WO2017215487A1 - SGwU地址的传输方法及装置、MME、SGSN - Google Patents

SGwU地址的传输方法及装置、MME、SGSN Download PDF

Info

Publication number
WO2017215487A1
WO2017215487A1 PCT/CN2017/087257 CN2017087257W WO2017215487A1 WO 2017215487 A1 WO2017215487 A1 WO 2017215487A1 CN 2017087257 W CN2017087257 W CN 2017087257W WO 2017215487 A1 WO2017215487 A1 WO 2017215487A1
Authority
WO
WIPO (PCT)
Prior art keywords
sgwu
address
sgw
list
sgwc
Prior art date
Application number
PCT/CN2017/087257
Other languages
English (en)
French (fr)
Inventor
涂小勇
叶敏雅
刘西亮
刘卫东
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017215487A1 publication Critical patent/WO2017215487A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • H04W8/12Mobility data transfer between location registers or mobility servers

Definitions

  • the present invention relates to the field of communications, and in particular to a method and device for transmitting an SGwU address, an MME, and an SGSN.
  • SAE System Architecture Evolution
  • Evolved RAN It can provide higher uplink and downlink rates, lower transmission delay and more reliable wireless transmission.
  • the network element included in the E-RAN is an Evolved NodeB (eNodeB), which provides radio resources for terminal access.
  • eNodeB Evolved NodeB
  • HSS Home Subscriber Server Permanently stores user subscription data.
  • Mobility Management Entity a control plane function entity, a server that temporarily stores user data, and is responsible for managing and storing user equipment (User Equepment, UE for short) context (such as UE/user identity, mobility management status, User security parameters, etc.), assigning a temporary identifier to the user, when the UE is camped in the tracking area or the network is responsible for authenticating the user; processing all non-access stratum messages between the MME and the UE; triggering the search in the SAE call.
  • user equipment User Equepment, UE for short
  • context such as UE/user identity, mobility management status, User security parameters, etc.
  • GPRS General Packet Radio Service
  • SGSN Serving GPRS Support Node
  • Gb GPRS supporting Gb or Iu access
  • server for temporarily storing user data, responsible for managing and storing GPRS mobility Management (GPRS Mobility Management, GMM for short) context and Packet Data Protocol (PDP) context
  • PDP Packet Data Protocol
  • the gateway is a user plane entity responsible for user plane data routing processing and terminating downlink data of UEs in idle state. Management and storage of the UE's System Architecture Evolution (SAE) bearer context, such as the Internet Protocol (IP) bearer service parameters and network internal routing information, etc., is the anchor of the internal user plane of the 3GPP system. Point, a user can only have one Serving GW at a time;
  • SAE System Architecture Evolution
  • Packet Data Network Gateway (PDN GW or PGW), which is responsible for the UE accessing the Packet Data Network (PDN) gateway, assigning user IP addresses, and is also a 3GPP and non-3GPP access system. Mobility anchor. Users can access multiple PDN GWs at the same time.
  • PDN GW Packet Data Network Gateway
  • SAE-GW Serving GW and PDN GW are collectively referred to as SAE-GW.
  • PCRF Policy and Charging Rule Functionality
  • QoS quality of service
  • the functional entity can also control the establishment and release of bearers in the access network.
  • EPS gateway As the demand grows, the entire network system (Evolved Packet System, EPS) gateway gradually produces some constraints.
  • the user data stream processing is concentrated on the packet data network (PDN) egress gateway, which causes the gateway device to have complicated functions and poor scalability.
  • PDN packet data network
  • the control plane of the gateway is highly coupled with the forwarding plane, which is not conducive to the smooth evolution of the core network.
  • the frequency of the forwarding surface expansion is higher than that of the control plane.
  • the tight coupling causes the control plane to forward and expand synchronously.
  • the short equipment update period leads to an increase in the composite cost.
  • Network layer data forwarding is difficult to identify users and service features. It can only be forwarded according to the QoS delivered by the upper layer, resulting in inefficient use of network resources.
  • GwC Gateway Controller
  • GwU Gateway User
  • GwC SGwC and PGwC, which correspond to the control planes of SGW and PGW respectively, and are responsible for load sharing, GwU selection, IP address and tunnel identification assignment, policy and charging control.
  • GwU includes SGwU and PGwU, respectively corresponding to the user plane of SGW and PGW, and is responsible for user plane related functions of S/PGW, including data stream identification and deep packet parsing, QoS processing and bearer binding, and buffering of downlink paging data. .
  • the interface of the user plane and the control plane of the docking correspond to S/PGwC and S/PGwU respectively, and the other corresponding interface functions are compared with the original EPS architecture.
  • the new eNodeB information such as the eNodeB downlink user plane address and the tunnel identifier, is sent to the SGW to update the downlink data transmission path information to ensure the correct transmission of the downlink data. If the reselection of the SGW is not required, the information about the current user plane address and the tunnel identifier of the current SGW is sent to the new eNodeB, and the new eNodeB downlink user plane address and the tunnel identifier are transmitted to the current SGW. Reconstruction of the row data channel. In the handover process, whether the MME changes and whether it can support the correct transmission of the data stream is irrelevant, and can be referred to the existing mechanism for processing.
  • the GW selection by the MME according to the existing mechanism is actually the selection of the GWC, and the GWC is responsible for selecting and managing the GWU in its corresponding GWU group.
  • the data cannot be correctly forwarded in a scenario where the GWC does not need to be switched but the GWU is reselected. For example, the S1 based switching process.
  • the MME determines that the SGW does not need to be changed, that is, the SGwC does not change, and the current SGwU address and the tunnel identifier are sent to the new eNodeB, and the new eNodeB does not necessarily acquire the new eNodeB.
  • the final SGwU address and tunnel identifier If the subsequent SGwU is reselected, the upstream and downstream data channels are set up incorrectly. If the uplink data arrives at the eNodeB, it will be transmitted to the old SGwU.
  • the SGwU cannot be connected to the SGwU or the SGwU can be discarded after the SGwU receives the packet. As a result, the continuity of the service and the integrity of the data cannot be guaranteed.
  • the MME in the related art determines whether the SGW change mechanism cannot support the correct and reliable transmission of the data stream in some scenarios, and cannot ensure the continuity and integrity of the service.
  • SGSN has similar problems.
  • the embodiment of the present invention provides a method and a device for transmitting an SGwU address, an MME, and an SGSN, to solve at least the problem that the data flow cannot be correctly and reliably transmitted in the scenario where the SGwU is reselected in the related art.
  • a method for transmitting an SGwU address including: determining whether a service gateway control plane SGwC address changes during a user handover or tracking area update; if it is determined that the SGwC address has not changed, It is determined whether the serving gateway user plane SGwU changes; if it is determined that the SGwU changes, the first SGwU address is selected from the SGwU list; and the first SGwU address is sent to the first serving gateway SGW.
  • determining whether the SGwU is changed includes: determining whether the current SGwU address of the first SGW is in the SGwU list; if the current SGwU address is in the SGwU list, determining that the SGwU has not changed; if the current SGwU address is not in the SGwU In the list, it is determined that the SGwU has changed.
  • determining whether the SGwU changes further includes: constructing a Fully Qualified Domain Name corresponding to the current location according to the current location of the terminal. FQDN); The SGwU list is parsed according to the FQDN.
  • the current location includes: a tracking area TA and/or a routing area RA.
  • the method when determining whether the current SGwU address of the first SGW is in the SGwU list, the method further includes: using a Strsightforword Naming Authority Pointer (S-NAPTR) query process, querying the first Whether the current SGwU address of the SGW is in the SGwU list; wherein the service parameter in the query process is set to find the SGwU address corresponding to the current location.
  • S-NAPTR Strsightforword Naming Authority Pointer
  • the selecting the first SGwU address from the SGwU list includes: selecting the first SGwU address according to the information of each SGwU in the SGwU list, where the information includes at least one of the following: priority, weight.
  • the method further includes: instructing the first SGW to establish an SGwU user plane resource corresponding to the first SGwU address; and instructing the first SGW to delete the first SGW The SGwU user plane resource corresponding to the current SGwU address.
  • the method further includes: after determining that the SGwU changes according to the first SGwU address, sending the first SGwU address to the mobility management unit MME and Node eNodeB.
  • the method further includes: if it is determined that the SGwC address changes, selecting a second SGwU address from the SGwU list; and sending the second SGwU address to the second SGW, where The first SGW is the SGW before the change, and the second SGW is the changed SGW.
  • selecting the second SGwU address from the SGwU list includes: selecting the second SGwU address according to the information of each SGwU in the SGwU list, where the information includes at least one of the following: priority, weight.
  • the method further includes: sending, by the second SGW, the second SGwU address to the MME and the eNodeB.
  • the method further includes: selecting an SGwC address when the user attaches or the packet data network PDN connection is established or when the user first packet data protocol PDP is activated; and selecting the third SGwU according to the information of each SGwU in the SGwU list.
  • the method is performed by the MME or the Serving General Packet Radio Service GPRS Support Node SGSN.
  • the gateway GW control plane and the GW user plane are separated.
  • a transmission apparatus for an SGwU address including: a first determining module, configured to determine whether a service gateway control plane SGwC address changes during a user handover or a tracking area update; The determining module is configured to determine whether the serving gateway user plane SGwU changes if it is determined that the SGwC address has not changed; the first selecting module is configured to select the first SGwU address from the SGwU list if it is determined that the SGwU changes; A sending module is configured to send the first SGwU address to the first serving gateway SGW.
  • the second determining module is further configured to determine whether the current SGwU address of the first SGW is in the SGwU list; if the current SGwU address is in the SGwU list, it is determined that the SGwU has not changed; if the current SGwU address is not present In the SGwU list, it is determined that the SGwU has changed.
  • the current location includes: a tracking area TA and/or a routing area RA.
  • the second determining module is further configured to use the direct name authority pointer S-NAPTR query process to query whether the current SGwU address of the first SGW is in the SGwU list; wherein, the service in the query process The parameter is set to find the SGwU address corresponding to the current location.
  • the selection module is further set according to each SGwU in the SGwU list.
  • the information selects the first SGwU address, wherein the information includes at least one of the following: priority, weight.
  • the device further includes: a first indication module, configured to: instruct the first SGW to establish an SGwU user plane resource corresponding to the first SGwU address; and the second indication module is configured to instruct the first SGW to delete and the first The SGwU user plane resource corresponding to the current SGwU address of the SGW.
  • a first indication module configured to: instruct the first SGW to establish an SGwU user plane resource corresponding to the first SGwU address
  • the second indication module is configured to instruct the first SGW to delete and the first The SGwU user plane resource corresponding to the current SGwU address of the SGW.
  • the device further includes: a second sending module, configured to: after the first SGW determines that the SGwU changes according to the first SGwU address, send the first SGwU address to the mobility management unit MME and the node eNodeB.
  • a second sending module configured to: after the first SGW determines that the SGwU changes according to the first SGwU address, send the first SGwU address to the mobility management unit MME and the node eNodeB.
  • the device further includes: a second selecting module, configured to: if it is determined that the SGwC address changes, select a second SGwU address from the SGwU list; and the third sending module is configured to send the second SGwU address To the second SGW, where the first SGW is the SGW before the change, and the second SGW is the changed SGW.
  • a second selecting module configured to: if it is determined that the SGwC address changes, select a second SGwU address from the SGwU list
  • the third sending module is configured to send the second SGwU address To the second SGW, where the first SGW is the SGW before the change, and the second SGW is the changed SGW.
  • the second selection module is further configured to select the second SGwU address according to the information of each SGwU in the SGwU list, where the information includes at least one of the following: priority, weight.
  • the apparatus further includes: a third selection module configured to select an SGwC address when the user attaches or the packet data network PDN connection is established or when the user first packet data protocol PDP is activated; the fourth selection module And the third SGwU address is set according to the information of each SGwU in the SGwU list, where the information includes at least one of the following: priority, weight; and the fourth sending module is configured to send the third SGwU address to the first SGW.
  • a third selection module configured to select an SGwC address when the user attaches or the packet data network PDN connection is established or when the user first packet data protocol PDP is activated
  • the fourth selection module And the third SGwU address is set according to the information of each SGwU in the SGwU list, where the information includes at least one of the following: priority, weight
  • the fourth sending module is configured to send the third SGwU address to the first SGW.
  • the device is an MME or an SGSN.
  • a mobility management unit MME including the above-mentioned SGwU address transmission apparatus.
  • a Serving General Packet Radio Service GPRS Support Node SGSN including the above-described SGwU address transmission apparatus, is provided.
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing the following steps: determining whether the service gateway control plane SGwC address changes during user switching or tracking area update; and determining that the SGwC address has not changed, determining the serving gateway user plane Whether the SGwU changes; if it is determined that the SGwU changes, the first SGwU address is selected from the SGwU list; and the first SGwU address is sent to the first serving gateway SGW.
  • a storage medium comprising a stored program, wherein the program is executed to perform the method of any of the above.
  • a processor for running a program wherein the program is executed to perform the method of any of the above.
  • the first SGwU address is selected from the SGwU list, and then the first SGwU address is sent to the first serving gateway SGW, that is, when the SGwU changes, one is selected.
