WO2019198725A1 - スポット溶接継手、スポット溶接継手を備える自動車骨格部品、及びスポット溶接継手の製造方法 - Google Patents

スポット溶接継手、スポット溶接継手を備える自動車骨格部品、及びスポット溶接継手の製造方法 Download PDF

Info

Publication number
WO2019198725A1
WO2019198725A1 PCT/JP2019/015507 JP2019015507W WO2019198725A1 WO 2019198725 A1 WO2019198725 A1 WO 2019198725A1 JP 2019015507 W JP2019015507 W JP 2019015507W WO 2019198725 A1 WO2019198725 A1 WO 2019198725A1
Authority
WO
WIPO (PCT)
Prior art keywords
spot
steel plate
hardness
welded joint
region
Prior art date
Application number
PCT/JP2019/015507
Other languages
English (en)
French (fr)
Inventor
佑 銭谷
智史 広瀬
敦雄 古賀
幸一 ▲浜▼田
泰山 正則
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2020513413A priority Critical patent/JP7151762B2/ja
Publication of WO2019198725A1 publication Critical patent/WO2019198725A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/22Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved

Definitions

  • the present invention relates to a spot welded joint, an automobile frame component including a spot welded joint, and a method for manufacturing a spot welded joint.
  • Patent Document 1 describes an energy absorbing member in which a hat material and a closing plate are joined to each other by spot welding.
  • high strength steel plates having a tensile strength of 980 MPa or more are widely used as high strength steel plates for automobiles.
  • high-strength steel sheets having a tensile strength of 1100 MPa or more have begun to be applied.
  • a high-strength steel sheet having a tensile strength of 1100 MPa or more generally includes a quenched structure in order to obtain a high strength.
  • a nugget spot weld metal
  • HAZ heat affected zone
  • HAZ includes a hardened structure.
  • structural members (lap welding members) constituting the automobile body such as A pillars, B pillars, roof rails, and side sills need to have high strength.
  • a structural member constituting an automobile body is manufactured by superposing a plurality of steel plate members and joining flanges (overlapping portions) by resistance spot welding to form a cylindrical closed cross section.
  • techniques such as increasing the strength of the material (base material) and increasing the number of welding (spot) spots are taken.
  • An in-plane tensile stress may be applied to a part of the flange of the member to be resistance spot welded at the time of collision. Even if the strength of the base material is increased and the spot hitting point is increased, if the above-described HAZ softened portion is generated, there may be a case where the impact resistance performance assumed from the strength of the base material and the shape of the part cannot be obtained. Therefore, when a steel plate member made of a high-strength steel plate is applied to a structural member of an automobile body, it is required to suppress the peripheral region of the nugget from being the starting point of fracture.
  • Patent Document 2 describes a welded joint in which the spot welded portion is heat-treated at 100 to 400 ° C. to improve the strength of the L-shaped tensile joint as a welded joint with improved characteristics of the spot welded portion.
  • Patent Document 3 describes a method of improving the strength of the cross tensile joint by performing post-energization on the spot weld.
  • the spot welding electrode is wound around a coil, and the spot welded portion and the molten portion are tempered by high-frequency induction heating immediately after welding, so that the ratio of TSS and material strength, CTS and A welding method is described that improves the joint strength evaluated from the product of the material strength.
  • Patent Document 5 discloses that a part of or all of the flange portion used for spot welding has a region having a strength of less than 1100 MPa, called a soft zone, thereby improving energy absorption capability. Pillars are listed.
  • Japanese Unexamined Patent Publication No. 2006-142905 Japanese Laid-Open Patent Publication No. 2010-059451 Japanese Unexamined Patent Publication No. 2015-093282 Japanese Patent No. 5457750 Japanese Patent No. 5894081
  • the present invention has been made in view of the above problems, and even when in-plane tensile stress is applied, a spot welded joint that suppresses breakage from a region sandwiched between a plurality of weld metals, and the spot welding thereof It is an object of the present invention to provide an automobile frame component including a joint and a method for manufacturing the spot welded joint.
  • the inventors of the present invention can suppress breakage in a region sandwiched between weld metals (spot weld metals) by reducing the difference in hardness in a predetermined region between adjacent spot weld metals at intervals. I found it.
  • the HAZ softened part having a lower hardness than the base material is hardly formed on a steel sheet having a tensile strength of less than 980 MPa.
  • the HAZ softened portion may occur in a steel sheet having a tensile strength of 980 MPa or more, and in particular, a high-strength steel sheet having a quenched structure and a tensile strength of 1100 MPa or more, or a hot stamp material formed by hot stamping (high-strength steel plate member). It is remarkable at spot welds.
  • a spot welded joint includes a first steel sheet having a structure mainly composed of hard martensite having an average hardness of 350 HV or more, and a second steel sheet overlapped with the first steel sheet.
  • a plate thickness direction of the first steel plate including a steel plate and a plurality of spot weld metals joining the first steel plate and the second steel plate, and including a pair of adjacent spot weld metals.
  • all the regions of the total thickness of the first steel plate between edges of the set of spot weld metals on the overlapping surface side have a structure mainly composed of hard martensite.
  • the difference between the minimum hardness value of the region and the average hardness of the first steel plate is 80 HV or less.
  • the difference between the maximum hardness value and the minimum value in the region may be 80 HV or less.
  • the average hardness of the weld metal outer edge region occupying 0.5 mm from the outer edge of the spot weld metal in the spot weld metal in the cross section, The average hardness of the first steel plate may be lower.
  • a difference between the average hardness of the weld metal outer edge region and the average hardness of the first steel plate may be 100 HV or more in the cross section. .
  • the plurality of spot weld metals may be resistance spot welded nuggets.
  • both the first steel plate and the second steel plate may be plated steel plates.
  • the first steel plate is a hat member
  • the second steel plate is a closing plate
  • the set of spot welds The metal may be formed in an overlapping portion between the flange portion of the hat member and the closing plate.
  • An automobile frame part according to another aspect of the present invention includes the spot welded joint according to any one of (1) to (7).
  • a method for manufacturing a spot welded joint according to another aspect of the present invention includes a first steel plate having an average hardness of 350 HV or more and a structure mainly composed of hard martensite, and a second steel plate.
  • a plurality of spot weld metals for joining the first steel plate and the second steel plate, which are overlapped and superposed, are formed, and a quenching process is performed on a region that occupies between a pair of adjacent spot weld metals. .
  • the weld metal adjacent to the quenched region may be tempered.
  • the set of spot weld metals may be formed by resistance spot welding.
  • the first steel plate is a hat member
  • the second steel plate is a closing plate
  • the flange portion of the hat member The set of spot weld metals may be formed on the overlapping portion of the metal and the closing plate.
  • the spot welded joint according to the above aspect of the present invention even when an in-plane tensile stress is applied, breakage from the HAZ softened portion in the region between the welded portions can be suppressed. When used, the anti-collision performance can be improved. Further, in the automobile skeleton component according to the above aspect of the present invention, it is possible to suppress breakage from the HAZ softened portion, and thus it is possible to obtain a predetermined collision resistance performance. Moreover, in the manufacturing method of the spot welded joint which concerns on the said aspect of this invention, when it uses for the structural member which comprises a motor vehicle body, the welded joint which improves a collision-resistant performance can be manufactured.
  • spot welded joint according to an embodiment of the present invention spot welded joint according to the present embodiment
  • an automobile frame component according to the present embodiment an automobile frame component according to the present embodiment
  • a method for manufacturing the spot welded joint according to the present embodiment will be described with reference to the drawings. To do.
  • the spot welded joint 1 which concerns on this embodiment is the 1st steel plate 11, the 2nd steel plate 12 piled up on the 1st steel plate, the 1st steel plate 11, and the 2nd steel plate. 12 and a plurality of spot weld metals 2 that are joined together.
  • the spot weld metal 2 is a nugget formed by resistance spot welding.
  • Such a spot welded joint is obtained by performing resistance spot welding with the first steel plate 11 and the second steel plate 12 overlapped.
  • the first steel plate 11 is a steel plate having an average hardness of 350 HV or more in terms of Vickers hardness in consideration of application to automobile frame parts such as B pillars.
  • the first steel sheet is a structure mainly composed of a hardened structure such as hard martensite (at least 50% or more, preferably 80% or more).
  • the second steel plate 12 is not limited.
  • the hardness of the 1st steel plate 11 means the hardness before welding of the 1st steel plate 11 used for welding, and when measuring after welding, the hardness measured in the position which is not influenced by welding heat Point to.
  • the spot welded joint 1 has a set of overlapping surfaces 3 on all cross sections in the thickness direction of the first steel plate 11 including a pair of adjacent spot weld metals 2 and 2.
  • Between the edges of the spot weld metals 2 and 2 and the entire thickness region (inter-weld metal region 32) of the first steel plate 11 has a structure mainly composed of hard martensite.
  • the minimum value of the hardness in this region (inter-weld metal region 32) is such that the difference (hardness difference) from the average hardness of the first steel plate 11 is 80 HV or less.
  • the spot weld metal 2 refers to a portion that is once melted and re-solidified by welding heat during welding.
  • adjoining means that a certain spot weld metal 2 adjoins another nearest spot weld metal 2 at intervals, as shown to FIG. 1A and FIG. 1B.
