2, Ar1, Ar2, z1 and z2 are as defined in Formula 1.
  • the derivative and the heteroaryl derivative (1.1eq), which is SM2 of Table 5 were added to tetrahydrofuran (300 ml), followed by 2M aqueous potassium carbonate solution (150 ml), and tetrakistriphenyl-phosphinopalladium (2 mol%) was added thereto. After that, the mixture was heated and stirred for 10 hours. After the temperature was lowered to room temperature and the reaction was terminated, the aqueous solution of potassium carbonate was removed to separate the layers. After removal of the solvent, vacuum distillation and recrystallization with tetrahydrofuran and ethyl acetate, to prepare compounds 1 to 24, as shown in Table 5.
  • a glass substrate (corning 7059 glass) coated with ITO (Indium Tin Oxide) with a thickness of 1,000 ⁇ was placed in distilled water in which a dispersant was dissolved, and ultrasonically washed. Fischer Co. products were used for the detergent, and Millipore Co. Secondly filtered distilled water was used as a filter of the product. After the ITO was washed for 30 minutes, the ultrasonic cleaning was repeated twice with distilled water for 10 minutes. After washing the distilled water, the ultrasonic washing in the order of isopropyl alcohol, acetone, methanol solvent and dried.
  • ITO Indium Tin Oxide
  • Hexanitrile hexaazatriphenylene was thermally vacuum deposited to a thickness of 500 kPa on the prepared ITO transparent electrode to form a hole injection layer.
  • HT1 900 kPa
  • HT2 a material for transporting holes
  • the host BH1 and the dopant BD1 compound were vacuum deposited to a thickness of 300 kPa as the compound light emitting layer.
  • an ETM1 compound (50 ⁇ s) was formed as an electron control layer, and co-deposited with Compound 3 synthesized in General Preparation Example 4 and LiQ (1: 1, 310 ⁇ s by weight) to form an electron transport layer sequentially.
  • 10 ⁇ thick lithium fluoride (LiF), Mg and Ag (10: 1, 150 ⁇ by weight) were deposited on the electron transport layer, and 1,000 ⁇ thick aluminum was deposited to form a cathode, thereby manufacturing an organic light emitting device.
  • the deposition rate of the organic material was maintained at 1 ⁇ / sec
  • the lithium fluoride was 0.2 ⁇ / sec
  • the aluminum was maintained at a deposition rate of 3 to 7 ⁇ / sec.
  • Table 6 shows the results of experimenting with the organic light emitting device manufactured by using each compound as the electron transporting material as in Examples 1 to 9 and Comparative Examples 1 to 4.
  • Electron transport layer LiQ Voltage (V) @ 20mA / cm 2 Cd / A @ 20mA / cm 2 Color coordinates (x, y) Lifespan (T95, h) @ 20mA / cm 2
  • Example 4 ETM1 Compound 13: LiQ 1: 1 3.34 6.82 (0.134, 0.138) 51.2
  • Example 5 ETM1 Compound 14: LiQ 1: 1 3.42 6.72 (0.136, 0.139) 48.9
  • Example 10 A glass substrate (corning 7059 glass) coated with a thin film of ITO (Indium Tin Oxide) at a thickness of 1,000 kPa was placed in distilled water in which a dispersant was dissolved, and ultrasonically washed. Fischer Co. was used for the detergent, and Millipore Co. Secondary filtered distilled water was used as a filter of the product. After the ITO was washed for 30 minutes, the ultrasonic cleaning was repeated twice with distilled water for 10 minutes. After the distilled water was washed, the ultrasonic washing in the order of isopropyl alcohol, acetone, methanol solvent and dried.
  • ITO Indium Tin Oxide
  • the hexanitrile hexaazatriphenylene (HI-1) was thermally vacuum deposited to a thickness of 500 kPa on the prepared ITO transparent electrode to form a hole injection layer.
  • HT1 900 kPa
  • HT2 a material for transporting holes
  • the host BH1 and the dopant BD1 compound were vacuum deposited to a thickness of 300 kPa as the compound light emitting layer.
  • Compound 1 (50 ⁇ s) synthesized in General Preparation 4 was formed as an electron control layer and co-deposited with ETM 2 and LiQ (1: 1, 310 ⁇ s by weight) to form an electron transport layer sequentially.
  • 10 ⁇ thick lithium fluoride (LiF), Mg and Ag (10: 1, 150 ⁇ by weight) were deposited on the electron transport layer, and 1,000 ⁇ thick aluminum was deposited to form a cathode, thereby manufacturing an organic light emitting device. It was.
  • the deposition rate of the organic material was maintained at 1 ⁇ / sec
  • the lithium fluoride was 0.2 ⁇ / sec
  • the aluminum was maintained at a deposition rate of 3 to 7 ⁇ / sec.
  • Electron transport layer LiQ Voltage (V) @ 20mA / cm 2 Cd / A @ 20mA / cm 2 Color coordinates (x, y) Lifespan (T95, h) @ 20mA / cm 2
  • the compound derivative of the formula according to the present invention can play a role of electron transport and electron control in organic electronic devices, including organic light emitting device, the device according to the present invention in terms of efficiency, driving voltage, stability Excellent properties.
  • the spiro structured compound applied in this document has a great advantage in terms of lifespan, and it is possible to derive high device performance by introducing heteroaryls suitable for electron transport and electron control of substituents in the same spiro structure. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 명세서는 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.

Description

화합물 및 이를 포함하는 유기 발광 소자
본 발명은 2018년 04월 11일에 한국특허청에 제출된 한국 특허 출원 제10-2018-0042393의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 화학식 1로 표시되는 화합물 및 이를 포함하는 유기발광소자에 관한 것이다.
유기 발광 소자는 2개의 전극 사이에 유기박막을 배치시킨 구조를 가지고 있다. 이와 같은 구조의 유기 발광 소자에 전압이 인가되면, 2개의 전극으로부터 주입된 전자와 전공이 유기박막에서 결합하여 쌍을 이룬 후 소멸하면서 빛을 발하게 된다. 상기 유기박막은 필요에 따라 단층 또는 다층으로 구성될 수 있다.
유기 발광 소자에서 사용되는 물질로는 순수 유기 물질 또는 유기 물질과 금속이 착물을 이루는 착화합물이 대부분을 차지하고 있으며, 용도에 따라 정공주입 물질, 정공수송 물질, 발광 물질, 전자수송 물질, 전자주입 물질 등으로 구분될 수 있다. 여기서, 정공주입 물질이나 정공수송 물질로는 p-타입의 성질을 가지는 유기물질, 즉 쉽게 산화가 되고 산화시에 전기화학적으로 안정한 상태를 가지는 유기물이 주로 사용되고 있다. 한편, 전자주입 물질이나 전자수송 물질로는 n-타입 성질을 가지는 유기 물질, 즉 쉽게 환원이 되고 환원시에 전기화학적으로 안정한 상태를 가지는 유기물이 주로 사용되고 있다. 발광층 물질로는 p-타입 성질과 n-타입 성질을 동시에 가진 물질, 즉 산화와 환원 상태에서 모두 안정한 형태를 갖는 물질이 바람직하며, 정공 및 전자가 발광층에서 재결합하여 생성되는 엑시톤(exciton)이 형성되었을 때 이를 빛으로 전환하는 발광 효율이 높은 물질이 바람직하다.
