WO2019196785A1 - 语音切换方法和装置、终端及存储介质 - Google Patents

语音切换方法和装置、终端及存储介质 Download PDF

Info

Publication number
WO2019196785A1
WO2019196785A1 PCT/CN2019/081722 CN2019081722W WO2019196785A1 WO 2019196785 A1 WO2019196785 A1 WO 2019196785A1 CN 2019081722 W CN2019081722 W CN 2019081722W WO 2019196785 A1 WO2019196785 A1 WO 2019196785A1
Authority
WO
WIPO (PCT)
Prior art keywords
amf
pdu session
handover
voice
indication information
Prior art date
Application number
PCT/CN2019/081722
Other languages
English (en)
French (fr)
Inventor
李振东
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019196785A1 publication Critical patent/WO2019196785A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists

Definitions

  • the present disclosure relates to the field of wireless communications, and, for example, to a voice switching method and apparatus, a terminal, and a storage medium.
  • the 3rd Generation Partnership Project (3GPP) began researching the Next Generation Communication System from the R14 version, and officially developed the fifth generation mobile communication technology (5th-Generation, 5G) in the R15 version. System specification.
  • the voice service in the 5G system can only be used by the Internet Protocol Multimedia Subsystem (IP Multimedia Subsystem). , IMS) provided.
  • IMS Internet Protocol Multimedia Subsystem
  • the voice service may be a voice over Long Term Evolution (VoLTE) provided by the IMS, or a circuit switch fallback (CSFB) provided by the circuit domain, when the CSFB technology is adopted.
  • VoIP voice over Long Term Evolution
  • CSFB circuit switch fallback
  • UE should be rolled back to the second generation mobile phone communication technology specification (2G) or the third generation mobile communication technology (3G) system. Circuit domain voice service.
  • the voice service is not a VoLTE solution, but uses circuit domain voice (such as CSFB). Then, when the UE that is accessing the 5G IMS call moves out of the coverage of the 5G system, it needs to switch to the circuit domain. At the same time, the UE can only access one network (such as one of 2G, 3G, and 5G), which is called Single Radio. In a single radio state, switching from 5G IMS service (IMS over 5G) to circuit domain voice is called 5G Single Radio Voice Call Continuity (SRVCC). There is no solution for how to switch to the circuit domain.
  • 5G IMS service IMS over 5G
  • 5G Single Radio Voice Call Continuity 5G Single Radio Voice Call Continuity
  • the embodiments of the present disclosure provide a voice switching method and apparatus, a terminal, and a storage medium, which can provide a solution for switching ISM voice from a 5G network to a circuit domain.
  • an embodiment of the present disclosure provides a voice switching method, including:
  • the Access and Mobility Management Function receives a handover request sent by the base station, where the handover request carries a handover to the circuit domain indication;
  • the AMF acquires packet data unit (PDU) session indication information
  • the AMF requests session information from a session management function (SMF) corresponding to the PDU session indication information according to the PDU session indication information.
  • SMF session management function
  • an embodiment of the present disclosure further provides a voice switching method, including:
  • the base station confirms that the IMS voice is switched to the circuit domain and generates a handover request
  • the base station sends the handover request to the AMF; the handover request carries a handover to the circuit domain indication and the handover to the circuit domain indication corresponding PDU session indication information.
  • an embodiment of the present disclosure further provides a voice switching method, including:
  • the SMF sends PDU session indication information to the AMF.
  • an embodiment of the present disclosure further provides a voice switching apparatus, which is disposed on the AMF, and includes:
  • a first receiving unit configured to receive a handover request sent by the base station, where the handover request carries a handover to a circuit domain indication; and, is configured to acquire PDU session indication information;
  • the session information requesting unit is configured to request session information from the SMF corresponding to the PDU session indication information according to the PDU session indication information.
  • a voice switching device is further provided on the base station, including:
  • a handover requesting unit configured to send the handover request to the AMF; the handover request carries a handover to a circuit domain indication and the handover to the circuit domain indication corresponding PDU session indication information.
  • an embodiment of the present disclosure further provides a voice switching apparatus, which is disposed on the SMF, and includes:
  • the sending unit is configured to send an IMS voice indication of the PDU session to the AMF during the establishment of the IMS voice.
  • an embodiment of the present disclosure further provides a terminal, including a memory, a processor, and a computer program stored on the memory and executable on the processor, the processor executing the computer
  • a terminal including a memory, a processor, and a computer program stored on the memory and executable on the processor, the processor executing the computer
  • an embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a computer program, the computer program being executed by a processor to implement any of the above embodiments The method described.
  • 1 is a schematic diagram of continuity of ISM over 5G to circuit domain voice according to an embodiment of the present disclosure
  • FIG. 2 is a structural description diagram of a voice switching system according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a voice switching method according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of another voice switching method according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of still another voice switching method according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of still another voice switching method according to an embodiment of the present disclosure.
  • FIG. 7 is a flowchart of still another method for voice switching according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of still another method for voice switching according to an embodiment of the present disclosure.
  • FIG. 9 is a flowchart of still another method for voice switching according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of still another method for voice switching according to an embodiment of the present disclosure.
  • FIG. 11 is a flowchart of cross-AMF switching according to an embodiment of the present disclosure.
  • FIG. 12 is a flowchart of a handover initiation according to an embodiment of the present disclosure.
  • FIG. 13 is a flowchart of a method for deregistering after completion of voice switching according to an embodiment of the present disclosure
  • FIG. 14 is a schematic structural diagram of a voice switching apparatus according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of another voice switching apparatus according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of still another voice switching apparatus according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 2 it is a simplified architecture diagram of the IMS voice over 5G circuit switching voice (CS voice) provided by the embodiment of the present disclosure. Closely related network elements are no longer drawn. The network elements in the architecture are described as follows:
  • the terminal has multiple ways of accessing the network, and accesses the 2G or 3G network (hereinafter referred to as 2/3G network) or the 5G network through the wireless air interface and obtains the service.
  • the terminal exchanges information with the base station through the air interface and the base station, and exchanges information with the management entity of the core network through the non-access stratum (NAS) signaling (the interaction information with the AMF and the SMF when accessing the 5G).
  • NAS non-access stratum
  • the Next Generation Radio Access Network is responsible for the air interface resource scheduling of the terminal access network and the connection management of the air interface.
  • a 5G radio access network (RAN) node is also called a next-generation base station, and may be a new radio access technology base station (gNB) or a long-term evolution (LTE) technology base station (eLTE). ).
  • gNB new radio access technology base station
  • LTE long-term evolution
  • Access and Mobility Control Function A common control plane function within the core network.
  • a user has only one AMF.
  • the AMF is responsible for authenticating, authorizing, and signing the user to ensure that the user is a legitimate user.
  • User mobility management including location registration and temporary identity allocation; when the user initiates a Packet Data Unit (PDU) session establishment request, select an appropriate SMF; forward non-access stratum signaling between the UE and the SMF Forwarding Access Stratum (AS) signaling between the base station and the SMF.
  • PDU Packet Data Unit
  • AS Access Access Stratum
  • Session Management Function interacts with the terminal, handles user PDU session establishment, modification, and deletion requests, selects User Plane function (UPF), and establishes user plane connection between UE and UPF. ; together with the Policy Control Function (PCF) to determine the quality of service (QoS) parameters of the session.
  • SMF Session Management Function
  • UPF User Plane function
  • PCF Policy Control Function
  • User plane function Provides user plane processing functions, including data forwarding and QoS execution. UPF also provides user plane anchors when users move to ensure business continuity.
  • Unified Data Management Stores subscriber subscription data, with Home Subscription Server (HSS) in the 4G era, or Home Location Register (HLR) in the 2/3G era. Similar.
  • HSS Home Subscription Server
  • HLR Home Location Register
  • Policy Control Function Provides the authorization function of resources, similar to the Policy and Charging Rules Function (PCRF) in the 4G era.
  • PCRF Policy and Charging Rules Function
  • 5G-Circuit switch interworking function 5G-CS IWF (also known as IWF).
  • This logic function can be implemented in a separate network entity (in this case, define the interface function between AMF and IWF, and the interface function between IWF and Mobile Switch Center (MSC)), or implement it in related In the network function.
  • MSC Mobile Switch Center
  • the AMF and the IWF use the relevant N26 interface (the interface between the AMF and the MME), and the interface between the IWF and the MSC can use the relevant Sv. Interface (interface between MME and MSC); if the IWF is implemented in the AMF, the IWF and other functions of the AMF become internal interfaces. Between the AMF/IWF and the MSC, the relevant Sv interface can be used, or one can be defined. New interface.
  • MME Mobility Management Entity
  • 2/3G radio access network where the 2G enhanced data rate wireless access network of the GSM EDGE Radio Access Network (GERAN) can be called a base station system (BSS).
  • BSS base station system
  • the radio access network of the 3G Universal Terrestrial Radio Access Network (UTRAN) may be referred to as a Radio Network Subsystem (RNS).
