WO2019198119A1 - 内燃機関用点火装置 - Google Patents
内燃機関用点火装置 Download PDFInfo
- Publication number
- WO2019198119A1 WO2019198119A1 PCT/JP2018/014850 JP2018014850W WO2019198119A1 WO 2019198119 A1 WO2019198119 A1 WO 2019198119A1 JP 2018014850 W JP2018014850 W JP 2018014850W WO 2019198119 A1 WO2019198119 A1 WO 2019198119A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ignition
- primary coil
- superposition
- coil
- energy
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P15/00—Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
- F02P15/10—Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P3/00—Other installations
Definitions
- the present invention relates to an ignition device for an internal combustion engine mounted on a motor vehicle, and obtains good discharge characteristics by increasing the discharge energy generated on the secondary side of the ignition coil in a superimposed manner.
- Direct-injection engines and high-EGR engines are adopted as internal combustion engines mounted on vehicles to improve fuel efficiency.
- these engines are not very ignitable, so a high-energy ignition system is required.
- a phase discharge ignition device has been proposed in which the output of another ignition coil is additionally superimposed on the secondary output of the ignition coil generated by the classic current interruption principle (for example, Patent Document 1). See).
- the ignition device described in Patent Document 1 by interrupting the primary current of the main ignition coil, the high voltage of several kV generated on the secondary side thereof causes dielectric breakdown in the discharge gap of the spark plug, thereby igniting.
- the primary current of the auxiliary ignition coil connected in parallel with the main ignition coil is cut off, and a DC voltage of several kV generated on the secondary side is additionally superimposed.
- the discharge energy on the secondary side can be increased without lengthening the energization time to the primary coil. It is also possible to consider a method for increasing the pressure and maintaining stable combustion. However, such a method requires a booster circuit that boosts the power supply voltage to several kV, so that the withstand voltage of the circuit to be mounted and the connection tolerance at a high voltage are required, resulting in a considerable increase in cost. . In addition, the use of the booster circuit increases the power consumption for ignition, which causes a deterioration in fuel consumption.
- an object of the present invention is to provide an ignition device for an internal combustion engine that can improve the ignitability due to spark discharge generated in the spark plug, and can also reduce the deterioration of fuel consumption by optimizing the power consumption for ignition.
- an ignition device for an internal combustion engine is configured to apply discharge energy to the secondary side of the ignition coil by controlling the energization of the ignition coil by the ignition control means, and to the spark plug.
- energy superimposing means capable of increasing discharge energy by superimposing energy to the secondary side of the ignition coil, and after the ignition timing in the ignition cycle
- Primary coil voltage detection means for detecting the voltage of the primary coil that reflects the voltage generated in the secondary coil
- the ignition control means detects the change in the primary coil voltage detected by the primary coil voltage detection means. If the superposition start condition defined in advance as a state in which the discharge path of the spark discharge generated in the spark plug is difficult to maintain is satisfied, It actuates the is characterized in that so as to overlap the discharge energy to the secondary side of the ignition coil.
- the ignition control means is detected by the primary coil voltage detection means after a predetermined primary coil voltage monitoring start condition is satisfied. That the primary coil voltage thus reached reaches a predetermined superposition start reference voltage value is used as a superposition start condition.
- the energy superimposing means flows on the secondary side of the ignition coil by generating a spark discharge in the spark plug. It is characterized in that a current is further superimposed on the secondary current.
- the invention according to claim 4 is configured to control the energization of the ignition coil by the ignition control means, thereby giving discharge energy to the secondary side of the ignition coil to cause a spark discharge in the spark plug.
- the ignition coil includes a main primary coil in which a forward magnetic flux amount is increased by energization of a main primary current and a forward magnetic flux amount is decreased by cutting off the main primary current;
- the primary primary coil is connected to the ignition plug at one end side by generating a magnetic flux in the cutoff direction opposite to the forward direction by energizing the secondary primary current at an arbitrary timing after the energization cutoff of the primary primary coil.
- the primary primary coil voltage detection means for detecting the voltage of the primary primary coil that reflects the voltage generated in the secondary coil, and the magnetic flux in the cutoff direction generated by switching between energization and cutoff to the secondary primary coil acting on the secondary coil
- Energy superimposing means for superimposing discharge energy on the secondary side of the ignition coil
- the ignition control means is configured such that the change in the main primary coil voltage detected by the main primary coil voltage detecting means
- the energy superimposing means is activated to superimpose the discharge energy on the secondary side of the ignition coil. It is characterized by.
- the ignition control means includes a main primary coil voltage detecting means after a predetermined main primary coil voltage monitoring start condition is satisfied.
- the main primary coil voltage detected by the above is used as a superposition start condition to reach a predetermined superposition start reference voltage value.
- the invention according to claim 6 is the ignition device for an internal combustion engine according to any one of claims 1 to 5, wherein the ignition control means is configured to discharge electric energy when the superposition start condition is satisfied. After the superposition is started, the superposition energy amount given to the secondary side by the energy superposition means is further increased when the superposition correction condition defined in advance as a state in which the spark generated in the spark plug is concerned is concerned. It is characterized by that.
- the invention according to claim 7 is the internal combustion engine ignition device according to claim 6, wherein the ignition control means reaches a superposition correction voltage value set in advance as a value exceeding the superposition start reference voltage value. Is used as the superimposition correction condition.
- the discharge energy superimposing means performs ignition. Since the discharge energy is superimposed on the secondary side of the coil, the discharge current can flow while maintaining the discharge path where the spark discharge is extended. When a sufficient discharge current flows through the greatly extended discharge path, a large flame nucleus can be formed in the cylinder, and the ignitability can be improved. Moreover, since the energy superposition control by the ignition control means is not performed until the superposition start condition is satisfied, the power consumption for the energy superposition control can be suppressed to a necessary minimum level, and the deterioration of fuel consumption can be reduced.
- FIG. 1 is a schematic configuration diagram showing a first embodiment of an ignition device for an internal combustion engine according to the present invention. It is a schematic block diagram which shows an example of the superimposition control means provided in the internal combustion engine drive control apparatus of the ignition device for internal combustion engines which concerns on 1st Embodiment. It is the wave form diagram which showed typically the principal part waveform of the energy superimposition control which the superimposition control means in 1st Embodiment performs. It is a schematic block diagram which shows 2nd Embodiment of the ignition device for internal combustion engines which concerns on this invention. It is a schematic block diagram which shows an example of the superimposition control means provided in the internal combustion engine drive control apparatus of the ignition device for internal combustion engines which concerns on 2nd Embodiment.
- FIG. 1 shows an internal combustion engine ignition device 1 according to a first embodiment of the present invention.
- An ignition coil unit 10A that generates a discharge spark in one ignition plug 20 provided for each cylinder of the internal combustion engine; Spark discharge occurs in the internal combustion engine drive control device 30A as an ignition control means for outputting an ignition signal Si or the like for instructing the operation timing of the ignition coil unit 10A at an appropriate timing, the DC power source 40 such as a vehicle battery, and the spark plug 20.
- the secondary current flowing on the secondary side of the ignition coil is further configured by secondary current superimposing means 50A or the like that causes the current to further overlap.
- the secondary current superimposing means 50A functions as an energy superimposing means capable of increasing discharge energy by superimposing energy to the secondary side of the ignition coil 11A included in the ignition coil unit 10A.
- the function as the ignition control means is included in the internal combustion engine drive control device 30A that comprehensively controls the internal combustion engine of the automobile. It is not limited. For example, it receives an ignition signal generated by an ignition signal generation function of a normal internal combustion engine drive control device 30A such as an ECU, generates an appropriate control signal, and generates an ignition coil unit 10A or secondary current superimposing means 50A.
- An ignition control device that outputs a control signal may be provided separately.
- the ignition coil unit 10A includes, for example, an ignition coil 11A, an ignition switch 12A, a bypass line 13 provided in parallel with the ignition switch 12A, a rectifying means 14 provided on the bypass line 13 and the like in a case 15 having a required shape, and an integrated structure. It is a unit.
- a high voltage terminal 151 and a connector 152 are provided at appropriate positions of the case 15, and the spark plug 20 is connected via the high voltage terminal 151 and also connected to the internal combustion engine drive control device 30 ⁇ / b> A and the DC power supply 40 via the connector 152. To do.
- the ignition coil 11A efficiently causes the magnetic flux generated in the primary coil 111 to act on the secondary coil 112.
- the primary coil 111 is disposed so as to surround the center core 113, and the secondary coil 112 is disposed outside thereof. It is an arranged structure.
- the first end 111-1 which is one end of the primary coil 111, is connected to the DC power supply 40 via the connector 152, and a power supply voltage VB + (for example, 12 V) is applied.
- the second end 111-2 which is the other end of the primary coil 111 is connected to the collector of the ignition switch 12A, and the emitter of the ignition switch 12A is connected to the ground point GND via the connector 152.
- the ignition signal Si output from the internal combustion engine drive control device 30A at an appropriate timing of the discharge cycle is input to the gate of the ignition switch 12A (for example, when the signal level of the ignition signal Si changes from L to H).
- the ignition switch 12A is turned on, the second end 111-2 of the primary coil 111 is connected to the ground point GND, and the primary current I1 from the first end 111-1 to the second end 111-2 is connected to the primary coil 111. Begins to flow, and the flow rate of the primary current I1 increases exponentially.
- a magnetic flux amount corresponding to the flow rate of the primary current I1 is accumulated as magnetic field energy. Note that electrical energy is accumulated on the secondary side of the ignition coil 11A due to minute capacitor components such as the secondary coil 112 and connection wiring.
- a bypass line 13 is provided in parallel with the ignition switch 12A, and a rectifying means 14 (for example, a cathode is provided on the collector side of the ignition switch 12A) that is forward from the ground point side of the bypass line 13 toward the ignition coil 11A side. , A diode having an anode connected to the emitter side of the ignition switch 12A).
- the secondary current I2 that flows to the secondary side when a spark discharge is generated between the discharge electrodes of the spark plug 20 is useful as information for knowing the combustion state in the cylinder, and is therefore used to detect the secondary current I2.
- Secondary current detection means may be provided.
- the secondary current detection means includes, for example, a current detection resistor 61 having an appropriate resistance value inserted in a secondary current path between the secondary current superimposing means 50A and the ground point GND, and the current detection resistor 61. And a secondary side voltage detection line 62 for detecting a voltage change due to.
- the secondary current detection signal obtained from the secondary side voltage detection line 62 is supplied to the internal combustion engine drive control device 30A, and the internal combustion engine drive control device 30A is supplied to the secondary coil 112 based on this secondary current detection signal.
- the current value that flows can be known.
- the voltage generated in the secondary coil 112 that applies a high voltage to the spark plug 20 (hereinafter referred to as the secondary coil voltage) is also useful as information for knowing the combustion state.
- the secondary voltage information may be acquired at the detection point Psp set between the secondary coil 112 and the secondary coil 112.
- the secondary voltage is a high voltage ranging from several kV to several tens of kV, It is necessary to consider various problems such as leakage due to the provision of the resistor, and it is not realistic to monitor the secondary coil voltage at the detection point Psp.
- the primary coil when the spark plug 20 is discharged, a voltage corresponding to the turn ratio between the primary coil 111 and the secondary coil 112 is also generated in the primary coil 111, and the voltage generated in the primary coil 111 (hereinafter referred to as the primary coil). (Referred to as “voltage”), since the voltage value is relatively low, the difficulty for monitoring is low. However, the primary coil voltage and the secondary coil voltage have different voltage value scales and have opposite polarities. Considering this difference, the primary coil voltage can be handled as correlation information of the secondary coil voltage.
- the primary coil voltage detecting means for detecting the voltage on the low side of the primary coil the second end 111-2 of the primary coil 111 and the bypass line
- the primary coil voltage detection line 16 is drawn out from the 13 branch points, and the primary coil voltage signal is input to the internal combustion engine drive control device 30A via the connector 152.
- the internal combustion engine drive control device 30A it is possible to know a change in the applied voltage to the spark plug 20 by estimating the secondary coil voltage based on the primary coil voltage signal.
- the energy superposition control using the secondary current superimposing means 50A is executed by the function of the superposition control means 31 provided in the internal combustion engine drive control device 30A, for example.
- a current source of the secondary current superimposing means 50A a DC power source 40 such as a vehicle battery can be used as a DC power source 40 such as a vehicle battery can be used.
- the superimposition control unit 31 includes a superimposition timing determination unit 301 that determines the timing of start and end of superimposition, and a superimposition start reference voltage value that is used as information for the superimposition timing determination unit 301 to determine the superposition start timing (details later). And a secondary current superposition signal for generating and outputting a secondary current superposition signal Sp for operating the secondary current superposition means 50A in accordance with the start of superposition. Generating means 303.
- the superimposition timing determination means 301 is supplied with the ignition signal Si, the primary coil voltage signal, and the superposition start reference voltage value from the superposition start reference voltage value storage means 302, and the ignition timing IG when the ignition signal Si changes from ON to OFF. Thereafter, it is determined whether the superposition start timing ⁇ satisfying the superposition start condition is satisfied. For example, as shown in the waveform diagram of FIG. 3A, capacity discharge energy (electric energy accumulated on the secondary side) is consumed at the ignition timing IG due to the primary current interruption, and the primary voltage rapidly increases (FIG. 3). (A) The primary coil voltage waveform becomes larger at the negative electrode, and decreases in a short time (returns to the positive electrode side in the primary coil voltage waveform of FIG.
- the superposition start reference voltage value may be set as a positive value.
- the determination of the superposition start condition may be started after a predetermined primary coil voltage monitoring start condition is satisfied, instead of starting supervision start condition determination monitoring immediately after the ignition timing IG.
- the primary coil voltage monitoring start condition is that the absolute value of the primary coil voltage suddenly increases at the ignition timing IG and then falls below the superposition start reference voltage value. After the primary coil voltage monitoring start condition is satisfied, the primary coil voltage monitoring start condition is satisfied. If it is determined that the absolute value of the coil voltage has reached the superposition start reference voltage value again as the superposition start condition, the superposition start reference voltage value may be exceeded instantaneously due to secondary side voltage fluctuations due to capacitive discharge. Can be prevented from being erroneously determined that the superposition start condition is satisfied.
- the primary coil voltage monitoring start condition is that a predetermined period (for example, several tens of ⁇ s) that can be regarded as capacitive discharge has passed and the state is considered to have shifted to induction discharge. It may be determined that the superposition start condition is that the absolute value of the primary coil voltage has reached the superposition start reference voltage value again after the monitoring start condition is satisfied.
- the superposition timing determination unit 301 determines this as the superposition start timing ⁇ , A secondary current superposition start instruction is issued to the current superposition signal generation means 303.
- the secondary current superposition signal generation means 303 generates the secondary current superposition signal Sp and outputs it to the secondary current superposition means 50A, and the secondary current is superposed by the secondary current superposition means 50A (FIG. (Refer to the shaded area in the secondary current waveform of 3 (a)). If the secondary current detection signal is supplied to the secondary current superposition signal generation means 303 (indicated by a broken line in FIG.
- the superposition control of the secondary current I2 using the secondary current superposition means 50A is appropriate.
- the secondary current superposition signal generation means 303 can determine whether or not If it is determined that the energy superposition control is not properly performed, for example, the fact is notified to notify the passenger of the abnormality, and if the energy superposition control is once stopped, the secondary current superimposing means 50A becomes meaningless. Power consumption can be suppressed.
- the superposition start reference voltage value stored in the superposition start reference voltage value storage means 302 is a primary in which the voltage generated in the secondary coil 112 is reflected after the ignition timing IG that interrupts energization of the primary coil 111.
- the change in the coil voltage is a reference value for determining success or failure of a predetermined superposition start condition as it is difficult to maintain the discharge path of the spark discharge generated between the discharge electrodes of the spark plug 20.
- the secondary coil voltage value (warning voltage value) when it is assumed that it is difficult to maintain the extended discharge path due to the spark discharge generated between the discharge electrodes of the plug 20 being swollen by the rumble flow in the cylinder. ) Is replaced with the primary coil voltage value.
- inductive discharge can be maintained at a relatively low voltage by capacitive discharge that occurs immediately after the current interruption of the primary coil 111, and the air-fuel mixture between the discharge electrodes of the spark plug 20 is ionized and the resistance value decreases.