유기 발광 소자의 성능, 수명 또는 효율을 향상시키기 위하여, 유기박막의 재료의 개발이 지속적으로 요구되고 있다.
본 명세서는 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자를 제공한다.
본 명세서의 일 실시상태는 하기 화학식 1로 표시되는 화합물을 제공한다.
[화학식 1]
Figure PCTKR2019004337-appb-I000001
화학식 1에 있어서,
X1은 O 또는 S이고,
R1 내지 R6은 각각 독립적으로 수소; 중수소; 니트릴기; 니트로기; 히드록시기; 카르보닐기; 에스테르기; 이미드기; 아미드기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
L1 및 L2는 각각 독립적으로, 직접결합; 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 2가의 헤테로고리기이며,
Ar1 및 Ar2는 각각 독립적으로, 니트릴기; 니트로기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
a, b, d 및 e는 각각 독립적으로, 0 내지 4의 정수이며,
c 및 f는 각각 독립적으로, 0 내지 3의 정수이고,
z1 및 z2는 각각 독립적으로, 0 내지 4의 정수이며,
z1+ z2는 1 내지 4의 정수이고,
a 내지 f가 각각 독립적으로 2 이상인 경우, 괄호 안의 치환기는 서로 같거나 상이하거나, 서로 인접한 치환기끼리 결합하여 고리를 형성할 수 있다.
또한, 본 명세서의 일 실시상태는 양극, 음극 및 상기 양극과 음극 사이에 배치된 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1층 이상은 화학식 1의 화합물을 포함하는 것을 특징으로 하는 유기 발광 소자를 제공한다.
본 명세서에 기재된 화합물은 유기 발광 소자의 유기물층의 재료로서 사용될 수 있다. 적어도 하나의 실시상태에 따른 화합물은 유기 발광 소자에서 효율의 향상, 낮은 구동전압 또는 수명 특성을 향상시킬 수 있다.
본 명세서에 기재된 화합물은 전자주입층, 전자수송층 또는 전자조절층의 재료로 사용될 수 있다.
도 1은 기판(1), 양극(2), 정공 수송층(5), 발광층(3), 전자 조절층(8), 전자 수송층(7), 전자 주입층(6) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.
<부호의 설명>
1: 기판
2: 양극
3: 발광층
4: 음극
5: 정공 수송층
6: 전자 주입층
7: 전자 수송층
8: 전자 조절층
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 명세서에서 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
상기 “치환” 이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 “치환 또는 비치환된” 이라는 용어는 중수소; 할로겐기; 시아노기; 실릴기; 알킬기; 시클로알킬기; 아릴기; 및 헤테로고리기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다. 예컨대, “2 이상의 치환기가 연결된 치환기”는 바이페닐기일 수 있다. 즉, 바이페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 도 있다.
본 명세서에 있어서, 할로겐기의 예로는 불소(F), 염소(Cl), 브롬(Br) 또는 요오드(I)가 있다.
본 명세서에 있어서, 실릴기는 -SiRaRbRc의 화학식으로 표시될 수 있고, 상기 Ra, Rb 및 Rc는 각각 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기일 수 있다. 상기 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 에스테르기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 50인 것이 바람직하다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2019004337-appb-I000002
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 50인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2019004337-appb-I000003
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 30인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2019004337-appb-I000004
본 명세서에 있어서, 아미드기는 아미드기의 질소가 수소, 탄소수 1 내지 30의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 30의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2019004337-appb-I000005
본 명세서에 있어서, 상기 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 20인 것이 바람직하다. 구체적으로, 메톡시, 에톡시, n-프로폭시, 이소프로폭시, i-프로필옥시, n-부톡시, 이소부톡시, tert-부톡시, sec-부톡시, n-펜틸옥시, 네오펜틸옥시, 이소펜틸옥시, n-헥실옥시, 3,3-디메틸부틸옥시, 2-에틸부틸옥시, n-옥틸옥시, n-노닐옥시, n-데실옥시, 벤질옥시, p-메틸벤질옥시 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 붕소기는 -BR100R101일 수 있으며, 상기 R100 및 R101은 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 니트릴기; 치환 또는 비치환된 탄소수 3 내지 30의 단환 또는 다환의 시클로알킬기; 치환 또는 비치환된 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기; 치환 또는 비치환된 탄소수 6 내지 30의 단환 또는 다환의 아릴기; 및 치환 또는 비치환된 탄소수 2 내지 30의 단환 또는 다환의 헤테로아릴기로 이루어진 군으로부터 선택될 수 있다.
본 명세서에 있어서, 포스핀옥사이드기는 구체적으로 디페닐포스핀옥사이드기, 디나프틸포스핀옥사이드기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아민기는 -NH2; 알킬아민기; N-아릴알킬아민기; 아릴아민기; N-아릴헤테로아릴아민기; N-알킬헤테로아릴아민기 및 헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 바이페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, N-페닐나프틸아민기, 디톨릴아민기, N-페닐톨릴아민기, 트리페닐아민기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 40이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 구체적인 예로는 메틸기, 에틸기, 프로필기, n-프로필기, 이소프로필기, 부틸기, n-부틸기, 이소부틸기, tert-부틸기, sec-부틸기, 1-메틸-부틸기, 1-에틸-부틸기, 펜틸기, n-펜틸기, 이소펜틸기, 네오펜틸기, tert-펜틸기, 헥실기, n-헥실기, 1-메틸펜틸기, 2-메틸펜틸기, 4-메틸-2-펜틸기, 3,3-디메틸부틸기, 2-에틸부틸기, 헵틸기, n-헵틸기, 1-메틸헥실기, 시클로펜틸메틸기, 시클로헥실메틸기, 옥틸기, n-옥틸기, tert-옥틸기, 1-메틸헵틸기, 2-에틸헥실기, 2-프로필펜틸기, n-노닐기, 2,2-디메틸헵틸기, 1-에틸-프로필기, 1,1-디메틸-프로필기, 이소헥실기, 2-메틸펜틸기, 4-메틸헥실기, 5-메틸헥실기 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 30인 것이 바람직하다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 40이다. 또 하나의 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 20이다. 구체적으로 시클로프로필기, 시클로부틸기, 시클로펜틸기, 3-메틸시클로펜틸기, 2,3-디메틸시클로펜틸기, 시클로헥실기, 3-메틸시클로헥실기, 4-메틸시클로헥실기, 2,3-디메틸시클로헥실기, 3,4,5-트리메틸시클로헥실기, 4-tert-부틸시클로헥실기, 시클로헵틸기, 시클로옥틸기 등이 있으나, 이에 한정되지 않는다.
본 명세서에서 상기 아릴기가 단환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나, 탄소수 6 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 구체적으로 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
상기 아릴기가 다환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나. 탄소수 10 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 10 내지 30이다. 구체적으로 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 플루오레닐기는 치환될 수 있으며, 인접한 치환기들이 서로 결합하여 고리를 형성할 수 있다.