  • the weld metal region 32 is a region sandwiched between edges of the weld metal that are closer to the target other weld metal.
  • the weld metal region 32 only needs to have a structure mainly composed of hard martensite, but occupies the weld metal region 32 (the entire weld metal region 32).
  • the hardness control region 33 may be mainly composed of hard martensite.
  • a high-strength steel sheet having an average Vickers hardness of 350 HV or more is generally mainly composed of a hardened structure such as hard martensite (50 area% or more).
  • a hardened structure such as hard martensite (50 area% or more).
  • Such a structure is obtained by a manufacturing method including a quenching process.
  • the hard martensite changes to a soft structure such as tempered martensite in the HAZ formed around the weld metal by the heat of welding. That is, a region (HAZ softened portion) having a lower hardness than the base material is formed.
  • the HAZ softened portion may be a starting point for fracture.
  • the spot welded joint 1 includes a pair of spot weld metals 2 adjacent to each other in all cross sections in the plate thickness direction of the first steel plate 11 including a pair of adjacent spot weld metals 2 and 2.
  • the minimum value of the hardness (Vickers hardness) of the region of the entire thickness of the first steel plate 11 (inter-weld metal region 32) between the edges of the two overlapping surfaces 3 and the first steel plate is 80 HV or less. If it is a spot-welded joint having such a hardness difference, the fracture from the HAZ softened portion 31 is suppressed, and the fracture from the HAZ softened portion 31 can be suppressed even when an in-plane tensile stress is applied.
  • the reason is as follows.
  • the portion that was the HAZ softened portion 31 in the inter-welded metal region 32 where in-plane tensile stress occurs is quenched and altered.
  • the hardness difference between the location that was the HAZ softened portion 31 and the first steel plate 11 is reduced along with the surrounding weld metal region 32, and the concentration of strain on the location that was the HAZ softened portion 31 is alleviated. Because it can.
  • the procedure for altering the HAZ softened portion 31 is as follows. Heat until the HAZ softened portion 31 becomes an austenite phase. Next, the austenite phase is quenched. If it does so, the location which was the HAZ softening part 31 will be hardened, and the hardness will become the hardness close
  • the entire weld metal region 32 is heated until it becomes an austenite phase. Quench to quench. Then, a new softened portion is generated outside the weld metal region 32. Even if a new softened portion is formed outside the inter-welded metal region 32, a high in-plane tensile stress is not generated there, so that breakage can be suppressed. For example, by performing quenching on the hardness control region 33 occupying the inter-welded metal region 32, no softened portion is formed in the inter-welded metal region 32.
  • the minimum hardness value of the weld metal regions 32 can be brought close to the average hardness of the first steel plate 11.
  • the difference between the minimum hardness value of the inter-welded metal region 32 and the average hardness of the first steel plate can be 80 Hv or less.
  • the difference between the maximum value and the minimum value of hardness (Vickers hardness) in the region is preferably 80 HV or less.
  • the concentration of strain on the HAZ softened portion 31 can be further relaxed.
  • the difference between the maximum value and the minimum value of Vickers hardness is 50 HV or less.
  • the spot weld joint 1 has a plurality of spot weld metals 2. Of the regions between adjacent spot weld metals 2, in particular, at least one set of adjacent spot weld metals 2, 2 to which in-plane tensile stress is applied, if the above-described hardness relationship is satisfied. The effect is obtained. On the other hand, preferably, as long as the above-described hardness relationship is satisfied between all adjacent spot weld metals 2, no matter which direction and place in the plane of the high-strength steel plate are subjected to tensile stress, HAZ Breakage at the softened portion can be suppressed.
  • the spot weld joint 1 has the structure and hardness of the weld metal region 32 in all cross sections in the thickness direction of the first steel plate 11 including a pair of adjacent spot weld metals 2 and 2. Need to control.
  • the first steel plate 11 has a region including the adjacent spot weld metals 2 and 2 whose structure and hardness are controlled, and a direction perpendicular to the cross section in the thickness direction of the first steel plate 11 (in FIG. 1A).
  • the thickness in the direction perpendicular to the paper surface, the vertical direction on the paper surface in FIG. 1B) is the diameter of the overlap surface 3 of the spot weld metal 2 as D, the hardness and structure are controlled as described above.
  • the width is 1.0 ⁇ D or more.
  • the in-plane tensile stress is not necessarily parallel to the direction connecting the spot weld metals 2 and 2 (the direction connecting the centers of the spot weld metals 2 and 2), but at a constant angle. In some cases (stress is applied in an oblique direction).
  • the width of the region where the hardness and the structure are controlled is 1.0 ⁇ D or more, the direction in which the in-plane tensile stress is applied becomes a certain angle with respect to the direction connecting the spot weld metals 2 and 2 (diagonal) Even when the stress is applied in the direction), the hardness at all positions of the HAZ softened portion 31 where the strain can concentrate is close to the hardness of the first steel plate 11, so that the fracture at the HAZ softened portion 31 is further suppressed. Thus, the amount of elongation until breakage can be increased.
  • the width of the region where the hardness and the structure are controlled is less than 1.0 ⁇ D
  • the direction of the in-plane tensile stress has a certain angle with respect to the direction connecting the spot weld metals 2 and 2 ( In the case where stress is applied in an oblique direction), there is a concern that a sufficient effect cannot be obtained.
  • the spot welded joint 1 is as described above in the region between the adjacent spot weld metals 2, particularly between at least one pair of adjacent spot weld metals 2 and 2 that are subjected to in-plane tensile stress.
  • the effect can be obtained if the hardness distribution is correct.
  • three or more spot weld metals 2 are arranged, for example, as shown in FIG. 3, the structure and hardness of the entire hardness control region 33 occupying a plurality of weld metal regions 32 may be controlled. If it does so, the danger that a softening part will accidentally generate
  • the average hardness of the first steel plate 11 is within a range of at least 0.5 mm from the outer edge of the spot welded metal 2 in the spot welded metal 2. Further, it is preferable that a weld metal outer edge region 41 having a low average hardness exists. The presence of the weld metal outer edge region 41 having a hardness lower than that of the first steel plate 11 in the spot weld metal 2 improves the characteristics of the weld joint 1, particularly the strength of the cross tensile joint.
  • the difference between the average hardness of the weld metal outer edge region 41 in the spot weld metal 2 and the average hardness of the first steel plate is 100 HV or more.
  • the maximum value and the minimum value of the hardness of the weld metal region 32 are measured using a Vickers hardness meter with a load of 100 gf. Specifically, in the cross section in the plate thickness direction of the first steel plate 11 including the plurality of adjacent spot weld metals 2 and 2, the plate is formed from the surface of the first steel plate 11 (the surface opposite to the overlapping surface 3). 1/8 position of thickness, 3/8 position, 5/8 position, 7/8 position at one end of the weld metal region 32 in the direction perpendicular to the plate thickness direction (plate surface direction) From one end to the other end, the hardness is measured at intervals of 0.1 mm. Then, the maximum value and the minimum value of the measured hardness are set as the maximum value and the minimum value of the hardness of the inter-welded metal region 32.
  • the average hardness of the first steel plate 11 is measured using a Vickers hardness meter with a load of 1.0 kgf.
  • the hardness of the portion affected by the welding heat is lower than the hardness before welding, so the hardness of the first steel plate 11 is the heat effect of the welding of the first steel plate 11.
  • the hardness of the position which has not received is measured and the average value is used. What is necessary is just to measure the hardness of the position 15 mm or more away from the spot weld metal 2 in the direction which does not have another weld metal as a position which is not received the heat influence by welding, for example.
  • the load is set to 1.0 kgf, and the positions of 1/8 of the plate thickness from the surface of the first steel plate 11 are not affected by the heat caused by welding.
  • the hardness at the 8 position, the 5/8 position, and the 7/8 position is measured, and the average value is used.
  • the average hardness of the weld metal outer edge region 41 in the spot weld metal 2 is measured using a Vickers hardness meter with a load of 100 gf. Specifically, the hardness of five places within 0.5 mm from the outer edge is measured, and the average value is used.
  • the structure fraction of the hard martensite of the 1st steel plate 11 can be confirmed by observing the structure
  • the structural fraction of hard martensite in the inter-welded metal region 32 is a position of 1/8 of the plate thickness from the surface in the inter-welded metal region 32 of the cross section in the plate thickness direction of the first steel plate 11 and a position of 3/8. It is obtained by the same method as described above for each of the 5/8 and 7/8 positions.
  • spot welding in which a weld metal is formed by spot welding is targeted.
  • Spot welding is also referred to as spot welding, and refers to welding where two superposed steel plates are connected by dots.
  • spot welding means include arc spot welding, resistance spot welding, and laser spot welding.
  • continuous welding means include arc welding, laser welding, and seam welding. Since spot welding has a smaller welding area than continuous welding, the construction time is short and power is saved. That is, spot welding is excellent in productivity.
  • the spot weld joint 1 is not limited to the resistance spot weld joint in which the spot weld metal 2 is a resistance spot weld nugget.
  • the spot weld metal 2 may be formed by laser spot welding, and the spot weld metal 2 may be formed by arc spot welding.
  • the spot weld metal 2 penetrates at least one of the steel plates and has a substantially rectangular cross section.