  • RNS Radio Network Subsystem
  • MSC Mobile Switch Center
  • the MSC may be divided into two types, an enhanced MSC (eMSC), and an IWF interaction; a serving MSC (Serving MSC) serving a 2/3G radio access network accessed by the UE.
  • eMSC enhanced MSC
  • serving MSC Serving MSC
  • the eMSC and the Serving MSC may be the same MSC, and the MSCs in the circuit domain are upgraded to support the interaction with the IWF.
  • the eMSC and the Serving MSC are not the same MSC.
  • the eMSC is an anchor MSC, and the Serving MSC interacts to complete the handover of the UE.
  • the interaction process between the Anchor MSC and the Serving MSC is related technology and will not be described again.
  • the home location register manages the CS domain, the packet domain (Packet Switch, PS) subscription data, and the location information.
  • CS domain Packet Switch, PS
  • PS Packet Switch
  • the core network element calls the session control function (Call Session Control Function, CSCF) to complete the call control of the IMS network.
  • CSCF session control Function
  • Proxy CSCF Proxy CSCF, P-CSCF
  • Query CSCF Interrogating CSCF, I-CSCF
  • Serving CSCF Serving CSCF
  • the application server is configured to provide service services.
  • the AS can be an independent entity or an S-CSCF.
  • the control layer S-CSCF controls the service trigger according to the subscription information of the user, and invokes the service on the AS to implement the service function.
  • the Service Centralization and Continuity Application Server (SCC AS) is an anchor function that implements IMS voice over PS to circuit domain voice.
  • ATCF Access Transfer Control Function
  • ATGW Access Transfer Gateway
  • the P-CSCF When the ATCF/ATGW is not deployed, the P-CSCF directly connects to the I-CSCF/S-CSCF, and if the MSC upgrades to support the Session Initiation Protocol (Session Initiation Protocol, SIP), the MSC can connect directly to the I/S-CSCF, otherwise it will connect to the I-CSCF/S-CSCF through the MGCF function.
  • Session Initiation Protocol Session Initiation Protocol, SIP
  • an embodiment of the present disclosure provides a voice switching method. As shown in FIG. 3, the method includes:
  • Step 01 The AMF receives a handover request sent by the base station, where the handover request carries a handover to a circuit domain indication.
  • Step 02 The AMF acquires PDU session indication information.
  • Step 03 After receiving the handover request sent by the base station, the AMF requests session information from the SMF corresponding to the PDU session indication information according to the PDU session indication information.
  • step AMF obtaining PDU session indication information there is no specific sequence between the step AMF obtaining PDU session indication information and the step AMF receiving the handover request sent by the base station.
  • the session information of the target system may be generated by different network elements, and may be generated by SMF, generated by IWF, or generated by AMF.
  • an embodiment of the present disclosure proposes a voice switching method. As shown in FIG. 4, the method includes steps 11 and 12.
  • Step 11 The AMF receives a handover request sent by the base station, where the handover request carries a handover to a circuit domain indication, and the handover request further carries the PDU session indication information corresponding to the handover to the circuit domain indication.
  • the PDU session indication information includes a PDU session identifier.
  • the handover request is a handover request that the base station sends to the AMF to switch to the circuit domain when the IMS call is to be switched from the coverage of the 5G system to the circuit domain.
  • Step 12 After receiving the handover request sent by the base station, the AMF requests session information from the SMF corresponding to the PDU session indication information according to the PDU session indication information.
  • 5QI 5th-Generation QoS Indicator
  • the AMF does not request the session information from the SMF corresponding to the unrelated PDU sessions, and does not need to request the switching information to the circuit domain to all the SMFs, thereby improving the waste of the message.
  • the SMF that is not related to the IMS is also avoided, and the circuit domain indication is not understood, and an error occurs in the subsequent steps caused by switching the switching information to the 4G.
  • the present disclosure also proposes a voice switching method. As shown in FIG. 5, the method includes:
  • Step 21 The AMF obtains PDU session indication information.
  • Step 22 The AMF receives a handover request sent by the base station, where the handover request carries a handover to a circuit domain indication.
  • Step 23 After receiving the handover request sent by the base station, the AMF requests session information from the SMF corresponding to the PDU session indication information according to the PDU session indication information.
  • step 21 The implementation process of step 21 will be described below in conjunction with two examples.
  • the AMF obtaining PDU session indication information in step 21 includes:
  • Step 211 During the establishment of the IMS voice, the AMF receives the PDU session indication information sent by the SMF.
  • the PDU session indication information is an IMS voice indication.
  • the information that the SMF sends to the AMF is an IMS voice indication, so that the AMF knows that the PDU session indicated by the IMS voice carries the IMS voice, and if it is transmitted between the AMFs, as long as it is transmitted on the PDU session information, An IMS voice indication is sufficient.
  • step 21 further includes:
  • Step 215 After the establishment of the IMS voice, in the case of cross-AMF handover, and in the case that the AMF is the source AMF, the source AMF receives the handover request sent by the base station.
  • Step 216 After the source AMF receives the handover request sent by the base station, the source AMF selects the target AMF, and sends a Create UE Context Request to the target AMF.
  • the context request carries the UE. Context.
  • the PDU session information corresponding to the PDU session in which the IMS voice has been established includes an IMS voice indication.
  • Step 217 In the case that the AMF is the target AMF, the target AMF receives the generation context request sent by the source AMF.
  • Step 218 After receiving the generating context request, the target AMF sends a PDU session update request to the SMF.
  • Step 219 The target AMF receives the PDU session update request response sent by the SMF, where the PDU session update request response corresponding to the PDU session in which the IMS voice has been established includes an IMS voice indication.
  • the present disclosure also proposes a voice switching method, as shown in FIG. 6, which includes steps 31 to 34.
  • Step 31 The base station confirms that the IMS voice is switched to the circuit domain, and generates a handover request.
  • Step 32 The base station sends a handover request to the AMF.
  • the handover request carries a handover to the circuit domain indication and the handover to the circuit domain indication corresponding PDU session indication information, so that the AMF is configured according to the PDU session indication information.
  • Request session information to the corresponding SMF.
  • Step 33 The base station receives a handover command (Handover command) sent by the AMF.
  • a handover command (Handover command) sent by the AMF.
  • Step 34 The base station sends a Handover command to the UE.
  • the present disclosure also proposes a voice switching method, as shown in FIG. 7, which includes steps 41 and 42.
  • Step 41 During the establishment of the IMS voice, the SMF receives a PDU-CAN session modification request (PDU-CAN session modification), that is, a PDU session update request sent by the PCF.
  • PDU-CAN session modification a PDU session update request sent by the PCF.
  • Step 42 The SMF sends a PDU-CAN session modification session update request to the AMF, where the session update request carries an IMS voice indication, so that the AMF associates the PDU session with the IMS voice after receiving the IMS voice indication.
  • the voice switching method further includes:
  • the SMF receives the PDU session update request sent by the AMF; the SMF sends the PDU session information corresponding to the PDU session update request to the AMF; the PDU session information carries an IMS voice indication.
  • the present disclosure also proposes a voice switching method. As shown in FIG. 8, the method includes:
  • Step 300 The terminal UE establishes a PDU session in the 5G system, completes IMS registration on the established PDU session, and establishes an IMS voice session.
  • the IMS voice session is a service quality stream dedicated to voice.
  • step 301 the 5G base station sends a handover request to the AMF.
  • the source 5G RAN node finds that it wants to switch to another system, and sends a handover request to the AMF, where the target cell information is carried.
  • Step 302 The AMF requests session information corresponding to the target system from all SMFs related to the UE.
  • the number of SMFs related to the UE may be one or more. If there are multiple SMFs, the session information corresponding to the target system is requested from multiple SMFs.
  • step 303 the AMF sends a handover request to the IWF.
  • step 304 the IWF initiates a packet domain to circuit domain (PS-to-CS) handover request to the eMSC.
  • PS-to-CS packet domain to circuit domain
  • step 305 the eMSC reserves resources in the target system.
  • the resource reservation may be completed through interaction between the eMSC and the Serving MSC.
  • step 306 the eMSC sends a handover response to the IWF.
  • step 307 the eMSC initiates a session transfer to the IMS network.
  • steps 306 and 307 have no specific order.
  • Step 307a After receiving the message about the IMS network session transfer sent by the eMSC, the IMS core updates the remote end.
  • Step 308 after receiving the handover response sent by the eMSC, the IWF sends a handover response to the AMF.
  • step 3091 the AMF sends a Handover command to the 5G RAN node.
  • step 3092 the 5G RAN node sends a Handover command to the UE.
  • Step 310 The UE accesses the target system.
  • step 311 the eMSC notifies the IWF that the handover is completed.
  • step 312 the IWF notifies the AMF that the handover is completed.
  • step 313 the UE performs location update (LAU) on the target system after the voice call ends.
  • LAU location update
  • step 302 After the UE accesses the 5G system, there will be multiple PDU sessions, and the SMF of each PDU session is different. After the AMF receives the handover request, in step 302, it is not known which PDU session the IMS voier is established on, and which SMF requests the handover information. If all SMFs are requested to switch the switching information to the circuit domain: first, the message is too wasteful; secondly, if the IMS-independent SMF does not understand the circuit domain indication, and generates switching information for switching to 4G, then step 303 is generated. error.
  • the source system delete the user information (including the registration status, delete the PDU session), and if the UDM/HSS/HLR receives the location update after the target side LAU process, then notify the AMF to delete, then the UE is after the call ends. The location update will be done. This time is too late, and the source side resources are wasted for too long.