  • the new SGwU address is sent to the first SGW, so that the SGwU can obtain the final SGwU address when retransmitting, and the data stream can be correctly uploaded. Therefore, the related technologies cannot be supported in the scenario where the SGwU is reselected.
  • the problem of correct and reliable data flow transmission ensures the continuity and integrity of the service.
  • FIG. 2 is a schematic structural diagram of separation of a GW control plane and a user plane in a non-roaming scenario according to the related art
  • FIG. 3 is a flowchart of a method for transmitting an SGwU address according to an embodiment of the present invention
  • FIG. 4 is a flowchart 1 of a method for transmitting an SGwU address according to a preferred embodiment of the present invention
  • FIG. 5 is a second flowchart of a method for transmitting an SGwU address according to a preferred embodiment of the present invention
  • FIG. 6 is a third flowchart of a method for transmitting an SGwU address according to a preferred embodiment of the present invention.
  • FIG. 7 is a flowchart 4 of a method for transmitting an SGwU address according to a preferred embodiment of the present invention.
  • FIG. 8 is a flowchart 5 of a method for transmitting an SGwU address according to a preferred embodiment of the present invention.
  • FIG. 9 is a flowchart 6 of a method for transmitting an SGwU address according to a preferred embodiment of the present invention.
  • FIG. 10 is a flowchart 7 of a method for transmitting an SGwU address according to a preferred embodiment of the present invention.
  • FIG. 11 is a flowchart VIII of a method for transmitting an SGwU address according to a preferred embodiment of the present invention.
  • FIG. 12 is a flowchart IX of a method for transmitting an SGwU address according to a preferred embodiment of the present invention
  • FIG. 13 is a flowchart 10 of a method for transmitting an SGwU address according to a preferred embodiment of the present invention
  • 15 is a flowchart 12 of a method for transmitting an SGwU address according to a preferred embodiment of the present invention
  • 16 is a flowchart 13 of a method for transmitting an SGwU address according to a preferred embodiment of the present invention
  • 17 is a flowchart 14 of a method for transmitting an SGwU address according to a preferred embodiment of the present invention.
  • FIG. 18 is a structural block diagram of a transmission apparatus of an SGwU address according to an embodiment of the present invention.
  • the embodiment of the present application can be run on the network architecture shown in FIG. 2, as shown in FIG. 2, in which the control plane and the user plane in the GW are separated, specifically, the SGw control plane and the user plane function are separated, and the PGw The control surface is separated from the user plane.
  • FIG. 3 is a flowchart of a method for transmitting an SGwU address according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps:
  • Step S302 when the user switches or tracks the area update, determines whether the address of the serving gateway control plane SGwC changes;
  • Step S304 if it is determined that the SGwC address has not changed, it is determined whether the serving gateway user plane SGwU changes;
  • Step S306 if it is determined that the SGwU changes, the first SGwU address is selected from the SGwU list;
  • Step S308 the first SGwU address is sent to the first serving gateway SGW.
  • the first SGwU address is selected from the SGwU list, and then the first SGwU address is sent to the first serving gateway SGW, that is, when the SGwU changes, select one.
  • the new SGwU address is sent to the first SGW, so that the SGwU can obtain the final SGwU address when retransmitting, and the data stream can be correctly uploaded. Therefore, the related technologies cannot be supported in the scenario where the SGwU is reselected.
  • the problem of correct and reliable data flow transmission ensures the continuity and integrity of the service.
  • the foregoing step S302 may be performed by: taking the TA list associated with the currently served SGwC, and comparing with the TA where the terminal (UE) is currently located, if the TA list includes the TA where the UE is currently located, The SGwC address has not changed. Otherwise, the SGwC address is changed. Or, according to the TA where the UE is currently located, the SGwC list is parsed on the DNS server. If the parsed SGwC list contains the SGwC currently served by the UE, the SGwC address is not changed. Otherwise, SGwC The address has changed.
  • the foregoing step S304 may be performed as: determining the first SGW If the current SGwU address is in the SGwU list, if the current SGwU address is in the SGwU list, it is determined that the SGwU has not changed; if the current SGwU address is not in the SGwU list, it is determined that the SGwU changes.
  • the foregoing current location may be the tracking area TA and/or the routing area RA, but is not limited thereto.
  • the method further includes: using a direct name authority pointer S-NAPTR query process, querying whether the current SGwU address of the first SGW is in the SGwU list;
  • the service parameter in the query process is set to find the SGwU address corresponding to the current location.
  • the above service parameter can be set to "x-3gpp-sgwu:x-s4-u".
  • the foregoing step S306 may be performed by: selecting a first SGwU address according to information of each SGwU in the SGwU list, where the information includes at least one of the following: priority, weight. That is, when the SGwU changes, the first SGwU address may be selected according to information such as the priority and weight of each SGwU in the SGwU list. Taking the priority as an example, the first SGwU address may be selected as the SGwU address corresponding to the SGwU having the highest priority as the first SGwU address according to the priority of the SGwU, or the SGwU address corresponding to the lowest priority SGwU may be selected as the SGwU address.
  • the SGwU address corresponding to the SGwU with the second highest priority may be used as the first SGwU address, but is not limited thereto.
  • the scheme for selecting the first SGwU address according to the weight information is similar to the priority, and details are not described herein again.
  • the foregoing selection manner may be that the first SGwU address is selected by considering the priority and the weight. For example, the SGwU address corresponding to the SGwU with the highest priority may be selected first according to the priority, and the SGwU with the highest priority is selected. SGwU address is more than one The SGwU address corresponding to the SGwU may be selected as the first SGW from the SGwU address corresponding to the selected SGwU with the highest priority, but the present invention is not limited thereto, and may be selected according to the weight first, and then according to the preference. Level selection.
  • the method may further include: instructing the first SGW to establish an SGwU user plane resource corresponding to the first SGwU address; and instructing the first SGW to delete the current SGwU of the first SGW.
  • the SGwU user plane resource corresponding to the address After the first SGwU address is selected, the SGwU user plane resource corresponding to the first SGwU address may be established, and the SGwU user plane resource corresponding to the current SGwU address of the first SGW may be deleted, that is, after the new SGwU address is selected, Create a new SGwU user plane resource and delete the old SGwU user plane resource.
  • the method may further include: after determining that the SGwU changes according to the first SGwU address, the first SGW sends the first SGwU address to the mobility management unit MME and the node eNodeB. . Sending the first SGwU address to the MME and the eNodeB can implement correct data uploading, ensuring service continuity and data integrity.
  • the method may further include: if it is determined that the SGwC address changes, selecting a second SGwU address from the SGwU list; and sending the second SGwU address to the second SGW
  • the first SGW is the SGW before the change
  • the second SGW is the changed SGW.
  • the second SGwU address may be selected from the SGwU list and sent to the second SGW. That is, if the SGwC address changes, a new SGwU address is reselected and sent to the changed SGW.
  • selecting the second SGwU address from the SGwU list may be performed by: selecting a second SGwU address according to information of each SGwU in the SGwU list, where the information includes at least one of the following: priority and weight.
  • the method of selecting the second SGwU address according to the information of each SGwU in the SGwU list is selected according to the information of each SGwU in the SGwU list.
  • the manner of an SGwU address is similar, and will not be described here.
  • the method may further include: the second SGW sending the second SGwU address to the MME and the eNodeB.
  • the second SGW sending the second SGwU address to the MME and the eNodeB, the correct uploading of the data can be achieved, and the continuity of the service and the integrity of the data are ensured.
  • the method may further include: selecting an SGwC address when the user attaches or the packet data network PDN connection is established or when the user first packet data protocol PDP is activated; according to each SGwU in the SGwU list
  • the information selects a third SGwU address, wherein the information includes at least one of: a priority, a weight; and the third SGwU address is sent to the first SGW.
  • the manner of selecting the third SGwU address according to the information of each SGwU in the SGwU list is similar to the manner of selecting the first SGwU address according to the information of each SGwU in the SGwU list, and details are not described herein again.
  • the foregoing method may be performed by the MME or the serving general wireless packet service GPRS support node SGSN, but is not limited thereto.
  • the foregoing method may be applied to the gateway GW control plane and the GW user plane separation, but is not limited thereto.
  • the method of the preferred embodiment of the present invention is applicable to a scenario in which the GW control plane and the user plane are separated.
  • the MME performs the SGwU address selection.
  • the MME determines whether the SGwU address needs to be changed according to the current location of the user.
  • the main steps include:
  • Step 1 When the MME determines that the SGwC address does not change, the MME determines whether the SGwU changes according to the current location, such as a Tracking Area (TA).
  • TA Tracking Area
  • Step 2 The MME constructs the FQDN corresponding to the current location according to the current location, such as the TA, such as the TA-FQDN, and parses the SGwU list, and then according to whether the SGwU address of the Serving SGW is in the SGwU list, if yes, the SGwU does not change, if not , then SGwU change;
  • Step 3 If the SGwU changes, the MME selects an SGwU address according to the information such as the priority and weight of each SGwU in the SGwU list.
  • Step 4 If the SGwU changes, the MME considers that the SGW changes, and sends a message to notify the SGW of its SGwU change, and notifies the SGW of the new SGwU address;
  • Step 5 The SGW determines, according to the new SGw-U address information, the SGwU address change, and in the subsequent message, the new SGwU address is sent to the MME and the eNodeB;
  • Step 6 When the subsequent MME notifies the SGW to delete the old resource, it carries the old SGwU user plane identifier.
  • Step 7 The SGW deletes the old SGwU user plane resource according to the deleted old SGwU user plane identifier.
  • step 2 when the SGwU list is parsed according to the TA-FQDN, the S-NAPTR query process is used, and the service parameter is set to find the SGwU, such as "x-3gpp-sgwu:x-s1-u".
  • the main steps include:
  • Step 1 When the user switches or tracks the area update, the MME determines that the SGwC address changes;
  • Step 2 The MME constructs an FQDN corresponding to the current location, such as a TA-FQDN, according to the current location, such as a TA, and parses the SGwU list.
  • Step 3 The MME selects an SGwU address according to the information such as the priority and weight of each SGwU in the SGwU list.
  • Step 4 The MME sends a create session request message to the new SGW, carrying the new SGwU address.
  • Step 5 In the subsequent message of the SGW, the new SGwU address is sent to the MME and the eNodeB.
  • the main steps include:
  • Step 1 When the user attaches or the PDN connection is established, the MME selects the SGwC address;
  • Step 2 The MME constructs an FQDN corresponding to the current location, such as a TA-FQDN, according to the current location, such as a TA, and parses the SGwU list.
  • Step 3 The MME selects an SGwU address according to the information such as the priority and weight of each SGwU in the SGwU list.
  • Step 4 The MME sends a create session request message to the SGW, carrying the SGwU address.
  • the main steps include:
  • Step 1 When the user switch or the tracking area is updated, the SGSN determines that the SGwC address does not change, and then determines whether the SGwU changes according to the current location, such as the RA (Routing Area);
  • Step 2 The SGSN constructs the FQDN corresponding to the current location according to the current location, such as the RA, such as the RA-FQDN, parses the SGwU list, and then according to whether the SGwU address of the Serving SGW is in the SGwU list, if yes, the SGwU does not change, if not , then SGwU changes;
  • Step 3 If the SGwU changes, the SGSN selects an SGwU address according to the information such as the priority and weight of each SGwU in the SGwU list.
  • Step 4 If the SGwU changes, the SGSN considers that the SGW changes, sends a message to notify the SGW of its SGwU change, and notifies the SGW of the new SGwU address;
  • Step 5 The SGW determines, according to the new SGw-U address information, that the SGwU address is changed, and in the subsequent message, the new SGwU address is sent to the SGSN;
  • Step 6 When the subsequent SGSN notifies the SGW to delete the old resource, it carries the old SGwU user plane identifier.
  • Step 7 The SGW deletes the old SGwU user plane resource according to the deleted old SGwU user plane identifier.
  • the S-NAPTR query process is used, and the service parameter is set to look up the SGwU, for example, "x-3gpp-sgwu:x-s4-u".
  • the main steps include:
  • Step 1 When the user switches or the routing area is updated, the SGSN determines that the SGwC address changes;
  • Step 2 The SGSN constructs an FQDN corresponding to the current location, such as an RA-FQDN, according to the current location, such as RA, and parses the SGwU list.
  • Step 3 The SGSN selects an SGwU address according to the information such as the priority and weight of each SGwU in the SGwU list.
  • Step 4 The SGSN sends a create session request message to the new SGW, carrying the new SGwU address.
  • Step 5 In the subsequent message of the SGW, the new SGwU address is sent to the SGSN and the RNC.
  • the main steps include:
  • Step 1 When the user activates the first PDP, the SGSN selects the SGwC address.
  • Step 2 The SGSN constructs an FQDN corresponding to the current location, such as an RA-FQDN, according to the current location, such as RA, and parses the SGwU list.
  • Step 3 The SGSN selects an SGwU address according to the information such as the priority and weight of each SGwU in the SGwU list.
  • Step 4 The SGSN sends a Create Session Request message to the SGW, carrying the SGwU address.
  • the method according to the preferred embodiment of the present invention is applied to the application including the but not limited to the GW control plane and the user plane separation.
  • the MME/S4SGSN determines that the SGwC address does not change, and continues according to the current location.