  • the spot weld metal 2 is formed by arc spot welding, the spot weld metal 2 is formed of at least one of the first steel plate and the second steel plate as in the case of laser spot welding as shown in FIG. To penetrate.
  • MIG welding or MAG welding is performed. In this case, the electrode becomes a droplet and forms a weld metal, so that a surplus is formed. This is different from the case where the spot weld metal 2 is formed by laser spot welding.
  • the minimum value of the hardness of the region between the adjacent spot weld metals 2 and 2 (inter-weld metal region 32) and the first If the difference with the average hardness of the steel plate 11 is 80 HV or less, the fracture from the HAZ softened portion 31 is suppressed even when an in-plane tensile stress is applied.
  • the difference between the maximum value and the minimum value of the hardness (Vickers hardness) in the weld metal region 32 is preferably 80 HV or less.
  • the difference between the maximum value and the minimum value of the hardness in the inter-welded metal region 32 is more preferably 50 HV or less.
  • the average hardness in the range of at least 0.5 mm from the outer edge of the spot weld metal 2 is lower than the average hardness of the first steel plate 11.
  • the hardness of the spot weld metal 2 is at least 0.5 mm from the outer edge than the average hardness of the first steel plate 11.
  • region 41 with low is formed.
  • region 41 is formed in the range of at least 0.5 mm from the outer edge of the spot weld metal 2 like FIG.
  • the presence of the weld metal outer edge region 41 having a hardness lower than the average hardness of the first steel plate improves the characteristics of the weld joint 1, particularly the cross tension joint strength. It is more preferable that the difference between the average hardness of the weld metal outer edge region 41 in the spot weld metal 2 and the average hardness of the first steel plate is 100 HV or more.
  • the first steel plate 11 is a hat member
  • the second steel plate 12 is a closing plate
  • the plurality of spot weld metals 2 are closed with the flange portion of the hat member. It is preferable to be formed in the overlapping portion with the plate. Such a configuration is particularly effective for improving the strength and collision resistance of the structural member.
  • the first steel plate 11 and / or the second steel plate 12 may be a plated steel plate.
  • the corrosion resistance is improved.
  • the plated steel plate include a hot dip galvanized steel plate, an alloyed hot dip galvanized steel plate, an electrogalvanized steel plate, and an aluminum plated steel plate.
  • the automobile frame part provided with the spot welded joint according to the present embodiment is an automobile frame part including at least a part of the spot welded joint 1 according to the present embodiment described above.
  • an A pillar or a side sill, or FIG. B pillar 201 as shown.
  • the flange portion of the hat member is joined to the closing plate.
  • the automobile skeleton component according to the present embodiment includes the spot welded joint according to the present embodiment in which the fracture at the HAZ softening portion 31 is suppressed, high impact resistance is obtained when a high-strength steel plate is used. .
  • the spot welded joint 1 according to the present embodiment has an average hardness of 350 HV or more and a first steel plate 11 and a second steel plate 12 that have a structure mainly composed of hard martensite, and the first steel plate.
  • a plurality of spot weld metals 2 for joining 11 and the second steel plate 12 are formed. Then, it obtains by performing a hardening process to the area
  • region for example, hardness control area
  • the area 32 between weld metals is the area 32 between weld metals, and the adjacent spots on the overlapping surface side in all cross sections in the plate thickness direction of the first steel plate including a plurality of spot weld metals 2. It is a region between the edges of the weld metal and the total thickness of the first steel plate.
  • the structure softened by the heat effect of welding such as the HAZ softened portion 31 can be made into a structure mainly composed of hard martensite.
  • the difference between the minimum hardness value of the weld metal region 32 and the average hardness of the first steel plate 11 can be reduced to 80 HV or less.
  • a plurality of spot weld metals 2 may be formed by resistance spot welding. Further, a plurality of spot weld metals 2 may be formed by laser spot welding or arc spot welding.
  • the welding method is not particularly limited. However, resistance spot welding is preferable in terms of productivity and the like.
  • the method for quenching is not limited, but at least a region including the entire weld metal region 32 (for example, the hardness control region 33) is heated to a temperature of 750 ° C. or higher and transformed into austenite, and then 20 ° C. It is preferable to cool to 200 ° C. or lower at a cooling rate of at least / sec. Further, laser heating or high frequency induction heating is preferable as a method for locally heating and cooling the target range.
  • the tempering process is performed so that the average hardness in the range of at least 0.5 mm from the outer edge of the spot weld metal 2 is lower than the average hardness of the first steel plate 11. It is preferable.
  • tempering it is not preferable to perform tempering on portions other than the spot weld metal 2 because cracks from the HAZ softened portion 31 are likely to occur.
  • the method of tempering is not limited, it is preferable to perform tempering by energization heating or laser irradiation because only the spot weld metal 2 is locally tempered.
  • tempering is performed by laser irradiation, it is preferable to irradiate the laser beam directly from above the spot weld metal 2 toward the spot weld metal 2 so that the base metal part and the HAZ part are not heated as much as possible.
  • the welded portion is preferably heated to a temperature range of 400 ° C to 700 ° C.
  • the structure of the tempered portion becomes tempered martensite, and the hardness is sufficiently lowered.
  • a tensile test piece having a distance between gauge points of 50 mm as shown in FIG. 10 was collected from a steel plate having a thickness of 1.6 mm obtained through quenching.
  • the entire width direction of the weld metal region was heated, and then quenched to room temperature (25 ° C.) at a cooling rate of 20 ° C./second or more.
  • the temperature in the area between the weld metals was heated to 750 ° C. or higher by laser irradiation.
  • the weld metal part was tempered only by irradiating laser on the weld metal part from the base material side only with the joint number 6.
  • the maximum value and the minimum value of the hardness between the weld metal regions of the test piece were measured using a Vickers hardness meter with a load of 100 gf. Specifically, in the cross section in the plate thickness direction of the test piece (base material) including the weld metal, the position of 1/8 of the plate thickness from the surface of the test piece, the position of 3/8, the position of 8/8, 7 The hardness was measured at intervals of 0.1 mm from one end in the plate surface direction of the area between the weld metals to the other end. And the maximum value and minimum value of the measured hardness were made into the maximum value of hardness and the minimum value of hardness of the area between weld metals.
  • the average hardness of the test piece was measured using a Vickers hardness tester with a load of 1.0 kgf.
  • the hardness at 10 positions from the spot weld metal 2 at a distance of 15 mm to 20 mm or more in the opposite direction to the other weld metal was measured using a Vickers hardness tester with a load of 1.0 kgf. For 10 locations, the hardness at the 1/8 position, 3/8 position, 5/8 position, and 7/8 position of the thickness from the surface of the test piece was measured, and the average value was defined as the average hardness. .
  • the average hardness of the weld metal outer edge region in the weld metal was measured using a Vickers hardness tester with a load of 100 gf. Specifically, the hardness at five locations within 0.5 mm from the outer edge was measured, and the average value was defined as the average hardness.
  • the structure fraction of the hard martensite of the test piece was confirmed by observing the structure of the position not affected by the welding heat by a microscope. Specifically, samples taken from 5 positions each of 1/8 position, 3/8 position, 5/8 position, and 7/8 position of the thickness of the test piece in the thickness direction cross section.
  • the area of martensite is considered to be martensite when white-reddish brown is observed in the observation field by observing a 100 ⁇ m square field of view with an optical microscope at a magnification of 1000 times. was measured, and the martensite area ratio of the 20 visual fields observed was averaged to obtain the martensite area ratio of the test piece.
  • the structure fraction of hard martensite in the inter-welded metal region is 1/8 of the plate thickness from the surface in the inter-welded metal region of the cross section in the plate thickness direction of the test piece, 3/8, and 5/8. It calculated
  • a cross tension test piece was prepared by performing the same welding as in 3, 6, 10 and heat treatment on the welded portion, and subjected to cross tension.
  • the number of tests N was 3, and the average value was defined as the cross tensile strength.
  • joint numbers 1 to 7 the difference between the minimum hardness value of the weld metal region and the average hardness of the test piece (base material) is 80 HV or less, and no cracks are observed in the HAZ softened part. It was.
  • joint numbers 8 to 14 the difference between the minimum hardness value in the weld metal region and the average hardness of the base material was 80 HV or more, and cracks were observed in the HAZ softened part.
  • the spot welded joint of the present invention even when in-plane tensile stress is applied, it is possible to suppress breakage from the HAZ softened portion in the region between the welded portions, so when used as a structural member constituting an automobile body, Improves collision resistance.
  • the automobile frame part of the present invention it is possible to suppress breakage from the HAZ softened portion, and thus it is possible to obtain a predetermined collision resistance performance.
  • the manufacturing method of the spot welded joint of this invention when it uses for the structural member which comprises a motor vehicle body, the welded joint which improves a collision-resistant performance can be manufactured. Therefore, industrial applicability is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Resistance Welding (AREA)
  • Laser Beam Processing (AREA)
  • Arc Welding In General (AREA)