  • the present disclosure also proposes a voice switching method. As shown in FIG. 9, the method includes:
  • Step 400 The terminal UE has established a PDU session in the 5G system, completes the IMS registration on the PDU session, and establishes an IMS voice session (that is, establishes a service quality stream dedicated to voice).
  • Step 401 The source 5G RAN node finds that the IMS voice is to be switched to the circuit domain, and sends a handover request to the AMF, where the handover to the circuit domain indication and the corresponding PDU session indication information are carried; the PDU session indication information is a PDU session identifier.
  • Step 402 After receiving the request, the AMF requests the corresponding session information from the SMF corresponding to the PDU session.
  • step 403 the AMF sends a handover request to the IWF.
  • step 404 the IWF initiates a PS-to-CS handover request to the eMSC.
  • the above steps 402-404 have various implementation possibilities.
  • the SMF returns 5G session information, or 4G session information, or circuit domain session information. If the 5G or 4G session information is returned, after the AMF forwards it to the IWF, the IWF converts it into circuit domain session information. If the IWF is implemented in the eMSC, then step 404 is not needed; if the IWF is implemented in the AMF, step 403 is not needed; if the IWF is implemented in a separate entity (such as in the MME), then steps 403, 404 are There must be.
  • step 405 the eMSC reserves resources in the target system (possibly that the eMSC and the Serving MSC interact, and the resource reservation is completed at the target RNS or the BSS).
  • step 406 the eMSC sends a handover response to the IWF.
  • step 407 the eMSC initiates a session transfer to the IMS network. (Steps 406 and 407 can be concurrent).
  • step 407a the IMS core updates the far end.
  • step 408 the IWF sends a handover response to the AMF.
  • step 406 is not needed; if the IWF is implemented in the AMF, step 408 is not needed; if the IWF is implemented in a separate entity (such as in the MME) ), then steps 406, 408 are all necessary.
  • step 409 the AMF sends a Handover command to the 5G RAN node, and the 5G RAN node sends a Handover command to the UE.
  • Step 410 The UE accesses the target system.
  • step 411 the eMSC notifies the IWF that the handover is completed.
  • step 412 the IWF notifies the AMF that the handover is completed.
  • step 413 the AMF initiates a 5G system logout process of the UE.
  • the present disclosure also proposes a voice switching method, as shown in FIG. 10, the method includes:
  • Step 500 The terminal UE has established a PDU session in the 5G system, completes IMS registration on the PDU session, and starts an IMS voice session.
  • Step 501 The AF (P-CSCF) initiates a session resource authorization request to the PCF.
  • Step 502 The PCF initiates a PDU-CAN session modification request to the SMF, which includes a QoS rule.
  • Step 503 The SMF sends a session modification request to the AMF, where the N2 session request is included, and the IMS voice indicates.
  • the AMF associates the PDU session with the IMS voice.
  • Step 504 The AMF sends an N2 session request to the 5G RAN node, carrying the required 5G QoS information.
  • Step 505 The 5G RAN node returns an N2 session response, which is forwarded by the AMF and finally reaches the SMF.
  • Step 506 Complete the establishment of the IMS voice call.
  • Step 507 The source 5G RAN node finds that the IMS voice is to be switched to the circuit domain, and sends a handover request to the AMF, where the switch to the circuit domain indication is carried.
  • Step 508 After receiving the request, the AMF requests session information from the SMF corresponding to the PDU session associated with the IMS voice.
  • Step 509 The subsequent steps are the same as steps 403 to 413, and are not described again.
  • the present disclosure also proposes a voice switching method.
  • the SMF in the process of establishing an IMS voice, the SMF sends an IMS voice indication to the AMF.
  • the UE may also have a cross-AMF handover within the 5G system.
  • the Figure 11 embodiment illustrates how the IMS voice indication is passed to the target AMF when switching across AMFs. As shown in FIG. 11, the method includes:
  • Step 600 The terminal UE has established an IMS voice session in the 5G system. (This step is equivalent to steps 500-506 of FIG. 10, and the source AMF (source AMF, sAMF) has received the IMS voice indication of the SMF).
  • source AMF source AMF, sAMF
  • Step 601 The 5G RAN node sends a handover request requesting handover to another 5G base station.
  • Step 602 The sAMF finds that a cross-AMF handover occurs, and the sAMF selects a target AMF (target AMF, tAMF), and sends a generate context request to the tAMF, where the context of the UE is carried; in the request, the sAMF can indicate the IMS voice and the PDU seesion The relationship is sent to tAMF.
  • target AMF target AMF
  • tAMF target AMF
  • Step 603 The tAMF sends a PDU session update request to the SMF.
  • Step 604 The SMF returns the 5G QoS information of the PDU session; the information may carry an indication of the IMS voice.
  • Step 605 The subsequent switching process will not be described again.
  • the sAMF may send the association relationship between the IMS voice indication and the PDU seesion to the tAMF in the context of the UE, so that the tAMF has the association relationship; or the SMF carries the 5G QoS information to the tAMF. Instructed by the IMS voice, the tAMF associates the IMS voice indication with the PDU seesion.
  • FIG. 12 is an embodiment of handover initiation in an embodiment of the present disclosure.
  • the SMF sends an IMS voice indication to the AMF.
  • the AMF is notified to delete the previously sent indication.
  • Step 700 The terminal UE has established an IMS voice session in the 5G system (this step is equivalent to steps 500-506 of FIG. 8, and the sAMF has received the IMS voice indication of the SMF).
  • Step 702 The AMF deletes the association relationship between the IMS voice indication and the PDU seesion, and returns a response.
  • FIG. 13 is a schematic diagram of a logout implementation after a handover is completed in an embodiment of the present disclosure.
  • Step 801 The AMF receives the handover completion indication.
  • Step 802 The AMF sends a PDU session release to the SMF corresponding to all PDU sessions of the UE.
  • Step 803 The SMF invokes the logout process to the UDM/HSS/HLR.
  • Step 804 The AMF releases the N2 connection to the 5G RAN node.
  • the source system deletes the user information (including the registration status, delete the PDU session)
  • the UDM/HSS/HLR receives the location update after the target side LAU process, and then informs the AMF to delete, then the UE is terminated after the phone is terminated. Will do location updates, this time is too late, the source side resources are wasted too long.
  • the present disclosure also proposes a voice switching device, which is disposed on the AMF. As shown in FIG. 14, the device includes:
  • the first receiving unit 1410 is configured to receive a handover request sent by the base station; the handover request carries a handover to a circuit domain indication; and is configured to acquire PDU session indication information;
  • the session information requesting unit 1420 is configured to request session information according to the SMF corresponding to the PDU session indication information of the PDU session indication information.
  • the present disclosure also provides a voice switching apparatus, which is disposed on a base station. As shown in FIG. 15, the apparatus includes:
  • the switching confirmation unit 1510 is configured to confirm that the IMS voice is switched to the circuit domain, and generate a handover request;
  • the handover requesting unit 1520 is configured to send the handover request to the AMF, where the handover request carries the handover to the circuit domain indication and the handover to the circuit domain indication corresponding PDU session indication information.
  • the present disclosure also provides a voice switching device, which is disposed on the SMF. As shown in FIG. 16, the device includes:
  • the sending unit 1610 is configured to send an IMS voice indication of the packet data unit PDU session to the AMF during the establishment of the IMS voice.
  • the present disclosure also proposes a terminal, as shown in FIG. 17, including a memory 1710, a processor 1720, and stored on the memory 1710 and on the processor 1720.
  • the present disclosure also proposes a computer readable storage medium having stored thereon a computer program, which is executed by a processor to implement any of the above implementations The method described in the example.
  • Storage medium any one or more types of memory devices or storage devices.
  • the foregoing storage medium may be a volatile memory, such as a random access memory (RAM), or a non-volatile memory, such as a read-only memory.
  • RAM random access memory
  • ROM Read-Only Memory
  • flash memory flash memory
  • HDD Hard Disk Drive
  • SSD Solid-State Drive
  • the storage medium may further include: a compact disc read-only memory (CD-ROM), a floppy disk or a magnetic tape device; a computer system memory or a random access memory such as a dynamic random access memory (Dynamic Random Access Memory, DRAM), (Double Data Rate Random Access Memory, DDR RAM), Static Random Access Memory (SRAM), Extended Data Output Random Access Memory (EDO RAM), Lan A Rambus Random Access Memory (Rambus RAM) or the like; a non-volatile memory such as a flash memory, a magnetic medium such as a hard disk or an optical storage; a register or other similar type of memory element or the like.
  • the storage medium may also include other types of memory or a combination thereof.
  • the processor may be an Application Specific Integrated Circuit (ASIC), a Digital Signal Processor (DSP), a Digital Signal Processing Device (DSPD), or a Programmable Logic Device (Programmable Logic). Device, PLD), at least one of a Field Programmable Gate Array (FPGA), a Central Processing Unit (CPU), a controller, a microcontroller, and a microprocessor.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • CPU Central Processing Unit
  • controller a controller
  • microcontroller a microcontroller
  • the technical solution provided by the present disclosure can have multiple PDU sessions after the UE accesses the 5G system, and the SMF of each PDU session is different.
  • the AMF obtains the PDU session indication information
  • the AMF can It is clear that the IMS voice is established on which PDU session, so that the SMF can be requested to switch information to the SMF corresponding to the IMS session, and it is not necessary to request handover information to the circuit domain to all SMFs, thereby improving the waste of the message. It is also avoided that the SMF that is not related to the IMS voice does not understand the circuit domain indication, and generates a case where an error occurs in the subsequent steps caused by switching the handover information to the 4G.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开了一种语音切换方法,包括:接入与移动性控制功能AMF接收基站发送的切换请求;所述切换请求中携带有切换到电路域指示;AMF获取分组数据单元PDU会话指示信息;AMF根据所述PDU会话指示信息,向所述PDU会话指示信息对应的会话控制面功能SMF请求会话信息。本文还公开了语音切换装置、终端以及存储介质。