  • the TA (Tracking Area)/RA determines whether the SGwU changes to determine whether the SGW is changed. In the scenario where the SGwC does not need to be changed but the SGwU is reselected, the data is correctly forwarded, which is beneficial to the user service experience and improves the user experience. .
  • FIG. 4 is a flowchart 1 of a method for transmitting an SGwU address according to a preferred embodiment of the present invention. As shown in FIG. 4, in the tracking area update process of the SGwU change, the method includes:
  • Step 401 The user initiates a tracking area update message to the network.
  • Step 402 The mobility management entity determines that the SGwC address does not change, and further determines whether the SGwU changes according to the current location, such as a TA (Tracking Area).
  • TA Tracking Area
  • Step 403 the mobility management entity constructs a TA-FQDN according to the TA.
  • Step 404 The mobility management entity uses the S-NAPTR query process, uses the TA-FQDN, sets the service parameter to “x-3gpp-sgwu:x-s1-u”, and queries the DNS server for the SGwU list.
  • Step 405 the DNS server returns a list of SgwUs
  • Step 406 The mobility management entity determines whether the SGwU address is in the SGwU list according to whether the SGwU address of the Serving SGW is in the SGwU list. If yes, the SGwU does not change. If the SGwU changes, the MME determines the priority of each SGwU in the SGwU list according to the SGwU. , weight and other information, choose an SGwU address;
  • Step 407 The mobility management entity sends a create session request message to the serving gateway control plane SGwC, where the message includes a new SGwU address.
  • Step 408 The SGW determines, according to the new SGwU address, a tracking area update process in which the SGwC does not change but the new SGwU changes.
  • Step 409 The SGwC sends a create user plane request message to the new serving gateway user plane SGwU according to the new SgwU address.
  • Step 410 The serving gateway user plane SGwU replies to the service gateway control plane SGwC to create a user plane response message.
  • Step 411 The serving gateway control plane SGwC sends a modify bearer request message to the packet data network gateway.
  • Step 412 The packet data network gateway replies to the serving gateway control plane SGwC to modify the bearer response message.
  • Step 413 the serving gateway control plane SGwC sends a create session response message to the mobility management entity.
  • Step 414 performing other process processing of tracking area update
  • Step 415 The mobility management entity sends a delete session request message to the serving gateway control plane SGwC, where the message includes deleting the old SGwU user plane identifier.
  • Step 416 the serving gateway control plane SGwC sends and deletes to the old serving gateway user plane SGwU.
  • the serving gateway control plane SGwC sends and deletes to the old serving gateway user plane SGwU.
  • the user plane request message In addition to the user plane request message;
  • Step 417 the old serving gateway user plane SGwU replies to the service gateway control plane SGwC to delete the user plane response message;
  • step 418 the serving gateway control plane SGwC sends a delete session response message to the mobility management entity.
  • FIG. 5 is a second flowchart of a method for transmitting an SGwU address according to a preferred embodiment of the present invention. As shown in FIG. 5, in the handover process of the SGwU change, the foregoing method includes:
  • Step 501 The radio access network element sends a handover request message.
  • Step 502 The mobility management entity determines that the SGwC address does not change, and further determines whether the SGwU changes according to the current location, such as a TA (Tracking Area).
  • TA Tracking Area
  • Step 503 the mobility management entity constructs a TA-FQDN according to the TA;
  • Step 504 The mobility management entity uses the S-NAPTR query process, uses the TA-FQDN, sets the service parameter to “x-3gpp-sgwu:x-s1-u”, and queries the DNS server for the SGwU list.
  • Step 505 the DNS server returns a list of SGwUs
  • Step 506 The mobility management entity determines whether the SGwU address of the Serving SGW is in the SGwU list. If yes, the SGwU does not change. If not, the SGwU changes. If the SGwU changes, the MME parses the priority of each SGwU in the SGwU list. , weight and other information, choose an SGwU address;
  • Step 507 The mobility management entity sends a create session request message to the serving gateway control plane SGwC, where the message includes a new SGwU address.
  • Step 508 The SGW determines, according to the new SGwU address, a tracking area update process in which the SGwC does not change but the new SGwU changes;
  • Step 509 The SGwC sends a create user plane request message to the new serving gateway user plane SGwU according to the new SgwU address.
  • Step 510 The serving gateway user plane SGwU replies to the service gateway control plane SGwC to create a user plane response message.
  • Step 511 The serving gateway control plane SGwC sends a modify bearer request message to the packet data network gateway.
  • Step 512 The packet data network gateway replies to the serving gateway control plane SGwC to modify the bearer response message.
  • Step 513 the serving gateway control plane SGwC sends a create session response message to the mobility management entity.
  • Step 514 performing other process processing of the handover
  • Step 516 the serving gateway control plane SGwC sends a delete user plane request message to the old serving gateway user plane SGwU;
  • Step 517 the old serving gateway user plane SGwU replies to the service gateway control plane SGwC to delete the user plane response message;
  • Step 518 the serving gateway control plane SGwC sends a delete session response message to the mobility management entity.
  • step 519 other process processing of the handover is performed.
  • FIG. 6 is a third flowchart of a method for transmitting an SGwU address according to a preferred embodiment of the present invention. As shown in FIG. 6, in the path switching process of the SGwU change, the foregoing method includes:
  • Step 601 The radio access network element sends a path switch request message.
  • Step 602 The mobility management entity determines that the SGwC address does not change, and further determines whether the SGwU changes according to the current location, such as a TA (Tracking Area).
  • TA Tracking Area
  • Step 603 the mobility management entity constructs a TA-FQDN according to the TA;
  • Step 604 the mobility management entity uses the S-NAPTR query process, uses the TA-FQDN, sets the service parameter to "x-3gpp-sgwu:x-s1-u", and queries the DNS server for the SGwU list;
  • Step 605 the DNS server returns a list of SGwUs
  • Step 606 The mobility management entity determines whether the SGwU address is in the SGwU list according to whether the SGwU address of the Serving SGW is in the SGwU list. If not, the SGwU does not change. If the SGwU changes, the MME determines the priority of each SGwU in the SGwU list according to the SGwU. , weight and other information, choose an SGwU address;
  • Step 607 The mobility management entity sends a create session request message to the serving gateway control plane SGwC, where the message includes a new SGwU address.
  • Step 608 The SGW determines, according to the new SGwU address, a tracking area update process in which the SGwC does not change but the new SGwU changes;
  • Step 609 The SGwC sends a create user plane request message to the new serving gateway user plane SGwU according to the new SgwU address.
  • Step 610 The serving gateway user plane SGwU replies to the service gateway control plane SGwC to create a user plane response message.
  • Step 611 the serving gateway control plane SGwC sends a modify bearer request message to the packet data network gateway;
  • Step 612 the packet data network gateway replies to the serving gateway control plane SGwC to modify the bearer response message
  • Step 613 the serving gateway control plane SGwC sends a create session response message to the mobility management entity.
  • Step 614 performing other process processing of path switching
  • Step 615 The mobility management entity sends a delete session request message to the serving gateway control plane SGwC, where the message includes deleting the old SGwU user plane identifier.
  • FIG. 7 is a flowchart of a method for transmitting an SGwU address according to a preferred embodiment of the present invention. As shown in FIG. 7, in the tracking area update process of the SGwC change, the method includes:
  • Step 701 The user initiates a tracking area update message to the network.
  • Step 703 the mobility management entity constructs a TA-FQDN according to the TA.
  • Step 704 The mobility management entity uses the S-NAPTR query process, uses the TA-FQDN, sets the service parameter to “x-3gpp-sgwu:x-s1-u”, and queries the DNS server for the SGwU list.
  • Step 705 the DNS server returns a list of SGwUs
  • Step 706 The mobility management entity selects an SGwU address according to the information such as the priority and weight of each SGwU in the SGwU list.
  • step 708 other process processing of the tracking area update is performed.
  • FIG. 8 is a flowchart 5 of a method for transmitting an SGwU address according to a preferred embodiment of the present invention. As shown in FIG. 8, in the handover process of the SGwU change, the foregoing method includes:
  • Step 801 The radio access network element sends a handover request message.
  • Step 803 the mobility management entity constructs a TA-FQDN according to the TA;
  • Step 804 The mobility management entity uses the S-NAPTR query process, uses the TA-FQDN, sets the service parameter to “x-3gpp-sgwu:x-s1-u”, and queries the DNS server for the SGwU list.
  • Step 805 the DNS server returns a list of SGwUs
  • Step 806 The mobility management entity selects an SGwU address according to information such as the priority and weight of each SGwU in the SGwU list.
  • Step 807 the mobility management entity sends a create session request to the serving gateway control plane SGwC.
  • Message including the new SGwU address in the message;
  • Step 808 performing other process processing of the handover.
  • FIG. 9 is a flowchart 6 of a method for transmitting an SGwU address according to a preferred embodiment of the present invention. As shown in FIG. 9, in the path switching process of the SGwU change, the foregoing method includes:
  • Step 901 The radio access network element sends a path switch request message.
  • Step 902 The mobility management entity determines that the SGwC address changes.
  • Step 903 The mobility management entity constructs a TA-FQDN according to the TA.
  • Step 904 The mobility management entity uses the S-NAPTR query process, uses the TA-FQDN, sets the service parameter to “x-3gpp-sgwu:x-s1-u”, and queries the DNS server for the SGwU list.
  • Step 905 the DNS server returns a list of SGwUs
  • Step 906 The mobility management entity selects an SGwU address according to the information such as the priority and weight of each SGwU in the SGwU list.
  • Step 907 The mobility management entity sends a create session request message to the serving gateway control plane SGwC, where the message includes a new SGwU address.
  • step 908 other process processing of path switching is performed.
  • FIG. 10 is a flowchart of a method for transmitting an SGwU address according to a preferred embodiment of the present invention. As shown in FIG. 10, in the process of establishing a PDN connection, the foregoing method includes:
  • Step 1001 The user initiates a PDN connection establishment request message to the network.
  • Step 1002 The mobility management entity selects an SGwC address.
  • Step 1003 The mobility management entity constructs a TA-FQDN according to the TA.
  • Step 1004 The mobility management entity uses the S-NAPTR query process, uses the TA-FQDN, sets the service parameter to “x-3gpp-sgwu:x-s1-u”, and queries the DNS server for the SGwU list.
  • Step 1005 the DNS server returns a list of SGwUs
  • Step 1006 The mobility management entity selects an SGwU address according to the information such as the priority and weight of each SGwU in the SGwU list.
  • step 1008 other process processing of PDN connection establishment is performed.
  • FIG. 11 is a flowchart of a method for transmitting an SGwU address according to a preferred embodiment of the present invention. As shown in FIG. 11, in the routing area update process of the SGwU change, the foregoing method includes:
  • Step 1101 The user initiates a routing area update message to the network.
  • Step 1102 the SGSN determines that the SGwC address does not change, and further increases whether the SGwU changes according to the current location, such as the RA.
  • Step 1103 the SGSN constructs an RA-FQDN according to the RA.
  • Step 1104 the SGSN uses the S-NAPTR query process, uses the RA-FQDN, sets the service parameter to "x-3gpp-sgwu:x-s4-u", and queries the DNS server for the SGwU list;
  • Step 1105 the DNS server returns a list of SGwUs
  • the SGSN determines whether the SGwU address is in the SGwU list according to whether the SGwU address of the Serving SGW is in the SGwU list. If not, the SGwU does not change. If the SGwU changes, the SGSN analyzes the priority and weight of each SGwU in the SGwU list according to the SGwU. And other information, choose an SGwU address;
  • Step 1107 the SGSN sends a create session request message to the serving gateway control plane SGwC, where the message includes a new SGwU address.
  • Step 1108 the SGW determines, according to the new SGwU address, a tracking area update process in which the SGwC does not change but the new SGwU changes;
  • Step 1109 the SGwC sends a create user plane request message to the new serving gateway user plane SGwU according to the new SgwU address.
  • Step 1110 The serving gateway user plane SGwU replies to the service gateway control plane SGwC to create a user plane response message.
  • Step 1111 The serving gateway control plane SGwC sends a modify bearer request message to the packet data network gateway.
  • Step 1112 The packet data network gateway replies to the serving gateway control plane SGwC to modify the bearer response message.
  • Step 1113 the serving gateway control plane SGwC sends a create session response message to the SGSN.
  • Step 1114 Perform other process processing of the routing area update.
  • Step 1115 The SGSN sends a delete session request message to the serving gateway control plane SGwC, where the message includes deleting the old SGwU user plane identifier.
  • Step 1116 the serving gateway control plane SGwC sends a delete user plane request message to the old serving gateway user plane SGwU.
  • Step 1117 the old serving gateway user plane SGwU replies to the service gateway control plane SGwC to delete the user plane response message;
  • step 1118 the serving gateway control plane SGwC sends a delete session response message to the SGSN.
  • FIG. 12 is a flowchart 9 of a method for transmitting an SGwU address according to a preferred embodiment of the present invention. As shown in FIG. 12, in the relocation process of the SGwU change, the foregoing method includes:
  • Step 1201 The radio access network element sends a relocation request message.
  • Step 1202 the SGSN determines that the SGwC address does not change, and further increases whether the SGwU changes according to the current location, such as the RA.