- the secondary coil voltage increases after the secondary current due to induction discharge begins to flow, because the spark discharge generated between the discharge electrodes of the spark plug 20 is caused to flow by the rumble flow generated in the cylinder, and is extended. Since it is considered that the resistance value between the discharge electrodes is increased in order to cause the discharge current to flow through the long-distance discharge path, the spark plug 20 is monitored by monitoring the secondary coil voltage value based on the primary coil voltage value. It is possible to determine the timing at which it is assumed that it is difficult to maintain the discharge path of the spark discharge generated between the two discharge electrodes.
- the superposition start timing ⁇ is set so that the situation assumed to be difficult to maintain the discharge path of the spark discharge generated in the spark plug 20 is detected based on the primary coil voltage, the superposition start is started.
- Energy superposition control can be started immediately with the determination of timing ⁇ , and a large flame kernel can be formed by flowing a discharge current that can maintain the discharge path where the spark discharge has been extended, so that high ignition performance can be realized. is there.
- the optimum value of the superposition start reference voltage value varies depending on the characteristics of the ignition coil 11A, the spark plug 20, and the like.
- the superposition start timing ⁇ is that the superposition start condition that is considered to require superposition of the secondary current I2 is satisfied, and the superposition start condition is met. Therefore, the power consumption for the energy superposition control is suppressed to the minimum necessary level. That is, in the internal combustion engine ignition device 1 of the present embodiment, even if the energy superimposition control is performed in order to improve the ignition performance, it is possible to prevent the fuel consumption from being extremely deteriorated.
- the flow velocity of the tumble flow generated in the cylinder is not stably maintained at 20 [m / s] and may vary greatly.
- the discharge path of the spark plug 20 is extended.
- the period until the superposition start condition is satisfied and the superposition start timing ⁇ is reached also becomes longer, and the secondary current superimposing means 50A superimposes the secondary current I2 on the secondary current I2 in order to flow a discharge current that can maintain the discharge path where the spark discharge has extended.
- the period to be shortened see the shaded area in the secondary current waveform in FIG. 3B).
- the secondary current I2 is not excessively superposed, and the power consumption for the energy superposition control is suppressed to the minimum necessary level.
- the power consumption can be optimized to reduce fuel consumption. Further, by not flowing the secondary current I2 more than necessary, electrode wear and the like of the spark plug 20 can be suppressed, so that there is an effect of preventing the life of the spark plug 20 from being shortened by energy superposition control.
- the end timing of the energy superposition control performed by the superposition control means 31 is arbitrary.
- the timing at which the primary coil voltage falls to a predetermined superposition stop reference voltage value is set as the superposition control end timing ⁇ , and when this superposition control end timing ⁇ is reached, the superposition timing determination unit 301 performs the secondary current superposition signal generation unit 303.
- the secondary current superposition signal Sp is output from the secondary current superposition signal generation means 303 to the secondary current superposition means 50A by stopping the secondary current superposition start instruction (or outputting the secondary current superposition end instruction). Without this, the secondary current superposition function by the secondary current superposition means 50A can be stopped.
- the superposition control end timing ⁇ is set, and the energy superposition control is finished. You may do it.
- a secondary current path is provided as energy superimposing means capable of increasing discharge energy by superimposing energy to the secondary side of the ignition coil 11A.
- the energy superimposing means is not limited to this.
- the inductive discharge energy is superimposed from the primary side to the secondary side after the ignition timing IG, and thus generated in the spark plug 20. It can also be set as the structure which improves the ignitability by the made spark discharge.
- the internal combustion engine ignition device 2 shown in FIG. 4 includes an ignition coil unit 10B provided with an ignition coil 11B, and a drive control function corresponding to the ignition coil unit 10B.
- the internal combustion engine drive control device 30B includes superimposition control means 32 that superimposes discharge energy on the secondary side by controlling the ignition coil 11B.
- symbol is attached
- the ignition coil 11B of the ignition coil unit 10B efficiently acts on the secondary coil 112 (for example, 9000 turns) with the magnetic flux generated in the main primary coil 111a (for example, 90 turns) and the sub-primary coil 111b (for example, 60 turns).
- the primary primary coil 111a and the secondary primary coil 111b are arranged so as to surround the center core 113, and the secondary coil 112 is further arranged outside thereof.
- the primary end 111a-1 which is one end of the main primary coil 111a is connected to the DC power supply 40 via the connector 152, and a power supply voltage VB + (for example, 12V) is applied.
- the second end 111a-2 which is the other end of the main primary coil 111a, is connected to the collector of the main ignition switch 12B, and the emitter of the main ignition switch 12B is connected to the ground point GND via the connector 152.
- the main ignition switch 12B is turned on and the second end 111a-2 of the main primary coil 111a is connected to the ground point GND, and the main primary coil 111a is directed from the first end 111a-1 to the second end 111a-2.
- the main primary current I1a flows to generate a forward magnetic flux (energization magnetic flux).
- the main ignition switch 12B When the main primary coil ignition signal Sa output from the internal combustion engine drive control device 30B is turned off (for example, when the signal level of the main primary coil ignition signal Sa changes from H to L), the main ignition switch 12B is turned off. Thus, energization to the main primary coil 111a is cut off. As a result, the discharge energy due to the capacitive component is given to the secondary coil 112, a discharge spark is generated between the discharge electrodes of the spark plug 20, and the energizing magnetic flux acting also on the secondary coil 112 via the center core 113. Disappears rapidly.
- the attenuation of the energized magnetic flux is apparently considered as a magnetic flux in the opposite direction to the energized magnetic flux (hereinafter referred to as a cut-off magnetic flux) is generated to reduce the energized magnetic flux. That is, the magnetic flux amount of the magnetic flux to be supplied is reduced by the interruption magnetic flux generated by the interruption of the electric current to the main ignition coil 111a, and the change in the magnetic flux amount generates a high-voltage electromotive force according to the winding ratio between the primary side and the secondary side. Since it is generated in the secondary coil 112, the discharge energy by the inductive component is given to the secondary side of the ignition coil 11B.
- the secondary primary coil 111b capable of applying a magnetic field to the secondary coil 112 via the iron core 113 has the first end 111b-1 as its one end connected to the connector 152.
- the second end 111b-2 which is the other end, is connected to the sub primary coil energization permission switch 71 via the connector 152.
- the on / off of the sub primary coil energization permission switch 71 and the sub primary coil energization switch 72 is controlled by the internal combustion engine drive control device 30B, and the first end 111b-1 side of the sub primary coil 111b is connected to the DC power source 40.
- the two ends 111b-2 are respectively connected to the ground point GND, the superimposed current I1b from the first end 111b-1 to the second end 111b-2 flows through the sub-primary coil 111b.
- the magnetic flux generated when the DC power source 40 is energized to the main primary coil 111a is in the opposite direction (the cutoff magnetic flux that is virtually generated when the main primary coil 111a is de-energized).
- Superimposed magnetic flux in the same direction is generated. That is, when the superimposed current I1b is passed through the sub-primary coil 111b after the energization interruption timing to the main primary coil 111a, the superimposed magnetic flux is added to the interruption magnetic flux, thereby accelerating the attenuation of the energization magnetic flux.
- the induction discharge energy induced in 112 can be increased in a superimposed manner.
- the sub primary coil 111b the sub primary coil energization permission switch 71 for performing energization / shut-off control on the sub primary coil 111b, and the sub primary The coil energization switch 72 functions as an energy superimposing means capable of increasing discharge energy by superimposing energy to the secondary side of the ignition coil 11B.
- the secondary current I2 is reduced even if the ion concentration in the air-fuel mixture between the discharge electrodes of the spark plug 20 decreases and the resistance value between the discharge electrodes increases.
- the secondary voltage can be maintained at a high voltage so as to continue to flow, and a stable high current period can be secured to improve the ignitability.
- the winding directions of the main primary coil 111a and the sub primary coil 111b are reversed,
- the feeding direction to the primary coil 111a and the feeding direction to the sub-primary coil 111b may be reversed.
- the sub primary coil energization permission switch 71 and the sub primary coil energization switch 72 used for the energization control of the ignition coil 11B described above may be provided separately, or the sub primary coil provided separately from the ignition coil unit 10B.
- a unit structure in which the energization permission switch 71 and the sub primary coil energization switch 72 are housed in the same case may be employed. Further, if a semiconductor device having high withstand voltage and noise resistance is used as the sub primary coil energization permission switch 71 and the sub primary coil energization switch 72, it may be provided in the case 15 of the ignition coil unit 10B.
- the sub primary coil energization permission switch 71 can be constituted by a power MOS-FET having a high-speed switching characteristic, and the source of the sub primary coil energization permission switch 71 is connected to the second end 111b-2 side of the sub primary coil 111b.
- the drain of the permission switch 71 is connected to the ground point GND side, and the sub primary coil energization permission signal Sb1 is input to the gate of the sub primary coil energization permission switch 71 from the superposition control means 32 of the internal combustion engine drive control device 30B.
- the sub primary coil energization permission signal Sb1 when the sub primary coil energization permission signal Sb1 is turned on (for example, the signal level is L to H), the sub primary coil energization permission switch 71 is turned on, and the second end 111b-2 of the sub primary coil 111b is connected to the grounding point. It will be connected to GND.
- a current detection resistor 81 having an appropriate resistance value is interposed in the sub primary current path between the drain of the sub primary coil energization permission switch 71 and the ground point GND, and the voltage generated by the current detection resistor 81
- the sub primary voltage detection line 82 for detecting the change and the current detection resistor 81 constitute a sub primary current detection means.
- the sub primary current detection signal obtained from the sub primary voltage detection line 82 is supplied to the internal combustion engine drive control device 30B. Based on this sub primary current detection signal, the superimposition control means 32 determines the sub primary current flowing through the sub primary coil 111b. I can know.
- the superimposing control means 32 generates appropriate sub primary coil energization permission signal Sb1 and sub primary coil energization signal Sb2 using the detected value of the sub primary current, and appropriately generates the superimposed magnetic flux to be generated in the sub primary coil 111b. It becomes possible to control to.
- the sub primary coil energization switch 72 can also be constituted by a power MOS-FET, the drain of the sub primary coil energization switch 72 is on the DC power supply 40 side, and the source of the sub primary coil energization switch 72 is the first end 111b of the sub primary coil 111b.
- the sub primary coil energization signal Sb2 is input from the superposition control means 32 to the gate of the sub primary coil energization switch 72 connected to the ⁇ 1 side.
- the sub primary coil energization switch 72 is turned on, and the DC power supply 40 is connected to the first end 111b-1 of the sub primary coil 111b.
- the power supply voltage VB + is applied.
- a boost power supply circuit 73 (indicated by a two-dot chain line in FIG. 4) may be provided so that the power supply voltage VB + from the DC power supply 40 can be boosted and supplied to the sub-primary coil 111b. In this way, the voltage applied to the sub primary coil 111b can be increased to increase the superimposed current I1b flowing through the sub primary coil 111b, so that larger energy can be superimposed from the sub primary coil 111b to the secondary coil 112. It becomes possible.
- a voltage generated in the main primary coil 111a (hereinafter referred to as a main primary coil voltage) is used as correlation information of the secondary coil voltage. Therefore, in the ignition coil unit 10B of the internal combustion engine ignition device 2 according to the present embodiment, the second end 111a-2 of the main primary coil 111a is used as main primary coil voltage detection means for detecting the voltage on the low side of the main primary coil. And the primary primary coil voltage detection line 17 is drawn from between the branch point of the bypass line 13 and the primary primary coil voltage signal is input to the superposition control means 32 of the internal combustion engine drive control device 30B via the connector 152.
- the superimposition control unit 32 stores a superimposition timing determination unit 301 that determines the timing of the start and end of superposition, and a superimposition start reference voltage value that is used as information for the superimposition timing determination unit 301 to determine the superposition start timing.
- Superimposition start reference voltage value storage means 302 and the sub primary coil energization permission signal Sb1 and the sub primary coil energization signal for operating the sub primary coil energization permission switch 71 and the sub primary coil energization switch 72 in accordance with the start of superposition, respectively.
- Sub-primary coil control means 304 for generating and outputting Sb2.
- the superposition timing determination means 301 is supplied with the ignition signal Si, the main primary coil voltage signal, and the superposition start reference voltage value from the superposition start reference voltage value storage means 302, and the ignition timing at which the ignition signal Si changes from ON to OFF. After IG, it is determined whether the superposition start timing satisfying the superposition start condition is satisfied. For example, as shown in the waveform diagram of FIG. 6 (a), the capacity discharge energy (electric energy accumulated on the secondary side) is consumed at the ignition timing IG by the main primary current interruption, and the primary voltage is rapidly increased (FIG. 6). 6 (a), the main primary coil voltage waveform becomes larger in the negative electrode), and decreases in a short time (returns to the positive electrode side in the main primary coil voltage waveform in FIG. 6 (a)), and the superposition start reference voltage After falling below the value, the timing at which the main primary coil voltage rises again and reaches the superposition start reference voltage value is determined as the superposition start timing ⁇ .
- the determination of the superposition start condition may not be started immediately after the ignition timing IG, but may be started after a predetermined main primary coil voltage monitoring start condition is satisfied.
- the main primary coil voltage monitoring start condition is satisfied when the absolute value of the main primary coil voltage suddenly increases at the ignition timing IG and then falls below the superposition start reference voltage value, and this main primary coil voltage monitoring start condition is satisfied. If the superposition start condition is determined that the absolute value of the main primary coil voltage has reached the superposition start reference voltage value again, the superposition start reference voltage value is instantaneously exceeded due to the voltage fluctuation on the secondary side accompanying the capacity discharge. In such a case, it is possible to prevent erroneous determination that the superposition start condition is satisfied.
- the main primary coil voltage monitoring start condition is that a predetermined period (for example, several tens of ⁇ s) that can be regarded as capacitive discharge has passed and the state that can be regarded as transitioning to induction discharge is set as the main primary coil voltage monitoring start condition. It may be determined that the superposition start condition is that the absolute value of the primary coil voltage has reached the superposition start reference voltage value again after the coil voltage monitoring start condition is satisfied.
- the superposition timing determination unit 301 determines this as the superposition start timing ⁇ , A sub primary coil energization start instruction is issued to the sub primary coil control means 304.
- the sub primary coil control means 304 generates the sub primary coil energization permission signal Sb1 and the sub primary coil energization signal Sb2 and outputs them to the sub primary coil energization permission switch 71 and the sub primary coil energization switch 72, respectively.
- the energization of the primary coil 111b is started, the induced electromotive force on the secondary side is increased, and the secondary current is superimposed (see the shaded area in the secondary current waveform in FIG. 6A). ).
- the sub primary coil control means 304 simultaneously outputs the sub primary coil energization permission signal Sb1 and the sub primary coil energization signal Sb2 at the superposition start timing ⁇ .
- the sub primary coil energization permission switch 71 and the sub primary coil energization switch 72 are simultaneously operated to generate a superimposed magnetic flux in the sub primary coil 111b, the sub primary coil energization permission switch 71 and the sub primary coil energization switch 72
- the operation timing does not have to be the same, and the sub-primary coil control means 304 to the sub-primary coil energization permission switch 71 at an appropriate timing (for example, ignition timing IG) before outputting the sub-primary coil energization signal Sb2.
- the sub primary coil energization permission signal Sb1 is output and the sub primary coil energization signal Sb1 is output. It may be stopped sub primary coil energization permission signal Sb1 at an appropriate timing after stopping.
- the sub primary coil control means 304 can determine whether or not. If it is determined that the energy superimposition control is not properly performed, for example, the fact is notified to notify the passenger of the abnormality, and if the energy superimposition control is temporarily stopped, it is meaningless by energizing the sub primary coil 111b. Power consumption can be suppressed.
- the superimposing control means 32 can arbitrarily adjust the pulse width of the sub primary coil energization signal Sb2, the sub primary coil energization switch 72 is subjected to PWM control so that the magnetic flux intensity of the superimposed magnetic flux generated in the sub primary coil 111b is increased. Can be adjusted. For example, if the pulse width of the sub-primary coil energization signal Sb2 is set so that the superimposed energy optimized according to the characteristics of the internal combustion engine or the like to be controlled is given to the secondary side, it is given to the secondary coil 112 It is possible to keep the induction discharge energy at a necessary and sufficient level, which is useful for further improving fuel consumption.
- the energy superposition control performed by the superposition control means 32 is also the same as the superposition control means 31 in the internal combustion engine ignition device 1 of the first embodiment.