Abstract

このスポット溶接継手は、平均硬度が350HV以上の、硬質マルテンサイトを主体とする組織を有する第1の鋼板と、前記第1の鋼板に重ねられた第2の鋼板と、前記第1の鋼板と前記第2の鋼板とを接合している複数のスポット溶接金属と、を含み、隣り合う一組の前記スポット溶接金属を含む前記第1の鋼板の板厚方向の全ての断面において、重ね合わせ面側の前記一組のスポット溶接金属の縁同士の間かつ前記第1の鋼板の全板厚の領域の全てが、硬質マルテンサイトを主体とする組織を有し、前記領域の硬度の最小値と、前記第1の鋼板の前記平均硬度との差が80HV以下である。

Description

スポット溶接継手、スポット溶接継手を備える自動車骨格部品、及びスポット溶接継手の製造方法
 本発明は、スポット溶接継手、スポット溶接継手を備える自動車骨格部品、及びスポット溶接継手の製造方法に関する。
 本願は、2018年04月09日に、日本に出願された特願2018-075065号に基づき優先権を主張し、その内容をここに援用する。
 複数の鋼板部材を重ねて構成される構造物では、鋼板部材同士を重ね合わせた重ね合わせ部に対して、抵抗スポット溶接による接合が広く行われている。
 例えば、特許文献1では、ハット材とクロージングプレートとがスポット溶接により互いに接合されるエネルギー吸収部材が記載されている。
 現在、自動車用の高強度鋼板として、引張強さが980MPa以上の高強度鋼板が広く用いられている。近年では引張強さ1100MPa以上の高強度鋼板も適用されはじめている。引張強さ強度1100MPa以上の高強度鋼板は、一般に高い強度を得るために焼入れ組織を含む。抵抗スポット溶接を行うと、鋼板を溶接するナゲット(スポット溶接金属)が形成され、ナゲットの周囲に熱影響部(heat affected zone)(以下、HAZという)が生じる。一般にHAZは焼き入れ組織を含む。但し、焼入れ組織を有する高強度鋼板に、抵抗スポット溶接を行った場合、焼き入れ組織である母材より硬さが低い領域(HAZ軟化部)が形成される。母材の焼き入れ組織がスポット抵抗溶接の熱により焼き戻されるからである。
 一般に、硬さが低い領域があると部材の衝突性能が低下する。このようなHAZ軟化部は、抵抗スポット溶接の継手評価に用いられる引張せん断試験、及び十字引張試験(JIS Z3137)の評価結果への影響は小さい。しかしながら、面内引張応力が負荷された場合には、HAZ軟化部に局所的にひずみが集中してHAZ軟化部に破断を生じる場合がある。
 自動車が衝突した際には、キャビン内の乗客を保護する必要がある。このため、Aピラー、Bピラー、ルーフレール、サイドシルといった自動車車体を構成する構造部材(重ね溶接部材)は、高い強度を備える必要がある。一般に自動車車体を構成する構造部材は、複数の鋼板部材を重ね合わせてフランジ(重ね合わせ部)を抵抗スポット溶接により接合して筒状の閉断面を形成して製造される。衝突時の変形抵抗を向上させ、少ない変形量でより多くの衝突エネルギーを吸収させるには、素材(母材)の高強度化や溶接(スポット)打点の増加といった手法がとられる。
 抵抗スポット溶接される上記部材のフランジの一部には、衝突時に面内引張応力が負荷されることがある。母材を高強度化し、スポット打点を増加しても、前述のHAZ軟化部が生じると母材の強度と部品の形状とから想定される耐衝突性能を得られない場合がある。
 従って、高強度鋼板からなる鋼板部材を自動車車体の構造部材に適用する場合には、ナゲットの周辺領域が破断の起点となるのを抑制することが求められる。
 従来、抵抗溶接スポット溶接によって形成された溶接部材の特性を改善するための検討がなされてきた。例えば、特許文献2には、スポット溶接部の特性を改善した溶接継手として、スポット溶接部を100~400℃で熱処理し、L字引張継手強度を向上させた溶接継手が記載されている。また、特許文献3には、スポット溶接部に後通電を行い、十字引張継手強度を改善させる方法が記載されている。特許文献4には、スポット溶接電極の周囲をコイルで巻いたもので溶接後速やかに高周波誘導加熱してスポット溶接部及び溶融部を焼き戻すことで、TSSと材料強度との比と、CTSと材料強度の積とから評価される接合強度を改善する溶接方法が記載されている。
 しかしながら、これらの特許文献2~4に開示された技術では、TSSやCTSの向上には一定の効果が得られるものの、鋼板に面内引張応力が負荷された際のHAZ軟化部での破断について考慮されていない。
 このような課題に対し、特許文献5には、スポット溶接に供されるフランジ部の一部または全部にソフトゾーンと呼ばれる1100MPa未満の強度を有する領域を有することで、エネルギー吸収能力を高めたBピラーが記載されている。
 しかしながら、特許文献5に開示されたBピラーでは、サイドフランジを軟化させる必要があるので、曲げ性能が低下するおそれがある。また、特許文献5では溶接の前に部品内で軟化領域を設けるので、部品の形状精度が低下するという課題もある。部品の形状精度が低下すると、溶接時に部品間に隙間が生じることになり、溶接が難化する。
日本国特開2006-142905号公報 日本国特開2010-059451号公報 日本国特開2015-093282号公報 日本国特許第5459750号公報 日本国特許第5894081号公報
 本発明は、上記の課題に鑑みてなされたものであり、面内引張応力が負荷された場合でも、複数の溶接金属の間に挟まれる領域からの破断を抑制するスポット溶接継手、そのスポット溶接継手を備える自動車骨格部品、及びそのスポット溶接継手の製造方法を提供することを課題とする。
 本発明者らは、間隔をおいて隣り合うスポット溶接金属間の所定の領域における硬度の差を小さくすることで、溶接金属(スポット溶接金属)の間に挟まれる領域での破断を抑制できることを見出した。
 母材より硬さが低いHAZ軟化部は、980MPa未満の引張強さの鋼板ではほとんど形成されない。HAZ軟化部は、980MPa以上の引張強さの鋼板において発生し得るが、特に、焼入れ組織を形成した引張強さ1100MPa以上の高強度鋼板やホットスタンプで成形したホットスタンプ材(高強度鋼板部材)のスポット溶接部で著しい。
 本発明は、上記の知見に基づいてなされたものであり、その要旨は以下の通りである。
(1)本発明に一態様に係るスポット溶接継手は、平均硬度が350HV以上の、硬質マルテンサイトを主体とする組織を有する第1の鋼板と、前記第1の鋼板に重ねられた第2の鋼板と、前記第1の鋼板と前記第2の鋼板とを接合している複数のスポット溶接金属と、を含み、隣り合う一組の前記スポット溶接金属を含む前記第1の鋼板の板厚方向の全ての断面において、重ね合わせ面側の前記一組のスポット溶接金属の縁同士の間かつ前記第1の鋼板の全板厚の領域の全てが、硬質マルテンサイトを主体とする組織を有し、前記領域の硬度の最小値と、前記第1の鋼板の前記平均硬度との差が80HV以下である。
(2)上記(1)に記載のスポット溶接継手は、前記領域における硬度の最大値と前記最小値との差が、80HV以下であってもよい。
(3)上記(1)または(2)に記載のスポット溶接継手は、前記断面において、前記スポット溶接金属のうち前記スポット溶接金属の外縁から0.5mmを占める溶接金属外縁領域の平均硬度が、前記第1の鋼板の平均硬度よりも低くてもよい。
(4)上記(3)に記載のスポット溶接継手は、前記断面において、前記溶接金属外縁領域の前記平均硬度と、前記第1の鋼板の前記平均硬度との差が100HV以上であってもよい。
(5)上記(1)~(4)のいずれかに記載のスポット溶接継手は、前記複数のスポット溶接金属が抵抗スポット溶接のナゲットであってもよい。
(6)上記(1)~(5)のいずれかに記載のスポット溶接継手は、前記第1の鋼板及び前記第2の鋼板が共にめっき鋼板であってもよい。
(7)上記(1)~(6)のいずれかに記載のスポット溶接継手は、前記第1の鋼板がハット部材であり、前記第2の鋼板がクロージングプレートであり、前記一組のスポット溶接金属は、前記ハット部材のフランジ部と前記クロージングプレートとの重ね合わせ部に形成されていてもよい。
(8)本発明の別の態様に係る自動車骨格部品は、(1)~(7)のいずれかに記載のスポット溶接継手を備える。
(9)本発明の別の態様に係るスポット溶接継手の製造方法は、平均硬度が350HV以上であってかつ硬質マルテンサイトを主体とする組織を有する第1の鋼板と、第2の鋼板とを重ね合わせ、重ね合わされた前記第1の鋼板と前記第2の鋼板とを接合する複数のスポット溶接金属を形成し、隣り合う一組の前記スポット溶接金属同士の間を占める領域に焼入れ処理を行う。
(10)上記(9)に記載のスポット溶接継手の製造方法は、焼き入れされた前記領域に隣接する溶接金属に焼戻しを行ってもよい。
(11)上記(9)または(10)に記載のスポット溶接継手の製造方法は、前記一組のスポット溶接金属は、抵抗スポット溶接によって形成されてもよい。
(12)上記(9)~(11)に記載のスポット溶接継手の製造方法は、前記第1の鋼板がハット部材であり、前記第2の鋼板がクロージングプレートであり、前記ハット部材のフランジ部と前記クロージングプレートとの重ね合わせ部に前記一組のスポット溶接金属を形成してもよい。
 本発明の上記態様に係るスポット溶接継手によれば、面内引張応力が負荷された場合でも、溶接部間の領域のHAZ軟化部からの破断を抑制できるので、自動車車体を構成する構造部材に用いた場合、耐衝突性能を向上させられる。