Description

语音切换方法和装置、终端及存储介质
本申请要求在2018年04月08日提交中国专利局、申请号为201810307365.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及无线通信领域,例如涉及一种语音切换方法和装置、终端及存储介质。
背景技术
第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)从R14版本开始研究下一代通讯系统(Next Generation Communication System),在R15版本中正式制定了第五代移动通信技术(5th-Generation,5G)系统规范。
与第四代移动通信技术(The 4th Generation mobile communication technology,4G)的演进的分组系统(Evolved Packet System,EPS)不同,5G系统中的语音业务,仅能由互联网协议多媒体子系统(IP Multimedia Subsystem,IMS)提供。而在4G系统中,语音业务可以是由IMS提供的长期演进语音承载(voice over Long Term Evolution,VoLTE);或者是电路域提供的电路交换回退(Circuit Switch fallback,CSFB),当采用CSFB技术的时候,用户设备(User Equipment,UE)要回退到第二代手机通信技术规格(2-Generation wireless telephone technology,2G)或第三代移动通信技术(3rd-Generation,3G)系统中去使用电路域语音业务。
在UE接入5G系统中并完成IMS注册,开始IMS语音电话后,随着用户的移动,移出了5G系统的覆盖范围,为了保证用户语音业务的连续性,UE被切换到4G系统中继续使用VoLTE。此时由于UE的互联网协议(Internet Protocol,IP)地址保持不变(通过4G,5G互操作(interworking)技术保证),并且4G系统和5G系统都连到同一个IMS网络上,所以能保证语音的连续性。图1显示了其工作原理。
然而,对于某些运营商,虽然部署了4G系统,但是语音业务不是VoLTE 方案,而是使用电路域语音(如采用了CSFB)。那么接入5G的正在IMS通话的UE,移出了5G系统的覆盖范围时,要切换到电路域去。UE在同一时刻,只能接入到一个网络中(如2G、3G、5G其中之一),称之为单无线(Single Radio)。单无线状态下,从5G的IMS业务(IMS over 5G)切换到电路域语音,称为5G单无线语音呼叫连续性(Single Radio Voice Call Continuity,SRVCC)。如何切换到电路域还没有解决方案。
发明内容
本公开实施例提出了一种语音切换方法和装置、终端及存储介质,能够提供一种ISM语音从5G网络切换到电路域的解决方案。
在一实施例中,本公开实施例提出了一种语音切换方法,包括:
接入与移动性控制功能(Access and Mobility Management Function,AMF)接收基站发送的切换请求,所述切换请求中携带有切换到电路域指示;
所述AMF获取分组数据单元(Packet Data Unit,PDU)会话指示信息;
所述AMF根据所述PDU会话指示信息,向所述PDU会话指示信息对应的会话控制面功能(Session Management Function,SMF)请求会话信息。
在一实施例中,本公开实施例还提出了一种语音切换方法,包括:
基站确认IMS语音切换到电路域,并生成切换请求;
所述基站将所述切换请求发送给AMF;所述切换请求中携带有切换到电路域指示以及所述切换到电路域指示对应的PDU会话指示信息。
在一实施例中,本公开实施例还提出了一种语音切换方法,包括:
在IMS语音的建立过程中,SMF向AMF发送PDU会话指示信息。
在一实施例中,本公开实施例还提出了一种语音切换装置,设置在AMF上,包括:
第一接收单元,设置为接收基站发送的切换请求,所述切换请求中携带有切换到电路域指示;以及,设置为获取PDU会话指示信息;
会话信息请求单元,设置为根据所述PDU会话指示信息,向所述PDU会话指示信息对应的SMF请求会话信息。
在一实施例中,本公开实施例中还提出了一种语音切换装置,设置在基站上,包括:
切换确认单元,设置为确认IMS语音切换到电路域,并生成切换请求;
切换请求单元,设置为将所述切换请求发送给AMF;所述切换请求中携带有切换到电路域指示以及所述切换到电路域指示对应的PDU会话指示信息。
在一实施例中,本公开实施例还提出了一种语音切换装置,设置在SMF上,包括:
发送单元,设置为在IMS语音(IMS voice)的建立过程中,向AMF发送PDU会话的IMS voice指示。
在一实施例中,本公开实施例还提出了一种终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述任一实施例所述的方法。
在一实施例中,本公开实施例还提出了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一实施例所述的方法。
附图说明
图1为本公开实施例提供的ISM over 5G到电路域语音的连续性示意图;
图2为本公开实施例提供的一种语音切换系统的架构描述图;
图3为本公开实施例提供的一种语音切换方法的流程图;
图4为本公开实施例提供的另一种语音切换方法的流程图;
图5为本公开实施例提供的又一种语音切换方法的流程图;
图6为本公开实施例提供的再一种语音切换方法的流程图;
图7为本公开实施例提供的还一种语音切换方法的流程图;
图8为本公开实施例提供的还一种语音切换方法的流程图;
图9为本公开实施例提供的还一种语音切换方法的流程图;
图10为本公开实施例提供的还一种语音切换方法的流程图;
图11为本公开实施例提供的一种跨AMF切换的流程图;
图12为本公开实施例提供的一种切换发起的流程图;
图13为本公开实施例提供的一种语音切换完成后的注销方法的流程图;
图14为本公开实施例提供的一种语音切换装置的结构示意图;
图15为本公开实施例提供的另一种语音切换装置的结构示意图;
图16为本公开实施例提供的又一种语音切换装置的结构示意图;
图17为本公开实施例提供的一种终端的结构示意图。
具体实施方式
下面结合附图对本公开进行描述。本申请中的实施例及实施例中的多种方式可以相互组合。
下面对语音切换过程涉及的网元进行说明,如图2所示,是本公开实施例提供的一种IMS voice over 5G切换电路域语音(Circuit Switched voice,CS voice)的简化架构图,不紧密相关网元不再画出,架构中网元说明如下:
终端具有多种接入网络的方式,通过无线空口接入2G或3G网络(以下简称2/3G网络),或5G网络并获得服务。终端通过空口和基站交互信息,通过非接入层(non-Access Stratum,NAS)信令和核心网的管理实体交互信息(接入5G时,和AMF以及SMF交互信息)。当UE在5G接入时,可以接入到IMS网络中。
下面是5G网络的控制功能:
5G无线接入网节点(Next Generation Radio Access Network,NG RAN),负责终端接入网络的空口资源调度和以及空口的连接管理。5G无线接入网(Radio Access Network,RAN)节点也称为下一代基站,可能是新的无线接入技术基站(gNB),也可能是增强长期演进(Long Term Evolution,LTE)技术基站(eLTE)。
接入与移动性控制功能(Access and Mobility control Function,AMF):是核心网内的公共控制面功能。一个用户只有一个AMF,AMF负责对用户的鉴权、授权以及签约检查以保证用户是合法用户。用户移动性管理,包括位置注册和 临时标识分配;当用户发起分组数据单元(Packet Data Unit,PDU)会话建立请求的时候,选择合适的SMF;转发UE和SMF之间的非接入层信令;转发基站和SMF之间的接入层(Access Stratum,AS)信令。