  • Step 1203 the SGSN constructs an RA-FQDN according to the RA.
  • Step 1204 the SGSN uses the S-NAPTR query process, uses the RA-FQDN, sets the service parameter to "x-3gpp-sgwu:x-s4-u", and queries the DNS server for the SGwU list;
  • Step 1205 the DNS server returns a list of SGwUs
  • the SGSN determines whether the SGwU address of the Serving SGW is in the SGwU list. If yes, the SGwU does not change. If not, the SGwU changes. If the SGwU changes, the SGSN analyzes the priority and weight of each SGwU in the SGwU list. And other information, choose an SGwU address;
  • Step 1207 The SGSN sends a create session request message to the serving gateway control plane SGwC, where the message includes a new SGwU address.
  • Step 1208 the SGW determines, according to the new SGwU address, a tracking area update process in which the SGwC does not change but the new SGwU changes;
  • Step 1209 the SGwC sends a create user plane request message to the new serving gateway user plane SGwU according to the new SgwU address.
  • Step 1210 The serving gateway user plane SGwU replies to the service gateway control plane SGwC to create a user plane response message.
  • Step 1211 The serving gateway control plane SGwC sends a modify bearer request message to the packet data network gateway.
  • Step 1212 The packet data network gateway replies to the serving gateway control plane SGwC to modify the bearer response message.
  • Step 1213 the serving gateway control plane SGwC sends a create session response message to the SGSN.
  • Step 1214 performing other process processing of relocation
  • Step 1215 The SGSN sends a delete session request message to the serving gateway control plane SGwC, where the message includes deleting the old SGwU user plane identifier.
  • Step 1216 the serving gateway control plane SGwC sends a delete user plane request message to the old serving gateway user plane SGwU;
  • Step 1217 the old serving gateway user plane SGwU replies to the service gateway control plane SGwC to delete the user plane response message;
  • Step 1218 the serving gateway control plane SGwC sends a delete session response message to the SGSN.
  • step 1219 other process processing of relocation is performed.
  • FIG. 13 is a flowchart 10 of a method for transmitting an SGwU address according to a preferred embodiment of the present invention. As shown in FIG. 13, in the enhanced relocation process of the SGwU change, the foregoing method includes:
  • Step 1301 The radio access network element sends an enhanced relocation request message.
  • Step 1302 The SGSN determines that the SGwC address does not change, and further determines whether the SGwU changes according to the current location, such as the RA.
  • Step 1303 the SGSN constructs an RA-FQDN according to the RA.
  • Step 1304 the SGSN uses the S-NAPTR query process, uses the RA-FQDN, sets the service parameter to "x-3gpp-sgwu:x-s4-u", and queries the DNS server for the SGwU list.
  • Step 1305 the DNS server returns a list of SGwUs
  • Step 306 The SGSN determines whether the SGwU address is in the SGwU list according to whether the SGwU address of the Serving SGW is in the SGwU list. If yes, the SGwU does not change. If the SGwU changes, the SGSN analyzes the priority and weight of each SGwU in the SGwU list according to the SGwU. And other information, choose an SGwU address;
  • Step 1307 the SGSN sends a create session request message to the serving gateway control plane SGwC, where the message includes a new SGwU address.
  • Step 1308, the SGW determines, according to the new SGwU address, a tracking area update process in which the SGwC does not change but the new SGwU changes;
  • Step 1309 the SGwC sends a create user plane request message to the new serving gateway user plane SGwU according to the new SgwU address.
  • Step 1310 the serving gateway user plane SGwU replies to the service gateway control plane SGwC to create a user plane response message
  • Step 1311 The serving gateway control plane SGwC sends a modify bearer request message to the packet data network gateway.
  • Step 1312 The packet data network gateway replies to the serving gateway control plane SGwC to modify the bearer response message.
  • Step 1313 the serving gateway control plane SGwC sends a create session response message to the SGSN.
  • Step 1314 performing other process processing of enhanced relocation
  • Step 1315 The SGSN sends a delete session request message to the serving gateway control plane SGwC, where the message includes deleting the old SGwU user plane identifier.
  • Step 1316 the serving gateway control plane SGwC sends a delete user plane request message to the old serving gateway user plane SGwU.
  • Step 1317 the old serving gateway user plane SGwU replies to the service gateway control plane SGwC to delete the user plane response message;
  • step 1318 the serving gateway control plane SGwC sends a delete session response message to the SGSN.
  • FIG. 14 is a flowchart 11 of a method for transmitting an SGwU address according to a preferred embodiment of the present invention. As shown in FIG. 14, in the routing area update process of the SGwC change, the foregoing method includes:
  • Step 1401 The user initiates a routing area update message to the network.
  • Step 1402 the SGSN determines that the SGwC address changes.
  • Step 1403 the SGSN constructs an RA-FQDN according to the RA.
  • Step 1404 the SGSN uses the S-NAPTR query process, uses the RA-FQDN, sets the service parameter to "x-3gpp-sgwu:x-s4-u", and queries the DNS server for the SGwU list.
  • Step 1405 the DNS server returns a list of SGwUs
  • Step 1406 The SGSN selects an SGwU address according to the information such as the priority and weight of each SGwU in the SGwU list.
  • Step 1407 the SGSN sends a create session request message to the serving gateway control plane SGwC, where the message includes a new SGwU address.
  • step 1408 other process processing of the routing area update is performed.
  • FIG. 15 is a flowchart 12 of a method for transmitting an SGwU address according to a preferred embodiment of the present invention. As shown in FIG. 15, in the relocation process of the SGwU change, the foregoing method includes:
  • Step 1501 The radio access network element sends a relocation request message.
  • Step 1502 the SGSN determines that the SGwC address changes.
  • Step 1503 the SGSN constructs an RA-FQDN according to the RA.
  • Step 1504 the SGSN uses the S-NAPTR query process, uses the RA-FQDN, sets the service parameter to "x-3gpp-sgwu:x-s4-u", and queries the DNS server for the SGwU list.
  • Step 1505 the DNS server returns a list of SGwUs
  • Step 1506 the SGSN analyzes the priority and weight of each SGwU in the SGwU list. Repeat the information and select an SGwU address;
  • Step 1507 The SGSN sends a create session request message to the serving gateway control plane SGwC, where the message includes a new SGwU address.
  • step 1508 other process processing of relocation is performed.
  • FIG. 16 is a flowchart 13 of a method for transmitting an SGwU address according to a preferred embodiment of the present invention. As shown in FIG. 16, in the enhanced relocation process of the SGwU change, the foregoing method includes:
  • Step 1601 The radio access network element sends an enhanced relocation request message.
  • Step 1602 the SGSN determines that the SGwC address changes.
  • Step 1603 the SGSN constructs the RA-FQDN according to the RA.
  • Step 1605 the DNS server returns a list of SGwUs
  • Step 1606 the SGSN selects an SGwU address according to the information such as the priority and weight of each SGwU in the SGwU list.
  • Step 1607 The SGSN sends a create session request message to the serving gateway control plane SGwC, where the message includes a new SGwU address.
  • step 1608 other process processing for enhanced relocation is performed.
  • FIG. 17 is a flowchart of a method for transmitting an SGwU address according to a preferred embodiment of the present invention. As shown in FIG. 17, in the process of activating a first PDP of a UE, the foregoing method includes:
  • Step 1701 The user initiates a PDP activation request message to the network, where the PDP is the first PDP of the UE.
  • Step 1702 the SGSN selects an SGwC address.
  • Step 1703 the SGSN constructs an RA-FQDN according to the RA.
  • Step 1704 the SGSN uses the S-NAPTR query process, uses the RA-FQDN, sets the service parameter to "x-3gpp-sgwu:x-s4-u", and queries the DNS server for the SGwU list;
  • Step 1705 the DNS server returns a list of SGwUs
  • Step 1706 the SGSN selects an SGwU address according to the information such as the priority and weight of each SGwU in the SGwU list.
  • Step 1707 The SGSN sends a create session request message to the serving gateway control plane SGwC, where the message includes an SGwU address.
  • the SGwC does not need to be changed, but the SGwU will not support the correct and reliable transmission of the data stream in the reselection scenario, and the continuity and integrity of the service cannot be guaranteed.
  • the problem is that the data flow is correctly and reliably transmitted, which is beneficial to the user's business experience and improves the user experience.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a SGwU address transmission device is also provided in the embodiment, and the device is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 18 is a structural block diagram of a transmission apparatus of an SGwU address according to an embodiment of the present invention. As shown in FIG. 18, the apparatus includes:
  • the first determining module 1802 is configured to determine the service network when the user switches or tracks the area update. Whether the control plane SGwC address changes;
  • the first sending module 1808 is connected to the first selecting module 1806, and is configured to send the first SGwU address to the first serving gateway SGW.
  • the first selecting module 1806 selects the first SGwU address from the SGwU list, and then A sending module 1808 sends the first SGwU address to the first serving gateway SGW, that is, when the SGwU changes, a new SGwU address is selected and sent to the first SGW, so that when the SGwU performs retransmission, the final SGwU address can be obtained.
  • the data stream can be correctly uploaded. Therefore, the problem that the data flow cannot be correctly and reliably transmitted in the scenario where the SGwU is reselected can be solved in the related art, thereby ensuring the continuity and integrity of the service.
  • the first determining module 1802 is further configured to take the TA list associated with the currently served SGwC, and compare it with the TA where the terminal (UE) is currently located, if the TA list includes the TA where the UE is currently located.
  • the SGwC address is not changed, otherwise the SGwC address is changed.
  • it is set to resolve the SGwC list on the DNS server according to the TA where the UE is currently located. If the parsed SGwC list contains the SGwC currently served by the UE, the SGwC address is not changed. Otherwise, the SGwC address has changed.
  • the second determining module 1804 is further configured to: before determining whether the current SGwU address of the first SGW is in the SGwU list, construct a current location corresponding to the current location according to the current location of the terminal.
  • the full name domain name FQDN; the SGwU list is parsed according to the FQDN.
  • the foregoing current location may be the tracking area TA and/or the routing area RA, but is not limited thereto.
  • the foregoing second determining module 1804 may be further configured to use an S-NAPTR query process to query whether the current SGwU address of the first SGW is in the SGwU list; wherein the service parameters in the query process are set. It is used to find the SGwU address corresponding to the current location.
  • the above service parameter can be set to "x-3gpp-sgwu:x-s4-u".
  • the SGwU address corresponding to the SGwU with the second highest priority may be used as the first SGwU address, but is not limited thereto.
  • the scheme for selecting the first SGwU address according to the weight information is similar to the priority, and details are not described herein again.
  • the foregoing selection manner may be that the first SGwU address is selected by considering the priority and the weight. For example, the SGwU address corresponding to the SGwU with the highest priority may be selected first according to the priority, and the SGwU with the highest priority is selected. The SGwU address is more than one, and the SGwU address corresponding to the SGwU is selected as the first SGW from the SGwU address corresponding to the SGwU with the highest priority, but is not limited thereto, and may be selected according to the weight. And then choose according to the preferred level.
  • the apparatus may further include: a first indication module, connected to the first sending module 1808, configured to instruct the first SGW to establish an SGwU user plane resource corresponding to the first SGwU address; An indication module, and the first sending module 1808 described above The connection is set to instruct the first SGW to delete the SGwU user plane resource corresponding to the current SGwU address of the first SGW. After the first SGwU address is selected, a new SGwU user plane resource is created, and the old SGwU user plane resource is deleted.
  • the apparatus may further include: a second sending module, connected to the first sending module 1808, configured to: after the first SGW determines that the SGwU changes according to the first SGwU address, the first SGwU The address is sent to the mobility management unit MME and the node eNodeB. Sending the first SGwU address to the MME and the eNodeB can implement correct data uploading, ensuring service continuity and data integrity.
  • a second sending module connected to the first sending module 1808, configured to: after the first SGW determines that the SGwU changes according to the first SGwU address, the first SGwU The address is sent to the mobility management unit MME and the node eNodeB. Sending the first SGwU address to the MME and the eNodeB can implement correct data uploading, ensuring service continuity and data integrity.
  • the apparatus may further include: a second selection module configured to: if it is determined that the SGwC address changes, select a second SGwU address from the SGwU list; and the third sending module is configured to be The second SGwU address is sent to the second SGW, where the first SGW is the SGW before the change, and the second SGW is the changed SGW.
  • the third sending module sends the new SGwU address to the changed SGW.
  • the second selection module may be further configured to select a second SGwU address according to information of each SGwU in the SGwU list, where the information includes at least one of the following: priority, weight.
  • the manner of selecting the second SGwU address according to the information of each SGwU in the SGwU list is similar to the manner of selecting the first SGwU address according to the information of each SGwU in the SGwU list, and details are not described herein again.
  • the above device is an MME or an SGSN.
  • the foregoing apparatus may be applied to the gateway GW control plane and the GW user plane separation, but is not limited thereto.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • the embodiment of the present invention further provides a mobility management unit MME, which includes the SGwU address transmission apparatus in Embodiment 2.
  • the embodiment of the present invention further provides a GPRS support node SGSN serving the general wireless packet service, including the SGwU address transmission device in Embodiment 2.
  • Embodiments of the present invention also provide a storage medium.