 また、本発明の上記態様に係る自動車骨格部品では、HAZ軟化部からの破断を抑制できるので、所定の耐衝突性能を得ることができる。
 また、本発明の上記態様に係るスポット溶接継手の製造方法では、自動車車体を構成する構造部材に用いた場合、耐衝突性能を向上させる溶接継手を製造することができる。
本実施形態に係るスポット溶接継手(抵抗スポット溶接継手)の板厚方向断面図である。 本実施形態に係るスポット溶接継手(抵抗スポット溶接継手)を上面視した場合の図である。 スポット溶接継手における溶接金属外縁領域を示す板厚方向断面図である。 本実施形態に係るスポット溶接継手の板厚方向断面図の別の例を示す図である。 本実施形態に係るスポット溶接継手の他の例(レーザースポット溶接継手)における板厚方向断面図である。 レーザースポット溶接継手における溶接金属外縁領域を示す板厚方向断面模式図である。 本実施形態に係るスポット溶接継手の他の例(アークスポット溶接継手)における断面図である。 アークスポット溶接継手における溶接金属外縁領域を示す板厚方向断面模式図である。 本実施形態に係る自動車骨格部品の一例であるBピラーの模式図である。 本実施形態に係る自動車骨格部品の一例であるBピラーのB-Bにおける断面図である。 実施例で用いた試験片を示す模式図である。
 本発明の一実施形態に係るスポット溶接継手(本実施形態に係るスポット溶接継手)、本実施形態に係る自動車骨格部品、本実施形態に係るスポット溶接継手の製造方法について、図面を参照して説明する。
 まず、本実施形態に係るスポット溶接継手について説明する。
 図1Aに示すように、本実施形態に係るスポット溶接継手1は、第1の鋼板11と、第1の鋼板に重ねられた第2の鋼板12と、第1の鋼板11と第2の鋼板12とを接合する複数のスポット溶接金属2とを備える。図1A、図1Bにおいては、スポット溶接金属2は抵抗スポット溶接によって形成されたナゲットである。このようなスポット溶接継手は、第1の鋼板11と第2の鋼板12とを重ね合わせて抵抗スポット溶接を行うことによって得られる。
 第1の鋼板11は、Bピラー等の自動車骨格部品への適用を考慮し、平均硬度がビッカース硬さで350HV以上である鋼板とする。また、第1の鋼板は、硬質マルテンサイトのような焼入れ組織が主体(少なくとも50%以上、好ましくは80%以上)の組織である。一方、第2の鋼板12については、限定されない。
 第1の鋼板11の硬度とは、溶接に供される第1の鋼板11の溶接前の硬度を意味し、溶接後に測定する場合には、溶接熱影響を受けていない位置で測定された硬度を指す。
 また、本実施形態に係るスポット溶接継手1は、隣り合う一組のスポット溶接金属2,2を含む第1の鋼板11の板厚方向の全ての断面において、重ね合わせ面3側の一組のスポット溶接金属2,2の縁同士の間かつ第1の鋼板11の全板厚の領域(溶接金属間領域32)の全てが硬質マルテンサイトを主体とする組織を有する。また、この領域(溶接金属間領域32)の硬度の最小値は、第1の鋼板11の平均硬度との差(硬度差)が80HV以下である。
 スポット溶接金属2とは、溶接時に溶接の熱で一旦溶融し、再凝固した部分のことを指す。また、隣り合うとは、図1A、図1Bに示すように、あるスポット溶接金属2が最も近い別のスポット溶接金属2と間隔を空けて隣り合うことを意味する。
 溶接金属間領域32は、図1A、図1Bに示すように、溶接金属の縁のうち対象とする他の溶接金属に近い方の縁同士に挟まれる領域である。
 本実施形態に係るスポット溶接継手1では、溶接金属間領域32が、硬質マルテンサイトを主体とする組織を有していればよいが、溶接金属間領域32を占める(溶接金属間領域32の全体を含む)硬度制御領域33まで硬質マルテンサイトを主体とする組織となっていてもよい。
 上述したように、平均ビッカース硬さが350HV以上(引張強さに換算すると約1100MPa以上)の高強度鋼板は、一般的に硬質マルテンサイトのような焼入れ組織が主体の(50面積%以上である)組織を有している。このような組織は、焼き入れ工程を含む製造方法によって得られる。焼入れ組織を主体とする鋼板に溶接を行った場合、溶接の熱により溶接金属の周囲に形成されるHAZにおいて、硬質マルテンサイトが焼戻しマルテンサイト等の軟質な組織に変化する。すなわち、母材より硬さが低い領域(HAZ軟化部)が形成される。溶接部を有する板の面内に引張応力が生じた際、このHAZ軟化部が破断の起点となる場合がある。
 本実施形態に係るスポット溶接継手1は、隣り合う一組のスポット溶接金属2,2を含む第1の鋼板11の板厚方向の全ての断面において、相互に隣り合う一組のスポット溶接金属2,2の重ね合わせ面3側の縁同士の間であって第1の鋼板11の板厚全体の領域(溶接金属間領域32)の硬度(ビッカース硬さ)の最小値と、第1の鋼板11の平均硬度との差が80HV以下である。このような硬度差を有するスポット溶接継手であれば、HAZ軟化部31からの破断が抑制され、面内引張応力が負荷された場合にもHAZ軟化部31からの破断を抑制できる。その理由は次の通りである。面内引張応力が生じる溶接金属間領域32内にあるHAZ軟化部31であった箇所が焼き入れされて変質する。その結果、その周囲の溶接金属間領域32とともに、HAZ軟化部31であった箇所と第1の鋼板11との硬度差が小さくなり、HAZ軟化部31であった箇所への歪の集中を緩和できるからである。
 HAZ軟化部31を変質させる手順は次の通りである。HAZ軟化部31がオーステナイト相になるまで加熱する。次にそのオーステナイト相を急冷する。そうするとHAZ軟化部31であった箇所が焼入れされて、その硬度が第1の鋼板11に近い硬度になる。
 しかしながら、単純にHAZ軟化部31に対して焼入れを行ったとしても、面内引張応力による破断を抑制できない。なぜなら、HAZ軟化部31を加熱する際、HAZ軟化部31の周辺がオーステナイト変態温度以下の温度に加熱され、HAZ軟化部31であった箇所の周辺に、新たな軟化部が生じるからである。新たな軟化部に面内引張応力が作用すると、新たな軟化部から破断してしまう。特にスポット溶接金属2,2の間に生じた新たな軟化部は面内引張応力にさらされるため破断の起点となりやすい。
 本実施形態に係るスポット溶接継手1では、HAZ軟化部31および新たな軟化部を起点とする破断を回避するため、溶接金属間領域32の全てに対して、オーステナイト相になるまで加熱してから急冷する焼入れを行う。そうすれば新たな軟化部は溶接金属間領域32の外側に発生する。新たな軟化部が溶接金属間領域32の外側に生じたとしても、そこには高い面内引張応力が発生しないので破断を抑制できる。例えば溶接金属間領域32を占める硬度制御領域33について焼入れを行うことで、溶接金属間領域32には軟化部が形成されない。
 溶接金属間領域32全てに対して焼入れを行った結果、溶接金属間領域32の硬度の最小値を、第1の鋼板11の平均硬度に近づけることができる。具体的には、溶接金属間領域32の硬度の最小値と第1の鋼板の平均硬度との差を80Hv以下にすることができる。
 更に、溶接金属間領域32は、領域内における硬度(ビッカース硬さ)の最大値と最小値との差が80HV以下であることが好ましい。溶接金属間領域32における硬度の最大値と最小値との差を小さくすることで、HAZ軟化部31への歪の集中をさらに緩和することができる。換言すると、溶接金属間領域32内の硬度分布が均質であるので、局所的な歪の集中を避けることができる。より好ましくは、ビッカース硬度の最大値と最小値との差が50HV以下である。
 また、本実施形態に係るスポット溶接継手1は、複数のスポット溶接金属2を有している。隣り合うスポット溶接金属2同士の間の領域のうち、特に面内引張応力の掛かる少なくとも一組の隣り合うスポット溶接金属2,2間において、上記のような硬さの関係を満足していれば、その効果は得られる。一方、好ましくは、全ての隣り合うスポット溶接金属2間において、上記のような硬さの関係を満足すれば、高強度鋼板の面内のいずれの方向と場所に引張応力が負荷されてもHAZ軟化部での破断を抑制することができる。
 本実施形態に係るスポット溶接継手1は、隣り合う一組のスポット溶接金属2,2を含む第1の鋼板11の板厚方向の全ての断面において、溶接金属間領域32の組織と硬度とを制御する必要がある。
 言い換えれば、第1の鋼板11が、組織及び硬度が制御された隣り合うスポット溶接金属2,2を含む領域を有し、第1の鋼板11の板厚方向断面に垂直な方向(図1Aの紙面に垂直な方向、図1Bの紙面上の上下方向)の厚さが、スポット溶接金属2の重ね合わせ面3における径をDとしたとき、上述のように硬度、組織が制御される領域の幅が1.0×D以上である。
 自動車の衝突が生じた場合、面内引張応力は、スポット溶接金属2,2間を結ぶ方向(スポット溶接金属2,2の中心同士を結ぶ方向)に対して必ずしも平行ではなく、一定の角度を有する(斜め方向に応力がかかる)場合がある。硬度、組織が制御される領域の幅が1.0×D以上であれば、面内引張応力の付加方向がスポット溶接金属2,2間を結ぶ方向に対し一定の角度となった場合(斜め方向に応力がかかった場合)であっても、歪が集中しうるHAZ軟化部31のすべての位置の硬度が第1の鋼板11の硬度に近づくので、HAZ軟化部31での破断がさらに抑制され、破断までの伸び量を増加させることができる。