- the superposition start timing ⁇ is that the superposition start condition that is difficult to maintain the discharge path of the spark discharge generated in the spark plug 20 is established, and the energy superposition control is not performed until the superposition start condition is met.
- the power consumption for the is kept to the minimum necessary level. That is, even in the internal combustion engine ignition device 2 of the second embodiment, even if the energy superimposition control is performed in order to improve the ignition performance, it is possible to prevent the fuel consumption from being extremely deteriorated.
- the primary coil voltage does not reach the superposition start reference voltage value for a relatively long time from the ignition timing IG
- the superposition start condition is satisfied and the superposition is started.
- the period until the start timing ⁇ is also lengthened, and in order to ensure a stable high current period of the secondary current I2, a period in which the superimposed current of the secondary primary coil 111b is applied to the secondary side to superimpose the secondary current I2 Becomes shorter (see the shaded area in the secondary current waveform in FIG. 6B).
- the secondary current I2 is excessively superimposed as in the internal combustion engine ignition device 1 of the first embodiment. This is not performed, and the power consumption for the energy superposition control can be suppressed to the minimum necessary level. Therefore, the power consumption for ignition can be optimized to reduce the deterioration of fuel consumption. Further, by not flowing the secondary current I2 more than necessary, electrode wear and the like of the spark plug 20 can be suppressed, so that there is an effect of preventing the life of the spark plug 20 from being shortened by energy superposition control.
- the end timing of the energy superposition control performed by the superposition control means 32 of the internal combustion engine ignition device 2 according to the second embodiment is also arbitrary.
- the elapsed time measured from the ignition timing IG is necessary for stable combustion maintenance.
- the time when the high current holding time determined as a sufficiently high current period is reached may be set as the superposition control end timing ⁇ to end the energy superposition control.
- the sub primary coil energization permission signal Sb1 and the sub primary coil energization signal Sb2 output from the sub primary coil control unit 304 do not need to be stopped at the same time. For example, they are necessary and sufficient for energy superposition control by energizing the sub primary coil 111b. After the sub primary coil energization signal Sb2 is stopped for a long upper limit time, the sub primary coil energization permission signal Sb1 may be stopped after a slight lapse time.
- the secondary current that is superimposed after the ignition timing IG is satisfied and the superimposed secondary current is suppressed to a relatively low first level, and thereafter
- this first level secondary current superimposition control is performed to increase the superimposed secondary current to a relatively high second level only when it is determined that there is a fear of sparks generated in the spark plug 20. To do.
- the internal combustion engine ignition device 3 of the third embodiment it is possible to realize stable combustion of the internal combustion engine while further reducing the possibility that the fuel consumption is deteriorated by the energy superposition control.
- the internal combustion engine ignition device 3 shown in FIG. 7 includes an ignition coil unit 10A provided with an ignition coil 11A, and a drive control function corresponding to the ignition coil unit 10A.
- An internal combustion engine drive control device 30C having a first superimposing operation for superimposing a secondary current corresponding to a relatively low first level and a second superimposing operation for superimposing a secondary current corresponding to a relatively high second level
- the secondary current superimposing means 50C that can be executed by switching is provided.
- symbol is attached
- the internal combustion engine drive control device 30C it is possible to know a change in the applied voltage to the spark plug 20 by estimating the secondary coil voltage based on the primary coil voltage signal.
- Secondary current superposition control is performed by the secondary current superimposing means 50C.
- the energy superposition control using the secondary current superimposing means 50C is executed by the function of the superposition control means 33 provided in the internal combustion engine drive control device 30C, for example.
- a DC power source 40 such as a vehicle battery can be used as a current source of the secondary current superimposing means 50C.
- the superimposition control unit 33 includes a superimposition control timing determination unit 305 that determines the control timing of superimposition start / update and end, and a superimposition used by the superimposition control timing determination unit 305 as information for determining the superimposition start control timing.
- Superimposition start reference voltage value storage means 302 that stores the start reference voltage value and superimposition correction voltage value (detailed later) used as information for superimposition control timing determination means 305 to determine the control timing of superimposition update.
- the stored superposition correction voltage value storage means 306 and the secondary current superposition for generating and outputting the secondary current superposition control signal Sp for operating the secondary current superposition means 50C in accordance with superposition start and superposition update.
- the superimposition control timing determination means 305 includes an ignition signal Si, a primary coil voltage signal, a superposition start reference voltage value from the superposition start reference voltage value storage means 302, and a superposition correction voltage value from the superposition correction voltage value storage means 306.
- the ignition timing IG when the voltage value is supplied and the ignition signal Si is turned from ON to OFF, it is determined whether the superposition start timing satisfies the superposition start timing. For example, as shown in the waveform diagram of FIG. 9 (a), the capacity discharge energy (electric energy accumulated on the secondary side) is consumed at the ignition timing IG due to the primary current interruption, and the primary voltage rapidly increases and becomes short.
- the timing at which the primary coil voltage rises again and reaches the superposition start reference voltage value is determined as the superposition start timing ⁇ 1.
- the primary coil voltage monitoring start condition is that a predetermined period (for example, several tens of ⁇ s) that can be regarded as capacitive discharge has passed and the state is considered to have shifted to induction discharge. It may be determined that the superposition start condition is that the absolute value of the primary coil voltage has reached the superposition start reference voltage value again after the monitoring start condition is satisfied.
- the superposition control timing determination unit 305 determines this as the superposition control start timing ⁇ 1
- a secondary current superposition control start instruction is issued to the current superposition control signal generation means 307.
- the secondary current superposition control signal generation means 307 that has received this secondary current superposition control start instruction instructs the first superposition operation to superimpose the secondary current corresponding to the relatively low first level.
- a signal Sp (for example, the signal potential is Lev1) is generated and output to the secondary current superimposing means 50C. Receiving this, the secondary current superimposing means 50C performs the first superimposing operation, so that the secondary current corresponding to the first level is superimposed.
- the superimposition control timing determination means 305 determines whether or not a superimposition correction condition predetermined as a state in which the spark generated in the spark plug 20 is a concern is based on the superimposition correction voltage value stored in the superimposition correction voltage value storage unit 306. Judgment. Specifically, the superimposition correction condition is satisfied when the primary coil voltage value detected by the primary coil voltage detection means reaches a superimposition correction voltage value set in advance as a value exceeding the superimposition start reference voltage value. The timing ⁇ 2 is determined.
- the superposition correction voltage value stored in the superposition correction voltage value storage means 306 is that the secondary current rises sufficiently even after the secondary current is superposed by the secondary current superposition means 50C as the energy superposition means.
- the secondary coil voltage value that can be determined to be not is replaced with the primary coil voltage value. That is, the detected primary coil voltage is increased from the superposition start reference voltage value to the superposition correction voltage value because the resistance value between the discharge electrodes in the spark plug 20 is further increased. Since it is considered that the discharge current sufficient to maintain the discharge path is not flowing (a state in which the spark generated in the spark plug 20 is likely to be blown off), the secondary current superimposing means 50C is changed from the first superposition operation to the first. It becomes an opportunity to switch to 2 superimposition operation.
- the superimposition control timing determination unit 305 determines that the superimposition correction timing ⁇ 2 is established, it issues a secondary current correction instruction to the secondary current superposition control signal generation unit 307.
- the secondary current superposition control signal generation means 307 that has received this secondary current correction instruction instructs the secondary current superposition control signal Sp that instructs the second superposition operation to superimpose the secondary current corresponding to the relatively high second level.
- the signal potential is Lev2
- the secondary current superimposing means 50C receives this, the secondary current superimposing means 50C performs the second superposition operation, so that the secondary current corresponding to the second level higher than the first level is superposed, and the rising slope of the secondary current can be accelerated.
- the secondary current superposition control signal Sp having a different potential level is sent from the superposition control means 33 to the secondary current superposition means 50C via one secondary current superposition control signal line.
- the first superimposing operation and the second superimposing operation are instructed to the secondary current superimposing means 50C by supplying, the present invention is not limited to this.
- a signal line for the first operation instruction and a signal line for the second operation instruction are separately provided and the input path of the instruction signal to the secondary current superimposing means 50C is separated, an error in the signal potential due to noise mixing can be obtained. Since the malfunction of the secondary current superimposing means 50C due to the determination can be prevented, the stability of the energy superposition control can be improved.
- the secondary current detection signal is supplied to the secondary current superposition control signal generation means 307 (shown by a broken line in FIG. 8), superposition control of the secondary current I2 using the secondary current superposition means 50C is performed.
- the secondary current superposition control signal generation means 307 can determine whether or not it is properly performed. If it is determined that the energy superposition control is not properly performed, for example, the fact is notified to notify the passenger of the abnormality, and if the energy superposition control is once stopped, the secondary current superimposing means 50C becomes meaningless. Power consumption can be suppressed.
- the superposition start reference voltage value for determining the establishment of the superposition control start timing ⁇ 1 and the superposition correction voltage value for judging the formation of the superposition correction timing ⁇ 2 depend on the characteristics of the ignition coil 11A, the spark plug 20, and the like. Since the optimum values are different, for example, by inputting a superposition start reference voltage value setting signal to the superposition start reference voltage value storage unit 302 (indicated by a broken line in FIG. 8), an arbitrary value is stored in the superposition start reference voltage value storage unit 302.
- the superposition start reference voltage value may be set, or by inputting a superposition correction voltage value setting signal to the superposition correction voltage value storage means 306 (indicated by a broken line in FIG. 8), the superposition correction voltage is set.
- An arbitrary superposition correction voltage value may be set in the value storage unit 306.
- the superposition control start timing indicates that the superposition start condition that is considered to be in a state in which it is difficult to maintain the discharge path of the spark discharge generated in the spark plug 20 to the last. Since ⁇ 1 is set and energy superposition control is not performed until the superposition start condition is satisfied, power consumption for the energy superposition control is suppressed to a necessary minimum level. That is, in the internal combustion engine ignition device 1 of the present embodiment, even if the energy superimposition control is performed in order to improve the ignition performance, it is possible to prevent the fuel consumption from being extremely deteriorated.
- the superposition start condition is satisfied and the superposition is started.
- the period of superimposing on the secondary current I2 by the current superimposing means 50C is shortened (see the shaded area in the secondary current waveform of FIG. 9B).
- the secondary current I2 is not excessively superposed, and the power consumption for the energy superposition control is suppressed to the minimum necessary level.
- the power consumption can be optimized to reduce fuel consumption. Further, by not flowing the secondary current I2 more than necessary, electrode wear and the like of the spark plug 20 can be suppressed, so that there is an effect of preventing the life of the spark plug 20 from being shortened by energy superposition control.
- the first superposition operation for superimposing the secondary current corresponding to the relatively low first level is performed on the secondary current superimposing means 50C, so that the discharge path of the spark discharge generated in the spark plug 20 is maintained. If it is possible, the primary coil voltage does not reach the superimposition correction voltage value thereafter, so that the secondary current superimposing means 50C is not shifted to the second superposition operation. Also in this point, the internal combustion engine ignition device 3 according to the present embodiment is further effective in reducing the deterioration of fuel consumption and preventing the life of the spark plug 20 from being shortened.
- the end timing of the energy superposition control performed by the superposition control means 33 is arbitrary. For example, the timing at which the primary coil voltage falls to a predetermined superposition stop reference voltage value is set as the superposition control end timing ⁇ . When this superposition control end timing ⁇ is reached, the superposition control timing determination unit 305 generates the secondary current superposition control signal. By stopping the secondary current superposition start instruction to the means 307 (or outputting the secondary current superposition end instruction), the secondary current superposition control is performed from the secondary current superposition control signal generation means 307 to the secondary current superposition means 50C. The secondary current superimposing function by the secondary current superimposing means 50C can be stopped without outputting the signal Sp.
- the superposition control end timing ⁇ is set, and the energy superposition control is finished. You may do it.
- the internal combustion engine ignition device 3 according to the third embodiment described above is sufficient to quickly extend the discharge path by adjusting the superposition of the secondary current by the secondary current superimposing means 50C with respect to the ignition coil unit 10A. The possibility of causing re-striking by flowing a discharge current was reduced. Similarly, by adjusting the superimposed magnetic flux by the sub primary coil energization permission switch 71 and the sub primary coil energization switch 72 with respect to the ignition coil unit 10B, a sufficient discharge current is caused to flow in the discharge path where the spark discharge is extended. . It is also possible to reduce the risk of re-striking.
- the superposition magnetic flux generated in the auxiliary primary coil 111b is suppressed to a relatively low first level after the ignition timing IG is satisfied, and thereafter, Control for increasing the superposed magnetic flux generated in the sub-primary coil 111b to a relatively high second level only when it is determined that the first level superposed magnetic flux is in a state where there is a fear of sparks generated in the spark plug 20. To do.
- the internal combustion engine ignition device 4 shown in FIG. 10 includes an ignition coil unit 10B provided with an ignition coil 11B, a secondary primary coil energization permission switch 71, and a secondary primary.
- An internal combustion engine drive control device 30D having a drive control function corresponding to the coil energization switch 72, the ignition coil unit 10B, the sub primary coil energization permission switch 71, and the sub primary coil energization switch 72 is provided.
- symbol is attached
- the internal combustion engine drive control device 30D it is possible to know a change in the voltage applied to the spark plug 20 by estimating the secondary coil voltage based on the primary coil voltage signal.
- the operations of the sub primary coil energization permission switch 71 and the sub primary coil energization switch 72 By controlling the operations of the sub primary coil energization permission switch 71 and the sub primary coil energization switch 72, the generation timing and the amount of magnetic flux of the superimposed magnetic flux by the sub primary coil 111b are controlled.
- the operation control of the sub primary coil energization permission switch 71 and the sub primary coil energization switch 72 is executed by the function of the superposition control means 34 provided in the internal combustion engine drive control device 30D, for example.
- the superimposition control unit 34 includes a superimposition control timing determination unit 305 that determines a control timing for starting / updating or ending superimposition, and a superimposition used by the superimposition control timing determination unit 305 as information for determining a control timing for starting superimposition.
- Superimposition start reference voltage value storage means 302 that stores the start reference voltage value, and superimposition correction voltage value that is used as information for the superimposition control timing determination means 305 to determine the control timing of superposition update is stored.
- the superimposition control timing determination means 305 includes an ignition signal Si, a main primary coil voltage signal, a superposition start reference voltage value from the superposition start reference voltage value storage means 302, and a superposition correction from the superposition correction voltage value storage means 306. For example, after the ignition timing IG at which the ignition voltage Si is supplied and the ignition signal Si is turned from ON to OFF, it is determined whether the superposition start timing satisfies the superposition start timing. For example, as shown in the waveform diagram of FIG. 12 (a), the capacity discharge energy (electrical energy accumulated on the secondary side) is consumed at the ignition timing IG due to the primary current interruption, and the primary voltage is rapidly increased, resulting in a short time.
- the timing at which the main primary coil voltage rises again and reaches the superposition start reference voltage value is determined as the superposition start timing ⁇ 1.
- the main primary coil voltage monitoring start condition is that a predetermined period (for example, several tens of ⁇ s) that can be regarded as capacitive discharge has passed and the state that can be regarded as transitioning to induction discharge is set as the main primary coil voltage monitoring start condition. It may be determined that the superposition start condition is that the absolute value of the main primary coil voltage has reached the superposition start reference voltage value again after the coil voltage monitoring start condition is satisfied.
- the superposition control timing determination unit 305 determines this as the superposition control start timing ⁇ 1
- a sub primary coil energization start instruction is issued to the sub primary coil control means 308.
- the sub primary coil control means 304 generates the sub primary coil energization permission signal Sb1 and the sub primary coil energization signal Sb2 and outputs them to the sub primary coil energization permission switch 71 and the sub primary coil energization switch 72, respectively.
- Energization of the primary coil 111b is started, the induced electromotive force on the secondary side is increased, and the secondary current is superimposed.
- the superimposed magnetic flux generated in the sub primary coil 111b is set to a relatively low first level.
- the first superposition operation is suppressed.
- the superimposition control timing determination unit 305 determines that the superimposition control start timing ⁇ 1 is established, the sub primary coil energization signal Sb1 and the sub primary coil energization signal Sb2 from the sub primary coil control unit 308 are used. After the ON / OFF of the permission switch 71 and the sub primary coil energization switch 72 is controlled, the first level superimposed magnetic flux is generated in the sub primary coil 111b, and the secondary current at the first level is superimposed. The superimposition control timing determination unit 305 determines whether or not a superimposition correction condition determined in advance as a state in which the spark generated in the spark plug 20 is a concern is stored in the superimposition correction voltage value storage unit 306. Judge based on the value.