  • the above storage medium may be set to store program code for executing the steps of the method in Embodiment 1.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor performs the steps of the method in Embodiment 1 according to the stored program code in the storage medium.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种SGwU地址的传输方法及装置、MME、SGSN,其中,该方法包括:在用户切换或跟踪区更新时,判断服务网关控制面SGwC地址是否发生变化;若判断出SGwC地址未发生变化,则判断服务网关用户面SGwU是否变化;若判断出SGwU发生变化,则从SGwU列表中选择第一SGwU地址;将第一SGwU地址发送给第一服务网关SGW。通过本发明,解决了相关技术中在SGwU会重选的场景下无法支持数据流正确可靠的传输的问题。

Description

SGwU地址的传输方法及装置、MME、SGSN 技术领域
本发明涉及通信领域,具体而言,涉及一种SGwU地址的传输方法及装置、MME、SGSN。
背景技术
第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)对下一代移动无线网络的项目叫系统架构演进(System Architecture Evolution,简称SAE),SAE的架构如图1所示,其中包含了如下网元:
演进的无线接入网(Evolved RAN,简称E-RAN):可以提供更高的上下行速率,更低的传输延迟和更加可靠的无线传输。E-RAN中包含的网元是演进基站(Evolved NodeB,简称eNodeB),为终端的接入提供无线资源。
归属用户服务器(Home Subscriber Server,简称HSS):永久存储用户签约数据。
移动管理实体(Mobility Management Entity,简称MME):控制面功能实体,临时存储用户数据的服务器,负责管理和存储用户设备(User Equepment,简称UE)上下文(比如UE/用户标识,移动性管理状态,用户安全参数等),为用户分配临时标识,当UE驻扎在该跟踪区域或者该网络是负责对该用户进行鉴权;处理MME和UE之间的所有非接入层消息;触发在SAE的寻呼。
服务通用分组无线服务技术(General Packet Radio Service,简称GPRS)支持节点(Serving GPRS Support Node,简称SGSN),支持Gb或Iu接入的GPRS,临时存储用户数据的服务器,负责管理和存储GPRS移动性管理(GPRS Mobility Management,简称GMM)上下文和分组数据协议(Packet Data Protocol,简称PDP)上下文;处理SGSN和UE之间的所 有非接入层消息;
服务网关Serving GW(Serving Gateway,简称SGW):该网关是一个用户面实体,负责用户面数据路由处理,终结处于空闲状态的UE的下行数据。管理和存储UE的体系架构演进(System Architecture Evolution,简称SAE)承载(bearer)上下文,比如网络协议(Internet Protocol,简称IP)承载业务参数和网络内部路由信息等,是3GPP系统内部用户面的锚点,一个用户在一个时刻只能有一个Serving GW;
分组数据网网关(Packet Data Network Gateway,简称PDN GW或PGW),负责UE接入分组数据网(Packet Data Network,简称PDN)的网关,分配用户IP地址,同时是3GPP和非3GPP接入系统的移动性锚点。用户在同一时刻能够接入多个PDN GW。
Serving GW和PDN GW合称SAE-GW。
策略和合计费规则功能实体(Policy and Charging Rule Functionality,简称PCRF):该功能实体主要根据业务信息和用户签约信息以及运营商的配置信息产生控制用户数据传递的服务质量(Quality of Service,简称Qos)规则以及计费规则。该功能实体也可以控制接入网中承载的建立和释放。
随着需求增长,整个网络体系(Evolved Packet System,简称EPS)网关逐步产生了一些约束。用户数据流处理集中在分组数据网(Public Data Network,简称PDN)出口网关,造成网关设备功能繁杂,可扩展性差。网关的控制面与转发面高度耦合,不利于核心网平滑演进。转发面扩容需求频度高于控制面,紧耦合导致控制面转发面同步扩容,设备更新周期短导致复合成本增加。网络层数据转发难以识别用户、业务特征,仅能根据上层传递的QoS转发,导致网络资源利用低效,难以依据用户和业务特性对数据流进行精细控制。此外,大量策略需要手工配置,导致管理复杂度增加,运营成本居高不下。因此,需要将分组域网关中的控制功能与转发功能进一步分离,以适应网络发展和市场应用的需求。
图2是相关技术中的基于非漫游场景下GW控制面和用户面分离的架 构示意图。该架构中将原先的EPS架构中的S/PGW拆分成了网关控制面(Gateway Controller,简称GwC)和网关用户面(Gateway User,简称GwU)两类功能网元。
GwC:包括SGwC和PGwC,分别对应SGW和PGW的控制面,负责负荷分担、GwU的选择、IP地址和隧道标识的分配、策略和计费控制等功能。
GwU:包括SGwU和PGwU,分别对应SGW和PGW的用户面,负责S/PGW的用户面相关功能,包括数据流识别和深度包解析、QoS处理和承载绑定,下行寻呼数据的缓存等功能。
对接的用户面和控制面接口分别对应到S/PGwC和S/PGwU上,其余相应接口功能对照原EPS架构。
GW控制面和用户面分离之后,解决了现有EPS网关存在的诸多上述问题,但同时也引入了新的技术问题,例如,导致现有的切换机制在部分场景下不能支持数据流的正确可靠的传输。
相关技术中的机制,MME根据用户位置和签约信息等进行SGW的选择。当用户位置发生移动引发切换和跟踪区更新流程时,MME判断是否需要进行SGW的重选,并进行SGW选择和上下行数据传送路径的信息更新。若判断需要进行SGW的重选,则根据更新后的位置信息和签约信息重新选择合适的SGW,并将新选择的SGW上行用户面地址和隧道标识等信息发送给eNodeB,更新上行数据传送路径信息,确保上行数据的正确传送。并将新的eNodeB信息,例如eNodeB下行用户面地址和隧道标识发送给SGW,更新下行数据传送路径信息,保证下行数据的正确传送。若不需要进行SGW的重选,则将当前的SGW的上行用户面地址和隧道标识等信息发送给新的eNodeB,并将新的eNodeB下行用户面地址和隧道标识传送给当前的SGW,进行上下行数据通道的重建。切换流程中,MME是否变更和是否能够支持数据流的正确传输问题无关,可参照现有机制处理,此处不做展开描述。
当SGW控制面和用户面功能分离后,MME根据现有机制进行的GW选择实际是GWC的选择,由GWC负责在其对应的GWU组中进行GWU的选择和管理。则根据如上所述机制,在GWC不需要切换但GWU会重选的场景下则无法实现数据的正确转发。例如,基于S1的切换流程。MME收到原eNodeB的切换请求消息后,MME判断SGW不需要改变,即SGwC不改变,将会将当前的SGwU地址和隧道标识下发给新的eNodeB,则新的eNodeB获取到的不一定是最终的SGwU地址和隧道标识,若后续SGwU进行了重选,则上下行数据通道建立错误。则上行数据到达eNodeB后会往老的SGwU传送,可能导致无法和SGwU连接或是SGwU收到后丢弃,导致无法正确上传,无法保证业务的连续性和数据的完整性。
因此,GW控制面和用户面分离之后,相关技术中的MME判断SGW是否改变机制在部分场景下不能支持数据流的正确可靠的传输,无法保证业务的连续性和完整性。类似地,SGSN也存在类似的问题。
针对相关技术中的上述技术问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种SGwU地址的传输方法及装置、MME、SGSN,以至少解决相关技术中在SGwU会重选的场景下无法支持数据流正确可靠的传输的问题。
根据本发明的一个实施例,提供了一种SGwU地址的传输方法,包括:在用户切换或跟踪区更新时,判断服务网关控制面SGwC地址是否发生变化;若判断出SGwC地址未发生变化,则判断服务网关用户面SGwU是否变化;若判断出SGwU发生变化,则从SGwU列表中选择第一SGwU地址;将第一SGwU地址发送给第一服务网关SGW。
在本发明实施例中,判断SGwU是否变化包括:判断第一SGW的当前SGwU地址是否在SGwU列表中;若当前SGwU地址在SGwU列表中,则判断出SGwU未发生变化;若当前SGwU地址不在SGwU列表中,则判断出SGwU发生变化。
在本发明实施例中,在判断第一SGW的当前SGwU地址是否在SGwU列表中之前,判断SGwU是否变化还包括:根据终端的当前位置构造与当前位置对应的全称域名(Fully Qualified Domain Name,简称FQDN);根据FQDN解析出SGwU列表。
在本发明实施例中,当前位置包括:跟踪区TA和/或路由区RA。
在本发明实施例中,在判断第一SGW的当前SGwU地址是否在SGwU列表中时,还包括:使用直接名称权威指针(Strsightforword Naming Authority Pointer,简称S-NAPTR)查询过程,查询所述第一SGW的当前SGwU地址是否在所述SGwU列表中;其中,查询过程中的服务参数被设置为用于查找当前位置对应的SGwU地址。
在本发明实施例中,从SGwU列表中选择第一SGwU地址包括:根据SGwU列表中各个SGwU的信息选择第一SGwU地址,其中,信息包括以下至少之一:优先级、权重。
在本发明实施例中,在将第一SGwU地址发送给第一SGW之后,还包括:指示第一SGW建立与第一SGwU地址对应的SGwU用户面资源;指示第一SGW删除与第一SGW的当前SGwU地址对应的SGwU用户面资源。
在本发明实施例中,在将第一SGwU地址发送给第一SGW之后,还包括:第一SGW在根据第一SGwU地址确定SGwU发生变化之后,将第一SGwU地址发送给移动管理单元MME和节点eNodeB。
在本发明实施例中,在判断SGwC地址是否发生变化之后,还包括:若判断出SGwC地址发生变化,则从SGwU列表中选择第二SGwU地址;将第二SGwU地址发送给第二SGW,其中,第一SGW为改变前的SGW,第二SGW为改变后的SGW。
在本发明实施例中,从SGwU列表中选择第二SGwU地址包括:根据SGwU列表中各个SGwU的信息选择第二SGwU地址,其中,信息包括以下至少之一:优先级、权重。
在本发明实施例中,在将第二SGwU地址发送给第二SGW之后,还包括:第二SGW将第二SGwU地址发送给MME和eNodeB。
在本发明实施例中,还包括:在用户附着或分组数据网PDN连接建立时或在用户第一次分组数据协议PDP激活时,选择SGwC地址;根据SGwU列表中各个SGwU的信息选择第三SGwU地址,其中,信息包括以下至少之一:优先级、权重;将第三SGwU地址发送给第一SGW。
在本发明实施例中,方法由MME或服务通用无线分组业务GPRS支持节点SGSN执行。
在本发明实施例中,网关GW控制面和GW用户面分离。
根据本发明的另一个实施例,提供了一种SGwU地址的传输装置,包括:第一判断模块,设置为在用户切换或跟踪区更新时,判断服务网关控制面SGwC地址是否发生变化;第二判断模块,设置为若判断出SGwC地址未发生变化,则判断服务网关用户面SGwU是否变化;第一选择模块,设置为若判断出SGwU发生变化,则从SGwU列表中选择第一SGwU地址;第一发送模块,设置为将第一SGwU地址发送给第一服务网关SGW。
在本发明实施例中,第二判断模块还设置为判断第一SGW的当前SGwU地址是否在SGwU列表中;若当前SGwU地址在SGwU列表中,则判断出SGwU未发生变化;若当前SGwU地址不在SGwU列表中,则判断出SGwU发生变化。
在本发明实施例中,第二判断模块还设置为根据终端的当前位置构造与当前位置对应的全称域名FQDN;根据FQDN解析出SGwU列表。
在本发明实施例中,当前位置包括:跟踪区TA和/或路由区RA。
在本发明实施例中,第二判断模块还设置为使用直接名称权威指针S-NAPTR查询过程,查询所述第一SGW的当前SGwU地址是否在所述SGwU列表中;其中,查询过程中的服务参数被设置为用于查找当前位置对应的SGwU地址。
在本发明实施例中,选择模块还设置为根据SGwU列表中各个SGwU 的信息选择第一SGwU地址,其中,信息包括以下至少之一:优先级、权重。
在本发明实施例中,装置还包括:第一指示模块,设置为指示第一SGW建立与第一SGwU地址对应的SGwU用户面资源;第二指示模块,设置为指示第一SGW删除与第一SGW的当前SGwU地址对应的SGwU用户面资源。
在本发明实施例中,装置还包括:第二发送模块,设置为在第一SGW根据第一SGwU地址确定SGwU发生变化之后,将第一SGwU地址发送给移动管理单元MME和节点eNodeB。