 一方、硬度、組織が制御される領域の幅が1.0×D未満であると、面内引張応力の方向が、スポット溶接金属2,2間を結ぶ方向に対して一定の角度を有する(斜め方向に応力がかかる)場合には、十分な効果が得られないことが懸念される。
 本実施形態に係るスポット溶接継手1は、隣り合うスポット溶接金属2同士の間の領域のうち、特に面内引張応力の掛かる少なくとも一組の隣り合うスポット溶接金属2,2間において、上記のような硬度分布となっていれば、その効果は得られる。スポット溶接金属2が3つ以上並んである場合、例えば図3のように、複数の溶接金属間領域32を占める硬度制御領域33の全体について組織及び硬度を制御してもよい。そうすると誤って溶接金属間領域32に軟化部が発生する危険を避けることができる。
 本実施形態に係るスポット溶接継手1では、図2に示すように、スポット溶接金属2のうちの、スポット溶接金属2の外縁から少なくとも0.5mmの範囲に、第1の鋼板11の平均硬度よりも平均硬度の低い、溶接金属外縁領域41が存在することが好ましい。
 第1の鋼板11よりも硬さの低い溶接金属外縁領域41がスポット溶接金属2に存在することによって、溶接継手1の特性、特に十字引張継手強度が向上する。
 より好ましくは、スポット溶接金属2における溶接金属外縁領域41の平均硬度と、第1の鋼板の平均硬度との差が100HV以上である。
 溶接金属間領域32の硬度の最大値及び最小値は、荷重を100gfとしたビッカース硬度計を用いて測定する。具体的には、隣り合う複数のスポット溶接金属2,2を含む第1の鋼板11の板厚方向の断面において、第1の鋼板11の表面(重ね合わせ面3とは反対の面)から板厚の1/8の位置、3/8の位置、5/8の位置、7/8の位置を、溶接金属間領域32の、板厚方向に垂直方向(板面方向)の一方の端部からもう一方の端部まで、0.1mm間隔で硬度を測定する。そして、測定された硬度のうちの最大値及び最小値を、溶接金属間領域32の硬度の最大値及び硬度の最小値とする。
 また、第1の鋼板11平均硬度は、荷重を1.0kgfとしたビッカース硬度計を用いて測定する。
 硬質マルテンサイト組織を主体とする鋼板では、溶接熱影響を受けた部分の硬度は、溶接前の硬度より低くなるので、第1の鋼板11の硬度は、第1の鋼板11の溶接による熱影響を受けていない位置の硬度を測定し、その平均値を用いる。溶接による熱影響を受けていない位置として、例えば、スポット溶接金属2から、他の溶接金属のない方向へ15mm以上離れた位置の硬度を測定すればよい。
 具体的には、ビッカース硬度計を用いて、荷重を1.0kgfとして、溶接による熱影響を受けていない10ヶ所の、第1の鋼板11の表面から板厚の1/8の位置、3/8の位置、5/8の位置、7/8の位置の硬度を測定し、その平均値を用いる。
 スポット溶接金属2における溶接金属外縁領域41の平均硬度は、荷重100gfとしたビッカース硬度計を用いて測定する。具体的には、外縁から0.5mm以内の5ヶ所の硬さを測定し、その平均値を用いる。
 第1の鋼板11の硬質マルテンサイトの組織分率は、溶接熱影響を受けていない位置の組織を顕微鏡観察することにより確認できる。具体的には、第1の鋼板11の板厚方向断面の、第1の鋼板11の表面から板厚の1/8の位置、3/8の位置、5/8の位置、7/8の位置の各5ヶ所から採取したサンプルについて、レペラ腐食液を用いてエッチング処理し、光学顕微鏡により1000倍の倍率で100μm四方の視野を観察し、観察視野内で、白色~赤褐色に見えるものがマルテンサイトであるとしてマルテンサイトの面積率を測定する。観察した20視野のマルテンサイトの面積率を平均することで、第1の鋼板11のマルテンサイト面積率が得られる。
 その後、同じサンプルを用いて、ピクラールを用いてエッチング処理し、光学顕微鏡により1000倍の倍率で100μm四方の視野を観察し、観察視野内で、マルテンサイトのうちの硬質マルテンサイトの割合を求める。炭化物が含まれていないマルテンサイトを硬質マルテンサイト、炭化物が含まれているマルテンサイトを焼戻しマルテンサイトと判断する。
 20視野のマルテンサイトにおける硬質マルテンサイトの割合を求めて平均し、その平均値を上記で求めた第1の鋼板11のマルテンサイト面積率に乗じることによって、第1の鋼板11の硬質マルテンサイトの組織分率(面積率)を求めることができる。
 硬質マルテンサイトの面積率を平均が50%以上であれば、硬質マルテンサイト組織が主体であると判断する。
 溶接金属間領域32の硬質マルテンサイトの組織分率は、第1の鋼板11の板厚方向断面の、溶接金属間領域32内の表面から板厚の1/8の位置、3/8の位置、5/8の位置、7/8の位置の各5ヶ所について、上記と同じ方法で求める。
 本実施形態では、スポット溶接によって溶接金属が形成されたスポット溶接継手を対象としている。スポット溶接とは点溶接とも呼ばれ、重ね合わされた二枚の鋼板を点でつなぐ溶接のことである。スポット溶接の手段としては、アークスポット溶接、抵抗スポット溶接、レーザースポット溶接が挙げられる。これに対し、線状に行われる溶接を連続溶接という。連続溶接の手段としては、アーク溶接、レーザー溶接、シーム溶接等が挙げられる。点溶接は、連続溶接に比べ、溶接面積が少ないため、施工時間が短時間であり、また省電力である。すなわち、点溶接は生産性に優れる。
 上記では、スポット溶接金属2が抵抗スポット溶接のナゲットである場合について説明したが、本実施形態に係るスポット溶接継手1はスポット溶接金属2が抵抗スポット溶接のナゲットである抵抗スポット溶接継手に限定されない。例えば、スポット溶接金属2がレーザースポット溶接によって形成されてもよく、スポット溶接金属2がアークスポット溶接によって形成されてもよい。
 以下、スポット溶接金属2がレーザースポット溶接によって形成される場合、スポット溶接金属2がアークスポット溶接によって形成される場合について、図4~図7を参照して説明する。先の実施形態と同一の構成部位については、同一符号を付して詳細な説明を省略する。
 スポット溶接金属2がレーザースポット溶接によって形成される場合、スポット溶接金属2は、図4に示すように、少なくとも片方の鋼板を貫通し、その断面は略矩形である。
 また、スポット溶接金属2がアークスポット溶接によって形成される場合、スポット溶接金属2は、図6に示すように、レーザースポット溶接の場合と同様に第1の鋼板及び第2の鋼板の少なくとも片方を貫通する。一般的に、アークスポット溶接を用いて、板を重ね、点溶接する場合には、MIG用溶接またはMAG溶接が行われる。この場合、電極が液滴となり、溶接金属を形成するので、余盛りが形成される。この点がレーザースポット溶接によってスポット溶接金属2が形成される場合とは異なる。
 スポット溶接金属2がレーザースポット溶接やアークスポット溶接によって形成される場合であっても、隣り合うスポット溶接金属2,2の間の領域(溶接金属間領域32)の硬度の最小値と第1の鋼板11の平均硬度との差が80HV以下であれば、面内引張応力が負荷された場合でも、HAZ軟化部31からの破断が抑制される。
 また、溶接金属間領域32と第1の鋼板11との硬度差に加えて、溶接金属間領域32における硬度(ビッカース硬さ)の最大値と最小値との差が80HV以下であることが好ましい。溶接金属間領域32における硬度の最大値と最小値との差は、50HV以下であることがより好ましい。溶接金属間領域32における硬度の最大値と最小値との差を小さくすることで、HAZ軟化部31への歪の集中をさらに緩和することができる。
 また、スポット溶接金属2のうち、外縁から少なくとも0.5mmの範囲における平均硬度が、第1の鋼板11の平均硬度よりも低いことが好ましい。言い換えれば、レーザースポット溶接によって形成されるスポット溶接金属2においては、図5のように、スポット溶接金属2のうち、外縁から少なくとも0.5mmの範囲に第1の鋼板11の平均硬度よりも硬度が低い溶接金属外縁領域41が形成されていることが好ましい。また、アークスポット溶接によって形成されるスポット溶接金属2においては、図7のように、スポット溶接金属2の外縁から少なくとも0.5mmの範囲に溶接金属外縁領域41が形成されていることが好ましい。
 スポット溶接金属2において、このような第1の鋼板の平均硬度よりも硬度の低い溶接金属外縁領域41が存在することによって、溶接継手1の特性、特に十字引張継手強度が向上する。
 スポット溶接金属2における溶接金属外縁領域41の平均硬度と、第1の鋼板の平均硬度との差が100HV以上であれば、より好ましい。
 本実施形態に係るスポット溶接継手1では、例えば、第1の鋼板11がハット部材であり、第2の鋼板12がクロージングプレートであり、複数のスポット溶接金属2は、ハット部材のフランジ部とクロージングプレートとの重ね合わせ部に形成されていることが好ましい。このような構成であれば、構造部材としての強度及び耐衝突性の向上に特に有効に作用する。
 第1の鋼板11及び/または第2の鋼板12は、めっき鋼板であってもよい。この場合耐食性が向上する。めっき鋼板としては、例えば溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板、アルミめっき鋼板等が例示される。
 次に、本実施形態に係る自動車骨格部品について説明する。