- the superimposition correction condition is established when the main primary coil voltage value detected by the main primary coil voltage detection means reaches a superimposition correction voltage value set in advance as a value exceeding the superposition start reference voltage value.
- the superimposition correction timing ⁇ 2 is determined.
- the superimposition correction voltage value stored in the superimposition correction voltage value storage means 306 means that the first level superposition magnetic flux from the sub-primary coil 111b acts on the secondary coil 112 and the secondary current is superimposed.
- the secondary coil voltage value that can be determined that the rising slope of the secondary current is not sufficient is replaced with the main primary coil voltage value. That is, the detected primary primary coil voltage is increased from the superposition start reference voltage value to the superposition correction voltage value because the resistance value between the discharge electrodes in the spark plug 20 is further increased.
- the superimposition magnetic flux correction instruction is issued to the sub primary coil control unit 308.
- the sub primary coil control means 308 changes the sub primary coil energization signal Sb ⁇ b> 2 having a relatively high duty ratio to be output to the sub primary coil energization switch 72.
- the energization amount to the sub primary coil 111b is compared by changing the sub primary coil energization signal Sb2 to a relatively high duty ratio of the on-time ⁇ 2 (where ⁇ 1 ⁇ 2) with respect to the clock cycle T.
- the second superimposing operation increases the superposed magnetic flux generated in the secondary primary coil 111b to a relatively high second level by increasing the target second high level. That is, the secondary current corresponding to the second level higher than the first level is superposed by performing the second superposition operation that causes the secondary coil 112 to be subjected to the magnetic flux change to which the relatively high second level superposed magnetic flux is applied. As a result, the rising slope of the secondary current can be accelerated (see the shaded area in the secondary current waveform in FIG. 12A). Reduce the likelihood of a like. That is, according to the internal combustion engine ignition device 4 according to the fourth embodiment, since a large flame kernel can be formed more reliably in the cylinder, the ignitability can be further improved and stable combustion can be realized. .
- the first superposition operation is changed to the second superposition operation by increasing the duty ratio of the sub primary coil energization signal Sb2 supplied from the superposition control means 34 to the sub primary coil energization switch 72.
- the present invention is not limited to this as long as the superimposed magnetic flux generated by the sub primary coil 111b can be increased.
- the sub-primary coil control unit 308 When the duty ratio of the sub-primary coil energization signal Sb2 generated by the sub-primary coil control unit 308 of the superposition control unit 34 is made constant and the first superposition operation is changed to the second superposition operation, the sub-primary coil control unit 308 By outputting a boosting operation signal to the boosting power supply circuit 73 (indicated by a broken line in FIG. 11), the boosting power supply circuit 73 is operated to increase the voltage applied to the sub-primary coil 111b, and the superimposed magnetic flux is increased to the second level. Such a second superposition operation may be used.
- the first control is performed by controlling the operation of the sub primary coil energization permission switch 71 and the sub primary coil energization switch 72.
- the sub-primary coil control means 308 can determine whether or not the superposition operation or the second superposition operation is properly performed. If it is determined that the energy superimposition control is not properly performed, for example, the fact is notified to notify the passenger of the abnormality, and if the energy superposition control is temporarily stopped, the sub primary coil energization permission switch 71, the sub primary It is possible to prevent the coil energization switch 72 or the sub primary coil 111b from meaninglessly consuming power.
- the superposition start reference voltage value for determining the establishment of the superposition control start timing ⁇ 1 and the superposition correction voltage value for judging the formation of the superposition correction timing ⁇ 2 depend on the characteristics of the ignition coil 11A, the spark plug 20, and the like. Since the optimum values are different, for example, by inputting a superposition start reference voltage value setting signal to the superposition start reference voltage value storage unit 302 (indicated by a broken line in FIG. 11), an arbitrary value is input to the superposition start reference voltage value storage unit 302.
- the superposition start reference voltage value may be set, or by inputting a superposition correction voltage value setting signal to the superposition correction voltage value storage means 306 (indicated by a broken line in FIG. 11), the superposition correction voltage is set.
- An arbitrary superposition correction voltage value may be set in the value storage unit 306.
- the superposition control start timing ⁇ 1 is that the superposition start condition that is considered to require superimposition of the secondary current I2 is satisfied, and the superposition start condition is met. Since the energy superposition control is not performed until the power consumption is reduced, the power consumption for the energy superposition control is suppressed to a necessary minimum level. That is, in the internal combustion engine ignition device 4 of the present embodiment, even if the energy superposition control is performed in order to improve the ignition performance, it is possible to prevent the fuel consumption from being extremely deteriorated.
- the superposition start condition is satisfied.
- the period until the superimposition control start timing ⁇ 1 is reached, and further the period until the superposition correction condition is satisfied and the superimposition correction timing ⁇ 2 is reached, and the sub-path for maintaining the discharge path of the spark discharge generated in the spark plug 20 is increased.
- the primary coil energization permission switch 71 and the sub primary coil energization switch 72 are driven to generate a superimposed magnetic flux in the sub primary coil 111b, and the period of superimposing on the secondary current I2 is shortened (the secondary current waveform in FIG. 12B).
- the internal combustion engine ignition device 4 is further effective in reducing the deterioration of fuel consumption and preventing the spark plug 20 from shortening its life.
- the timing of the end of the energy superposition control performed by the superposition control means 34 is arbitrary.
- the elapsed time measured from the ignition timing IG is a high current holding time set as a high current period necessary and sufficient for stable combustion maintenance.
- the time when it is reached may be set as the superposition control end timing ⁇ to end the energy superposition control.
- Ignition device for internal combustion engine 10A Ignition coil unit 11A Ignition coil 111 Primary coil 112 Secondary coil 12A Ignition switch 15 Case 20 Spark plug 30A Internal combustion engine drive control device 31 Superimposition control means 40 DC power supply 50A Secondary current superposition means 61 Current detection resistance 62 Secondary side Voltage detection line
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
Abstract
点火プラグに発生した火花放電による着火性を向上させ、しかも、点火のための消費電力を適切化して燃費の悪化も低減できる内燃機関用点火装置を提供する。 内燃機関用点火装置1の重畳制御手段30Aは、点火コイルユニット10Aからの一次コイル電圧信号により取得した一次コイル111の電圧変化から二次コイル112の電圧変化を推定し、点火コイル11Aの一次電流を遮断する点火タイミング以降に、一次コイル電圧の状況が、点火プラグ20に発生した火花放電の放電経路を維持し難い状態として予め定めた重畳開始条件を満たすと、二次電流重ね信号Spを二次電流重ね手段50Aに出力することで、電流重ね手段50Aから点火コイル二次側に電流を重畳させ、点火プラグ20に発生した火花放電の放電経路を維持させ、大きな火炎核を形成させて着火性を向上させる。
Description
本発明は、自動車両に搭載される内燃機関用の点火装置に関し、点火コイルの二次側に発生させる放電エネルギを重畳的に増大させて、良好な放電特性を得るものである。
車両搭載の内燃機関として、燃費改善のために直噴エンジンや高EGRエンジンが採用されているが、これらのエンジンは着火性があまり良くないため、点火装置には高エネルギ型のものが必要になる。そこで、古典的な電流遮断原理により発生する点火コイル二次側出力に、さらにもう一つの点火コイルの出力を加算的に重畳する位相放電型の点火装置が提案されている(例えば、特許文献1を参照)。