会话控制面功能(Session Management Function,SMF):和终端交互,负责处理用户PDU会话建立、修改和删除请求,选择用户面功能(User Plane function,UPF);建立UE到UPF之间的用户面连接;和策略控制功能(Policy Control Function,PCF)一起确定会话的服务质量(Quality of Service,QoS)参数等功能。UE的每个PDU会话(PDU session),都会有一个SMF,多个PDU session,可以是多个SMF。
用户面功能:提供用户面处理功能,包括数据转发、QoS执行。UPF还提供用户移动时候的用户面锚点,保证业务连续性。
统一数据管理功能(Unified Data Management,UDM):存储了用户的签约数据,与4G时代的归属签约服务器(Home Subscription Server,HSS),或2/3G时代的归属位置寄存器(Home Location Register,HLR)类似。在实践中,当一个运营商部署了多个网络(如2G、3G、4G、5G中的多个网络)的时候,UDM和HSS/HLR合设,或者是增加内部接口。
策略控制功能:提供资源的授权功能,与4G时代的策略与计费规则功能(Policy and Charging Rules Function,PCRF)类似。
5G系统和电路域系统的互操作功能(5G-Circuit switch interworking function,5G-CS IWF)(也可以称为IWF)。该逻辑功能可以实现在独立的网络实体中(此时要定义AMF和IWF之间的接口功能,以及IWF和移动交换中心(Mobile Switch Center,MSC)之间的接口功能),或者实现在相关的网络功能中。
IWF如果实现为移动性关联实体(Mobility Management Entity,MME)的一部分,则AMF和IWF就使用相关的N26接口(AMF和MME之间接口),IWF和MSC之间的接口,可以采用相关的Sv接口(MME和MSC之间接口);IWF如果实现在AMF中,则IWF和AMF的其它功能之间,变成内部接口,AMF/IWF和MSC之间,可以采用相关的Sv接口,或者定义一个新的接口。
下面是2/3G网络的功能实体:
2/3G无线接入网,其中,2G增强数据速率的全球移动通信系统无线接入网络(GSM EDGE Radio Access Network,GERAN)的无线接入网,可以称为基站系统(Base station system,BSS),或者3G通用陆地无线接入网(Universal Terrestrial Radio Access Network,UTRAN)的无线接入网,可以称为无线网络子系统(Radio Network Subsystem,RNS)。
移动交换中心(Mobile Switch Center,MSC),MSC提供电路语音业务、电路数据业务和短消息业务。MSC可能分为两种,增强型MSC(eMSC),和IWF交互;服务型MSC(Serving MSC),服务于UE接入的2/3G无线接入网。eMSC和Serving MSC可以是同一个MSC,此时电路域的MSC都升级支持和IWF的交互。或者eMSC和Serving MSC不是同一个MSC,此时eMSC为锚点MSC(Anchor MSC),和Serving MSC交互完成UE的切换。Anchor MSC和Serving MSC的交互过程为相关技术,不再赘述。
归属位置寄存器管理CS域、分组域(Packet Switch,PS)的签约数据,查询位置信息等。
下面是IMS网络的功能实体:
核心网元呼叫会话控制功能(Call Session Control Function,CSCF),完成IMS网络的呼叫控制。CSCF分为代理CSCF(Proxy CSCF,P-CSCF)、查询CSCF(Interrogating CSCF,I-CSCF)和服务CSCF(Serving CSCF,S-CSCF)三种类型。
应用服务器(Application Server,AS)组成,能提供业务服务,AS可以是独立的实体,也可以存在于S-CSCF中。控制层S-CSCF根据用户的签约信息控制业务触发,调用AS上的业务,实现业务功能。其中,业务集中及连续应用服务器(Service Centralization and Continuity Application Server,SCC AS)是实现分组域承载IMS语音(IMS voice over PS)到电路域语音的锚定功能。
切换控制功能实体上(Access Transfer Control Function,ATCF),媒体锚定在接入切换控制功能实体控制的接入网关(Access Transfer Gateway,ATGW)上,由ATCF/AGW作为锚定点控制发生切换,可以缩短在切换过程中由于远端更新过程过长而引起的语音中断,提高用户体验。(ATCF/ATGW是可选功能,并不影响整个功能实现。当没有部署ATCF/ATGW时,P-CSCF直接连向 I-CSCF/S-CSCF,MSC如果升级支持会话初始协议(Session Initiation Protocol,SIP),MSC可以直接连向I/S-CSCF,否则通过MGCF功能连向I-CSCF/S-CSCF)。
在一实施例中,本公开实施例提出了一种语音切换方法,如图3所示,所述方法包括:
步骤01,AMF接收基站发送的切换请求,所述切换请求中携带有切换到电路域指示。
步骤02,AMF获取PDU会话指示信息;
步骤03,在接收到基站发送的切换请求之后,AMF根据所述PDU会话指示信息,向所述PDU会话指示信息对应的SMF请求会话信息。
在一实施例中,步骤AMF获取PDU会话指示信息和步骤AMF接收基站发送的切换请求之间没有特定的先后顺序。
其中,目标系统的会话信息可以通过不同的网元来生成,可以是SMF生成,也可以是IWF生成,或者是AMF生成。
在一实施例中,本公开实施例提出了一种语音切换方法,如图4所示,所述方法包括步骤11和步骤12。
步骤11、AMF接收基站发送的切换请求;所述切换请求中携带有切换到电路域指示;所述切换请求中还携带有所述切换到电路域指示对应的PDU会话指示信息。
在一实施例中,所述PDU会话指示信息包括PDU会话标识。上述切换请求为基站在IMS通话要从5G系统的覆盖范围切换到电路域时,向AMF发送的切换至电路域的切换请求。
步骤12、在接收到基站发送的切换请求之后,AMF根据所述PDU会话指示信息,向所述PDU会话指示信息对应的SMF请求会话信息。
在步骤11中,基站确定IMS语音(IMS voice)相关的PDU会话(PDU session),并将上述PDU session的PDU会话标识发送给AMF。例如,对于UE对应的每个PDU session中,通过每个PDU session对应的服务质量流(QoS flow)的第五代移动通信服务质量指示(5th-Generation QoS Indicator,5QI)属性的值可以判断PDU session是否是IMS语音相关的PDU session,5QI=1则说明该QOS flow 留给了IMS语音,基站只确定符合5QI=1的PDU session,并将上述PDU session的PDU会话标识发送给AMF。通过上述方法,对于IMS语音不相关的PDU session,AMF不会向这些不相关的PDU session对应的SMF请求会话信息,不需要向所有的SMF请求切换向电路域的切换信息,改善了消息浪费的情况,也避免了与IMS无关的SMF不理解电路域指示,生成了切换向4G的切换信息所导致的后续步骤出现错误的情况。
基于与上述实施例相同或相似的构思,本公开还提出了一种语音切换方法,如图5所示,所述方法包括:
步骤21、AMF获取PDU会话指示信息;
步骤22、AMF接收基站发送的切换请求;所述切换请求中携带有切换到电路域指示;
步骤23、在接收到基站发送的切换请求之后,AMF根据所述PDU会话指示信息,向所述PDU会话指示信息对应的SMF请求会话信息。