상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2019004337-appb-I000006
,
Figure PCTKR2019004337-appb-I000007
,
Figure PCTKR2019004337-appb-I000008
,
Figure PCTKR2019004337-appb-I000009
Figure PCTKR2019004337-appb-I000010
Figure PCTKR2019004337-appb-I000011
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴옥시기, 아릴티옥시기, 아릴술폭시기, 아릴포스핀기, 아릴아민기 중의 아릴기는 전술한 아릴기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 알킬티옥시기, 알킬술폭시기, 알킬아민기, N-알킬헤테로아릴아민기 중 알킬기는 전술한 알킬기에 관한 설명이 적용될 수 있다. 알킬티옥시기로는 메틸티옥시기, 에틸티옥시기, tert-부틸티옥시기, 헥실티옥시기, 옥틸티옥시기 등이 있고, 알킬술폭시기로는 메실, 에틸술폭시기, 프로필술폭시기, 부틸술폭시기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로고리기는 이종원자로 N, O, S, Si 및 Se 중 1개 이상을 포함하고, 탄소수는 특별히 한정되지 않으나 탄소수 2 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 헤테로고리기의 탄소수는 2 내지 30이다. 또 하나의 실시상태에 따르면, 상기 헤테로고리기의 탄소수 2 내지 20이다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 트리아졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤즈이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 디벤조퓨란기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기, 티아디아졸릴기, 벤조티아졸릴기, 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴기는 방향족인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 헤테로아릴기, 헤테로아릴아민기 중 헤테로아릴기는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, "인접한" 기는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기와 입체구조적으로 가장 가깝게 위치한 치환기, 또는 해당 치환기가 치환된 원자에 치환된 다른 치환기를 의미할 수 있다. 예컨대, 벤젠고리에서 오쏘(ortho)위치로 치환된 2개의 치환기 및 지방족 고리에서 동일 탄소에 치환된 2개의 치환기는 서로 "인접한"기로 해석될 수 있다.
본 명세서에 있어서, 인접한 기가 서로 결합하여 형성되는 치환 또는 비치환된 고리에서, "고리"는 탄화수소고리; 또는 헤테로고리를 의미한다.
본 명세서에 있어서, 탄화수소고리는 방향족, 지방족 또는 방향족과 지방족의 축합고리일 수 있으며, 상기 1가가 아닌 것을 제외하고 상기 시클로알킬기 또는 아릴기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, 방향족 탄화수소고리는 1가인 것을 제외하고는 아릴기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 헤테로고리는 탄소가 아닌 원자, 이종원자를 1 이상 포함하는 것으로서, 구체적으로 상기 이종 원자는 N, O, P, S, Si 및 Se 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함할 수 있다. 상기 헤테로고리는 단환 또는 다환일 수 있으며, 방향족, 지방족 또는 방향족과 지방족의 축합고리일 수 있으며, 방향족 헤테로고리는 1가가 아닌 것을 제외하고 상기 헤테로아릴기의 예시 중에서 선택될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 1-1 내지 1-4 중 어느 하나로 표시된다.
[화학식 1-1]
Figure PCTKR2019004337-appb-I000012
[화학식 1-2]
Figure PCTKR2019004337-appb-I000013
[화학식 1-3]
Figure PCTKR2019004337-appb-I000014
[화학식 1-4]
Figure PCTKR2019004337-appb-I000015
화학식 1-1 내지 1-4에 있어서,
X1, L1, Ar1, R1 내지 R6 및 a 내지 f는 상기의 정의와 같다.
또한, 본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 2-1 내지 2-4 중 어느 하나로 표시된다.
[화학식 2-1]
Figure PCTKR2019004337-appb-I000016
[화학식 2-2]
Figure PCTKR2019004337-appb-I000017
[화학식 2-3]
Figure PCTKR2019004337-appb-I000018
[화학식 2-4]
Figure PCTKR2019004337-appb-I000019
화학식 2-1 내지 2-4에 있어서,
X1, L2, Ar2, R1 내지 R6 및 a 내지 f는 상기의 정의와 같다.
본 명세서의 일 실시상태에 있어서, R1 내지 R6은 각각 독립적으로 수소; 중수소; 니트릴기; 니트로기; 히드록시기; 카르보닐기; 에스테르기; 이미드기; 아미드기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, R1 내지 R6은 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, R1 내지 R6은 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 60의 알킬기; 치환 또는 비치환된 탄소수 1 내지 60의 아민기; 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, R1 내지 R6은 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 치환 또는 비치환된 탄소수 1 내지 30의 아민기; 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 30의 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, R1 내지 R6은 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 15의 알킬기; 치환 또는 비치환된 탄소수 1 내지 15의 아민기; 치환 또는 비치환된 탄소수 6 내지 20의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 20의 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, R1 내지 R6은 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 15의 알킬기; 치환 또는 비치환된 탄소수 1 내지 15의 아민기; 치환 또는 비치환된 탄소수 6 내지 20의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 20의 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, R1 내지 R6은 각각 독립적으로 수소; 또는 중수소이다.
본 명세서의 일 실시상태에 있어서, L1 및 L2는 각각 독립적으로, 직접결합; 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 2가의 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, L1 및 L2는 각각 독립적으로, 직접결합; 치환 또는 비치환된 탄소수 6 내지 60의 아릴렌기; 또는 치환 또는 비치환된 탄소수 2 내지 60인 2가의 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, L1 및 L2는 각각 독립적으로, 직접결합; 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기; 또는 치환 또는 비치환된 탄소수 2 내지 30인 2가의 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, L1 및 L2는 각각 독립적으로, 직접결합; 치환 또는 비치환된 탄소수 6 내지 15의 아릴렌기; 또는 치환 또는 비치환된 탄소수 2 내지 15인 2가의 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, L1 및 L2는 각각 독립적으로, 직접결합; 또는 치환 또는 비치환된 탄소수 6 내지 15의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, L1 및 L2는 각각 독립적으로, 직접결합; 또는 페닐렌기이다.
본 명세서의 일 실시상태에 따르면, Ar1 및 Ar2는 각각 독립적으로, 니트릴기; 니트로기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, Ar1 및 Ar2는 각각 독립적으로, 니트릴기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 탄소수 6 내지 60의 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, Ar1 및 Ar2는 각각 독립적으로, 니트릴기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 탄소수 6 내지 30의 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 30의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, Ar1 및 Ar2는 각각 독립적으로, 니트릴기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 탄소수 6 내지 20의 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 탄소수 6 내지 20의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 20의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, Ar1 및 Ar2는 각각 독립적으로, 아릴기로 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 탄소수 6 내지 20의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 20의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, Ar1 및 Ar2는 각각 독립적으로, 탄소수 12 내지 60의 디아릴포스핀옥사이드기; 또는 치환 또는 비치환된 탄소수 2 내지 20의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, Ar1 및 Ar2는 각각 독립적으로, 하기 구조식 중 선택되는 어느 하나이다.
Figure PCTKR2019004337-appb-I000020
상기 구조식에서,
Y1 내지 Y3는 각각 독립적으로, N 또는 CR'이고,
Y1 내지 Y3 중 적어도 하나는 N이며,
L3 및 L4는 각각 독립적으로, 직접결합; 또는 치환 또는 비치환된 아릴렌기이며,
Ar3 및 Ar4는 각각 독립적으로, 수소; 중수소; 니트릴기; 니트로기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며,
A1 내지 A10 및 R'은 각각 독립적으로, 수소; 중수소; 니트릴기; 니트로기; 히드록시기; 카르보닐기; 에스테르기; 이미드기; 아미드기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며,
a1, a2, a9 및 a10은 각각 독립적으로, 0 내지 5의 정수이며,
a3, a7 및 a8는 각각 독립적으로, 0 내지 7의 정수이며,
a4 내지 a6은 각각 독립적으로, 0 내지 4의 정수이며,
a1 내지 a10이 각각 독립적으로 2 이상의 정수인 경우, 각 괄호 내의 치환기는 서로 같거나 상이하며,
*는 결합되는 위치이다.