この特許文献1に記載の点火装置によれば、主点火コイルの一次電流を遮断することでその二次側に発生する数kVの高電圧により、点火プラグの放電間隙に絶縁破壊を起こして点火コイルの二次側から放電電流を流し始めた後に、主点火コイルと並列に接続された副点火コイルの一次電流を遮断し、その二次側に発生する数kVの直流電圧を加算的に重畳することで、比較的長い時間に亙って点火プラグに大きな放電エネルギを与えることができるため、燃料への着火性が向上し、延いては燃費も向上する。
しかしながら、特許文献1に記載された点火装置のような方式では、点火プラグの放電電流は各コイルから出力される三角波電流の組み合わせであるため、高電流期間を拡大するためには、2つの点火コイルの点火位相を大きくしたうえで、2つの点火コイルに十分なエネルギを蓄積する時間を長くしなければ、高電流期間を拡大することができない。
また、点火コイルの外部あるいは内部で電源電圧を昇圧してコイルの二次側に直接的に高電圧を印加することで、一次コイルへの通電時間を長くすることなく、二次側の放電エネルギを高め、安定した燃焼を維持する方法も考えられる。しかしながら、このような方法では、電源電圧を数kVまで昇圧させる昇圧回路が必要となるため、搭載する回路の高耐圧化および高電圧での接続耐性が必要となり、相当なコストアップとなってしまう。加えて、昇圧回路の使用により点火のための消費電力も増大するため、燃費を悪化させる要因となってしまう。
加えて、直噴エンジンや高EGRエンジンでの着火性を向上させるためには、高電流期間を長くするだけでは十分とは言えず、点火プラグの放電電流によって大きな火炎を形成することも重要である。通常のエンジンでは、シリンダ内に生じるタンブル流の流速が3~5〔m/s〕程度なのに対して、超希薄リーン燃焼(A/F=29)やEGR=35%で燃焼させようとするエンジンでは、シリンダ内に生じるタンブル流の流速が20〔m/s〕程度に増大することで、点火プラグに発生した放電火花はタンブル流に流されて膨らみ、放電経路が伸びる。点火プラグに発生した火花放電の放電経路が伸びると、それだけ大きな火炎核が形成されて火炎伝搬も良好となり、着火性を向上させることができる。しかしながら、点火プラグに発生した火花放電の放電経路が伸びても、十分な放電電流が流れないと、その放電経路を維持できず、点火プラグの電極間を短経路で結ぶ新たな放電経路が生じるリストライク(放電吹き消え)を起こしてしまい、十分な大きさの火炎核を形成できない。よって、直噴エンジンや高EGRエンジンでの着火性を向上させるためには、点火プラグに発生した火花放電のリストライクを防止することも重要である。
そこで、本発明は、点火プラグに発生した火花放電による着火性を向上させ、しかも、点火のための消費電力を適切化して燃費の悪化も低減できる内燃機関用点火装置の提供を目的とする。
上記課題を解決するために、請求項1に係る内燃機関用点火装置は、点火制御手段によって点火コイルへの通電制御を行うことで、点火コイルの二次側に放電エネルギを与えて点火プラグに火花放電を起こさせる内燃機関用点火装置において、前記点火コイルの二次側へ重畳的にエネルギを加算して放電エネルギを増大させることが可能なエネルギ重畳手段と、点火サイクルにおける点火タイミング以降に、二次コイルに発生する電圧が反映される一次コイルの電圧を検出する一次コイル電圧検出手段と、を備え、前記点火制御手段は、前記一次コイル電圧検出手段により検出された一次コイル電圧の変化が、前記点火プラグに発生した火花放電の放電経路を維持し難い状態として予め定めた重畳開始条件を満たすと、前記エネルギ重畳手段を作動させて点火コイルの二次側に放電エネルギを重畳するようにしたことを特徴とする。
また、請求項2に係る発明は、前記請求項1に係る内燃機関用点火装置において、前記点火制御手段は、予め定めた一次コイル電圧監視開始条件が成立した後に、一次コイル電圧検出手段により検出された一次コイル電圧が予め定めた重畳開始基準電圧値に達することを重畳開始条件として用いるようにしたことを特徴とする。
また、請求項3に係る発明は、前記請求項1又は請求項2に係る内燃機関用点火装置において、前記エネルギ重畳手段は、点火プラグに火花放電が生じることで点火コイルの二次側を流れる二次電流に、更に電流を重ねて流すものとしたことを特徴とする。
上記課題を解決するために、請求項4に係る発明は、点火制御手段によって点火コイルへの通電制御を行うことで、点火コイルの二次側に放電エネルギを与えて点火プラグに火花放電を起こさせる内燃機関用点火装置において、前記点火コイルは、主一次電流の通電により順方向の磁束量が増加し、主一次電流を遮断することにより順方向の磁束量が減少する主一次コイルと、該主一次コイルの通電遮断以降における任意のタイミングで副一次電流を通電することにより、順方向と逆の遮断方向に磁束を発生させる副一次コイルと、一端側が点火プラグと接続され、前記主一次コイルと副一次コイルの磁束変化が作用して放電エネルギが与えられる二次コイルと、を有するものとし、点火サイクルにおける点火タイミング以降に、二次コイルに発生する電圧が反映される主一次コイルの電圧を検出する主一次コイル電圧検出手段と、前記副一次コイルへの通電・遮断を切り替えることで発生させた遮断方向の磁束を二次コイルに作用させることで、点火コイルの二次側に放電エネルギを重畳するエネルギ重畳手段と、を備え、前記点火制御手段は、前記主一次コイル電圧検出手段により検出された主一次コイル電圧の変化が、前記点火プラグに発生した火花放電の放電経路を維持し難い状態として予め定めた重畳開始条件を満たすと、前記エネルギ重畳手段を作動させて点火コイルの二次側に放電エネルギを重畳するようにしたことを特徴とする。
また、請求項5に係る発明は、前記請求項4に係る内燃機関用点火装置において、前記点火制御手段は、予め定めた主一次コイル電圧監視開始条件が成立した後に、主一次コイル電圧検出手段により検出された主一次コイル電圧が予め定めた重畳開始基準電圧値に達することを重畳開始条件として用いるようにしたことを特徴とする。
また、請求項6に係る発明は、前記請求項1~請求項5の何れか1項に係る内燃機関用点火装置において、前記点火制御手段は、前記重畳開始条件の成立に伴って放電エネルギの重畳を開始した後、前記点火プラグに発生した火花の吹き飛びが懸念される状態として予め定めた重畳補正条件を満たすと、前記エネルギ重畳手段により二次側へ与える重畳エネルギ量を更に高めるようにしたことを特徴とする。
また、請求項7に係る発明は、前記請求項6に係る内燃機関用点火装置において、前記点火制御手段は、前記重畳開始基準電圧値を超える値として予め設定した重畳補正用電圧値に達することを重畳補正条件として用いるようにしたことを特徴とする。
本発明に係る内燃機関用点火装置によれば、点火タイミング以降に、前記点火プラグに発生した火花放電の放電経路を維持し難い状態と考えられる重畳開始条件が成立すると、放電エネルギ重畳手段によって点火コイル二次側に放電エネルギを重畳するので、火花放電の伸びた放電経路を維持して放電電流を流すことができる。そして、大きく伸びた放電経路に十分な放電電流が流れると、気筒内に大きな火炎核を形成することができ、着火性を向上させることができる。しかも、重畳開始条件が成立するまでは点火制御手段によるエネルギ重畳制御を行わないので、エネルギ重畳制御のための電力消費は必要最低限のレベルに抑えることができ、燃費の悪化も低減できる。
次に、本発明に係る内燃機関用点火装置の実施形態を、添付図面に基づいて詳細に説明する。
図1に示すのは、本発明の第1実施形態に係る内燃機関用点火装置1であり、内燃機関の気筒毎に設けられる1つの点火プラグ20に放電火花を発生させる点火コイルユニット10Aと、この点火コイルユニット10Aの動作タイミングを指示する点火信号Si等を適宜なタイミングで出力する点火制御手段としての内燃機関駆動制御装置30A、車両バッテリ等の直流電源40、点火プラグ20に火花放電が生じることで点火コイルの二次側を流れる二次電流に、更に電流を重ねて流す二次電流重ね手段50A等で構成される。この二次電流重ね手段50Aは、点火コイルユニット10Aが備える点火コイル11Aの二次側へ重畳的にエネルギを加算して放電エネルギを増大させることが可能なエネルギ重畳手段として機能する。
なお、本実施形態に示す内燃機関用点火装置1においては、点火制御手段としての機能が、自動車の内燃機関を統括的に制御する内燃機関駆動制御装置30Aに含まれるものとしたが、これに限定されるものではない。例えば、ECUといった通常の内燃機関駆動制御装置30Aが有している点火信号生成機能によって生成された点火信号を受けて、適宜な制御信号を生成し、点火コイルユニット10Aや二次電流重ね手段50Aへ制御信号を出力する点火制御装置を別途設けるようにしても構わない。
上記点火コイルユニット10Aは、例えば、点火コイル11A、点火スイッチ12A、点火スイッチ12Aと並列に設けるバイパス線路13、このバイパス線路13に設ける整流手段14等を所要形状のケース15に収納して一体構造としたユニットである。このケース15の適所には、高圧端子151とコネクタ152を設けてあり、高圧端子151を介して点火プラグ20を接続すると共に、コネクタ152を介して内燃機関駆動制御装置30Aや直流電源40と接続する。
上記点火コイル11Aは、一次コイル111に生ずる磁束を二次コイル112に効率良く作用させるもので、例えば、センターコア113を取り巻くように一次コイル111を配置し、更にその外側に二次コイル112を配置した構造である。一次コイル111の一方端である第1端111-1は、コネクタ152を介して直流電源40と接続され、電源電圧VB+(例えば、12V)が印加される。一次コイル111の他方端である第2端111-2は点火スイッチ12Aのコレクタに接続され、点火スイッチ12Aのエミッタはコネクタ152を介して接地点GNDに接続される。
そして、放電サイクルの適宜なタイミングで内燃機関駆動制御装置30Aより出力される点火信号Siが点火スイッチ12Aのゲートに入力されると(例えば、点火信号Siの信号レベルがLからHに変わると)、点火スイッチ12Aがオンになって一次コイル111の第2端111-2が接地点GNDに接続され、一次コイル111には第1端111-1から第2端111-2に向かう一次電流I1が流れ始め、一次電流I1の流量は指数関数的に増加してゆく。この一次電流I1の流量に応じた磁束量が磁界のエネルギとして蓄積される。なお、点火コイル11Aの二次側には、二次コイル112や接続配線等の微少なコンデンサ成分により電気エネルギが蓄積される。
上記のようにエネルギが蓄積された後、一次コイル111への通電が所定の点火タイミングで遮断されると、高圧の起電力が二次コイル112に生じて点火プラグ20の放電ギャップ間に火花放電が発生し、気筒燃焼室内の混合気に着火する。このとき、一次コイル111には、通常の一次電流I1とは逆向きの電流を流そうとする逆方向の電圧が生ずるので、この逆起電力が点火スイッチ12Aのコレクタ-エミッタ間に印加されることとなり、点火スイッチ12Aが故障したり、点火スイッチ12Aの劣化を早めたりする危険性がある。そこで、点火スイッチ12Aと並列にバイパス線路13を設けると共に、このバイパス線路13の接地点側から点火コイル11A側に向かって順方向となる整流手段14(例えば、点火スイッチ12Aのコレクタ側にカソードを、点火スイッチ12Aのエミッタ側にアノードをそれぞれ接続したダイオード)を設けたのである。
上記点火プラグ20の放電電極間に火花放電が生じて二次側に流れる二次電流I2は、気筒内の燃焼状況を知るための情報として有用であるから、二次電流I2を検出するための二次電流検知手段を設けても良い。この二次電流検出手段は、例えば、二次電流重ね手段50Aと接地点GNDとの間の二次電流経路に介挿した適宜な抵抗値の電流検出用抵抗61と、この電流検出用抵抗61による電圧変化を検知する二次側電圧検出ライン62とで構成できる。そして、二次側電圧検出ライン62より得られる二次電流検出信号は、内燃機関駆動制御装置30Aへ供給され、この二次電流検出信号に基づいて内燃機関駆動制御装置30Aは二次コイル112に流れる電流値を知ることができる。
また、点火プラグ20に高電圧を印加する二次コイル112に発生している電圧(以下、二次コイル電圧という)も、燃焼状況を知るための情報として有用であるから、例えば、高圧端子151と二次コイル112との間に設定した検知点Pspにて二次電圧情報を取得すれば良いのであるが、二次電圧は数kV~数十kVに及ぶ高電圧であるために、分圧抵抗を設けることに依るリークの発生といった諸問題に配慮が必要であり、検知点Pspで二次コイル電圧の監視を行うことは現実的ではない。
しかしながら、点火プラグ20の放電時には、一次コイル111と二次コイル112との巻数比に応じた電圧が一次コイル111にも発生しており、一次コイル111に発生している電圧(以下、一次コイル電圧という)であれば、比較的低い電圧値であることから、監視のための難易度が低い。ただし、一次コイル電圧と二次コイル電圧は、電圧値のスケールが異なると共に、互いに逆極性となる。この相違点を踏まえておけば、一次コイル電圧を二次コイル電圧の相関情報として扱うことができる。
そこで、本実施形態に係る内燃機関用点火装置1の点火コイルユニット10Aにおいては、一次コイル低圧側の電圧を検出する一次コイル電圧検出手段として、一次コイル111の第2端111-2とバイパス線路13の分岐点との間から一次コイル電圧検出ライン16を引き出し、コネクタ152を介して内燃機関駆動制御装置30Aへ一次コイル電圧信号を入力するものとした。
内燃機関駆動制御装置30Aでは、一次コイル電圧信号に基づいて二次コイル電圧を推定することにより、点火プラグ20への印加電圧の変化を知ることが可能となるので、内燃機関駆動制御装置30Aが二次電流重ね手段50Aによる二次電流の重畳制御を行うことで、安定した高電流期間を確保して着火性を向上させることが可能となる。この二次電流重ね手段50Aを用いたエネルギ重畳制御は、例えば、内燃機関駆動制御装置30Aに設けた重畳制御手段31の機能によって実行する。また、二次電流重ね手段50Aの電流源としては、車両バッテリ等の直流電源40を用いることができる。
重畳制御手段31の一例を図2に示す。重畳制御手段31には、重畳の開始や終了のタイミングを判定する重畳タイミング判定手段301と、この重畳タイミング判定手段301が重畳開始タイミングを判定するための情報として用いる重畳開始基準電圧値(後に詳述)を記憶している重畳開始基準電圧値記憶手段302と、重畳開始に伴って二次電流重ね手段50Aを動作させるための二次電流重ね信号Spを生成して出力する二次電流重ね信号生成手段303と、を設ける。
重畳タイミング判定手段301には、点火信号Siと一次コイル電圧信号と重畳開始基準電圧値記憶手段302からの重畳開始基準電圧値が供給されており、点火信号SiがONからOFFとなる点火タイミングIG以降に、重畳開始条件を満たす重畳開始タイミングαの成立を判定する。例えば、図3(a)の波形図に示すように、一次電流遮断による点火タイミングIGで容量放電エネルギ(二次側に蓄積された電気エネルギ)が消費されて一次電圧が急激に高く(図3(a)の一次コイル電圧波形においては負極に大きく)なり、短時間で低下して(図3(a)の一次コイル電圧波形においては正極側へ戻って)行き、重畳開始基準電圧値を下回った後、再び一次コイル電圧が上昇して重畳開始基準電圧値に達したタイミングを重畳開始タイミングαと判定する。なお、エネルギ重畳制御のために一次コイル電圧の変化に着目する場合、基準電位に対する極性を考慮する必要が無いので、波形電圧の絶対値を電圧値として値の増減を判定するものとし、併せて、重畳開始基準電圧値も正の値として設定しておけば良い。
また、重畳開始条件の判定に際しては、点火タイミングIGの直後から重畳開始条件の判定監視を開始するのではなく、予め定めた一次コイル電圧監視開始条件が成立した後に開始するようにしても良い。例えば、点火タイミングIGで一次コイル電圧の絶対値が急激に高くなってから重畳開始基準電圧値よりも下降したことを一次コイル電圧監視開始条件とし、この一次コイル電圧監視開始条件が成立した後に一次コイル電圧の絶対値が再び重畳開始基準電圧値に達したことを重畳開始条件と判定すれば、容量放電に伴う二次側の電圧変動で瞬時的に重畳開始基準電圧値を超えたような場合を重畳開始条件の成立と誤判定してしまうことを防げる。或いは、容量放電と看做し得る所定期間(例えば、数十μs)が経過して誘導放電へ移行したと看做し得る状態になったことを一次コイル電圧監視開始条件とし、この一次コイル電圧監視開始条件が成立した後に一次コイル電圧の絶対値が再び重畳開始基準電圧値に達したことを重畳開始条件と判定するようにしても良い。
上述した一次コイル電圧監視開始条件が成立した後に、一次コイル電圧の絶対値が再び重畳開始基準電圧値に達したとき、重畳タイミング判定手段301は、これを重畳開始タイミングαと判定し、二次電流重ね信号生成手段303に二次電流重ね開始指示を出す。これにより、二次電流重ね信号生成手段303は二次電流重ね信号Spを生成して二次電流重ね手段50Aへ出力し、二次電流重ね手段50Aによって二次電流が重畳されるのである(図3(a)の二次電流波形中、網掛けで示す領域を参照)。なお、二次電流検出信号を二次電流重ね信号生成手段303へ供給しておけば(図2中、破線で示す)、二次電流重ね手段50Aを用いた二次電流I2の重畳制御が適正に行われているか否かを二次電流重ね信号生成手段303で判定できる。エネルギ重畳制御が適正に行われていないと判定した場合、例えば、その旨を報知して異常を搭乗者に知らせると共に、エネルギ重畳制御を一旦中止すれば、二次電流重ね手段50Aが無意味に電力消費することを抑制できる。
上記重畳開始基準電圧値記憶手段302に記憶させておく重畳開始基準電圧値とは、一次コイル111への通電を遮断する点火タイミングIG以降に、二次コイル112に発生する電圧が反映される一次コイル電圧の変化が、点火プラグ20の放電電極間に発生した火花放電の放電経路を維持し難い状態として予め定めた重畳開始条件の成否を判定する基準値であり、本実施形態においては、点火プラグ20の放電電極間に発生した火花放電が気筒内のランブル流に流されて膨らむことにより伸びた放電経路を維持することが難しくなったと想定されるときの二次コイル電圧値(警戒電圧値)を、一次コイル電圧値に置き換えたものである。すなわち、比較的低い電圧で誘導放電が持続できるのは、一次コイル111の電流遮断直後に生じる容量放電で、点火プラグ20の放電電極間の混合気がイオン化されて抵抗値が下がった状態となるからであり、誘導放電による二次電流が流れ始めた後に二次コイル電圧が高くなるのは、点火プラグ20の放電電極間に発生した火花放電が気筒内に生じたランブル流によって流され、伸びた長距離の放電経路に放電電流を流すために放電電極間の抵抗値が上がっているためと考えられるから、二次コイル電圧値を一次コイル電圧値に基づいて監視することで、点火プラグ20の放電電極間に発生した火花放電の放電経路を維持することが難しくなったと想定されるタイミングを判定できるのである。