 本実施形態に係るスポット溶接継手を備えた自動車骨格部品は、上述した本実施形態に係るスポット溶接継手1を少なくとも1部に含む自動車骨格部品であり、例えば、Aピラーやサイドシル、または図8に示すようなBピラー201等である。Bピラー201では、ハット部材のフランジ部において、クロージングプレートと接合されている。
 本実施形態に係る自動車骨格部品では、HAZ軟化部31での破断を抑制した本実施形態に係るスポット溶接継手を備えているので、高強度鋼板を用いた場合に、高い耐衝突性能が得られる。
 次に、本実施形態に係るスポット溶接継手1の製造方法について説明する。
 本実施形態に係るスポット溶接継手1は、平均硬度が350HV以上であってかつ硬質マルテンサイトを主体とする組織を有する第1の鋼板11と第2の鋼板12とを重ね合わせ、第1の鋼板11と第2の鋼板12とを接合する複数のスポット溶接金属2を形成する。その後、隣り合うスポット溶接金属2同士の間を占める領域(例えば硬度制御領域33)に焼入れ処理を行うことによって得られる。
 隣り合う溶接金属同士の間とは、溶接金属間領域32であり、複数のスポット溶接金属2を含む前記第1の鋼板の板厚方向の全ての断面において、重ね合わせ面側の隣り合う前記スポット溶接金属の縁同士の間かつ前記第1の鋼板の全板厚の領域である。
 上記焼入れによって、HAZ軟化部31等の溶接の熱影響によって軟化した組織を、硬質マルテンサイトを主体とする組織にすることができる。この焼入れによって、溶接金属間領域32の硬度の最小値と第1の鋼板11の平均硬度との差を、80HV以下にすることができる。
 本実施形態に係るスポット溶接継手1の製造方法では、隣り合うスポット溶接金属2同士の間の領域を占める領域のうち、特に面内引張応力の掛かる少なくとも一組の隣り合うスポット溶接金属2,2間において、上記のような焼入れを行えば、その効果は得られる。可能であれば、全ての隣り合うスポット溶接金属2間において焼入れを行うことが好ましい。
 溶接金属を形成する際、抵抗スポット溶接によって複数のスポット溶接金属2を形成してもよい。また、レーザースポット溶接やアークスポット溶接によって複数のスポット溶接金属2を形成してもよい。溶接方法については特に限定されない。しかしながら、生産性等の点で抵抗スポット溶接が好ましい。
 焼入れを行う方法は限定されるものではないが、少なくとも溶接金属間領域32の全体を含む領域(例えば硬度制御領域33)を750℃以上の温度まで加熱してオーステナイトに変態させた後に、20℃/秒以上の冷却速度で200℃以下まで冷却することが好ましい。また、対象とする範囲を局所的に加熱、冷却する方法として、レーザー加熱や高周波誘導加熱が好ましい。
 本実施形態に係るスポット溶接継手1の製造方法では、スポット溶接金属2の外縁から少なくとも0.5mmの範囲の平均硬度を、第1の鋼板11の平均硬度よりも低くするように焼戻し処理を行うことが好ましい。
 焼戻しを行う場合、スポット溶接金属2以外の部分にも焼戻しを行うと、HAZ軟化部31からの割れが発生しやすくなるので好ましくない。焼戻しを行う方法は限定されるものではないが、スポット溶接金属2のみを局所的に焼戻しを行うため、通電加熱やレーザー照射によって焼戻しを行うことが好ましい。レーザー照射によって焼戻しを行う場合、スポット溶接金属2の直上からスポット溶接金属2に向けてレーザーを照射し、母材部やHAZ部が可能な限り加熱されないようにすることが好ましい。
 また、溶接部の溶接金属外縁領域41の硬さと第1の鋼板11の硬さとの差を100HV以上とする場合、溶接部を400℃~700℃の温度域まで加熱することが好ましい。このような条件で焼戻しを行うと、焼戻し部の組織が焼戻しマルテンサイトとなり、硬度が十分に低下する。
 以下に、本発明を図10及び表1を参照して実施例により具体的に説明する。これらの実施例は、本発明の効果を確認するための一例であり、本発明を限定するものではない。
 まず、焼入れ処理を経て得られた板厚1.6mmの鋼板から、図10に示すような標点間距離が50mmである引張試験片を採取した。
 採取した引張試験片については、平行部の2箇所にそれぞれ板厚1.6mm、20mm角のタブ板を重ね、溶接を行った。
 継手No.1~6、8~13については、単相交流スポット溶接機を用いて、以下に示す条件で抵抗スポット溶接を行った。抵抗スポット溶接により、引張試験片とタブ板との間には、ナゲット径が5×√t(t:引張試験片の板厚(mm))である溶接金属が形成された。
 電極:DR型電極(先端φ6mm R40)
 加圧力:400kgf
 通電時間20cyc
 また、継手No.7、14については、ファイバーレーザーを用いて、以下の条件でレーザースポット溶接を行った。
 出力:3.5kW
 溶接時間:1秒
 溶融径 :6.0mm
 溶接後、溶接金属間領域の幅方向の全体を加熱し、その後20℃/秒以上の冷却速度で室温(25℃)まで冷却することで焼き入れを行った。レーザー照射によって、溶接金属間領域の温度は、750℃以上に加熱された。
 焼入れ後、継手番号6のみ、母材側より溶接金属部上にレーザーを照射することによって溶接金属部の焼戻しを行った。
 焼入れまたは、焼入れ及び焼戻しを行い、室温まで冷却した後に、引張速度を10mm/minとして引張試験を行い、HAZ軟化部での破断の有無を評価した。
 また、試験片の溶接金属間領域の硬度の最大値及び最小値を、荷重を100gfとしたビッカース硬度計を用いて測定した。具体的には、溶接金属を含む試験片(母材)の板厚方向の断面において、試験片の表面から板厚の1/8の位置、3/8の位置、5/8の位置、7/8の位置を、溶接金属間領域の板面方向の一方の端部からもう一方の端部まで、0.1mm間隔で硬度を測定した。そして、測定された硬度のうちの最大値及び最小値を、溶接金属間領域の硬度の最大値及び硬度の最小値とした。
 試験片の平均硬度を、荷重を1.0kgfとしたビッカース硬度計を用いて測定した。スポット溶接金属2から、もう一方の溶接金属とは反対方向へ15mm~20mm以上離れた位置10か所の硬度を、ビッカース硬度計を用いて、荷重を1.0kgfとして測定した。10ヶ所について、それぞれ試験片の表面から板厚の1/8の位置、3/8の位置、5/8の位置、7/8の位置の硬度を測定し、その平均値を平均硬度とした。
 また、溶接金属における溶接金属外縁領域の平均硬度は、荷重100gfとしたビッカース硬度計を用いて測定した。具体的には、外縁から0.5mm以内の5ヶ所の硬さを測定し、その平均値を平均硬度とした。
 試験片の硬質マルテンサイトの組織分率は、溶接熱影響を受けていない位置の組織を顕微鏡観察することにより確認した。具体的には、試験片の板厚方向断面の、表面から板厚の1/8の位置、3/8の位置、5/8の位置、7/8の位置の各5ヶ所から採取したサンプルについて、レペラ腐食液を用いてエッチング処理し、光学顕微鏡により1000倍の倍率で100μm四方の視野を観察し、観察視野内で、白色~赤褐色に見えるものがマルテンサイトであるとしてマルテンサイトの面積率を測定し、観察した20視野のマルテンサイトの面積率を平均することで、試験片のマルテンサイト面積率を得た。
 その後、同じサンプルを用いて、ピクラールを用いてエッチング処理し、光学顕微鏡により1000倍の倍率で100μm四方の視野を観察し、観察視野内で、マルテンサイトのうちの硬質マルテンサイトの割合を求めた。炭化物が含まれていないマルテンサイトを硬質マルテンサイト、炭化物が含まれているマルテンサイトを焼戻しマルテンサイトと判断した。
 20視野のマルテンサイトにおける硬質マルテンサイトの割合を求めて平均し、その平均値を上記で求めた試験片のマルテンサイト面積率に乗じることによって、試験片の硬質マルテンサイトの組織分率(面積率)を求めた。
 溶接金属間領域の硬質マルテンサイトの組織分率は、試験片の板厚方向断面の、溶接金属間領域内の表面から板厚の1/8の位置、3/8の位置、5/8の位置、7/8の位置の各5ヶ所について、上記と同じ方法で求めた。
 結果を表1に示す。
 JISZ3137(1999)に準じて、継手No.3、6、10と同じ溶接、溶接部への熱処理を施した十字引張試験片を作成し十字引張を行った。試験数Nは3とし、その平均値を十字引張強度とした。
Figure JPOXMLDOC01-appb-T000001
 継手番号1~7(本発明例)では、溶接金属間領域の硬度の最小値と試験片(母材)の平均硬度との差が80HV以下であり、HAZ軟化部での割れが見られなかった。
 一方、継手番号8~14(比較例)では、溶接金属間領域の硬度の最小値と母材の平均硬度との差が80HV以上となっており、HAZ軟化部での割れが見られた。
 1  溶接継手
 2  スポット溶接金属
 3  重ね合わせ面
 11  第1の鋼板
 12  第2の鋼板
 31  HAZ軟化部
 32  溶接金属間領域
 33  硬度制御領域
 41  溶接金属外縁領域
 201  Bピラー
 本発明のスポット溶接継手によれば、面内引張応力が負荷された場合でも、溶接部間の領域のHAZ軟化部からの破断を抑制できるので、自動車車体を構成する構造部材に用いた場合、耐衝突性能を向上させられる。また、本発明の自動車骨格部品では、HAZ軟化部からの破断を抑制できるので、所定の耐衝突性能を得ることができる。また、本発明のスポット溶接継手の製造方法では、自動車車体を構成する構造部材に用いた場合、耐衝突性能を向上させる溶接継手を製造することができる。そのため、産業上の利用可能性が高い。