在本发明实施例中,装置还包括:第二选择模块,设置为若判断出SGwC地址发生变化,则从SGwU列表中选择第二SGwU地址;第三发送模块,设置为将第二SGwU地址发送给第二SGW,其中,第一SGW为改变前的SGW,第二SGW为改变后的SGW。
在本发明实施例中,第二选择模块还设置为根据SGwU列表中各个SGwU的信息选择第二SGwU地址,其中,信息包括以下至少之一:优先级、权重。
在本发明实施例中,装置还包括:第三选择模块,设置为在用户附着或分组数据网PDN连接建立时或在用户第一次分组数据协议PDP激活时,选择SGwC地址;第四选择模块,设置为根据SGwU列表中各个SGwU的信息选择第三SGwU地址,其中,信息包括以下至少之一:优先级、权重;第四发送模块,设置为将第三SGwU地址发送给第一SGW。
在本发明实施例中,装置为MME或SGSN。
在本发明实施例中,网关GW控制面和GW用户面分离。
根据本发明的另一个实施例,提供了一种移动管理单元MME,包括上述SGwU地址的传输装置。
根据本发明的另一个实施例,提供了服务通用无线分组业务GPRS支持节点SGSN,包括上述SGwU地址的传输装置。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:在用户切换或跟踪区更新时,判断服务网关控制面SGwC地址是否发生变化;若判断出SGwC地址未发生变化,则判断服务网关用户面SGwU是否变化;若判断出SGwU发生变化,则从SGwU列表中选择第一SGwU地址;将第一SGwU地址发送给第一服务网关SGW。
根据本发明的又一个实施例,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述任一项所述的方法。
根据本发明的又一个实施例,还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述任一项所述的方法。
通过本发明,由于在SGwC地址未发生变化,且SGwU发生变化时,从SGwU列表中选择第一SGwU地址,然后将第一SGwU地址发送给第一服务网关SGW,即在SGwU发生变化时选择一个新的SGwU地址发送给第一SGW,进而使得SGwU进行重传时,能够获得最终的SGwU地址,可以保证数据流进行正确上传,因此,能够解决相关技术中在SGwU会重选的场景下无法支持数据流正确可靠的传输的问题,进而保证了业务的连续性和完整性。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是相关技术中的SAE的架构示意图;
图2是相关技术中的基于非漫游场景下GW控制面和用户面分离的架构示意图;
图3是根据本发明实施例的SGwU地址的传输方法的流程图;
图4是根据本发明优选实施例的SGwU地址的传输方法的流程图一;
图5是根据本发明优选实施例的SGwU地址的传输方法的流程图二;
图6是根据本发明优选实施例的SGwU地址的传输方法的流程图三;
图7是根据本发明优选实施例的SGwU地址的传输方法的流程图四;
图8是根据本发明优选实施例的SGwU地址的传输方法的流程图五;
图9是根据本发明优选实施例的SGwU地址的传输方法的流程图六;
图10是根据本发明优选实施例的SGwU地址的传输方法的流程图七;
图11是根据本发明优选实施例的SGwU地址的传输方法的流程图八;
图12是根据本发明优选实施例的SGwU地址的传输方法的流程图九;
图13是根据本发明优选实施例的SGwU地址的传输方法的流程图十;
图14是根据本发明优选实施例的SGwU地址的传输方法的流程图十一;
图15是根据本发明优选实施例的SGwU地址的传输方法的流程图十二;
图16是根据本发明优选实施例的SGwU地址的传输方法的流程图十三;
图17是根据本发明优选实施例的SGwU地址的传输方法的流程图十四;
图18是根据本发明实施例的SGwU地址的传输装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例可以运行于图2所示的网络架构上,如图2所示,该网络架构中,GW中的控制面和用户面分离,具体地,SGw控制面和用户面功能分离,PGw控制面和用户面分离。
在本实施例中提供了一种运行于网络架构的SGwU地址的传输方法,图3是根据本发明实施例的SGwU地址的传输方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,在用户切换或跟踪区更新时,判断服务网关控制面SGwC地址是否发生变化;
步骤S304,若判断出SGwC地址未发生变化,则判断服务网关用户面SGwU是否变化;
步骤S306,若判断出SGwU发生变化,则从SGwU列表中选择第一SGwU地址;
步骤S308,将第一SGwU地址发送给第一服务网关SGW。
通过上述步骤,由于在SGwC地址未发生变化,且SGwU发生变化时,从SGwU列表中选择第一SGwU地址,然后将第一SGwU地址发送给第一服务网关SGW,即在SGwU发生变化时选择一个新的SGwU地址发送给第一SGW,进而使得SGwU进行重传时,能够获得最终的SGwU地址,可以保证数据流进行正确上传,因此,能够解决相关技术中在SGwU会重选的场景下无法支持数据流正确可靠的传输的问题,进而保证了业务的连续性和完整性。
在本发明的一个实施例中,上述步骤S302可以表现为,取当前服务的SGwC关联的TA列表,和终端(UE)当前所在的TA比较,如果该TA列表中包含UE当前所在的TA,则SGwC地址没有改变,否则SGwC地址发生了改变;或者,根据UE当前所在的TA,去DNS服务器上解析SGwC列表,如果解析的SGwC列表包含UE当前服务的SGwC,则SGwC地址没有改变,否则,SGwC地址发生了改变。
在本发明的一个实施例中,上述步骤S304可以表现为:判断第一SGW 的当前SGwU地址是否在SGwU列表中;若当前SGwU地址在SGwU列表中,则判断出SGwU未发生变化;若当前SGwU地址不在SGwU列表中,则判断出SGwU发生变化。
需要说明的是,在判断第一SGW的当前SGwU地址是否在SGwU列表中之前,上述步骤S304还可以包括:根据终端的当前位置构造与当前位置对应的全称域名FQDN;根据FQDN解析出SGwU列表。
需要说明的是,上述当前位置可以是跟踪区TA和/或路由区RA,但并不限于此。
上述判断第一SGW的当前SGwU地址是否在SGwU列表中时,还可以包括:使用直接名称权威指针S-NAPTR查询过程,查询所述第一SGW的当前SGwU地址是否在所述SGwU列表中;其中,查询过程中的服务参数被设置为用于查找当前位置对应的SGwU地址。比如上述服务参数可以设置为“x-3gpp-sgwu:x-s4-u”。
在本发明的一个实施例中,上述步骤S306可以表现为:根据SGwU列表中各个SGwU的信息选择第一SGwU地址,其中,信息包括以下至少之一:优先级、权重。即在SGwU变化时,可以根据SGwU列表中各个SGwU的优先级、权重等信息选择上述第一SGwU地址。以优先级为例,上述选择第一SGwU地址可以为按照SGwU的优先级,选择优先级最高的SGwU对应的SGwU地址作为上述第一SGwU地址,也可以选择优先级最低的SGwU对应的SGwU地址作为上述第一SGwU地址,或者在优先级最高的SGwU对应的SGwU地址已经被选择之后,可以将优先级排名第二的SGwU对应的SGwU地址作为上述第一SGwU地址,但并不限于此。对于按照权重信息来选择第一SGwU地址的方案与优先级类似,此处不再赘述。
需要说明的是,上述选择方式可以是综合考虑优先级和权重来选择第一SGwU地址,比如,可以先按照优先级选择优先级最高的SGwU对应的SGwU地址,而选择的优先级最高的SGwU对应的SGwU地址不止一 个,可以再根据权重的大小从选择的优先级最高的SGwU对应的SGwU地址中选择出一个SGwU对应的SGwU地址作为第一SGW,但并不限于此,也可以先根据权重选择,再根据优选级选择。
在本发明的一个实施例中,在上述步骤S308之后,上述方法还可以包括:指示第一SGW建立与第一SGwU地址对应的SGwU用户面资源;指示第一SGW删除与第一SGW的当前SGwU地址对应的SGwU用户面资源。在选择了第一SGwU地址后,可以建立与第一SGwU地址对应的SGwU用户面资源,而删除与第一SGW的当前SGwU地址对应的SGwU用户面资源,即在选择了新的SGwU地址后,建立新的SGwU用户面资源,删除老的SGwU用户面资源。
在本发明的一个实施例中,在上述步骤S308之后,上述方法还可以包括:第一SGW在根据第一SGwU地址确定SGwU发生变化之后,将第一SGwU地址发送给移动管理单元MME和节点eNodeB。将第一SGwU地址发送给MME和eNodeB,可以实现数据的正确上传,保证业务的连续性和数据的完整性。
在本发明的一个实施例中,在上述步骤S302之后,上述方法还可以包括:若判断出SGwC地址发生变化,则从SGwU列表中选择第二SGwU地址;将第二SGwU地址发送给第二SGW,其中,第一SGW为改变前的SGW,第二SGW为改变后的SGW。在SGwC地址发生变化的情况下,可以从SGwU列表中选择第二SGwU地址发送给第二SGW,即在SGwC地址发生变化的情况下,重新选择一个新的SGwU地址发送给改变后的SGW。
需要说明的是,从SGwU列表中选择第二SGwU地址可以表现为:根据SGwU列表中各个SGwU的信息选择第二SGwU地址,其中,信息包括以下至少之一:优先级、权重。
需要说明的是,此处根据SGwU列表中各个SGwU的信息选择第二SGwU地址的方式,与上述根据SGwU列表中各个SGwU的信息选择第 一SGwU地址的方式类似,此处不再赘述。
在本发明的一个本实施例中,上述在将第二SGwU地址发送给第二SGW之后,上述方法还可以包括:第二SGW将第二SGwU地址发送给MME和eNodeB。通过将第二SGwU地址发送给MME和eNodeB,同样可以实现数据的正确上传,保证业务的连续性和数据的完整性。
在本发明的一个实施例中,上述方法还可以包括:在用户附着或分组数据网PDN连接建立时或在用户第一次分组数据协议PDP激活时,选择SGwC地址;根据SGwU列表中各个SGwU的信息选择第三SGwU地址,其中,信息包括以下至少之一:优先级、权重;将第三SGwU地址发送给第一SGW。需要说明的是,此处根据SGwU列表中各个SGwU的信息选择第三SGwU地址的方式,与上述根据SGwU列表中各个SGwU的信息选择第一SGwU地址的方式类似,此处不再赘述。
需要说明的是,上述方法可以由MME或服务通用无线分组业务GPRS支持节点SGSN执行,但并不限于此。
需要说明的是,上述方法可以应用于网关GW控制面和GW用户面分离,但并不限于此。
为了更好地理解本发明,以下结合优选的实施例对本发明做进一步解释。
本发明优选实施例的方法适用于GW控制面和用户面分离的场景,由MME进行SGwU地址的选择,在用户切换或跟踪区更新时,由MME根据用户当前位置判断SGwU地址是否需要改变。
对于SGW不改变的切换或跟踪区更新,主要步骤包括:
步骤1:用户切换或跟踪区更新时,MME判断SGwC地址不变化,则增加根据当前位置如TA(Tracking Area,跟踪区)判断SGwU是否变化;
步骤2:MME根据当前位置如TA,构造当前位置对应的FQDN,如TA-FQDN,解析SGwU列表,然后根据Serving SGW的SGwU地址是否在解析SGwU列表中,如果在,则SGwU不变化,如果不在,则SGwU 改变;
步骤3:如果SGwU变化,则MME根据解析SGwU列表中各个SGwU的优先级、权重等信息,选择一个SGwU地址;
步骤4:如果SGwU变化,则MME认为SGW改变,会发送消息通知SGW其SGwU变化,并把新的SGwU地址通知给SGW;
步骤5:SGW根据新的SGw-U地址信息,确定SGwU地址改变,在后续消息中,会把新的SGwU地址给MME和eNodeB;
步骤6:后续MME通知SGW删除老的资源时,携带删除老的SGwU用户面标识;
步骤7:SGW根据该删除老的SGwU用户面标识删除老的SGwU用户面资源;
进一步地,对与步骤2,根据TA-FQDN解析SGwU列表时,使用S-NAPTR查询过程,设置服务参数为标识查找SGwU,比如“x-3gpp-sgwu:x-s1-u”。
对于SGW改变的切换或跟踪区更新,主要步骤包括:
步骤1:用户切换或跟踪区更新时,MME判断SGwC地址变化;
步骤2:MME根据当前位置如TA,构造当前位置对应的FQDN,如TA-FQDN,解析SGwU列表;
步骤3:MME根据解析SGwU列表中各个SGwU的优先级、权重等信息,选择一个SGwU地址;
步骤4:MME发送创建会话请求消息给新的SGW,携带新的SGwU地址;
步骤5:SGW后续消息中,会把新的SGwU地址给MME和eNodeB。
对于用户附着或PDN连接建立,主要步骤包括:
步骤1:用户附着或PDN连接建立时,MME选择SGwC地址;
步骤2:MME根据当前位置如TA,构造当前位置对应的FQDN,如TA-FQDN,解析SGwU列表;
步骤3:MME根据解析SGwU列表中各个SGwU的优先级、权重等信息,选择一个SGwU地址;
步骤4:MME发送创建会话请求消息给SGW,携带SGwU地址。
对SGSN,主要步骤包括:
步骤1:用户切换或跟踪区更新时,SGSN判断SGwC地址不变化,则增加根据当前位置如RA(Routing Area,路由区)判断SGwU是否变化;
步骤2:SGSN根据当前位置如RA,构造当前位置对应的FQDN,如RA-FQDN,解析SGwU列表,然后根据Serving SGW的SGwU地址是否在解析SGwU列表中,如果在,则SGwU不变化,如果不在,则SGwU改变;
步骤3:如果SGwU变化,则SGSN根据解析SGwU列表中各个SGwU的优先级、权重等信息,选择一个SGwU地址;
步骤4:如果SGwU变化,则SGSN认为SGW改变,会发送消息通知SGW其SGwU变化,并把新的SGwU地址通知给SGW;
步骤5:SGW根据新的SGw-U地址信息,确定SGwU地址改变,在后续消息中,会把新的SGwU地址给SGSN;
步骤6:后续SGSN通知SGW删除老的资源时,携带删除老的SGwU用户面标识;
步骤7:SGW根据该删除老的SGwU用户面标识删除老的SGwU用户面资源;
进一步地,对与所述步骤2,根据RA-FQDN解析SGwU列表时,使用S-NAPTR查询过程,设置服务参数为标识查找SGwU,比如“x-3gpp-sgwu:x-s4-u”。
对于SGW改变的切换或路由区更新,主要步骤包括:
步骤1:用户切换或路由区更新时,SGSN判断SGwC地址变化;
步骤2:SGSN根据当前位置如RA,构造当前位置对应的FQDN,如RA-FQDN,解析SGwU列表;
步骤3:SGSN根据解析SGwU列表中各个SGwU的优先级、权重等信息,选择一个SGwU地址;
步骤4:SGSN发送创建会话请求消息给新的SGW,携带新的SGwU地址;
步骤5:SGW后续消息中,会把新的SGwU地址给SGSN和RNC。
对于UE第一次PDP激活,主要步骤包括:
步骤1:用户第一次PDP激活时,SGSN选择SGwC地址;
步骤2:SGSN根据当前位置如RA,构造当前位置对应的FQDN,如RA-FQDN,解析SGwU列表;
步骤3:SGSN根据解析SGwU列表中各个SGwU的优先级、权重等信息,选择一个SGwU地址;
步骤4:SGSN发送创建会话请求消息给SGW,携带SGwU地址。
通过上述步骤,对于包括但不限于GW控制面和用户面分离应用,采用本发明优选实施例的方法,与相关技术相比,MME/S4SGSN判断SGwC地址不变化的情况下,继续根据当前位置如TA(Tracking Area,跟踪区)/RA判断SGwU是否变化,来确定SGW是否改变,在SGwC不需要改变但SGwU会重选的场景下则实现数据的正确转发,有利于用户业务体验,提高用户感受。
图4是根据本发明优选实施例的SGwU地址的传输方法的流程图一,如图4所示,在SGwU改变的跟踪区更新过程中,上述方法包括:
步骤401,用户发起跟踪区更新消息至网络;
步骤402,移动管理实体判断SGwC地址不变化,还增加根据当前位置如TA(Tracking Area,跟踪区)判断SGwU是否变化;
步骤403,移动管理实体根据TA,构造TA-FQDN;
步骤404,移动管理实体使用S-NAPTR查询过程,使用TA-FQDN,设置服务参数为“x-3gpp-sgwu:x-s1-u”,向DNS服务器查询SGwU列表;
步骤405,DNS服务器返回SgwU列表;
步骤406,移动管理实体根据Serving SGW的SGwU地址是否在解析SGwU列表中,如果在,则SGwU不变化,如果不在,则SGwU改变;如果SGwU变化,则MME根据解析SGwU列表中各个SGwU的优先级、权重等信息,选择一个SGwU地址;
步骤407,移动管理实体向服务网关控制面SGwC发送创建会话请求消息,消息中包括新的SGwU地址;
步骤408,SGW根据新的SGwU地址判断是SGwC不改变但新的SGwU改变的跟踪区更新流程;
步骤409,SGwC根据新的SgwU地址,向新的服务网关用户面SGwU发送创建用户面请求消息;
步骤410,服务网关用户面SGwU向服务网关控制面SGwC回复创建用户面响应消息;
步骤411,服务网关控制面SGwC向分组数据网网关发送修改承载请求消息;
步骤412,分组数据网网关向服务网关控制面SGwC回复修改承载响应消息;
步骤413,服务网关控制面SGwC向移动管理实体发送创建会话响应消息;
步骤414,进行跟踪区更新的其他流程处理;
步骤415,移动管理实体向服务网关控制面SGwC发送删除会话请求消息,消息中包括删除老的SGwU用户面标识;
步骤416,服务网关控制面SGwC向老服务网关用户面SGwU发送删 除用户面请求消息;
步骤417,老服务网关用户面SGwU向服务网关控制面SGwC回复删除用户面响应消息;
步骤418,服务网关控制面SGwC向移动管理实体发送删除会话响应消息。
图5是根据本发明优选实施例的SGwU地址的传输方法的流程图二,如图5所示,在SGwU改变的切换过程中,上述方法包括:
步骤501,无线接入网元发送切换请求消息;
步骤502,移动管理实体判断SGwC地址不变化,还增加根据当前位置如TA(Tracking Area,跟踪区)判断SGwU是否变化;
步骤503,移动管理实体根据TA,构造TA-FQDN;
步骤504,移动管理实体使用S-NAPTR查询过程,使用TA-FQDN,设置服务参数为“x-3gpp-sgwu:x-s1-u”,向DNS服务器查询SGwU列表;
步骤505,DNS服务器返回SGwU列表;
步骤506,移动管理实体根据Serving SGW的SGwU地址是否在解析SGwU列表中,如果在,则SGwU不变化,如果不在,则SGwU改变;如果SGwU变化,则MME根据解析SGwU列表中各个SGwU的优先级、权重等信息,选择一个SGwU地址;
步骤507,移动管理实体向服务网关控制面SGwC发送创建会话请求消息,消息中包括新的SGwU地址;
步骤508,SGW根据新的SGwU地址判断是SGwC不改变但新的SGwU改变的跟踪区更新流程;
步骤509,SGwC根据新的SgwU地址,向新的服务网关用户面SGwU发送创建用户面请求消息;
步骤510,服务网关用户面SGwU向服务网关控制面SGwC回复创建用户面响应消息;
步骤511,服务网关控制面SGwC向分组数据网网关发送修改承载请求消息;
步骤512,分组数据网网关向服务网关控制面SGwC回复修改承载响应消息;
步骤513,服务网关控制面SGwC向移动管理实体发送创建会话响应消息;
步骤514,进行切换的其他流程处理;
步骤515,移动管理实体向服务网关控制面SGwC发送删除会话请求消息,消息中包括删除老的SGwU用户面标识;
步骤516,服务网关控制面SGwC向老服务网关用户面SGwU发送删除用户面请求消息;
步骤517,老服务网关用户面SGwU向服务网关控制面SGwC回复删除用户面响应消息;
步骤518,服务网关控制面SGwC向移动管理实体发送删除会话响应消息;
步骤519,进行切换的其他流程处理。
图6是根据本发明优选实施例的SGwU地址的传输方法的流程图三,如图6所示,在SGwU改变的路径切换过程中,上述方法包括:
步骤601,无线接入网元发送路径切换请求消息;
步骤602,移动管理实体判断SGwC地址不变化,还增加根据当前位置如TA(Tracking Area,跟踪区)判断SGwU是否变化;
步骤603,移动管理实体根据TA,构造TA-FQDN;
步骤604,移动管理实体使用S-NAPTR查询过程,使用TA-FQDN,设置服务参数为“x-3gpp-sgwu:x-s1-u”,向DNS服务器查询SGwU列表;
步骤605,DNS服务器返回SGwU列表;
步骤606,移动管理实体根据Serving SGW的SGwU地址是否在解析SGwU列表中,如果在,则SGwU不变化,如果不在,则SGwU改变;如果SGwU变化,则MME根据解析SGwU列表中各个SGwU的优先级、权重等信息,选择一个SGwU地址;
步骤607,移动管理实体向服务网关控制面SGwC发送创建会话请求消息,消息中包括新的SGwU地址;
步骤608,SGW根据新的SGwU地址判断是SGwC不改变但新的SGwU改变的跟踪区更新流程;
步骤609,SGwC根据新的SgwU地址,向新的服务网关用户面SGwU发送创建用户面请求消息;
步骤610,服务网关用户面SGwU向服务网关控制面SGwC回复创建用户面响应消息;
步骤611,服务网关控制面SGwC向分组数据网网关发送修改承载请求消息;
步骤612,分组数据网网关向服务网关控制面SGwC回复修改承载响应消息;
步骤613,服务网关控制面SGwC向移动管理实体发送创建会话响应消息;
步骤614,进行路径切换的其他流程处理;
步骤615,移动管理实体向服务网关控制面SGwC发送删除会话请求消息,消息中包括删除老的SGwU用户面标识;
步骤616,服务网关控制面SGwC向老服务网关用户面SGwU发送删除用户面请求消息;
步骤617,老服务网关用户面SGwU向服务网关控制面SGwC回复删除用户面响应消息;
步骤618,服务网关控制面SGwC向移动管理实体发送删除会话响应 消息。
图7是根据本发明优选实施例的SGwU地址的传输方法的流程图四,如图7所示,在SGwC改变的跟踪区更新过程中,上述方法包括:
步骤701,用户发起跟踪区更新消息至网络;
步骤702,移动管理实体判断SGwC地址变化;
步骤703,移动管理实体根据TA,构造TA-FQDN;
步骤704,移动管理实体使用S-NAPTR查询过程,使用TA-FQDN,设置服务参数为“x-3gpp-sgwu:x-s1-u”,向DNS服务器查询SGwU列表;
步骤705,DNS服务器返回SGwU列表;
步骤706,移动管理实体根据解析SGwU列表中各个SGwU的优先级、权重等信息,选择一个SGwU地址;
步骤707,移动管理实体向服务网关控制面SGwC发送创建会话请求消息,消息中包括新的SGwU地址;
步骤708,进行跟踪区更新的其他流程处理。
图8是根据本发明优选实施例的SGwU地址的传输方法的流程图五,如图8所示,在SGwU改变的切换过程中,上述方法包括:
步骤801,无线接入网元发送切换请求消息;
步骤802,移动管理实体判断SGwC地址变化;
步骤803,移动管理实体根据TA,构造TA-FQDN;
步骤804,移动管理实体使用S-NAPTR查询过程,使用TA-FQDN,设置服务参数为“x-3gpp-sgwu:x-s1-u”,向DNS服务器查询SGwU列表;
步骤805,DNS服务器返回SGwU列表;
步骤806,移动管理实体根据解析SGwU列表中各个SGwU的优先级、权重等信息,选择一个SGwU地址;
步骤807,移动管理实体向服务网关控制面SGwC发送创建会话请求 消息,消息中包括新的SGwU地址;
步骤808,进行切换的其他流程处理。
图9是根据本发明优选实施例的SGwU地址的传输方法的流程图六,如图9所示,在SGwU改变的路径切换过程中,上述方法包括:
步骤901,无线接入网元发送路径切换请求消息;
步骤902,移动管理实体判断SGwC地址变化;
步骤903,移动管理实体根据TA,构造TA-FQDN;
步骤904,移动管理实体使用S-NAPTR查询过程,使用TA-FQDN,设置服务参数为“x-3gpp-sgwu:x-s1-u”,向DNS服务器查询SGwU列表;
步骤905,DNS服务器返回SGwU列表;
步骤906,移动管理实体根据解析SGwU列表中各个SGwU的优先级、权重等信息,选择一个SGwU地址;
步骤907,移动管理实体向服务网关控制面SGwC发送创建会话请求消息,消息中包括新的SGwU地址;
步骤908,进行路径切换的其他流程处理。
图10是根据本发明优选实施例的SGwU地址的传输方法的流程图七,如图10所示,在PDN连接建立过程中,上述方法包括:
步骤1001,用户发起PDN连接建立请求消息至网络;
步骤1002,移动管理实体选择SGwC地址;
步骤1003,移动管理实体根据TA,构造TA-FQDN;
步骤1004,移动管理实体使用S-NAPTR查询过程,使用TA-FQDN,设置服务参数为“x-3gpp-sgwu:x-s1-u”,向DNS服务器查询SGwU列表;
步骤1005,DNS服务器返回SGwU列表;
步骤1006,移动管理实体根据解析SGwU列表中各个SGwU的优先级、权重等信息,选择一个SGwU地址;
步骤1007,移动管理实体向服务网关控制面SGwC发送创建会话请求消息,消息中包括SGwU地址;
步骤1008,进行PDN连接建立的其他流程处理。
图11是根据本发明优选实施例的SGwU地址的传输方法的流程图八,如图11所示,在SGwU改变的路由区更新过程中,上述方法包括:
步骤1101,用户发起路由区更新消息至网络;
步骤1102,SGSN判断SGwC地址不变化,还增加根据当前位置如RA判断SGwU是否变化;
步骤1103,SGSN根据RA,构造RA-FQDN;
步骤1104,SGSN使用S-NAPTR查询过程,使用RA-FQDN,设置服务参数为“x-3gpp-sgwu:x-s4-u”,向DNS服务器查询SGwU列表;
步骤1105,DNS服务器返回SGwU列表;
步骤1106,SGSN根据Serving SGW的SGwU地址是否在解析SGwU列表中,如果在,则SGwU不变化,如果不在,则SGwU改变;如果SGwU变化,则SGSN根据解析SGwU列表中各个SGwU的优先级、权重等信息,选择一个SGwU地址;
步骤1107,SGSN向服务网关控制面SGwC发送创建会话请求消息,消息中包括新的SGwU地址;