したがって、点火プラグ20に発生した火花放電の放電経路を維持することが難しくなったと想定される状況が一次コイル電圧に基づいて検知されることを重畳開始タイミングαに設定しておけば、重畳開始タイミングαの判定に伴って速やかにエネルギ重畳制御を開始することができ、火花放電の伸びた放電経路を維持できる放電電流を流して大きな火炎核を形成できるようにし、高い着火性能を実現できるのである。なお、重畳開始基準電圧値は、点火コイル11Aや点火プラグ20等の特性によって最適値が異なるので、例えば、重畳開始基準電圧値記憶手段302に重畳開始基準電圧値設定信号を入力することで(図2中、破線で示す)、重畳開始基準電圧値記憶手段302に任意の重畳開始基準電圧値を設定できるようにしても良い。
また、上述した重畳制御手段31により行うエネルギ重畳制御においては、あくまでも二次電流I2の重畳が必要になったと考えられる重畳開始条件が成立することを重畳開始タイミングαとし、重畳開始条件が成立するまでエネルギ重畳制御は行わないので、エネルギ重畳制御のための電力消費は必要最低限のレベルに抑えられる。すなわち、本実施形態の内燃機関用点火装置1においては、着火性能を向上させるためにエネルギ重畳制御を行っても、極端に燃費が悪化することを抑制できるのである。
シリンダ内に生じるタンブル流の流速は、安定して20〔m/s〕に保たれているわけではなく、変動が大きい場合もある。例えば、図3(b)に示す波形図のように、点火タイミングIGから比較的長い時間にわたって、放電電流が大きくタンブル流の流速が遅かった場合には、点火プラグ20の放電経路が伸びることで重畳開始条件が成立して重畳開始タイミングαとなるまでの期間も長くなり、火花放電の伸びた放電経路を維持できる放電電流を流すために、二次電流重ね手段50Aによって二次電流I2に重畳する期間は短くなる(図3(b)の二次電流波形中、網掛けで示す領域を参照)。したがって、重畳制御手段31により行うエネルギ重畳制御においては、過剰に二次電流I2の重畳を行うことは無く、エネルギ重畳制御のための電力消費は必要最低限のレベルに抑えられるので、点火のための消費電力を適切化して燃費の悪化も低減できる。また、必要以上に二次電流I2を流さないことにより、点火プラグ20の電極摩耗等を抑制できるので、エネルギ重畳制御による点火プラグ20の短命化を防止する効果もある。
なお、重畳制御手段31により行うエネルギ重畳制御の終了タイミングは任意である。例えば、一次コイル電圧が予め定めた重畳停止基準電圧値にまで下がったタイミングを重畳制御終了タイミングβとし、この重畳制御終了タイミングβになると、重畳タイミング判定手段301が二次電流重ね信号生成手段303への二次電流重ね開始指示を停止(或いは、二次電流重ね終了指示を出力)することで、二次電流重ね信号生成手段303から二次電流重ね手段50Aへ二次電流重ね信号Spを出力させなくして、二次電流重ね手段50Aによる二次電流重畳機能を停止させることができる。また、点火タイミングIGから計時した経過時間が、安定した燃焼維持に必要十分な高電流期間として定めた高電流保持時間に達したときを重畳制御終了タイミングβに設定し、エネルギ重畳制御を終了するようにしても良い。
上述した第1実施形態に係る内燃機関用点火装置1では、点火コイル11Aの二次側へ重畳的にエネルギを加算して放電エネルギを増大させることが可能なエネルギ重畳手段として、二次電流経路に設けた二次電流重ね手段50Aを用いるものとしたが、エネルギ重畳手段はこれに限定されるものではない。例えば、図4に示す第2実施形態に係る内燃機関用点火装置2のように、点火タイミングIG以降に一次側から二次側へ誘導性の放電エネルギを重畳することで、点火プラグ20に発生した火花放電による着火性を向上させる構成とすることもできる。
図4に示す内燃機関用点火装置2は、第1実施形態に係る内燃機関用点火装置1と異なり、点火コイル11Bを設けた点火コイルユニット10Bと、この点火コイルユニット10Bに対応した駆動制御機能を有する内燃機関駆動制御装置30B、点火コイル11Bの点火制御を行うための副一次コイル通電許可スイッチ71および副一次コイル通電スイッチ72を有する。また、内燃機関駆動制御装置30Bは、点火コイル11Bを制御することで二次側へ放電エネルギを重畳する重畳制御手段32を備える。なお、前述した第1実施形態に係る内燃機関用点火装置1と同一の構成については、同一符号を付して説明を省略する。
上記点火コイルユニット10Bの点火コイル11Bは、主一次コイル111a(例えば、90ターン)と副一次コイル111b(例えば、60ターン)に生ずる磁束を二次コイル112(例えば、9000ターン)に効率良く作用させるもので、例えば、センターコア113を取り巻くように主一次コイル111aおよび副一次コイル111bを配置し、更にその外側に二次コイル112を配置した構造である。
まず、主一次コイル111aは、その一方端である第1端111a-1がコネクタ152を介して直流電源40と接続され、電源電圧VB+(例えば、12V)が印加される。また、主一次コイル111aの他方端である第2端111a-2は、主点火スイッチ12Bのコレクタに接続され、さらに、この主点火スイッチ12Bのエミッタはコネクタ152を介して接地点GNDに接続される。すなわち、内燃機関駆動制御装置30Bより出力される主一次コイル点火信号Saが主点火スイッチ12Bのゲートに入力されると(例えば、主一次コイル点火信号Saの信号レベルがLからHに変わると)、主点火スイッチ12Bがオンになって主一次コイル111aの第2端111a-2が接地点GNDに接続され、主一次コイル111aには第1端111a-1から第2端111a-2に向かう主一次電流I1aが流れて、順方向の磁束(通電磁束)が発生する。
そして、内燃機関駆動制御装置30Bより出力される主一次コイル点火信号SaがOFFになると(例えば、主一次コイル点火信号Saの信号レベルがHからLに変わると)、主点火スイッチ12Bがオフになって、主一次コイル111aへの通電が遮断される。これにより、容量成分による放電エネルギが二次コイル112に与えられて、点火プラグ20の放電電極間に放電火花が生じると共に、センターコア113を介して二次コイル112にも作用している通電磁束が急激に消失してゆく。この通電磁束の減衰は、見かけ上、通電磁束と逆向きの磁束(以下、遮断磁束という)が生じて通電磁束を減じてゆくものと捉えられる。すなわち、主点火コイル111aへの通電遮断により生じた遮断磁束で通電磁束の磁束量が減ぜられ、その磁束量の変化が一次側と二次側の巻線比に応じた高圧の起電力を二次コイル112に生じさせるので、点火コイル11Bの二次側に誘導成分による放電エネルギが与えられる。
一方、上記主一次コイル111aと同様に、鉄心113を介して二次コイル112に磁界を作用させることが可能な副一次コイル111bは、その一方端である第1端111b-1がコネクタ152を介して副一次コイル通電スイッチ72と接続され、他方端である第2端111b-2がコネクタ152を介して副一次コイル通電許可スイッチ71と接続される。そして、内燃機関駆動制御装置30Bにより副一次コイル通電許可スイッチ71および副一次コイル通電スイッチ72のオン・オフが制御されて、副一次コイル111bの第1端111b-1側が直流電源40に、第2端111b-2側が接地点GNDにそれぞれ接続されると、副一次コイル111bには第1端111b-1から第2端111b-2に向かう重畳電流I1bが流れる。
副一次コイル111bに重畳電流I1bが流れると、直流電源40から主一次コイル111aへ通電したときに発生する通電磁束とは逆方向(主一次コイル111aへの通電遮断時に仮想的に生じる遮断磁束と同方向)の重畳磁束が発生する。すなわち、主一次コイル111aへの通電遮断タイミング以降に、重畳電流I1bを副一次コイル111bに流すと、遮断磁束に重畳磁束が加わることで、通電磁束の減衰が加速されることとなり、二次コイル112に誘起される誘導放電エネルギを重畳的に増加させることができる。従って、点火コイル11Bを用いる第2実施形態の内燃機関用点火装置2においては、副一次コイル111bと、この副一次コイル111bへの通電・遮断制御を行う副一次コイル通電許可スイッチ71および副一次コイル通電スイッチ72が、点火コイル11Bの二次側へ重畳的にエネルギを加算して放電エネルギを増大させることが可能なエネルギ重畳手段として機能するのである。
このように、副一次コイル111bによって重畳磁束を発生させれば、点火プラグ20の放電電極間の混合気におけるイオン濃度が低下して放電電極間の抵抗値が上がっても、二次電流I2を流し続けられるように二次電圧を高圧に保持することが可能となり、安定した高電流期間を確保して着火性を向上させることができる。なお、通電磁束と重畳磁束の向きを逆にする(重畳磁束を遮断磁束と同じ向きにする)ためには、主一次コイル111aと副一次コイル111bの巻回方向を逆向きにするか、主一次コイル111aへの給電方向と副一次コイル111bへの給電方向を逆向きにしておけば良い。
上述した点火コイル11Bの通電制御に用いる副一次コイル通電許可スイッチ71および副一次コイル通電スイッチ72は、それぞれ別々に設けるようにしても良いし、点火コイルユニット10Bとは別体として設ける副一次コイル通電許可スイッチ71および副一次コイル通電スイッチ72を同一のケースに収納したユニット構造としても良い。また、耐電圧および耐ノイズ性の高い半導体デバイスを副一次コイル通電許可スイッチ71および副一次コイル通電スイッチ72として用いるなら、点火コイルユニット10Bのケース15内に設けるようにしても良い。
副一次コイル通電許可スイッチ71は、高速スイッチング特性を備えるパワーMOS-FETで構成でき、副一次コイル通電許可スイッチ71のソースが副一次コイル111bの第2端111b-2側に、副一次コイル通電許可スイッチ71のドレインが接地点GND側に接続され、副一次コイル通電許可スイッチ71のゲートには、内燃機関駆動制御装置30Bの重畳制御手段32より副一次コイル通電許可信号Sb1が入力される。したがって、副一次コイル通電許可信号Sb1がオン(例えば、信号レベルがLからH)になると、副一次コイル通電許可スイッチ71がオンになり、副一次コイル111bの第2端111b-2が接地点GNDに接続されることとなる。
なお、上記副一次コイル通電許可スイッチ71のドレインと接地点GNDの間の副一次電流経路には、適宜な抵抗値の電流検出用抵抗81を介挿してあり、この電流検出用抵抗81による電圧変化を検知する副一次電圧検出ライン82と電流検出用抵抗81とによって、副一次電流検出手段を構成する。副一次電圧検出ライン82より得られる副一次電流検出信号は、内燃機関駆動制御装置30Bへ供給され、この副一次電流検出信号に基づいて重畳制御手段32は副一次コイル111bに流れる副一次電流を知ることができる。そして、重畳制御手段32は、この副一次電流の検出値を用いて、適切な副一次コイル通電許可信号Sb1および副一次コイル通電信号Sb2を生成し、副一次コイル111bに発生させる重畳磁束を適切に制御することが可能となる。
また、副一次コイル通電スイッチ72もパワーMOS-FETで構成でき、副一次コイル通電スイッチ72のドレインが直流電源40側に、副一次コイル通電スイッチ72のソースが副一次コイル111bの第1端111b-1側に接続され、副一次コイル通電スイッチ72のゲートには、重畳制御手段32より副一次コイル通電信号Sb2が入力される。したがって、副一次コイル通電信号Sb2がオン(例えば、信号レベルがLからH)になると、副一次コイル通電スイッチ72がオンになり、副一次コイル111bの第1端111b-1に直流電源40から電源電圧VB+が印加されることとなる。なお、昇圧電源回路73(図4中、二点鎖線で示す)を設け、直流電源40からの電源電圧VB+を昇圧して副一次コイル111bへ供給できるようにしても良い。斯くすれば、副一次コイル111bに印加する電圧を高くして、副一次コイル111bに流す重畳電流I1bを大きくできるので、副一次コイル111bから二次コイル112へ、より大きなエネルギを重畳することが可能となる。
重畳制御手段32によって副一次コイル111bへの通電制御を行うに際し、二次コイル電圧の相関情報として、主一次コイル111aに生ずる電圧(以下、主一次コイル電圧という)を用いる。そのため、本実施形態に係る内燃機関用点火装置2の点火コイルユニット10Bにおいては、主一次コイル低圧側の電圧を検出する主一次コイル電圧検出手段として、主一次コイル111aの第2端111a-2とバイパス線路13の分岐点との間から主一次コイル電圧検出ライン17を引き出し、コネクタ152を介して内燃機関駆動制御装置30Bの重畳制御手段32へ主一次コイル電圧信号を入力するものとした。
重畳制御手段32の一例を図5に示す。重畳制御手段32には、重畳の開始や終了のタイミングを判定する重畳タイミング判定手段301と、この重畳タイミング判定手段301が重畳開始タイミングを判定するための情報として用いる重畳開始基準電圧値を記憶している重畳開始基準電圧値記憶手段302と、重畳開始に伴って副一次コイル通電許可スイッチ71および副一次コイル通電スイッチ72をそれぞれ動作させるための副一次コイル通電許可信号Sb1および副一次コイル通電信号Sb2を生成して出力する副一次コイル制御手段304と、を設ける。
重畳タイミング判定手段301には、点火信号Siと主一次コイル電圧信号と重畳開始基準電圧値記憶手段302からの重畳開始基準電圧値が供給されており、点火信号SiがONからOFFとなる点火タイミングIG以降に、重畳開始条件を満たす重畳開始タイミングの成立を判定する。例えば、図6(a)の波形図に示すように、主一次電流遮断による点火タイミングIGで容量放電エネルギ(二次側に蓄積された電気エネルギ)が消費されて一次電圧が急激に高く(図6(a)の主一次コイル電圧波形においては負極に大きく)なり、短時間で低下して(図6(a)の主一次コイル電圧波形においては正極側へ戻って)行き、重畳開始基準電圧値を下回った後、再び主一次コイル電圧が上昇して重畳開始基準電圧値に達したタイミングを重畳開始タイミングαと判定する。
また、重畳開始条件の判定に際しては、点火タイミングIGの直後から重畳開始条件の判定監視を開始するのではなく、予め定めた主一次コイル電圧監視開始条件が成立した後に開始するようにしても良い。例えば、点火タイミングIGで主一次コイル電圧の絶対値が急激に高くなってから重畳開始基準電圧値よりも下降したことを主一次コイル電圧監視開始条件とし、この主一次コイル電圧監視開始条件が成立した後に主一次コイル電圧の絶対値が再び重畳開始基準電圧値に達したことを重畳開始条件と判定すれば、容量放電に伴う二次側の電圧変動で瞬時的に重畳開始基準電圧値を超えたような場合を重畳開始条件の成立と誤判定してしまうことを防げる。或いは、容量放電と看做し得る所定期間(例えば、数十μs)が経過して誘導放電へ移行したと看做し得る状態になったことを主一次コイル電圧監視開始条件とし、この主一次コイル電圧監視開始条件が成立した後に一次コイル電圧の絶対値が再び重畳開始基準電圧値に達したことを重畳開始条件と判定するようにしても良い。
上述した主一次コイル電圧監視開始条件が成立した後に、主一次コイル電圧の絶対値が再び重畳開始基準電圧値に達したとき、重畳タイミング判定手段301は、これを重畳開始タイミングαと判定し、副一次コイル制御手段304に副一次コイル通電開始指示を出す。これにより、副一次コイル制御手段304は副一次コイル通電許可信号Sb1および副一次コイル通電信号Sb2を生成して、それぞれ副一次コイル通電許可スイッチ71および副一次コイル通電スイッチ72へ出力するので、副一次コイル111bへの通電が開始されて、二次側の誘導起電力が高まり、二次電流が重畳されるのである(図6(a)の二次電流波形中、網掛けで示す領域を参照)。
なお、本実施形態の内燃機関用点火装置2における重畳制御手段32では、副一次コイル制御手段304が重畳開始タイミングαで副一次コイル通電許可信号Sb1と副一次コイル通電信号Sb2を同時に出力し、副一次コイル通電許可スイッチ71と副一次コイル通電スイッチ72を同時に作動させて、副一次コイル111bに重畳磁束を生じさせるものとしたが、副一次コイル通電許可スイッチ71と副一次コイル通電スイッチ72の動作タイミングは同時である必要は無く、副一次コイル通電信号Sb2を出力するよりも前の適宜なタイミング(例えば、点火タイミングIG)で、副一次コイル制御手段304から副一次コイル通電許可スイッチ71へ副一次コイル通電許可信号Sb1を出力しておき、副一次コイル通電信号Sb1を停止した後の適宜なタイミングで副一次コイル通電許可信号Sb1を停止するようにしても構わない。
また、二次電流検出信号を副一次コイル制御手段304へ供給しておけば(図5中、破線で示す)、副一次コイル111bから二次側へのエネルギ重畳制御が適正に行われているか否かを副一次コイル制御手段304で判定できる。エネルギ重畳制御が適正に行われていないと判定した場合、例えば、その旨を報知して異常を搭乗者に知らせると共に、エネルギ重畳制御を一旦中止すれば、副一次コイル111bへの通電で無意味に電力消費することを抑制できる。
更に、重畳制御手段32は、副一次コイル通電信号Sb2のパルス幅を任意に調整できるので、副一次コイル通電スイッチ72をPWM制御することで、副一次コイル111bに生じさせる重畳磁束の磁束強度を調整できる。例えば、制御対象である内燃機関等の特性に応じて最適化した重畳エネルギが二次側へ与えられるよう、副一次コイル通電信号Sb2のパルス幅を設定しておけば、二次コイル112に与える誘導放電エネルギを必要十分なレベルにとどめることが可能であり、一層の燃費向上に有用である。
また、上述した第2実施形態に係る内燃機関用点火装置2において、重畳制御手段32により行うエネルギ重畳制御においても、第1実施形態の内燃機関用点火装置1における重畳制御手段31と同様、あくまでも点火プラグ20に発生した火花放電の放電経路を維持し難い状態である重畳開始条件が成立することを重畳開始タイミングαとし、重畳開始条件が成立するまでエネルギ重畳制御は行わないので、エネルギ重畳制御のための電力消費は必要最低限のレベルに抑えられる。すなわち、第2実施形態の内燃機関用点火装置2においても、着火性能を向上させるためにエネルギ重畳制御を行っても、極端に燃費が悪化することを抑制できるのである。
例えば、図6(b)に示す波形図のように、点火タイミングIGから比較的長い時間にわたって、一次コイル電圧が重畳開始基準電圧値に達しなかった場合には、重畳開始条件が成立して重畳開始タイミングαとなるまでの期間も長くなり、二次電流I2の安定した高電流期間を確保するために副一次コイル111bの重畳磁束を二次側に作用させて二次電流I2を重畳する期間は短くなる(図6(b)の二次電流波形中、網掛けで示す領域を参照)。したがって、第2実施形態に係る内燃機関用点火装置2の重畳制御手段32により行うエネルギ重畳制御においても、第1実施形態の内燃機関用点火装置1と同様、過剰に二次電流I2の重畳を行うことは無く、エネルギ重畳制御のための電力消費は必要最低限のレベルに抑えられるので、点火のための消費電力を適切化して燃費の悪化も低減できる。また、必要以上に二次電流I2を流さないことにより、点火プラグ20の電極摩耗等を抑制できるので、エネルギ重畳制御による点火プラグ20の短命化を防止する効果もある。