본 명세서의 일 실시상태에 따르면, A9, A10 및 R'는 수소이다.
본 명세서의 일 실시상태에 따르면, A1 내지 A8는 각각 독립적으로 수소; 또는 치환 또는 비치환된 아릴기이다.
본 명세서의 일 실시상태에 따르면, A1 내지 A8는 각각 독립적으로 수소; 페닐기; 비페닐기; 또는 나프틸기이다.
본 명세서의 일 실시상태에 따르면, L3 및 L4는 각각 독립적으로, 직접결합; 페닐렌기; 나프틸렌기; 또는 비페닐렌기이다.
본 명세서의 일 실시상태에 따르면, Ar3 및 Ar4는 각각 독립적으로, 니트릴기; 니트로기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, Ar3 및 Ar4는 각각 독립적으로, 니트릴기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, Ar3 및 Ar4는 각각 독립적으로, 니트릴기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, Ar3 및 Ar4는 각각 독립적으로, 니트릴기; 페닐기; 비페닐기; 나프틸기; 트리페닐렌기; 페난트렌기; 페닐기 및 메틸기로 이루어진 군으로부터 치환된 플루오레닐기; 피리딘기; 디벤조퓨란기; 디벤조티오펜기; 또는 아릴기로 치환 또는 비치환된 카바졸기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 화합물은 하기 구조 중 어느 하나이다.
Figure PCTKR2019004337-appb-I000021
Figure PCTKR2019004337-appb-I000022
Figure PCTKR2019004337-appb-I000023
Figure PCTKR2019004337-appb-I000024
Figure PCTKR2019004337-appb-I000025
Figure PCTKR2019004337-appb-I000026
Figure PCTKR2019004337-appb-I000027
Figure PCTKR2019004337-appb-I000028
Figure PCTKR2019004337-appb-I000029
Figure PCTKR2019004337-appb-I000030
Figure PCTKR2019004337-appb-I000031
Figure PCTKR2019004337-appb-I000032
Figure PCTKR2019004337-appb-I000033
Figure PCTKR2019004337-appb-I000034
Figure PCTKR2019004337-appb-I000035
Figure PCTKR2019004337-appb-I000036
Figure PCTKR2019004337-appb-I000037
Figure PCTKR2019004337-appb-I000038
본 명세서에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서의 일 실시상태는 양극, 음극 및 상기 양극과 음극 사이에 배치된 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1층 이상은 상기 화합물을 포함하는 유기 발광 소자를 제공한다.
본 명세서의 유기 발광 소자의 1층 이상의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 명세서의 유기물층은 1 내지 3층으로 구성되어 있을 수 있다. 또한, 본 명세서의 유기 발광 소자는 유기물층으로서 정공주입층, 발광층, 전자수송층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.
또한, 본 명세서의 일 실시상태에 따르면, 상기 유기물층은 전자주입층, 전자수송층 또는 전자조절층을 포함하고, 상기 전자주입층, 전자수송층 또는 전자조절층은 상기 화학식 1의 화합물을 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 정공주입층 및 정공수송층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함할 수 있다.
구체적으로 본 명세서의 일 실시상태에 있어서, 상기 화합물은 상기 2층 이상의 전자주입층, 전자수송층 또는 전자조절층 중 1층에 포함될 수도 있으며, 각각의 2층 이상의 전자주입층, 전자수송층 또는 전자조절층에 포함될 수 있다.
또한, 본 명세서의 일 실시상태에 있어서, 상기 화합물이 상기 각각의 2층 이상의 전자주입층, 전자수송층 또는 전자조절층에 포함되는 경우, 상기 화합물을 제외한 다른 재료들은 서로 동일하거나 상이할 수 있다.
또 하나의 실시상태에 있어서, 유기 발광 소자는 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다.
또 하나의 실시상태에 있어서, 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다.
예컨대, 본 명세서의 일 실시상태에 따른 유기 발광 소자의 구조는 도 1에 예시되어 있다.
도 1은 기판 (1), 양극(2), 정공수송층(5), 발광층(3), 전자조절층(8), 전자수송층(7), 전자주입층(6) 및 음극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서 상기 화합물은 상기 전자조절층(8), 전자 수송층(7) 또는 전자 주입층(6)에 포함될 수 있다.
본 명세서의 유기 발광 소자는 유기물층 중 1층 이상이 본 명세서의 화합물, 즉 상기 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다.
상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
본 명세서의 유기 발광 소자는 유기물층 중 1층 이상이 상기 화합물, 즉 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다.
예컨대, 본 명세서의 유기 발광 소자는 기판 상에 양극, 유기물층 및 음극을 순차적으로 적층시킴으로써 제조할 수 있다. 이 때 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다.
또한, 상기 화학식 1의 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수도 있다 (국제 특허 명세서 공개 제 2003/012890호). 다만, 제조 방법이 이에 한정되는 것은 아니다.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공 주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.
상기 정공 수송층은 정공 주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 전자 수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 본 명세서의 일 실시상태에 따른 화합물을 제외하고, 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
상기 전자 주입층은 전극으로부터 전자를 주입하는 층으로, 전자 주입 물질로는 본 명세서의 일 실시상태에 따른 화합물을 제외하고, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공 주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 플루오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 함질소 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
상기 전자조절층은 정공의 음극 도달을 저지하는 층으로, 전자조절 물질로는 본 명세서의 일 실시상태에 따른 화합물을 제외하고, 일반적으로 정공주입층과 동일한 조건으로 형성될 수 있다. 구체적으로 옥사디아졸 유도체나 트리아졸 유도체, 페난트롤린 유도체, BCP, 알루미늄 착물 (aluminum complex) 등이 있으나, 이에 한정되지 않는다.
본 명세서에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 명세서를 예시하기 위한 것이며, 본 명세서의 범위가 이들에 의하여 한정되는 것은 아니다.
제조예 1
일반 제조예 1
Figure PCTKR2019004337-appb-I000039
상기 반응식에서, X1은 S 또는 O이며, X는 탈리기(leaving group)이다.
하기 표 1의 SM 1(1eq) 을 THF(Tetrahydrofuran)에 용해한 후 온도를 -78℃로 낮춘 후 2.5M n-BuLi(n-ButhylLitium) (1,4eq) 을 적가하고 30분 후 10H-스피로[안트라센-9,9'플루오렌]-10-온(하기 표 1의 SM2) (1eq) 을 넣어주고 Room Temperature(RT)로 올린 후 1시간 동안 교반하였다. 1N HCl (excess)를 넣어주고 30분간 교반한 후 층분리하여 용매제거 후 에틸아세테이트로 정제한 후 얻은 고체를 아세트산 (excess) 에 넣은 후 황산(cat.) 를 적가하고 교반 환류하였다. 상온으로 온도를 낮추고 물로 중화한 후 걸러진 고체를 테트라하이드로퓨란과 에틸아세테이트로 재결정하여 하기 표 1과 같이 A1 내지 A4 및 B1 내지 B4를 제조하였다.