下面结合两个示例对步骤21的实现过程进行说明。
本公开实施例中,在一个示例中,步骤21中的所述AMF获取PDU会话指示信息包括:
步骤211、在IMS voice的建立过程中,AMF接收SMF发送的PDU会话指示信息。所述PDU会话指示信息为IMS voice指示。
本一实施例中,SMF给AMF传递的信息是IMS voice指示,这样AMF就知道传送IMS voice指示的PDU会话承载有IMS voice,如果AMF之间传递的话,只要在某个PDU会话信息上,加一个IMS voice指示即可。
在另一个示例中,步骤21还包括:
步骤215、在IMS voice的建立后,在跨AMF切换的情况下,且在AMF为源AMF的情况下,源AMF接收基站发送的切换请求。
步骤216、当所述源AMF收到基站发送的切换请求之后,所述源AMF选择目标AMF,并向所述目标AMF发送生成上下文请求(Create UE Context Request);所述上下文请求中携带了UE的上下文。其中,已经建立IMS voice的PDU session对应的PDU会话信息包含IMS voice指示。
步骤217、在AMF为目标AMF的情况下,目标AMF接收到源AMF发送的生成上下文请求。
步骤218、在接收所述生成上下文请求之后,目标AMF向SMF发送PDU会话更新请求。
步骤219、目标AMF接收SMF发送的所述PDU会话更新请求应答,其中,已经建立IMS voice的PDU session对应的PDU会话更新请求应答中包含IMS voice指示。
基于与上述实施例相同或相似的构思,本公开还提出了一种语音切换方法,如图6所示,所述方法包括步骤31至步骤34。
步骤31、基站确认IMS语音切换到电路域,并生成切换请求;
步骤32、基站将切换请求发送给AMF;所述切换请求中携带有切换到电路域指示以及所述切换到电路域指示对应的PDU会话指示信息,以使得所述AMF根据所述PDU会话指示信息向对应的SMF请求会话信息。
步骤33、基站接收AMF发送的切换命令(Handover command)。
步骤34、基站发送Handover command给UE。
基于与上述实施例相同或相似的构思,本公开还提出了一种语音切换方法,如图7所示,所述方法包括步骤41和步骤42。
步骤41、在IMS voice的建立过程中,SMF接收PCF发送的PDU-控制器局域网会话修改请求(PDU-CAN session modification),即PDU会话更新请求。
步骤42、SMF向AMF发送PDU-CAN session modification会话更新请求,上述会话更新请求携带有IMS voice指示;以使得AMF在接收到IMS voice指示之后,将该PDU session与IMS voice关联起来。
在一实施例中,该语音切换方法还包括:
SMF接收AMF发送的PDU会话更新请求;SMF向所述AMF发送所述PDU会话更新请求对应的PDU会话信息;上述PDU会话信息携带有IMS voice指示。
基于与上述实施例相同或相似的构思,本公开还提出了一种语音切换方法,如图8所示,所述方法包括:
步骤300,终端UE在5G系统中建立PDU session,并在建立的PDU session上完成IMS注册,并建立IMS语音会话。
其中,IMS语音会话是专用于语音的服务质量流。
步骤301,5G基站发送切换请求给AMF。
源5G RAN节点(5G基站)发现要切换到另外一个系统,发送切换请求给AMF,其中,携带了目标小区信息。
步骤302,AMF向所有和UE有关的SMF请求目标系统对应的会话信息。
其中,和UE有关的SMF的数量可能是一个或多个,在有多个SMF的情况下,向多个SMF请求目标系统对应的会话信息。
步骤303,AMF向IWF发送切换请求。
步骤304,IWF向eMSC发起分组域到电路域(PS-to-CS)切换请求。
步骤305,eMSC在目标系统预留资源。
其中,可能通过eMSC和Serving MSC的交互,完成资源预留。
步骤306,eMSC向IWF发送切换响应。
步骤307,eMSC向IMS网络发起会话转移(session transfer)。
其中,步骤306和307没有特定的先后顺序。
步骤307a,IMS核心网(IMS core)在接收到eMSC发送的关于IMS网络会话转移的消息之后,IMS core更新远端。
步骤308,IWF在收到eMSC发送的切换响应之后,IWF发送切换响应给AMF。
步骤3091,AMF发送Handover command给5G RAN节点。
步骤3092,5G RAN节点发送Handover command给UE。
步骤310,UE接入目标系统。
步骤311,eMSC通知IWF,切换完成。
步骤312,IWF通知AMF切换完成。
步骤313,UE在语音电话结束后,在目标系统做位置更新(Location Update, LAU)。
然而,上述流程有很多问题。首先,UE接入5G系统后会有多个PDU session,每个PDU session的SMF是不同的。当AMF收到切换请求后,步骤302中不知道该IMS voier是建立在哪个PDU session上的,该向哪个SMF请求切换信息。如果向所有的SMF请求切换向电路域的切换信息:第一,消息太浪费;其次,如果与IMS无关的SMF不理解电路域指示,生成了切换向4G的切换信息,那么步骤303就会产生错误。
其次,源系统什么时候删除用户信息(包括注册状态,删除PDU session),如果等目标侧LAU过程中,UDM/HSS/HLR收到位置更新后,再通知AMF删除,那么由于UE是电话结束后,才会做位置更新,这个时间太晚了,源侧资源被浪费太久。
基于与上述实施例相同或相似的构思,本公开还提出了一种语音切换方法,如图9所示,所述方法包括:
步骤400,终端UE在5G系统中已经建立了PDU session,在该PDU session上完成IMS注册,并建立了IMS语音会话(也就是建立了专用于语音的服务质量流)。
步骤401,源5G RAN节点发现IMS语音要切换到电路域,发送切换请求给AMF,其中携带了切换到电路域指示以及对应的PDU会话指示信息;所述PDU会话指示信息为PDU会话标识。
步骤402,AMF收到请求后,向所述PDU会话对应的SMF请求对应的会话信息。
步骤403,AMF向IWF发送切换请求。
步骤404,IWF向eMSC发起PS-to-CS切换请求。
上述步骤402~404会有多种实现可能性。SMF返回5G会话信息、或4G会话信息、或电路域会话信息。如果返回的是5G或4G会话信息,AMF转发给IWF后,IWF将其转换为电路域会话信息。如果IWF实现在eMSC中,则步骤404是不需要的;如果IWF实现在AMF中,步骤403是不需要的;如果IWF实现在独立的实体中(如MME中),则步骤403,404都是要有的。
步骤405,eMSC在目标系统预留资源(可能是eMSC和Serving MSC交互,在目标RNS或BSS完成资源预留)。
步骤406,eMSC向IWF发送切换响应。
步骤407,eMSC向IMS网络发起会话转移(session transfer)。(步骤406和407可以是并发的)。
步骤407a,IMS core更新远端。
步骤408,IWF发送切换响应给AMF。
与步骤403和步骤404类似,如果如果IWF实现在eMSC中,则步骤406是不需要的;如果IWF实现在AMF中,步骤408是不需要的;如果IWF实现在独立的实体中(如MME中),则步骤406,408都是要有的。
步骤409,AMF发送Handover command给5G RAN节点,5G RAN节点发送Handover command给UE。
步骤410,UE接入目标系统。
步骤411,eMSC通知IWF,切换完成。
步骤412,IWF通知AMF切换完成。
步骤413,AMF发起UE的5G系统注销过程。
基于与上述实施例相同或相似的构思,本公开还提出了一种语音切换方法,如图10所示,所述方法包括:
步骤500:终端UE在5G系统中已经建立了PDU session,在该PDU session上完成IMS注册,开始IMS语音会话。