また、第2実施形態に係る内燃機関用点火装置2の重畳制御手段32により行うエネルギ重畳制御の終了タイミングも任意であり、例えば、点火タイミングIGから計時した経過時間が、安定した燃焼維持に必要十分な高電流期間として定めた高電流保持時間に達したときを重畳制御終了タイミングβに設定し、エネルギ重畳制御を終了するようにしても良い。なお、副一次コイル制御手段304から出力する副一次コイル通電許可信号Sb1と副一次コイル通電信号Sb2は、同時に停止する必要は無く、例えば、副一次コイル111bへの通電によるエネルギ重畳制御に必要十分な上限時間で副一次コイル通電信号Sb2を停止した後、若干の猶予時間が経過してから副一次コイル通電許可信号Sb1を停止するようにしても良い。
上述した第1,第2実施形態に係る内燃機関用点火装置1,2では、重畳開始条件が成立すると、点火コイル11A,11Bの二次側へ一定のエネルギを加算するものであり、二次側に与えた放電エネルギが点火プラグ20の伸びた放電経路を維持するのに過剰であったり、逆に不十分で火花の吹き飛び(リストライク)が生じる可能性にまで配慮していない。このため、重畳制御手段31.32の制御によって点火コイル11A,11Bの二次側へ重畳したエネルギが過剰であれば、燃費を悪くしたり、点火プラグ20の寿命を縮めてしまったりする可能性があり、逆に、点火コイル11A,11Bの二次側へ重畳したエネルギが十分でなかった場合には、点火プラグ20にリストライクが起きて、着火性を損なうこととなる。
そこで、図7に示す第3実施形態に係る内燃機関用点火装置3では、点火タイミングIG以降に重畳開始条件が成立して重畳する二次電流を比較的低い第1レベルに抑えておき、その後、この第1レベルの二次電流重畳では点火プラグ20に発生した火花の吹き飛びが懸念される状態にあると判断した場合に限って、重畳する二次電流を比較的高い第2レベルに増やす制御を行うものとした。これにより、第3実施形態の内燃機関用点火装置3では、エネルギ重畳制御によって燃費が悪化する可能性を更に低減しつつ、安定した内燃機関の燃焼を実現することができる。
図7に示す内燃機関用点火装置3は、第1実施形態に係る内燃機関用点火装置1と同様、点火コイル11Aを設けた点火コイルユニット10Aと、この点火コイルユニット10Aに対応した駆動制御機能を有する内燃機関駆動制御装置30C、比較的低い第1レベルに対応させた二次電流を重畳する第1重畳動作と比較的高い第2レベルに対応させた二次電流を重畳する第2重畳動作を切り替えて実行可能な二次電流重ね手段50Cを備える。なお、前述した第1実施形態に係る内燃機関用点火装置1と同一の構成については、同一符号を付して説明を省略する。
内燃機関駆動制御装置30Cでは、一次コイル電圧信号に基づいて二次コイル電圧を推定することにより、点火プラグ20への印加電圧の変化を知ることが可能となるので、内燃機関駆動制御装置30Cが二次電流重ね手段50Cによる二次電流の重畳制御を行う。この二次電流重ね手段50Cを用いたエネルギ重畳制御は、例えば、内燃機関駆動制御装置30Cに設けた重畳制御手段33の機能によって実行する。また、二次電流重ね手段50Cの電流源としては、車両バッテリ等の直流電源40を用いることができる。
重畳制御手段33の一例を図8に示す。重畳制御手段33には、重畳の開始・更新や終了の制御タイミングを判定する重畳制御タイミング判定手段305と、この重畳制御タイミング判定手段305が重畳開始の制御タイミングを判定するための情報として用いる重畳開始基準電圧値を記憶している重畳開始基準電圧値記憶手段302と、重畳制御タイミング判定手段305が重畳更新の制御タイミングを判定するための情報として用いる重畳補正用電圧値(後に詳述)を記憶している重畳補正用電圧値記憶手段306と、重畳開始および重畳更新に伴って二次電流重ね手段50Cを動作させるための二次電流重ね制御信号Spを生成して出力する二次電流重ね制御信号生成手段307と、を設ける。
重畳制御タイミング判定手段305には、点火信号Siと、一次コイル電圧信号と、重畳開始基準電圧値記憶手段302からの重畳開始基準電圧値と、重畳補正用電圧値記憶手段306からの重畳補正用電圧値が供給されており、点火信号SiがONからOFFとなる点火タイミングIG以降に、重畳開始条件を満たす重畳開始タイミングの成立を判定する。例えば、図9(a)の波形図に示すように、一次電流遮断による点火タイミングIGで容量放電エネルギ(二次側に蓄積された電気エネルギ)が消費されて一次電圧が急激に高くなり、短時間で低下して行き、重畳開始基準電圧値を下回った後、再び一次コイル電圧が上昇して重畳開始基準電圧値に達したタイミングを重畳開始タイミングα1と判定する。無論、容量放電と看做し得る所定期間(例えば、数十μs)が経過して誘導放電へ移行したと看做し得る状態になったことを一次コイル電圧監視開始条件とし、この一次コイル電圧監視開始条件が成立した後に一次コイル電圧の絶対値が再び重畳開始基準電圧値に達したことを重畳開始条件と判定するようにしても良い。
一次コイル電圧監視開始条件が成立した後に、一次コイル電圧の絶対値が再び重畳開始基準電圧値に達したとき、重畳制御タイミング判定手段305は、これを重畳制御開始タイミングα1と判定し、二次電流重ね制御信号生成手段307に二次電流重ね制御開始指示を出す。この二次電流重ね制御開始指示を受けた二次電流重ね制御信号生成手段307は、比較的低い第1レベルに対応させた二次電流を重畳する第1重畳動作を指示する二次電流重ね制御信号Sp(例えば、信号電位がLev1)を生成して二次電流重ね手段50Cへ出力する。これを受けた二次電流重ね手段50Cが第1重畳動作を行うことで、第1レベルに対応させた二次電流が重畳されて行く。
上記重畳制御タイミング判定手段305が重畳制御開始タイミングα1の成立を判定することに伴って、二次電流重ね手段50Cから第1レベルでの二次電流が重畳されるようになった後、重畳制御タイミング判定手段305は、点火プラグ20に発生した火花の吹き飛びが懸念される状態として予め定めた重畳補正条件の成否を、重畳補正用電圧値記憶手段306に記憶された重畳補正用電圧値に基づいて判定する。具体的には、一次コイル電圧検出手段により検出された一次コイル電圧値が、重畳開始基準電圧値を超える値として予め設定した重畳補正用電圧値に達することで、重畳補正条件が成立した重畳補正タイミングα2と判定する。
上記重畳補正電圧値記憶手段306に記憶させておく重畳補正電圧値とは、エネルギ重畳手段としての二次電流重ね手段50Cより二次電流が重畳された後にも、二次電流の上昇傾斜が十分ではないと判定できる二次コイル電圧値を一次コイル電圧値に置き換えたものである。すなわち、検出された一次コイル電圧が、重畳開始基準電圧値から更に重畳補正用電圧値まで上昇しているのは、点火プラグ20における放電電極間の抵抗値が更に上がっているためで、伸びた放電経路を維持するのに十分な放電電流を流せていない状態(点火プラグ20に発生した火花の吹き飛びが懸念される状態)と考えられるから、二次電流重ね手段50Cを第1重畳動作から第2重畳動作へ切り替える契機となる。
上記重畳制御タイミング判定手段305が重畳補正タイミングα2の成立を判定すると、二次電流重ね制御信号生成手段307に二次電流補正指示を出す。この二次電流補正指示を受けた二次電流重ね制御信号生成手段307は、比較的高い第2レベルに対応させた二次電流を重畳する第2重畳動作を指示する二次電流重ね制御信号Sp(例えば、信号電位がLev2)を生成して二次電流重ね手段50Cへ出力する。これを受けた二次電流重ね手段50Cが第2重畳動作を行うことで、第1レベルより高い第2レベルに対応させた二次電流が重畳され、二次電流の上昇傾斜を早めることができ(図9(a)の二次電流波形中、網掛けで示す領域を参照)、いち早く、伸びた放電経路に十分な放電電流を流してリストライクが発生する可能性を低減させる。すなわち、第3実施形態に係る内燃機関用点火装置3によれば、より確実に、気筒内に大きな火炎核を形成することができるので、着火性を一層向上させて、安定した燃焼を実現できる。
本実施形態の内燃機関用点火装置3では、重畳制御手段33から1本の二次電流重ね制御信号線を介して、二次電流重ね手段50Cへ電位レベルの異なる二次電流重ね制御信号Spを供給することで、二次電流重ね手段50Cに第1重畳動作と第2重畳動作を指示するものとしたが、これに限定されない。例えば、第1動作指示用の信号線と第2動作指示用の信号線を別途設けて、二次電流重ね手段50Cへの指示信号の入力経路を分けておけば、ノイズ混入による信号電位の誤判定による二次電流重ね手段50Cの誤動作を防げるので、エネルギ重畳制御の安定性を高めることができる。
さらに、二次電流検出信号を二次電流重ね制御信号生成手段307へ供給しておけば(図8中、破線で示す)、二次電流重ね手段50Cを用いた二次電流I2の重畳制御が適正に行われているか否かを二次電流重ね制御信号生成手段307で判定できる。エネルギ重畳制御が適正に行われていないと判定した場合、例えば、その旨を報知して異常を搭乗者に知らせると共に、エネルギ重畳制御を一旦中止すれば、二次電流重ね手段50Cが無意味に電力消費することを抑制できる。
加えて、重畳制御開始タイミングα1の成立を判定するための重畳開始基準電圧値や重畳補正タイミングα2の成立を判定するための重畳補正用電圧値は、点火コイル11Aや点火プラグ20等の特性によって最適値が異なるので、例えば、重畳開始基準電圧値記憶手段302に重畳開始基準電圧値設定信号を入力することで(図8中、破線で示す)、重畳開始基準電圧値記憶手段302に任意の重畳開始基準電圧値を設定できるようにしても良いし、重畳補正用電圧値記憶手段306に重畳補正用電圧値設定信号を入力することで(図8中、破線で示す)、重畳補正用電圧値記憶手段306に任意の重畳補正用電圧値を設定できるようにしても良い。
また、上述した重畳制御手段33により行うエネルギ重畳制御においては、あくまでも点火プラグ20に発生した火花放電の放電経路を維持し難い状態になったと考えられる重畳開始条件が成立することを重畳制御開始タイミングα1とし、重畳開始条件が成立するまでエネルギ重畳制御は行わないので、エネルギ重畳制御のための電力消費は必要最低限のレベルに抑えられる。すなわち、本実施形態の内燃機関用点火装置1においては、着火性能を向上させるためにエネルギ重畳制御を行っても、極端に燃費が悪化することを抑制できるのである。
例えば、図9(b)に示す波形図のように、点火タイミングIGから比較的長い時間にわたって、一次コイル電圧が重畳開始基準電圧値に達しなかった場合には、重畳開始条件が成立して重畳制御開始タイミングα1となるまでの期間、更には重畳補正条件が成立して重畳補正タイミングα2となるまでの期間も長くなり、点火プラグ20に発生した火花放電の放電経路を維持するために二次電流重ね手段50Cによって二次電流I2に重畳する期間は短くなる(図9(b)の二次電流波形中、網掛けで示す領域を参照)。したがって、重畳制御手段33により行うエネルギ重畳制御においては、過剰に二次電流I2の重畳を行う事は無く、エネルギ重畳制御のための電力消費は必要最低限のレベルに抑えられるので、点火のための消費電力を適切化して燃費の悪化も低減できる。また、必要以上に二次電流I2を流さないことにより、点火プラグ20の電極摩耗等を抑制できるので、エネルギ重畳制御による点火プラグ20の短命化を防止する効果もある。
加えて、比較的低い第1レベルに対応させた二次電流を重畳する第1重畳動作を二次電流重ね手段50Cに行われることで、点火プラグ20に発生した火花放電の放電経路を維持することができていれば、その後に、一次コイル電圧が重畳補正用電圧値に達しないので、二次電流重ね手段50Cを第2重畳動作へ移行させることはない。この点においても、本実施形態の内燃機関用点火装置3は、燃費の悪化低減および点火プラグ20の短命化防止効果が、一層高いものとなる。
また、重畳制御手段33により行うエネルギ重畳制御の終了タイミングは任意である。例えば、一次コイル電圧が予め定めた重畳停止基準電圧値にまで下がったタイミングを重畳制御終了タイミングβとし、この重畳制御終了タイミングβになると、重畳制御タイミング判定手段305が二次電流重ね制御信号生成手段307への二次電流重ね開始指示を停止(或いは、二次電流重ね終了指示を出力)することで、二次電流重ね制御信号生成手段307から二次電流重ね手段50Cへ二次電流重ね制御信号Spを出力させなくして、二次電流重ね手段50Cによる二次電流重畳機能を停止させることができる。また、点火タイミングIGから計時した経過時間が、安定した燃焼維持に必要十分な高電流期間として定めた高電流保持時間に達したときを重畳制御終了タイミングβに設定し、エネルギ重畳制御を終了するようにしても良い。
上述した第3実施形態に係る内燃機関用点火装置3は、点火コイルユニット10Aに対して二次電流重ね手段50Cによる二次電流の重畳を調整することで、いち早く、伸びた放電経路に十分な放電電流を流してリストライクが発生する可能性を低減させるものであった。これと同様に、点火コイルユニット10Bに対して副一次コイル通電許可スイッチ71および副一次コイル通電スイッチ72による重畳磁束を調整することで、火花放電の伸びた放電経路に十分な放電電流を流して。リストライクが発生する危険性を低減することも可能である。第4実施形態に係る内燃機関用点火装置4では、点火タイミングIG以降に重畳開始条件が成立して副一次コイル111bに生じさせる重畳磁束を比較的低い第1レベルに抑えておき、その後、この第1レベルの重畳磁束では点火プラグ20に発生した火花の吹き飛びが懸念される状態にあると判断した場合に限って、副一次コイル111bに生じさせる重畳磁束を比較的高い第2レベルに増やす制御を行うものとした。
図10に示す内燃機関用点火装置4は、第2実施形態に係る内燃機関用点火装置2と同様、点火コイル11Bを設けた点火コイルユニット10Bと、副一次コイル通電許可スイッチ71と、副一次コイル通電スイッチ72と、点火コイルユニット10Bおよび副一次コイル通電許可スイッチ71と副一次コイル通電スイッチ72に対応した駆動制御機能を有する内燃機関駆動制御装置30Dを備える。なお、前述した第2実施形態に係る内燃機関用点火装置2と同一の構成については、同一符号を付して説明を省略する。
内燃機関駆動制御装置30Dでは、一次コイル電圧信号に基づいて二次コイル電圧を推定することにより、点火プラグ20への印加電圧の変化を知ることが可能となるので、内燃機関駆動制御装置30Dが副一次コイル通電許可スイッチ71と副一次コイル通電スイッチ72の動作制御を行う事で、副一次コイル111bによる重畳磁束の発生タイミングや磁束量の制御を行う。これら副一次コイル通電許可スイッチ71と副一次コイル通電スイッチ72の動作制御は、例えば、内燃機関駆動制御装置30Dに設けた重畳制御手段34の機能によって実行する。
重畳制御手段34の一例を図11に示す。重畳制御手段34には、重畳の開始・更新や終了の制御タイミングを判定する重畳制御タイミング判定手段305と、この重畳制御タイミング判定手段305が重畳開始の制御タイミングを判定するための情報として用いる重畳開始基準電圧値を記憶している重畳開始基準電圧値記憶手段302と、重畳制御タイミング判定手段305が重畳更新の制御タイミングを判定するための情報として用いる重畳補正用電圧値を記憶している重畳補正用電圧値記憶手段306と、重畳開始および重畳更新に伴って副一次コイル通電許可スイッチ71と副一次コイル通電スイッチ72を動作させるための副一次コイル通電許可信号Sb1と副一次コイル通電信号Sb2を生成して出力する副一次コイル制御手段308と、を設ける。
重畳制御タイミング判定手段305には、点火信号Siと、主一次コイル電圧信号と、重畳開始基準電圧値記憶手段302からの重畳開始基準電圧値と、重畳補正用電圧値記憶手段306からの重畳補正用電圧値が供給されており、点火信号SiがONからOFFとなる点火タイミングIG以降に、重畳開始条件を満たす重畳開始タイミングの成立を判定する。例えば、図12(a)の波形図に示すように、一次電流遮断による点火タイミングIGで容量放電エネルギ(二次側に蓄積された電気エネルギ)が消費されて一次電圧が急激に高くなり、短時間で低下して行き、重畳開始基準電圧値を下回った後、再び主一次コイル電圧が上昇して重畳開始基準電圧値に達したタイミングを重畳開始タイミングα1と判定する。無論、容量放電と看做し得る所定期間(例えば、数十μs)が経過して誘導放電へ移行したと看做し得る状態になったことを主一次コイル電圧監視開始条件とし、この主一次コイル電圧監視開始条件が成立した後に主一次コイル電圧の絶対値が再び重畳開始基準電圧値に達したことを重畳開始条件と判定するようにしても良い。
主一次コイル電圧監視開始条件が成立した後に、主一次コイル電圧の絶対値が再び重畳開始基準電圧値に達したとき、重畳制御タイミング判定手段305は、これを重畳制御開始タイミングα1と判定し、副一次コイル制御手段308に副一次コイル通電開始指示を出す。これにより、副一次コイル制御手段304は副一次コイル通電許可信号Sb1および副一次コイル通電信号Sb2を生成して、それぞれ副一次コイル通電許可スイッチ71および副一次コイル通電スイッチ72へ出力するので、副一次コイル111bへの通電が開始されて、二次側の誘導起電力が高まり、二次電流が重畳される。このとき、副一次コイル通電信号Sb2は、クロック周期Tに対してオン時間τ1の比較的低いデューティ比に設定してあるので、副一次コイル111bに生じさせる重畳磁束は比較的低い第1レベルに抑えされた第1重畳動作となる。
上記重畳制御タイミング判定手段305が重畳制御開始タイミングα1の成立を判定することに伴って、副一次コイル制御手段308からの副一次コイル通電許可信号Sb1と副一次コイル通電信号Sb2によって副一次コイル通電許可スイッチ71と副一次コイル通電スイッチ72のオン・オフが制御され、副一次コイル111bに第1レベルの重畳磁束が生じて、第1レベルでの二次電流が重畳されるようになった後、重畳制御タイミング判定手段305は、点火プラグ20に発生した火花の吹き飛びが懸念される状態として予め定めた重畳補正条件の成否を、重畳補正用電圧値記憶手段306に記憶された重畳補正用電圧値に基づいて判定する。具体的には、主一次コイル電圧検出手段により検出された主一次コイル電圧値が、重畳開始基準電圧値を超える値として予め設定した重畳補正用電圧値に達することで、重畳補正条件が成立した重畳補正タイミングα2と判定する。
上記重畳補正電圧値記憶手段306に記憶させておく重畳補正電圧値とは、副一次コイル111bから第1レベルの重畳磁束が二次コイル112に作用して二次電流が重畳された後にも、二次電流の上昇傾斜が十分ではないと判定できる二次コイル電圧値を主一次コイル電圧値に置き換えたものである。すなわち、検出された主一次コイル電圧が、重畳開始基準電圧値から更に重畳補正用電圧値まで上昇しているのは、点火プラグ20における放電電極間の抵抗値が更に上がっているためで、伸びた放電経路を維持するのに十分な放電電流を流せていない状態(点火プラグ20に発生した火花の吹き飛びが懸念される状態)と考えられるから、副一次コイル111bに比較的高い第2レベルの重畳磁束を発生させるように副一次コイル通電スイッチ72への副一次コイル通電信号Sb2を変更する契機となる。