Figure PCTKR2019004337-appb-T000001
Figure PCTKR2019004337-appb-I000040
일반 제조예 2
Figure PCTKR2019004337-appb-I000041
상기 반응식에서, X1은 S 또는 O이며, X는 탈리기(leaving group)이다.
표 2의 SM 1(1eq) 을 THF 에 용해한 후 온도를 -78℃로 낮춘 후 2.5M n-BuLi (1,4eq) 을 적가하고 30분 후 안트라센-9,10-디온 (표 2의 SM2) (1eq) 을 넣어주고 RT로 올린 후 1시간동안 교반하였다. 1N HCl (excess)를 넣어주고 30분간 교반한 후 층분리하여 용매제거 후 에틸아세테이트로 정제한 후 얻은 고체를 아세트산 (excess) 에 넣은 후 황산(cat.)를 적가하고 교반 환류하였다. 상온으로 온도를 낮추고 물로 중화한 후 걸러진 고체를 테트라하이드로퓨란과 에틸아세테이트로 재결정하여 중간체를 제조했다.
표 2의 SM 1와 안트라센-9,10-디온 대신에, 각각 표 3의 SM1과 SM2를 사용한 것을 제외하고 상기와 같은 과정을 한번 더 거쳐 하기 표3과 같이, C1 내지 C4 및 D1 내지 D4를 제조하였다.
Figure PCTKR2019004337-appb-T000002
Figure PCTKR2019004337-appb-T000003
Figure PCTKR2019004337-appb-I000042
일반 제조예 3
Figure PCTKR2019004337-appb-I000043
상기 반응식에서, X1은 S 또는 O이며, X는 탈리기(leaving group)이다.
일반 제조예 1 및 2 에서 합성한 A1 내지 A4, B1 내지 B4, C1 내지 C4 및 D1 내지 D4 중 어느 하나 (1eq), 비스(피나콜라토)디보론 (Bis(pinacolato)diborone)(1.4eq) 및 포타슘아세테이트 (potassium acetate)(3eq)를 1,4-다이옥산 200mL에 투입하고, 환류 교반 상태에서 디벤질리덴아세톤팔라듐 (0.02mol%)과 트리시클로헥실포스핀 (0.04mol%)을 첨가하고 환류 교반시켰다. 반응이 종결되면 혼합물을 실온으로 냉각하고, 셀라이트를 통해 여과한다. 여액을 감압 하에 농축한 후 잔류물에 클로로포름을 넣고 녹인 후 물로 세척하여 유기층을 분리한 후 무수황산 마그네슘(Magnesium sulfate)으로 건조하였다. 이를 감압 증류하고, 에틸아세테이트와 에탄올로 교반하여 하기 표4와 같이, A1-1 내지 A4-1, B1-1 내지 B4-1, C1-1 내지 C4-1 및 D1-1 내지 D4-1를 제조하였다.
Figure PCTKR2019004337-appb-T000004
Figure PCTKR2019004337-appb-I000044
Figure PCTKR2019004337-appb-I000046
제조예 2
일반 제조예 4
Figure PCTKR2019004337-appb-I000047
상기 반응식에서, X1은 S 또는 O이며, L1, L2, Ar1, Ar2, z1 및 z2는 화학식 1의 정의와 같다.
일반 제조예 3 에서 합성한 A1-1 내지 A4-1, B1-1 내지 B4-1, C1-1 내지 C4-1 및 D1-1 내지 D4-1 (표 5의 SM1, 1eq)과 2차 아진 유도체 및 표 5의 SM2인 헤테로아릴 유도체 (1.1eq) 를 테트라하이드로퓨란(300ml) 에 첨가한 후 2M 포타슘카보네이트 수용액(150ml)을 첨가하고, 테트라키스트리페닐-포스피노팔라듐(2mol%)를 넣은 후, 10시간 동안 가열교반하였다. 상온으로 온도를 낮추고 반응을 종결한 후 포타슘카보네이트 수용액을 제거하여 층분리하였다. 용매 제거 후 진공 증류하고 테트라하이드로퓨란과 에틸아세테이트로 재결정하여 하기 표 5와 같이, 화합물 1 내지 24를 제조하였다.
Figure PCTKR2019004337-appb-T000005
Figure PCTKR2019004337-appb-I000048
Figure PCTKR2019004337-appb-I000049
Figure PCTKR2019004337-appb-I000050
Figure PCTKR2019004337-appb-I000051
Figure PCTKR2019004337-appb-I000052
실시예 1
ITO(인듐 주석 산화물)가 1,000Å 두께로 박막 코팅된 유리 기판(corning 7059 glass)을, 분산제를 녹인 증류수에 넣고 초음파로 세척하였다. 세제는 Fischer Co.의 제품을 사용하였으며, 증류수는 Millipore Co. 제품의 필터(Filter)로 2차 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후, 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후 이소프로필알콜, 아세톤, 메탄올 용제 순서로 초음파 세척을 하고 건조시켰다.
이렇게 준비된 ITO 투명 전극 위에 헥사니트릴 헥사아자트리페닐기렌(hexanitrile hexaazatriphenylene)를 500Å의 두께로 열 진공 증착하여 정공 주입층을 형성하였다. 그 위에 정공을 수송하는 물질인 HT1 (900Å)을 진공증착한 후 이어서 상기 정공 수송층 위에 HT2을 막두께 50Å으로 진공증착하여 정공 조절층을 형성하였다. 화합물 발광층으로 호스트 BH1과 도판트 BD1 화합물(중량기준 25:1) 을 300Å의 두께로 진공 증착하였다. 그 다음에 ETM1 화합물(50Å)을 전자조절층으로 형성시키고 일반 제조예 4 에서 합성한 화합물 3과 LiQ (중량기준 1:1, 310Å)로 공증착시켜 전자수송층으로 순차적으로 형성하였다. 상기 전자 수송층 위에 순차적으로 10Å 두께의 리튬 플루오라이드(LiF)와 Mg와 Ag (중량기준 10:1, 150Å) 증착하고 1,000Å 두께의 알루미늄을 증착하여 음극을 형성하여, 유기 발광 소자를 제조하였다.
상기의 과정에서 유기물의 증착속도는 1 Å/sec를 유지하였고, 리튬플루라이드는 0.2 Å/sec, 알루미늄은 3 ~ 7 Å/sec의 증착속도를 유지하였다.
Figure PCTKR2019004337-appb-I000053
실시예 2
상기 실시예 1 에서 전자 수송층으로 화합물 3 대신 화합물 9를 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 3
상기 실시예 1 에서 전자 수송층으로 화합물 3 대신 화합물 10를 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 4
상기 실시예 1 에서 전자 수송층으로 화합물 3 대신 화합물 13를 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 5
상기 실시예 1 에서 전자 수송층으로 화합물 3 대신 화합물 14를 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 6
상기 실시예 1 에서 전자 수송층으로 화합물 3 대신 화합물 9를 사용하고 LiQ와의 중량비율을 1:2로 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 7
상기 실시예 1 에서 전자 수송층으로 LiQ와의 중량비율을 2:1로 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 8
상기 실시예 1 에서 전자 수송층으로 화합물 3 대신 화합물 13을 사용하고 LiQ 와의 중량비율을 2:1로 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 9
상기 실시예 1 에서 전자 수송층으로 화합물 3 대신 화합물 24를 사용한 것을 제외하고는 동일하게 실험하였다.