Claims (12)

  1.  平均硬度が350HV以上の、硬質マルテンサイトを主体とする組織を有する第1の鋼板と、
     前記第1の鋼板に重ねられた第2の鋼板と、
     前記第1の鋼板と前記第2の鋼板とを接合している複数のスポット溶接金属と、
    を含み、
     隣り合う一組の前記スポット溶接金属を含む前記第1の鋼板の板厚方向の全ての断面において、
      重ね合わせ面側の前記一組のスポット溶接金属の縁同士の間かつ前記第1の鋼板の全板厚の領域の全てが、硬質マルテンサイトを主体とする組織を有し、
      前記領域の硬度の最小値と、前記第1の鋼板の前記平均硬度との差が80HV以下である、
    スポット溶接継手。
  2.  前記領域における硬度の最大値と前記最小値との差が、80HV以下である、請求項1に記載のスポット溶接継手。
  3.  前記断面において、前記スポット溶接金属のうち前記スポット溶接金属の外縁から0.5mmを占める溶接金属外縁領域の平均硬度が、前記第1の鋼板の平均硬度よりも低い、請求項1または2に記載のスポット溶接継手。
  4.  前記断面において、前記溶接金属外縁領域の前記平均硬度と、前記第1の鋼板の前記平均硬度との差が100HV以上である、請求項3に記載のスポット溶接継手。
  5.  前記複数のスポット溶接金属が抵抗スポット溶接のナゲットである、請求項1~4のいずれか一項に記載のスポット溶接継手。
  6.  前記第1の鋼板及び前記第2の鋼板が共にめっき鋼板である、請求項1~5のいずれか一項に記載のスポット溶接継手。
  7.  前記第1の鋼板がハット部材であり、前記第2の鋼板がクロージングプレートであり、前記一組のスポット溶接金属は、前記ハット部材のフランジ部と前記クロージングプレートとの重ね合わせ部に形成されている、請求項1~6のいずれか一項に記載のスポット溶接継手。
  8.  請求項1~7のいずれか一項に記載のスポット溶接継手を備える自動車骨格部品。
  9.  平均硬度が350HV以上であってかつ硬質マルテンサイトを主体とする組織を有する第1の鋼板と、第2の鋼板とを重ね合わせ、
    重ね合わされた前記第1の鋼板と前記第2の鋼板とを接合する複数のスポット溶接金属を形成し、
    隣り合う一組の前記スポット溶接金属同士の間を占める領域に焼入れ処理を行う、
    スポット溶接継手の製造方法。
  10.  焼き入れされた前記領域に隣接する溶接金属に焼戻しを行う、請求項9に記載のスポット溶接継手の製造方法。
  11.  前記一組のスポット溶接金属は、抵抗スポット溶接によって形成される、請求項9または10に記載のスポット溶接継手の製造方法。
  12.  前記第1の鋼板がハット部材であり、前記第2の鋼板がクロージングプレートであり、
     前記ハット部材のフランジ部と前記クロージングプレートとの重ね合わせ部に前記一組のスポット溶接金属を形成する、請求項9~11のいずれか一項に記載のスポット溶接継手の製造方法。
PCT/JP2019/015507 2018-04-09 2019-04-09 スポット溶接継手、スポット溶接継手を備える自動車骨格部品、及びスポット溶接継手の製造方法 WO2019198725A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020513413A JP7151762B2 (ja) 2018-04-09 2019-04-09 スポット溶接継手、スポット溶接継手を備える自動車骨格部品、及びスポット溶接継手の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-075065 2018-04-09
JP2018075065 2018-04-09

Publications (1)

Publication Number Publication Date
WO2019198725A1 true WO2019198725A1 (ja) 2019-10-17

Family

ID=68164159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015507 WO2019198725A1 (ja) 2018-04-09 2019-04-09 スポット溶接継手、スポット溶接継手を備える自動車骨格部品、及びスポット溶接継手の製造方法

Country Status (2)

Country Link
JP (1) JP7151762B2 (ja)
WO (1) WO2019198725A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024997A1 (ja) * 2012-08-08 2014-02-13 新日鐵住金株式会社 重ね合せ部の溶接方法、重ね溶接部材の製造方法、重ね溶接部材及び自動車用部品
WO2015119159A1 (ja) * 2014-02-06 2015-08-13 新日鐵住金株式会社 重ね溶接方法、重ね継手、重ね継手の製造方法、および自動車用部品
JP2016032834A (ja) * 2014-07-31 2016-03-10 新日鐵住金株式会社 重ね溶接部材、重ね溶接部材の重ね抵抗シーム溶接方法及び重ね溶接部を備える自動車用重ね溶接部材
JP2017052006A (ja) * 2015-09-10 2017-03-16 新日鐵住金株式会社 重ね接合継手及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024997A1 (ja) * 2012-08-08 2014-02-13 新日鐵住金株式会社 重ね合せ部の溶接方法、重ね溶接部材の製造方法、重ね溶接部材及び自動車用部品
WO2015119159A1 (ja) * 2014-02-06 2015-08-13 新日鐵住金株式会社 重ね溶接方法、重ね継手、重ね継手の製造方法、および自動車用部品
JP2016032834A (ja) * 2014-07-31 2016-03-10 新日鐵住金株式会社 重ね溶接部材、重ね溶接部材の重ね抵抗シーム溶接方法及び重ね溶接部を備える自動車用重ね溶接部材
JP2017052006A (ja) * 2015-09-10 2017-03-16 新日鐵住金株式会社 重ね接合継手及びその製造方法

Also Published As

Publication number Publication date
JP7151762B2 (ja) 2022-10-12
JPWO2019198725A1 (ja) 2020-12-17

Similar Documents

Publication Publication Date Title
KR101943173B1 (ko) 겹침 용접 방법, 겹침 조인트, 겹침 조인트의 제조 방법 및 자동차용 부품
JP5967266B2 (ja) 重ね合せ部の溶接方法、重ね溶接部材の製造方法、重ね溶接部材及び自動車用部品
JP2010012504A (ja) レーザ溶接構造部材およびその製造方法
JP6379819B2 (ja) 重ね溶接部材、重ね溶接部材の重ね抵抗シーム溶接方法及び重ね溶接部を備える自動車用重ね溶接部材
JP2017030647A (ja) 自動車用骨格部品および自動車用骨格部品の製造方法
WO2019230580A1 (ja) スポット溶接継手、スポット溶接継手を備える自動車骨格部品、及びスポット溶接継手の製造方法
US20210404496A1 (en) Joined structure and method for manufacturing joined structure
WO2020241500A1 (ja) スポット溶接継手、及びスポット溶接継手の製造方法
JP2017052006A (ja) 重ね接合継手及びその製造方法
WO2019198725A1 (ja) スポット溶接継手、スポット溶接継手を備える自動車骨格部品、及びスポット溶接継手の製造方法
KR102603852B1 (ko) 겹침 레이저 용접 이음매와 그 제조 방법 및 자동차 차체용 구조 부재
WO2019225528A1 (ja) 重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法および自動車用骨格部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513413

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19784369

Country of ref document: EP

Kind code of ref document: A1