上記重畳制御タイミング判定手段305が重畳補正タイミングα2の成立を判定すると、副一次コイル制御手段308に重畳磁束補正指示を出す。この重畳磁束補正指示を受けた副一次コイル制御手段308は、比較的高いデューティ比の副一次コイル通電信号Sb2を副一次コイル通電スイッチ72へ出力するように変更する。具体的には、クロック周期Tに対してオン時間τ2(但し、τ1<τ2)の比較的高いデューティ比に副一次コイル通電信号Sb2を変更することで、副一次コイル111bへの通電量を比較的高い第2レベルに増やし、副一次コイル111bに生じさせる重畳磁束を比較的高い第2レベルに引き上げる第2重畳動作となる。すなわち、比較的高い第2レベルの重畳磁束を加えた磁束変化を二次コイル112に作用させる第2重畳動作を行うことで、第1レベルより高い第2レベルに対応させた二次電流が重畳され、二次電流の上昇傾斜を早めることができ(図12(a)の二次電流波形中、網掛けで示す領域を参照)、いち早く、伸びた放電経路に十分な放電電流を流してリストライクが発生する可能性を低減させる。すなわち、第4実施形態に係る内燃機関用点火装置4によれば、より確実に、気筒内に大きな火炎核を形成することができるので、着火性を一層向上させて、安定した燃焼を実現できる。
本実施形態の内燃機関用点火装置3では、重畳制御手段34から副一次コイル通電スイッチ72へ供給する副一次コイル通電信号Sb2のデューティ比を高めることで第1重畳動作から第2重畳動作へ変更させるものとしたが、副一次コイル111bにより発生させる重畳磁束を増大させることが可能なら、これに限定されるものではない。例えば、重畳制御手段34の副一次コイル制御手段308が生成する副一次コイル通電信号Sb2のデューティ比を一定とし、第1重畳動作から第2重畳動作へ変更するときには、副一次コイル制御手段308が昇圧電源回路73へ昇圧動作信号を出力することで(図11中、破線で示す)、昇圧電源回路73を稼動させて副一次コイル111bへ印加する電圧を高め、重畳磁束を第2レベルに高めるような第2重畳動作としても良い。
さらに、二次電流検出信号を副一次コイル制御手段308へ供給しておけば(図11中、破線で示す)、副一次コイル通電許可スイッチ71と副一次コイル通電スイッチ72の動作制御による第1重畳動作あるいは第2重畳動作が適正に行われているか否かを副一次コイル制御手段308で判定できる。エネルギ重畳制御が適正に行われていないと判定した場合、例えば、その旨を報知して異常を搭乗者に知らせると共に、エネルギ重畳制御を一旦中止すれば、副一次コイル通電許可スイッチ71、副一次コイル通電スイッチ72、あるいは副一次コイル111bが無意味に電力消費することを抑制できる。
加えて、重畳制御開始タイミングα1の成立を判定するための重畳開始基準電圧値や重畳補正タイミングα2の成立を判定するための重畳補正用電圧値は、点火コイル11Aや点火プラグ20等の特性によって最適値が異なるので、例えば、重畳開始基準電圧値記憶手段302に重畳開始基準電圧値設定信号を入力することで(図11中、破線で示す)、重畳開始基準電圧値記憶手段302に任意の重畳開始基準電圧値を設定できるようにしても良いし、重畳補正用電圧値記憶手段306に重畳補正用電圧値設定信号を入力することで(図11中、破線で示す)、重畳補正用電圧値記憶手段306に任意の重畳補正用電圧値を設定できるようにしても良い。
また、上述した重畳制御手段34により行うエネルギ重畳制御においては、あくまでも二次電流I2の重畳が必要になったと考えられる重畳開始条件が成立することを重畳制御開始タイミングα1とし、重畳開始条件が成立するまでエネルギ重畳制御は行わないので、エネルギ重畳制御のための電力消費は必要最低限のレベルに抑えられる。すなわち、本実施形態の内燃機関用点火装置4においては、着火性能を向上させるためにエネルギ重畳制御を行っても、極端に燃費が悪化することを抑制できるのである。
例えば、図12(b)に示す波形図のように、点火タイミングIGから比較的長い時間にわたって、主一次コイル電圧が重畳開始基準電圧値に達しなかった場合には、重畳開始条件が成立して重畳制御開始タイミングα1となるまでの期間、更には重畳補正条件が成立して重畳補正タイミングα2となるまでの期間も長くなり、点火プラグ20に発生した火花放電の放電経路を維持するために副一次コイル通電許可スイッチ71および副一次コイル通電スイッチ72を駆動させて副一次コイル111bに重畳磁束を発生させ、二次電流I2に重畳する期間は短くなる(図12(b)の二次電流波形中、網掛けで示す領域を参照)。したがって、重畳制御手段34により行うエネルギ重畳制御においては、過剰に副一次コイル111bへの給電を行う事は無く、エネルギ重畳制御のための電力消費は必要最低限のレベルに抑えられるので、点火のための消費電力を適切化して燃費の悪化も低減できる。また、必要以上に副一次コイル111bへの給電を行わず、過剰な二次電流I2を流さないことにより、点火プラグ20の電極摩耗等を抑制できるので、エネルギ重畳制御による点火プラグ20の短命化を防止する効果もある。
加えて、比較的低い第1レベルの重畳磁束を加えた磁束変化を二次コイル112に作用させる第1重畳動作を行うことで、点火プラグ20に発生した火花放電の放電経路を維持することができていれば、その後に、一次コイル電圧が重畳補正用電圧値に達することはないので、比較的高い第2レベルの重畳磁束を加えた磁束変化を二次コイル112に作用させる第2重畳動作へ移行させることはない。この点においても、本実施形態の内燃機関用点火装置4は、燃費の悪化低減および点火プラグ20の短命化防止効果が、一層高いものとなる。
また、重畳制御手段34により行うエネルギ重畳制御の終了タイミングは任意であり、例えば、点火タイミングIGから計時した経過時間が、安定した燃焼維持に必要十分な高電流期間として定めた高電流保持時間に達したときを重畳制御終了タイミングβに設定し、エネルギ重畳制御を終了するようにしても良い。
以上、本発明に係る内燃機関用点火装置の実施形態を添付図面に基づいて説明したが、本発明は、これらの実施形態のみに限定されるものではなく、特許請求の範囲に記載の構成を変更しない範囲で、公知既存の等価な技術手段を転用することにより実施しても構わない。
1 内燃機関用点火装置(第1実施形態)
10A 点火コイルユニット
11A 点火コイル
111 一次コイル
112 二次コイル
12A 点火スイッチ
15 ケース
20 点火プラグ
30A 内燃機関駆動制御装置
31 重畳制御手段
40 直流電源
50A 二次電流重ね手段
61 電流検出用抵抗
62 二次側電圧検出ライン
10A 点火コイルユニット
11A 点火コイル
111 一次コイル
112 二次コイル
12A 点火スイッチ
15 ケース
20 点火プラグ
30A 内燃機関駆動制御装置
31 重畳制御手段
40 直流電源
50A 二次電流重ね手段
61 電流検出用抵抗
62 二次側電圧検出ライン
Claims (7)
- 点火制御手段によって点火コイルへの通電制御を行うことで、点火コイルの二次側に放電エネルギを与えて点火プラグに火花放電を起こさせる内燃機関用点火装置において、
前記点火コイルの二次側へ重畳的にエネルギを加算して放電エネルギを増大させることが可能なエネルギ重畳手段と、
点火サイクルにおける点火タイミング以降に、二次コイルに発生する電圧が反映される一次コイルの電圧を検出する一次コイル電圧検出手段と、
を備え、
前記点火制御手段は、前記一次コイル電圧検出手段により検出された一次コイル電圧の変化が、前記点火プラグに発生した火花放電の放電経路を維持し難い状態として予め定めた重畳開始条件を満たすと、前記エネルギ重畳手段を作動させて点火コイルの二次側に放電エネルギを重畳するようにしたことを特徴とする内燃機関用点火装置。 - 前記点火制御手段は、予め定めた一次コイル電圧監視開始条件が成立した後に、一次コイル電圧検出手段により検出された一次コイル電圧が予め定めた重畳開始基準電圧値に達することを重畳開始条件として用いるようにしたことを特徴とする請求項1に記載の内燃機関用点火装置。
- 前記エネルギ重畳手段は、点火プラグに火花放電が生じることで点火コイルの二次側を流れる二次電流に、更に電流を重ねて流すものとしたことを特徴とする請求項1又は請求項2に記載の内燃機関用点火装置。
- 点火制御手段によって点火コイルへの通電制御を行うことで、点火コイルの二次側に放電エネルギを与えて点火プラグに火花放電を起こさせる内燃機関用点火装置において、
前記点火コイルは、主一次電流の通電により順方向の磁束量が増加し、主一次電流を遮断することにより順方向の磁束量が減少する主一次コイルと、該主一次コイルの通電遮断以降における任意のタイミングで副一次電流を通電することにより、順方向と逆の遮断方向に磁束を発生させる副一次コイルと、一端側が点火プラグと接続され、前記主一次コイルと副一次コイルの磁束変化が作用して放電エネルギが与えられる二次コイルと、を有するものとし、
点火サイクルにおける点火タイミング以降に、二次コイルに発生する電圧が反映される主一次コイルの電圧を検出する主一次コイル電圧検出手段と、
前記副一次コイルへの通電・遮断を切り替えることで発生させた遮断方向の磁束を二次コイルに作用させることで、点火コイルの二次側に放電エネルギを重畳するエネルギ重畳手段と、
を備え、
前記点火制御手段は、前記主一次コイル電圧検出手段により検出された主一次コイル電圧の変化が、前記点火プラグに発生した火花放電の放電経路を維持し難い状態として予め定めた重畳開始条件を満たすと、前記エネルギ重畳手段を作動させて点火コイルの二次側に放電エネルギを重畳するようにしたことを特徴とする内燃機関用点火装置。 - 前記点火制御手段は、予め定めた主一次コイル電圧監視開始条件が成立した後に、主一次コイル電圧検出手段により検出された主一次コイル電圧が予め定めた重畳開始基準電圧値に達することを重畳開始条件として用いるようにしたことを特徴とする請求項4に記載の内燃機関用点火装置。
- 前記点火制御手段は、前記重畳開始条件の成立に伴って放電エネルギの重畳を開始した後、前記点火プラグに発生した火花の吹き飛びが懸念される状態として予め定めた重畳補正条件を満たすと、前記エネルギ重畳手段により二次側へ与える重畳エネルギ量を更に高めるようにしたことを特徴とする請求項1~請求項5の何れか1項に記載の内燃機関用点火装置。
- 前記点火制御手段は、前記重畳開始基準電圧値を超える値として予め設定した重畳補正用電圧値に達することを重畳補正条件として用いるようにしたことを特徴とする請求項6に記載の内燃機関用点火装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/014850 WO2019198119A1 (ja) | 2018-04-09 | 2018-04-09 | 内燃機関用点火装置 |
JP2020512946A JP7012830B2 (ja) | 2018-04-09 | 2018-04-09 | 内燃機関用点火装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/014850 WO2019198119A1 (ja) | 2018-04-09 | 2018-04-09 | 内燃機関用点火装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019198119A1 true WO2019198119A1 (ja) | 2019-10-17 |
Family
ID=68163945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/014850 WO2019198119A1 (ja) | 2018-04-09 | 2018-04-09 | 内燃機関用点火装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7012830B2 (ja) |
WO (1) | WO2019198119A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021095456A1 (ja) * | 2019-11-14 | 2021-05-20 | 日立Astemo株式会社 | 内燃機関用制御装置 |
JP2021156171A (ja) * | 2020-03-25 | 2021-10-07 | 日立Astemo阪神株式会社 | 内燃機関用点火装置 |
JPWO2021240898A1 (ja) * | 2020-05-25 | 2021-12-02 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05164028A (ja) * | 1991-12-13 | 1993-06-29 | Hanshin Electric Co Ltd | 内燃機関用の重ね放電式点火装置 |
JP2014218995A (ja) * | 2013-04-11 | 2014-11-20 | 株式会社デンソー | 点火装置 |
JP2015017562A (ja) * | 2013-07-11 | 2015-01-29 | 株式会社デンソー | 点火制御装置 |
WO2017183062A1 (ja) * | 2016-04-22 | 2017-10-26 | 日立オートモティブシステムズ阪神株式会社 | 内燃機関用点火装置 |
-
2018
- 2018-04-09 JP JP2020512946A patent/JP7012830B2/ja active Active
- 2018-04-09 WO PCT/JP2018/014850 patent/WO2019198119A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05164028A (ja) * | 1991-12-13 | 1993-06-29 | Hanshin Electric Co Ltd | 内燃機関用の重ね放電式点火装置 |
JP2014218995A (ja) * | 2013-04-11 | 2014-11-20 | 株式会社デンソー | 点火装置 |
JP2015017562A (ja) * | 2013-07-11 | 2015-01-29 | 株式会社デンソー | 点火制御装置 |
WO2017183062A1 (ja) * | 2016-04-22 | 2017-10-26 | 日立オートモティブシステムズ阪神株式会社 | 内燃機関用点火装置 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021095456A1 (ja) * | 2019-11-14 | 2021-05-20 | 日立Astemo株式会社 | 内燃機関用制御装置 |
JPWO2021095456A1 (ja) * | 2019-11-14 | 2021-05-20 | ||
JP7212177B2 (ja) | 2019-11-14 | 2023-01-24 | 日立Astemo株式会社 | 内燃機関用制御装置 |
JP2021156171A (ja) * | 2020-03-25 | 2021-10-07 | 日立Astemo阪神株式会社 | 内燃機関用点火装置 |
JP7408453B2 (ja) | 2020-03-25 | 2024-01-05 | 日立Astemo阪神株式会社 | 内燃機関用点火装置 |
JPWO2021240898A1 (ja) * | 2020-05-25 | 2021-12-02 | ||
WO2021240898A1 (ja) * | 2020-05-25 | 2021-12-02 | 日立Astemo株式会社 | 電子制御装置 |
JP7318125B2 (ja) | 2020-05-25 | 2023-07-31 | 日立Astemo株式会社 | 電子制御装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019198119A1 (ja) | 2021-04-22 |
JP7012830B2 (ja) | 2022-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20170117078A1 (en) | Ignition apparatus for internal combustion engine | |
JP6324432B2 (ja) | 内燃機関の点火制御装置および点火制御方法 | |
WO2019198119A1 (ja) | 内燃機関用点火装置 | |
JP6273988B2 (ja) | 内燃機関用点火装置 | |
JP2018084209A (ja) | 内燃機関用点火装置 | |
JP6992198B2 (ja) | 内燃機関用点火装置 | |
JP2019078241A (ja) | 点火装置 | |
US9957944B2 (en) | Ignition apparatus for internal combustion engine | |
JP2017160879A (ja) | 高周波放電点火装置 | |
WO2019130462A1 (ja) | 内燃機関用点火装置 | |
WO2018229883A1 (ja) | 内燃機関用点火装置 | |
JP6627644B2 (ja) | 点火制御装置 | |
WO2021064851A1 (ja) | 内燃機関用点火装置 | |
JP6381008B2 (ja) | 内燃機関用点火装置 | |
WO2017029951A1 (ja) | 点火装置 | |
WO2019225018A1 (ja) | 内燃機関用点火装置 | |
WO2019211885A1 (ja) | 内燃機関用点火装置 | |
WO2020121515A1 (ja) | 点火装置 | |
JP7408453B2 (ja) | 内燃機関用点火装置 | |
JP2019143507A (ja) | 内燃機関用点火装置 | |
JP2007309098A (ja) | 内燃機関用点火コイル | |
JP6401011B2 (ja) | 内燃機関用多重点火装置 | |
JP6398272B2 (ja) | 点火装置 | |
WO2022064645A1 (ja) | 内燃機関用点火装置 | |
JP2010101212A (ja) | 内燃機関用点火装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18914466 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020512946 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18914466 Country of ref document: EP Kind code of ref document: A1 |