步骤501:AF(P-CSCF)向PCF发起会话资源授权请求。
步骤502:PCF向SMF发起PDU-CAN会话修改请求,其中包含了服务质量规则(QoS rule)。
步骤503:SMF向AMF发送会话修改请求,其中包含了N2会话请求,IMS voice指示。AMF将该PDU session与IMS voice关联起来。
步骤504:AMF向5G RAN节点发送N2会话请求,携带了要求5G QoS信 息。
步骤505:5G RAN节点返回N2会话响应,该响应通过AMF转发,最终到达SMF。
步骤506:完成IMS voice呼叫的建立。
步骤507:源5G RAN节点发现IMS语音要切换到电路域,发送切换请求给AMF,其中携带了切换到电路域指示。
步骤508,AMF收到请求后,向与IMS voice关联的PDU会话对应的SMF请求会话信息。
步骤509:后续的步骤与步骤403~步骤413一样,不再赘述。
在图10所示的实施例的基础上,本公开还提出了一种语音切换方法,图10中,UE在建立IMS voice的过程中,SMF将IMS voice指示发给AMF。然而,在发生5G SRVCC过程前,UE还可能发生5G系统内部的跨AMF切换。图11实施例说明如何把IMS voice指示在跨AMF切换的时候传递给目标AMF。如图11所示,所述方法包括:
步骤600:终端UE在5G系统中已经建立了IMS voice会话。(该步骤相当于图10的步骤500~506,源AMF(source AMF,sAMF)已经收到SMF的IMS voice指示)。
步骤601:5G RAN节点发送切换请求,请求切换到另一个5G基站。
步骤602:sAMF发现发生跨AMF切换,sAMF选择目标AMF(target AMF,tAMF),并向tAMF发送生成上下文请求,其中携带了UE的上下文;在该请求中,sAMF可以将IMS voice指示与PDU seesion的关联关系,发给tAMF。
步骤603:tAMF向SMF发送PDU会话更新请求;
步骤604:SMF返回该PDU会话的5G QoS信息;该信息中可以携带IMS voice的指示。
步骤605:后续的切换过程,不再赘述。
如上实施例所示,sAMF可以在UE的上下文中,把IMS voice指示与PDU seesion的关联关系发给tAMF,这样tAMF就有了这个关联关系;或者SMF在 向tAMF返回5G QoS信息过程中,携带IMS voice的指示,tAMF将IMS voice指示与该PDU seesion的关联起来。
图12为本公开实施例中切换发起的一种实施方式。图10中,UE在建立IMS voice的过程中,SMF将IMS voice指示发给AMF。在所有的IMS voice会话结束后,通知AMF删除以前发送的指示。
步骤700:终端UE在5G系统中已经建立了IMS voice会话(该步骤相当于图8的步骤500~506,sAMF已经收到SMF的IMS voice指示)。
步骤701:在所有的IMS voice会话结束后,5QI=1的QoS flow会被删除,SMF发PDU会话更新给AMF,其中携带了删除IMS voice indication的指示。
步骤702:AMF删除IMS voice指示与该PDU seesion的关联关系,并返回响应。
图13为本公开实施例中切换完成后的注销实施方式。
步骤801:AMF收到切换完成指示。
步骤802:AMF向UE所有的PDU session对应的SMF发送PDU session释放。
步骤803:SMF向UDM/HSS/HLR调用注销过程。
步骤804:AMF向5G RAN节点释放N2连接。
源系统什么时候删除用户信息(包括注册状态,删除PDU session),如果等目标侧LAU过程中,UDM/HSS/HLR收到位置更新后,再通知AMF删除,那么由于UE是电话结束后,才会做位置更新,这个时间太晚了,源侧资源被浪费太久。
基于与上述实施例相同或相似的构思,本公开还提出了一种语音切换装置,设置在AMF上,如图14所示,所述装置包括:
第一接收单元1410,设置为接收基站发送的切换请求;所述切换请求中携带有切换到电路域指示;以及,设置为获取PDU会话指示信息;
会话信息请求单元1420,设置为根据所述PDU会话指示信息所述PDU会话指示信息对应的SMF请求会话信息。
基于与上述实施例相同或相似的构思,本公开还提出了一种语音切换装置,设置在基站上,如图15所示,所述装置包括:
切换确认单元1510,设置为确认IMS语音切换到电路域,并生成切换请求;
切换请求单元1520,设置为将切换请求发送给AMF;所述切换请求中携带有切换到电路域指示以及所述切换到电路域指示对应的PDU会话指示信息。
基于与上述实施例相同或相似的构思,本公开还提出了一种语音切换装置,设置在SMF上,如图16所示,所述装置包括:
发送单元1610,设置为在IMS voice的建立过程中,向AMF发送分组数据单元PDU会话的IMS voice指示。
基于与上述实施例相同或相似的构思,本公开还提出了一种终端,如图17所示,包括存储器1710、处理器1720及存储在所述存储器1710上并可在所述处理器1720上运行的计算机程序,所述处理器1720执行所述计算机程序时实现上述任一实施例所述的方法。
基于与上述实施例相同或相似的构思,本公开还提出了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一实施例所述的方法。
存储介质——任何的一种或多种类型的存储器设备或存储设备。在实际应用中,上述的存储介质可以是易失性存储器(volatile memory),例如随机存取存储器(Random-Access Memory,RAM);或者非易失性存储器(non-volatile memory),例如只读存储器(Read-Only Memory,ROM),快闪存储器(flash memory),硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);或者上述种类的存储器的组合,并向处理器提供指令和数据。
上述存储介质还可以包括:光盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、软盘或磁带装置;计算机系统存储器或随机存取存储器,诸如动态随机存取存储器(Dynamic Random Access Memory,DRAM)、(Double Data Rate Random Access Memory,DDR RAM)、静态随机存取存储器(Static Random-Access Memory,SRAM)、扩展数据输出随机存取存储器(Extended Data Output Random Access Memory,EDO RAM),兰巴斯随机存取存储器(Rambus  Random Access Memory,Rambus RAM)等;非易失性存储器,诸如闪存、磁介质(例如硬盘或光存储);寄存器或其它相似类型的存储器元件等。存储介质可以还包括其它类型的存储器或其组合。
上述处理器可以为特定用途集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理装置(Digital Signal Processing Device,DSPD)、可编程逻辑装置(Programmable Logic Device,PLD)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器中的至少一种。
与相关技术相比,本公开提供的技术方案在UE接入5G系统后会有多个PDU session,且每个PDU session的SMF是不同的情况下,在AMF获取PDU会话指示信息后,AMF能够明确地获知IMS语音是建立在哪个PDU session上,从而可以向IMS语音对应的PDU session的SMF请求切换信息,不需要向所有的SMF请求切换向电路域的切换信息,改善了消息浪费的情况,也避免了与IMS语音无关的SMF不理解电路域指示,生成了切换向4G的切换信息所导致的后续步骤出现错误的情况。