비교예 1
상기 실시예 1 에서 전자 수송층으로 화합물 3 대신 ETM2를 사용한 것을 제외하고는 동일하게 실험하였다.
비교예 2
상기 실시예 1 에서 전자 수송층으로 화합물 3 대신 ETM4를 사용한 것을 제외하고는 동일하게 실험하였다.
비교예 3
상기 실시예 1 에서 전자 수송층으로 화합물 3 대신 ETM5를 사용한 것을 제외하고는 동일하게 실험하였다.
비교예 4
상기 실시예 1 에서 전자 수송층으로 화합물 3 대신 ETM2를 사용하고 LiQ 와의 중량비율을 2:1로 사용한 것을 제외하고는 동일하게 실험하였다.
상기 실시예 1 내지 9 및 비교예 1 내지 4 과 같이 각각의 화합물을 전자 수송층 물질로 사용하여 제조한 유기 발광 소자를 실험한 결과를 표 6에 나타내었다.
NNo. 전자조절층 전자수송층:LiQ 전압(V) @20mA/cm2 Cd/A@20mA/cm2 색좌표(x,y) 수명(T95, h)@20mA/cm2
실시예 1 ETM1 화합물3 : LiQ = 1 : 1 3.51 6.71 (0.135, 0.138) 49.0
실시예 2 ETM1 화합물9 : LiQ = 1 : 1 3.45 6.63 (0.134, 0.137) 50.2
실시예 3 ETM1 화합물10 : LiQ = 1 : 1 3.41 6.58 (0.135, 0.138) 55.2
실시예 4 ETM1 화합물13 : LiQ = 1 : 1 3.34 6.82 (0.134, 0.138) 51.2
실시예 5 ETM1 화합물14 : LiQ = 1 : 1 3.42 6.72 (0.136, 0.139) 48.9
실시예 6 ETM1 화합물9 : LiQ = 1 : 2 3.31 6.52 (0.135, 0.138) 48.5
실시예 7 ETM1 화합물3: LiQ = 2 : 1 3.50 6.69 (0.133, 0.139) 49.1
실시예 8 ETM1 화합물13: LiQ = 2 : 1 3.52 6.81 (0.134, 0.138) 38.2
실시예 9 ETM1 화합물24 : LiQ = 1 : 1 3.42 6.72 (0.136, 0.139) 48.9
비교예 1 ETM1 ETM2 : LiQ = 1 : 1 3.82 5.70 (0.134, 0.139) 28.1
비교예 2 ETM1 ETM4 : LiQ = 1 : 1 5.23 5.81 (0.135, 0.138) 15.0
비교예 3 ETM1 ETM5 : LiQ = 1 : 1 4.32 5.23 (0.134, 0.138) 25.4
비교예 4 ETM1 ETM2 : LiQ = 2 : 1 4.21 5.77 (0.136, 0.139) 30.0
실시예 10ITO(인듐 주석 산화물)가 1,000Å 두께로 박막 코팅된 유리 기판(corning 7059 glass)을, 분산제를 녹인 증류수에 넣고 초음파로 세척하였다. 세제는 Fischer Co.의 제품을 사용하였으며, 증류수는 Millipore Co. 제품의 필터(Filter)로 2차 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후, 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후 이소프로필알콜, 아세톤, 메탄올 용제 순서로 초음파 세척을 하고 건조시켰다.
이렇게 준비된 ITO 투명 전극 위에 헥사니트릴 헥사아자트리페닐기렌(hexanitrile hexaazatriphenylene, HI-1)를 500Å의 두께로 열 진공 증착하여 정공 주입층을 형성하였다. 그 위에 정공을 수송하는 물질인 HT1 (900Å)을 진공증착한 후 이어서 상기 정공 수송층 위에 HT2를 막두께 50Å으로 진공증착하여 정공 조절층을 형성하였다. 화합물 발광층으로 호스트 BH1과 도판트 BD1 화합물(중량기준 25:1) 을 300Å의 두께로 진공 증착하였다. 그 다음에 일반 제조제 4 에서 합성한 화합물 1(50Å)을 전자조절층으로 형성시키고 ETM2와 LiQ (중량기준 1:1, 310Å)로 공증착시켜 전자수송층으로 순차적으로 형성하였다. 상기 전자 수송층 위에 순차적으로 10Å 두께의 리튬 플루오라이드(LiF)와, Mg와 Ag (중량기준 10:1, 150Å)을 증착하고 1,000Å 두께의 알루미늄을 증착하여 음극을 형성하여, 유기 발광 소자를 제조하였다.
상기의 과정에서 유기물의 증착속도는 1 Å/sec를 유지하였고, 리튬플루라이드는 0.2 Å/sec, 알루미늄은 3 ~ 7 Å/sec의 증착속도를 유지하였다.
Figure PCTKR2019004337-appb-I000054
실시예 11
상기 실시예 10에서 전자 조절층으로 화합물 1 대신 화합물 2를 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 12
상기 실시예 10에서 전자 조절층으로 화합물 1 대신 화합물 4를 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 13
상기 실시예 10에서 전자 조절층으로 화합물 1 대신 화합물 5를 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 14
상기 실시예 10에서 전자 수송층으로 LiQ 와의 비율을 2:1 (중량%)로, 전자 조절층으로 화합물 1 대신 화합물 6을 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 15
상기 실시예 10에서 전자 조절층으로 화합물 1 대신 화합물 7을 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 16
상기 실시예 10에서 전자 조절층으로 화합물 1 대신 화합물 8을 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 17
상기 실시예 10에서 전자 조절층으로 화합물 1 대신 화합물 11를 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 18
상기 실시예 10에서 전자 조절층으로 화합물 1 대신 화합물 12를 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 19
상기 실시예 10에서 전자 조절층으로 화합물 1 대신 화합물 15를 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 20
상기 실시예 10에서 전자 수송층으로 LiQ 와의 비율을 1:2 (중량%)로 전자 조절층으로 화합물 1 대신 화합물 16을 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 21
상기 실시예 10에서 전자 조절층으로 화합물 1 대신 화합물 17를 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 22
상기 실시예 10에서 전자 조절층으로 화합물 1 대신 화합물 18를 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 23
상기 실시예 10에서 전자 조절층으로 화합물 1 대신 화합물 19를 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 24
상기 실시예 10에서 전자 조절층으로 화합물 1 대신 화합물 20를 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 25
상기 실시예 10에서 전자 조절층으로 화합물 1 대신 화합물 21를 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 26
상기 실시예 10에서 전자 조절층으로 화합물 1 대신 화합물 22를 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 27
상기 실시예 10에서 전자 수송층으로 ETM2 대신 화합물 3을 사용하고 LiQ 와의 비율을 2:1 (중량%) 로 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 28
상기 실시예 10에서 전자 수송층으로 ETM2 대신 화합물 13을, 전자 조절층으로 화합물 1 대신 화합물 9 를 사용한 것을 제외하고는 동일하게 실험하였다.
실시예 29
상기 실시예 10에서 전자 조절층으로 화합물 1 대신 화합물 23을 사용한 것을 제외하고는 동일하게 실험하였다.
비교예 5
상기 실시예 10에서 전자 조절층으로 화합물 1 대신 ETM3를 사용한 것을 제외하고는 동일하게 실험하였다.
비교예 6
상기 실시예 10에서 전자 조절층으로 화합물 1 대신 ETM4를 사용한 것을 제외하고는 동일하게 실험하였다.
비교예 7
상기 실시예 10에서 전자 조절층으로 화합물 1 대신 ETM5를 사용한 것을 제외하고는 동일하게 실험하였다.
비교예 8
상기 실시예 10에서 전자 수송층으로 LiQ 와의 비율을 2:1 (중량%) 로 전자 조절층으로 화합물 1 대신 ETM3 를 사용한 것을 제외하고는 동일하게 실험하였다.
상기 실시예 10 내지 29 및 비교예 5 내지 8 과 같이 각각의 화합물을 전자 조절층 및 전자 수송층 물질로 사용하여 제조한 유기 발광 소자를 실험한 결과를 표 7에 나타내었다.
NNo. 전자조절층 전자수송층:LiQ 전압(V) @20mA/cm2 Cd/A@20mA/cm2 색좌표(x,y) 수명(T95, h)@20mA/cm2
실시예 10 화합물1 ETM2 : LiQ = 1 : 1 3.20 6.72 (0.135, 0.138) 48.0
실시예 11 화합물2 ETM2 : LiQ = 1 : 1 3.43 6.66 (0.134, 0.137) 52.0
실시예 12 화합물4 ETM2 : LiQ = 1 : 1 3.42 6.58 (0.135, 0.138) 55.2
실시예 13 화합물5 ETM2 : LiQ = 1 : 1 3.34 6.82 (0.134, 0.138) 51.2
실시예 14 화합물6 ETM2 : LiQ = 2 : 1 3.41 6.80 (0.136, 0.139) 48.9
실시예 15 화합물7 ETM2 : LiQ = 1 : 1 3.33 6.52 (0.135, 0.138) 48.5
실시예 16 화합물8 ETM2 : LiQ = 1 : 1 3.51 6.69 (0.133, 0.139) 49.1
실시예 17 화합물11 ETM2 : LiQ = 1 : 1 3.52 6.81 (0.134, 0.138) 38.2
실시예 18 화합물12 ETM2 : LiQ = 1 : 1 3.49 6.73 (0.135, 0.137) 53.0
실시예 19 화합물15 ETM2 : LiQ = 1 : 1 3.32 6.61 (0.134, 0.138) 48.0
실시예 20 화합물16 ETM2 : LiQ = 1 : 2 3.54 6.72 (0.135, 0.138) 44.2
실시예 21 화합물17 ETM2 : LiQ = 1 : 1 3.48 6.83 (0.134, 0.139) 46.5
실시예 22 화합물18 ETM2 : LiQ = 1 : 1 3.38 6.76 (0.135, 0.138) 47.1
실시예 23 화합물19 ETM2 : LiQ = 1 : 1 3.45 6.59 (0.134, 0.138) 42.0
실시예 24 화합물20 ETM2 : LiQ = 1 : 1 3.45 6.63 (0.136, 0.139) 43.0
실시예 25 화합물21 ETM2 : LiQ = 1 : 1 3.41 6.63 (0.134, 0.137) 51.0
실시예 26 화합물22 ETM2 : LiQ = 1 : 1 3.51 6.72 (0.136, 0.139) 50.2
실시예 27 화합물1 화합물3 : LiQ = 2 : 1 3.48 6.83 (0.134, 0.139) 46.5
실시예 28 화합물9 화합물13 : LiQ = 1 : 1 3.45 6.52 (0.134, 0.138) 48.0
실시예 29 화합물23 ETM2 : LiQ = 1 : 1 3.52 6.81 (0.134, 0.138) 38.2
비교예 5 ETM3 ETM2 : LiQ = 1 : 1 3.82 5.71 (0.134, 0.138) 33.5
비교예 6 ETM4 ETM2 : LiQ = 1 : 1 3.78 5.89 (0.137, 0.135) 28.2
비교예 7 ETM5 ETM2 : LiQ = 1 : 1 3.75 5.91 (0.134, 0.138) 35.1
비교예 8 ETM3 ETM2 : LiQ = 2 : 1 3.70 5.84 (0.135, 0.137) 29.4
상기 표에서 볼 수 있듯이, 본 발명에 따른 화학식의 화합물 유도체는 유기 발광 소자를 비롯한 유기 전자 소자에서 전자 수송 및 전자 조절 역할을 할 수 있으며, 본 발명에 따른 소자는 효율, 구동전압, 안정성 면에서 우수한 특성을 나타낸다. 특히, 비교예의 결과를 관찰해보면 본 문헌에서 적용된 스피로 구조의 화합물은 수명 면에서 큰 장점을 가지며 같은 스피로 구조 내의 치환기를 전자 수송 및 전자 조절에 적합한 헤테로아릴을 도입함으로써 높은 소자 성능을 이끌어 낼 수 있다.

Claims (8)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2019004337-appb-I000055
    화학식 1에 있어서,
    X1은 O 또는 S이고,
    R1 내지 R6은 각각 독립적으로 수소; 중수소; 니트릴기; 니트로기; 히드록시기; 카르보닐기; 에스테르기; 이미드기; 아미드기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
    L1 및 L2는 각각 독립적으로, 직접결합; 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 2가의 헤테로고리기이며,
    Ar1 및 Ar2는 각각 독립적으로, 니트릴기; 니트로기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
    a, b, d 및 e는 각각 독립적으로, 0 내지 4의 정수이며,
    c 및 f는 각각 독립적으로, 0 내지 3의 정수이고,
    z1 및 z2는 각각 독립적으로, 0 내지 4의 정수이며,
    z1+ z2는 1 내지 4의 정수이고,
    a 내지 f가 각각 독립적으로 2 이상인 경우, 괄호 안의 치환기는 서로 같거나 상이하거나, 서로 인접한 치환기끼리 결합하여 고리를 형성할 수 있다.
  2. 청구항 1에 있어서,
    상기 화학식 1은 하기 화학식 1-1 내지 1-4 중 어느 하나로 표시되는 것인 화합물:
    [화학식 1-1]
    Figure PCTKR2019004337-appb-I000056
    [화학식 1-2]
    Figure PCTKR2019004337-appb-I000057
    [화학식 1-3]
    Figure PCTKR2019004337-appb-I000058
    [화학식 1-4]
    Figure PCTKR2019004337-appb-I000059
    화학식 1-1 내지 1-4에 있어서,
    X1, L1, Ar1, R1 내지 R6 및 a 내지 f는 청구항 1에서의 정의와 같다.
  3. 청구항 1에 있어서,
    상기 화학식 1은 하기 화학식 2-1 내지 2-4 중 어느 하나로 표시되는 것인 화합물:
    [화학식 2-1]
    Figure PCTKR2019004337-appb-I000060
    [화학식 2-2]
    Figure PCTKR2019004337-appb-I000061
    [화학식 2-3]
    Figure PCTKR2019004337-appb-I000062
    [화학식 2-4]
    Figure PCTKR2019004337-appb-I000063
    화학식 2-1 내지 2-4에 있어서,
    X1, L2, Ar2, R1 내지 R6 및 a 내지 f는 청구항 1에서의 정의와 같다.