Claims (16)

  1. 一种语音切换方法,包括:
    接入与移动性控制功能AMF接收基站发送的切换请求,所述切换请求中携带有切换到电路域指示;
    所述AMF获取分组数据单元PDU会话指示信息;
    所述AMF根据所述PDU会话指示信息,向所述PDU会话指示信息对应的会话控制面功能SMF请求会话信息。
  2. 根据权利要求1所述的方法,其中,所述AMF获取PDU会话指示信息,包括:
    所述AMF从接收的切换请求中获取所述PDU会话指示信息,其中,所述切换请求中携带有所述切换到电路域指示对应的PDU会话指示信息。
  3. 根据权利要求2所述的方法,其中,所述PDU会话指示信息包括:PDU会话标识。
  4. 根据权利要求1所述的方法,其中,所述PDU会话指示信息包括:所述PDU会话的互联网协议多媒体子系统语音IMS voice指示;
    所述AMF获取PDU会话指示信息包括:
    在IMS voice的建立过程中,所述AMF接收SMF发送的所述PDU会话的IMS voice指示。
  5. 根据权利要求4所述的方法,其中,所述AMF获取PDU会话指示信息,还包括:
    在跨AMF切换的情况下,且所述AMF为源AMF的情况下,在所述源AMF收到所述基站发送的切换请求之后,所述源AMF选择目标AMF,并向所述目标AMF发送生成上下文请求;所述生成上下文请求中携带了用户设备UE的上下文;其中,已经建立IMS voice的PDU会话对应的PDU会话信息包含所述IMS voice指示。
  6. 根据权利要求4所述的方法,其中,所述AMF获取PDU会话指示信息,还包括:
    在跨AMF切换的情况下,且在所述AMF为目标AMF的情况下,所述目 标AMF接收源AMF发送的生成上下文请求;
    所述目标AMF向SMF发送PDU会话更新请求;
    所述目标AMF接收所述SMF发送的所述PDU会话更新请求应答,其中,已经建立IMS voice的PDU会话对应的PDU会话更新请求应答中包含所述IMS voice指示。
  7. 一种语音切换方法,包括:
    基站确认互联网协议多媒体子系统IMS语音切换到电路域,并生成切换请求;
    所述基站将所述切换请求发送给接入与移动性控制功能AMF;所述切换请求中携带有切换到电路域指示以及所述切换到电路域指示对应的分组数据单元PDU会话指示信息。
  8. 根据权利要求7所述的方法,其中,所述PDU会话指示信息包括:PDU会话标识。
  9. 一种语音切换方法,包括:
    在互联网协议多媒体子系统IMS语音的建立过程中,会话控制面功能SMF向接入与移动性控制功能AMF发送分组数据单元PDU会话指示信息。
  10. 根据权利要求9所述的方法,还包括:
    在跨AMF切换的情况下,所述SMF接收所述AMF发送的PDU会话更新请求;
    所述SMF向所述AMF发送所述PDU会话更新请求响应,其中,已经建立IMS语音的PDU会话更新请求应答中包含所述PDU会话指示信息。
  11. 根据权利要求9或10所述的方法,其中,所述PDU会话指示信息包括PDU会话的IMS语音指示。
  12. 一种语音切换装置,设置在接入与移动性控制功能AMF上,包括:
    第一接收单元,设置为接收基站发送的切换请求,所述切换请求中携带有切换到电路域指示;以及,设置为获取分组数据单元PDU会话指示信息;
    会话信息请求单元,设置为根据所述PDU会话指示信息,向所述PDU会 话指示信息对应的会话控制面功能SMF请求会话信息。
  13. 一种语音切换装置,设置在基站上,包括:
    切换确认单元,设置为确认互联网协议多媒体子系统IMS语音切换到电路域,并生成切换请求;
    切换请求单元,设置为将所述切换请求发送给接入与移动性控制功能AMF;所述切换请求中携带有切换到电路域指示以及所述切换到电路域指示对应的分组数据单元PDU会话指示信息。
  14. 一种语音切换装置,设置在会话控制面功能SMF上,包括:
    发送单元,设置为在互联网协议多媒体子系统语音IMS voice的建立过程中,向接入与移动性控制功能AMF发送分组数据单元PDU会话的IMS voice指示。
  15. 一种终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至11中任一项所述的方法。
  16. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至11中任一项所述的方法。
PCT/CN2019/081722 2018-04-08 2019-04-08 语音切换方法和装置、终端及存储介质 WO2019196785A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810307365.7A CN110366213A (zh) 2018-04-08 2018-04-08 一种语音切换方法和装置、及终端
CN201810307365.7 2018-04-08

Publications (1)

Publication Number Publication Date
WO2019196785A1 true WO2019196785A1 (zh) 2019-10-17

Family

ID=68163426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081722 WO2019196785A1 (zh) 2018-04-08 2019-04-08 语音切换方法和装置、终端及存储介质

Country Status (2)

Country Link
CN (1) CN110366213A (zh)
WO (1) WO2019196785A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111132214A (zh) * 2019-12-18 2020-05-08 东莞宇龙通信科技有限公司 语音通话的方法、装置、电子设备及介质
WO2021077945A1 (zh) * 2019-10-22 2021-04-29 中兴通讯股份有限公司 新空口承载语音业务用户识别方法和基站
CN114258102A (zh) * 2020-09-25 2022-03-29 维沃移动通信有限公司 传输业务数据的方法、装置、终端设备和网络设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831257B (zh) * 2018-08-08 2021-09-10 中国移动通信有限公司研究院 一种发起语音业务的方法、终端及基站
CN112911656A (zh) * 2019-12-04 2021-06-04 中国电信股份有限公司 业务并发方法、装置、系统和存储介质
CN110944367B (zh) * 2019-12-20 2021-12-24 广东工业大学 一种4g与5g互操作的方法
WO2021163853A1 (zh) * 2020-02-17 2021-08-26 Oppo广东移动通信有限公司 数据传输方式的更改方法、装置、设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107018542A (zh) * 2017-03-27 2017-08-04 中兴通讯股份有限公司 网络系统中状态信息的处理方法、装置及存储介质
CN107580324A (zh) * 2017-09-22 2018-01-12 中国电子科技集团公司第三十研究所 一种用于移动通信系统imsi隐私保护的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107018542A (zh) * 2017-03-27 2017-08-04 中兴通讯股份有限公司 网络系统中状态信息的处理方法、装置及存储介质
CN107580324A (zh) * 2017-09-22 2018-01-12 中国电子科技集团公司第三十研究所 一种用于移动通信系统imsi隐私保护的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"LS on support of Voice Service Continuity from 5G System to UTRAN CS", 3GPP TSG-SA WG1 MEETING #81 S1-180595, 26 February 2018 (2018-02-26), XP051394535 *
3GPP: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Procedures for the 5G System; Stage 2 (Release 15)", 3GPP TS 23.502 V15.0.0, 22 December 2017 (2017-12-22), pages 1 - 258, XP055632069 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021077945A1 (zh) * 2019-10-22 2021-04-29 中兴通讯股份有限公司 新空口承载语音业务用户识别方法和基站
CN111132214A (zh) * 2019-12-18 2020-05-08 东莞宇龙通信科技有限公司 语音通话的方法、装置、电子设备及介质
CN114258102A (zh) * 2020-09-25 2022-03-29 维沃移动通信有限公司 传输业务数据的方法、装置、终端设备和网络设备

Also Published As

Publication number Publication date
CN110366213A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
WO2019196785A1 (zh) 语音切换方法和装置、终端及存储介质
JP6724235B2 (ja) ネットワーク登録方法、ネットワークハンドオーバ方法、ネットワーク装置および端末装置
US10812534B2 (en) Service processing method and apparatus
JP5031899B2 (ja) ベアラ中断の方法、ベアラ再開の方法、及びゲートウェイエージェント
JP7025528B2 (ja) ネットワークハンドオーバ方法、装置、およびシステム
JP5866022B2 (ja) 単一無線ボイスコール継続性ハンドオーバーのための最少のアクセス転送コントロールファンクション要求
US9078173B2 (en) Method for handover from circuit switched domain to packet switched domain, device, and communications system
WO2019011107A1 (zh) 网络切换方法及装置
WO2008134986A1 (fr) Procédé, système et dispositif pour la négociation de fonctions de sécurité
WO2012025007A1 (zh) 终端、hss、及核心网网元获知终端能力的方法和系统
WO2009100609A1 (zh) 一种单无线信道语音业务连续性的域切换方法
WO2009000197A1 (fr) Procédé et équipement réseau pour établir et effacer des ressources
WO2008131681A1 (fr) Procédé, système et appareil de mise en œuvre d'un service de sous-système multimédia ip dans un réseau visité
WO2008113235A1 (fr) Procédé pour éviter la libération erronée de ressources pendant une mise à jour de zone de suivi ou un transfert intercellulaire
JP2014522151A (ja) Utlanからlteへの(rsrvcc)ハンドオーバ
WO2011026438A1 (zh) 跨无线接入技术的语音切换方法、设备及网络系统
WO2012041026A1 (zh) 电路交换域业务切换到分组交换域的方法及系统
WO2019029228A1 (zh) 语音业务的处理方法及装置、存储介质
US20110281548A1 (en) Method, apparatus and system for managing emergency services of mobility-restricted mobile station
CN110708728A (zh) 语音呼叫连续性的实现方法、设备以及存储介质
WO2012149866A1 (zh) 单一无线语音呼叫连续性域的切换方法及系统
WO2012103732A1 (zh) 控制方法和系统以及设备
WO2017215487A1 (zh) SGwU地址的传输方法及装置、MME、SGSN
WO2013064105A1 (zh) 一种反向单待业务连续性承载切换方法及装置
EP2882225A1 (en) Suspend method, apparatus and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/02/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19784230

Country of ref document: EP

Kind code of ref document: A1