  4. 청구항 1에 있어서,
    L1 및 L2는 각각 독립적으로 직접결합; 또는 페닐렌기인 것인 화합물.
  5. 청구항 1에 있어서,
    상기 Ar1 및 Ar2는 각각 독립적으로, 하기 구조식 중 선택되는 어느 하나인 것인 화합물:
    Figure PCTKR2019004337-appb-I000064
    Y1 내지 Y3는 각각 독립적으로, N 또는 CR'이고,
    Y1 내지 Y3 중 적어도 하나는 N이며,
    L3 및 L4는 각각 독립적으로, 직접결합; 또는 치환 또는 비치환된 아릴렌기이며,
    Ar3 및 Ar4는 각각 독립적으로, 수소; 중수소; 니트릴기; 니트로기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며,
    A1 내지 A10 및 R'은 각각 독립적으로, 수소; 중수소; 니트릴기; 니트로기; 히드록시기; 카르보닐기; 에스테르기; 이미드기; 아미드기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며,
    a1, a2, a9 및 a10은 각각 독립적으로, 0 내지 5의 정수이며,
    a3, a7 및 a8는 각각 독립적으로, 0 내지 7의 정수이며,
    a4 내지 a6은 각각 독립적으로, 0 내지 4의 정수이며,
    a1 내지 a10이 각각 독립적으로 2 이상의 정수인 경우, 각 괄호 내의 치환기는 서로 같거나 상이하며,
    *는 결합되는 위치이다.
  6. 청구항 1에 있어서,
    화학식 1로 표시되는 화합물은 하기 구조 중 어느 하나인 화합물:
    Figure PCTKR2019004337-appb-I000065
    Figure PCTKR2019004337-appb-I000066
    Figure PCTKR2019004337-appb-I000067
    Figure PCTKR2019004337-appb-I000068
    Figure PCTKR2019004337-appb-I000069
    Figure PCTKR2019004337-appb-I000070
    Figure PCTKR2019004337-appb-I000071
    Figure PCTKR2019004337-appb-I000072
    Figure PCTKR2019004337-appb-I000073
    Figure PCTKR2019004337-appb-I000074
    Figure PCTKR2019004337-appb-I000075
    Figure PCTKR2019004337-appb-I000076
    Figure PCTKR2019004337-appb-I000077
    Figure PCTKR2019004337-appb-I000078
    Figure PCTKR2019004337-appb-I000079
    Figure PCTKR2019004337-appb-I000080
    Figure PCTKR2019004337-appb-I000081
    Figure PCTKR2019004337-appb-I000082
    .
  7. 양극, 음극 및 상기 양극과 음극 사이에 배치된 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1층 이상은 청구항 1 내지 6 중 어느 하나의 항에 따른 화합물을 포함하는 것을 특징으로 하는 유기 발광 소자.
  8. 청구항 7에 있어서,
    상기 유기물층은 전자주입층, 전자수송층 또는 전자조절층을 포함하고, 상기 전자주입층, 전자수송층 또는 전자조절층은 상기 화학식 1의 화합물을 포함하는 것인 유기 발광 소자.
PCT/KR2019/004337 2018-04-11 2019-04-11 화합물 및 이를 포함하는 유기 발광 소자 WO2019199068A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980006584.4A CN111511733B (zh) 2018-04-11 2019-04-11 化合物及包含其的有机发光器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180042393 2018-04-11
KR10-2018-0042393 2018-04-11

Publications (1)

Publication Number Publication Date
WO2019199068A1 true WO2019199068A1 (ko) 2019-10-17

Family

ID=68163723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/004337 WO2019199068A1 (ko) 2018-04-11 2019-04-11 화합물 및 이를 포함하는 유기 발광 소자

Country Status (3)

Country Link
KR (1) KR102201553B1 (ko)
CN (1) CN111511733B (ko)
WO (1) WO2019199068A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112266379B (zh) * 2020-10-30 2023-01-24 武汉天马微电子有限公司 化合物、显示面板以及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1338499A (zh) * 2001-08-20 2002-03-06 清华大学 双螺环衍生物及其作为电致发光材料的应用
KR20150010016A (ko) * 2013-07-17 2015-01-28 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
KR20150037623A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 헤테로환 화합물 및 이를 이용한 유기 발광 소자
KR20170041160A (ko) * 2015-10-06 2017-04-14 주식회사 엘지화학 아민계 화합물 및 이를 포함하는 유기 발광 소자
KR20170041155A (ko) * 2015-10-06 2017-04-14 주식회사 엘지화학 이중 스피로형 화합물 및 이를 포함하는 유기 발광 소자

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106397223B (zh) 2015-08-01 2019-04-19 南京高光半导体材料有限公司 一种有机化合物,包含该化合物的有机电致发光器件材料及包含该材料的有机电致发光器件
KR101991050B1 (ko) * 2015-10-06 2019-06-20 주식회사 엘지화학 스피로형 화합물 및 이를 포함하는 유기 발광 소자
KR102065818B1 (ko) * 2015-10-06 2020-01-13 주식회사 엘지화학 스피로형 화합물 및 이를 포함하는 유기 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1338499A (zh) * 2001-08-20 2002-03-06 清华大学 双螺环衍生物及其作为电致发光材料的应用
KR20150010016A (ko) * 2013-07-17 2015-01-28 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
KR20150037623A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 헤테로환 화합물 및 이를 이용한 유기 발광 소자
KR20170041160A (ko) * 2015-10-06 2017-04-14 주식회사 엘지화학 아민계 화합물 및 이를 포함하는 유기 발광 소자
KR20170041155A (ko) * 2015-10-06 2017-04-14 주식회사 엘지화학 이중 스피로형 화합물 및 이를 포함하는 유기 발광 소자

Also Published As

Publication number Publication date
CN111511733A (zh) 2020-08-07
KR20190118980A (ko) 2019-10-21
KR102201553B1 (ko) 2021-01-12
CN111511733B (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
WO2017150859A1 (ko) 함질소 화합물 및 이를 포함하는 유기 발광 소자
WO2016171406A2 (ko) 유기 발광 소자
WO2014010823A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2014123392A1 (ko) 헤테로환 화합물 및 이를 이용한 유기 발광 소자
WO2015016498A1 (ko) 헤테로 고리 화합물 및 이를 포함하는 유기 발광 소자
WO2015046987A1 (ko) 헤테로환 화합물 및 이를 이용한 유기 발광 소자
WO2017179883A1 (ko) 화합물 및 이를 포함하는 유기 전자 소자
WO2020171531A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2015152650A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019151733A1 (ko) 유기 발광 소자
WO2015152651A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019194594A1 (ko) 화합물 및 이를 포함하는 유기 전자 소자
WO2019177393A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019151615A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2015178740A2 (ko) 헤테로환 화합물 및 이를 포함하는 유기발광소자
WO2021066351A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021080254A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021080253A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021040467A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
WO2018074881A1 (ko) 다중고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020231242A1 (ko) 유기 발광 소자
WO2020149609A1 (ko) 유기 발광 소자
WO2020091526A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022060047A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022031013A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19786007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19786007

Country of ref document: EP

Kind code of ref document: A1