步骤1108,SGW根据新的SGwU地址判断是SGwC不改变但新的SGwU改变的跟踪区更新流程;
步骤1109,SGwC根据新的SgwU地址,向新的服务网关用户面SGwU发送创建用户面请求消息;
步骤1110,服务网关用户面SGwU向服务网关控制面SGwC回复创建用户面响应消息;
步骤1111,服务网关控制面SGwC向分组数据网网关发送修改承载请求消息;
步骤1112,分组数据网网关向服务网关控制面SGwC回复修改承载响应消息;
步骤1113,服务网关控制面SGwC向SGSN发送创建会话响应消息;
步骤1114,进行路由区更新的其他流程处理;
步骤1115,SGSN向服务网关控制面SGwC发送删除会话请求消息,消息中包括删除老的SGwU用户面标识;
步骤1116,服务网关控制面SGwC向老服务网关用户面SGwU发送删除用户面请求消息;
步骤1117,老服务网关用户面SGwU向服务网关控制面SGwC回复删除用户面响应消息;
步骤1118,服务网关控制面SGwC向SGSN发送删除会话响应消息。
图12是根据本发明优选实施例的SGwU地址的传输方法的流程图九,如图12所示,在SGwU改变的重定位过程中,上述方法包括:
步骤1201,无线接入网元发送重定位请求消息;
步骤1202,SGSN判断SGwC地址不变化,还增加根据当前位置如RA判断SGwU是否变化;
步骤1203,SGSN根据RA,构造RA-FQDN;
步骤1204,SGSN使用S-NAPTR查询过程,使用RA-FQDN,设置服务参数为“x-3gpp-sgwu:x-s4-u”,向DNS服务器查询SGwU列表;
步骤1205,DNS服务器返回SGwU列表;
步骤1206,SGSN根据Serving SGW的SGwU地址是否在解析SGwU列表中,如果在,则SGwU不变化,如果不在,则SGwU改变;如果SGwU变化,则SGSN根据解析SGwU列表中各个SGwU的优先级、权重等信息,选择一个SGwU地址;
步骤1207,SGSN向服务网关控制面SGwC发送创建会话请求消息,消息中包括新的SGwU地址;
步骤1208,SGW根据新的SGwU地址判断是SGwC不改变但新的SGwU改变的跟踪区更新流程;
步骤1209,SGwC根据新的SgwU地址,向新的服务网关用户面SGwU发送创建用户面请求消息;
步骤1210,服务网关用户面SGwU向服务网关控制面SGwC回复创建用户面响应消息;
步骤1211,服务网关控制面SGwC向分组数据网网关发送修改承载请求消息;
步骤1212,分组数据网网关向服务网关控制面SGwC回复修改承载响应消息;
步骤1213,服务网关控制面SGwC向SGSN发送创建会话响应消息;
步骤1214,进行重定位的其他流程处理;
步骤1215,SGSN向服务网关控制面SGwC发送删除会话请求消息,消息中包括删除老的SGwU用户面标识;
步骤1216,服务网关控制面SGwC向老服务网关用户面SGwU发送删除用户面请求消息;
步骤1217,老服务网关用户面SGwU向服务网关控制面SGwC回复删除用户面响应消息;
步骤1218,服务网关控制面SGwC向SGSN发送删除会话响应消息;
步骤1219,进行重定位的其他流程处理。
图13是根据本发明优选实施例的SGwU地址的传输方法的流程图十,如图13所示,在SGwU改变的增强重定位过程中,上述方法包括:
步骤1301,无线接入网元发送增强重定位请求消息;
步骤1302,SGSN判断SGwC地址不变化,还增加根据当前位置如RA判断SGwU是否变化;
步骤1303,SGSN根据RA,构造RA-FQDN;
步骤1304,SGSN使用S-NAPTR查询过程,使用RA-FQDN,设置服务参数为“x-3gpp-sgwu:x-s4-u”,向DNS服务器查询SGwU列表;
步骤1305,DNS服务器返回SGwU列表;
步骤1306,SGSN根据Serving SGW的SGwU地址是否在解析SGwU列表中,如果在,则SGwU不变化,如果不在,则SGwU改变;如果SGwU变化,则SGSN根据解析SGwU列表中各个SGwU的优先级、权重等信息,选择一个SGwU地址;
步骤1307,SGSN向服务网关控制面SGwC发送创建会话请求消息,消息中包括新的SGwU地址;
步骤1308,SGW根据新的SGwU地址判断是SGwC不改变但新的SGwU改变的跟踪区更新流程;
步骤1309,SGwC根据新的SgwU地址,向新的服务网关用户面SGwU发送创建用户面请求消息;
步骤1310,服务网关用户面SGwU向服务网关控制面SGwC回复创建用户面响应消息;
步骤1311,服务网关控制面SGwC向分组数据网网关发送修改承载请求消息;
步骤1312,分组数据网网关向服务网关控制面SGwC回复修改承载响应消息;
步骤1313,服务网关控制面SGwC向SGSN发送创建会话响应消息;
步骤1314,进行增强重定位的其他流程处理;
步骤1315,SGSN向服务网关控制面SGwC发送删除会话请求消息,消息中包括删除老的SGwU用户面标识;
步骤1316,服务网关控制面SGwC向老服务网关用户面SGwU发送删除用户面请求消息;
步骤1317,老服务网关用户面SGwU向服务网关控制面SGwC回复删除用户面响应消息;
步骤1318,服务网关控制面SGwC向SGSN发送删除会话响应消息。
图14是根据本发明优选实施例的SGwU地址的传输方法的流程图十一,如图14所示,在SGwC改变的路由区更新过程中,上述方法包括:
步骤1401,用户发起路由区更新消息至网络;
步骤1402,SGSN判断SGwC地址变化;
步骤1403,SGSN根据RA,构造RA-FQDN;
步骤1404,SGSN使用S-NAPTR查询过程,使用RA-FQDN,设置服务参数为“x-3gpp-sgwu:x-s4-u”,向DNS服务器查询SGwU列表;
步骤1405,DNS服务器返回SGwU列表;
步骤1406,SGSN根据解析SGwU列表中各个SGwU的优先级、权重等信息,选择一个SGwU地址;
步骤1407,SGSN向服务网关控制面SGwC发送创建会话请求消息,消息中包括新的SGwU地址;
步骤1408,进行路由区更新的其他流程处理。
图15是根据本发明优选实施例的SGwU地址的传输方法的流程图十二,如图15所示,在SGwU改变的重定位过程中,上述方法包括:
步骤1501,无线接入网元发送重定位请求消息;
步骤1502,SGSN判断SGwC地址变化;
步骤1503,SGSN根据RA,构造RA-FQDN;
步骤1504,SGSN使用S-NAPTR查询过程,使用RA-FQDN,设置服务参数为“x-3gpp-sgwu:x-s4-u”,向DNS服务器查询SGwU列表;
步骤1505,DNS服务器返回SGwU列表;
步骤1506,SGSN根据解析SGwU列表中各个SGwU的优先级、权 重等信息,选择一个SGwU地址;
步骤1507,SGSN向服务网关控制面SGwC发送创建会话请求消息,消息中包括新的SGwU地址;
步骤1508,进行重定位的其他流程处理。
图16是根据本发明优选实施例的SGwU地址的传输方法的流程图十三,如图16所示,在SGwU改变的增强重定位过程中,上述方法包括:
步骤1601,无线接入网元发送增强重定位请求消息;
步骤1602,SGSN判断SGwC地址变化;
步骤1603,SGSN根据RA,构造RA-FQDN;
步骤1604,SGSN使用S-NAPTR查询过程,使用RA-FQDN,设置服务参数为“x-3gpp-sgwu:x-s4-u”,向DNS服务器查询SGwU列表;
步骤1605,DNS服务器返回SGwU列表;
步骤1606,SGSN根据解析SGwU列表中各个SGwU的优先级、权重等信息,选择一个SGwU地址;
步骤1607,SGSN向服务网关控制面SGwC发送创建会话请求消息,消息中包括新的SGwU地址;
步骤1608,进行增强重定位的其他流程处理。
图17是根据本发明优选实施例的SGwU地址的传输方法的流程图十四,如图17所示,在激活UE第一个PDP过程中,上述方法包括:
步骤1701,用户发起PDP激活请求消息至网络,该PDP是UE的第一个PDP;
步骤1702,SGSN选择SGwC地址;
步骤1703,SGSN根据RA,构造RA-FQDN;
步骤1704,SGSN使用S-NAPTR查询过程,使用RA-FQDN,设置服务参数为“x-3gpp-sgwu:x-s4-u”,向DNS服务器查询SGwU列表;
步骤1705,DNS服务器返回SGwU列表;
步骤1706,SGSN根据解析SGwU列表中各个SGwU的优先级、权重等信息,选择一个SGwU地址;
步骤1707,SGSN向服务网关控制面SGwC发送创建会话请求消息,消息中包括SGwU地址;
步骤1708,进行PDP激活的其他流程处理。
通过上述方法,克服了现有技术中GW控制面和用户面分离之后,SGwC不需要改变,但SGwU会重选场景下不能支持数据流的正确可靠的传输,无法保证业务的连续性和完整性的问题,使得数据流正确可靠的传输,有利于用户业务体验,提高用户感受。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例2
在本实施例中还提供了一种SGwU地址的传输装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图18是根据本发明实施例的SGwU地址的传输装置的结构框图,如图18所示,该装置包括:
第一判断模块1802,设置为在用户切换或跟踪区更新时,判断服务网 关控制面SGwC地址是否发生变化;
第二判断模块1804,与上述第一判断模块1802,设置为若判断出SGwC地址未发生变化,则判断服务网关用户面SGwU是否变化;
第一选择模块1806,与上述第二判断模块1804连接,设置为若判断出SGwU发生变化,则从SGwU列表中选择第一SGwU地址;
第一发送模块1808,与上述第一选择模块1806连接,设置为将第一SGwU地址发送给第一服务网关SGW。
通过上述装置,由于在上述第一判断模块1802判断出SGwC地址未发生变化,且第二判断模块1804判断出SGwU发生变化时,第一选择模块1806从SGwU列表中选择第一SGwU地址,然后第一发送模块1808将第一SGwU地址发送给第一服务网关SGW,即在SGwU发生变化时选择一个新的SGwU地址发送给第一SGW,进而使得SGwU进行重传时,能够获得最终的SGwU地址,可以保证数据流进行正确上传,因此,能够解决相关技术中在SGwU会重选的场景下无法支持数据流正确可靠的传输的问题,进而保证了业务的连续性和完整性。
在本发明的一个实施例中,上述第一判断模块1802还设置为取当前服务的SGwC关联的TA列表,和终端(UE)当前所在的TA比较,如果该TA列表中包含UE当前所在的TA,则SGwC地址没有改变,否则SGwC地址发生了改变;或者,设置为根据UE当前所在的TA,去DNS服务器上解析SGwC列表,如果解析的SGwC列表包含UE当前服务的SGwC,则SGwC地址没有改变,否则,SGwC地址发生了改变。
需要说明的是,上述第二判断模块1804还设置为判断第一SGW的当前SGwU地址是否在SGwU列表中;若当前SGwU地址在SGwU列表中,则判断出SGwU未发生变化;若当前SGwU地址不在SGwU列表中,则判断出SGwU发生变化。
上述第二判断模块1804还设置为在判断第一SGW的当前SGwU地址是否在SGwU列表中之前,根据终端的当前位置构造与当前位置对应的 全称域名FQDN;根据FQDN解析出SGwU列表。
需要说明的是,上述当前位置可以是跟踪区TA和/或路由区RA,但并不限于此。
需要说明的是,上述第二判断模块1804还可以设置为使用S-NAPTR查询过程,查询所述第一SGW的当前SGwU地址是否在所述SGwU列表中;其中,查询过程中的服务参数被设置为用于查找当前位置对应的SGwU地址。比如上述服务参数可以设置为“x-3gpp-sgwu:x-s4-u”。
在本发明实施例中,上述第一选择模块1806还设置为根据SGwU列表中各个SGwU的信息选择第一SGwU地址,其中,信息包括以下至少之一:优先级、权重。
即在SGwU变化时,可以根据SGwU列表中各个SGwU的优先级、权重等信息选择上述第一SGwU地址。以优先级为例,上述选择第一SGwU地址可以为按照SGwU的优先级,选择优先级最高的SGwU对应的SGwU地址作为上述第一SGwU地址,也可以选择优先级最低的SGwU对应的SGwU地址作为上述第一SGwU地址,或者在优先级最高的SGwU对应的SGwU地址已经被选择之后,可以将优先级排名第二的SGwU对应的SGwU地址作为上述第一SGwU地址,但并不限于此。对于按照权重信息来选择第一SGwU地址的方案与优先级类似,此处不再赘述。
需要说明的是,上述选择方式可以是综合考虑优先级和权重来选择第一SGwU地址,比如,可以先按照优先级选择优先级最高的SGwU对应的SGwU地址,而选择的优先级最高的SGwU对应的SGwU地址不止一个,可以再根据权重的大小从选择的优先级最高的SGwU对应的SGwU地址中选择出一个SGwU对应的SGwU地址作为第一SGW,但并不限于此,也可以先根据权重选择,再根据优选级选择。
在本发明的一个实施例中,上述装置还可以包括:第一指示模块,与上述第一发送模块1808连接,设置为指示第一SGW建立与第一SGwU地址对应的SGwU用户面资源;第二指示模块,与上述第一发送模块1808 连接,设置为指示第一SGW删除与第一SGW的当前SGwU地址对应的SGwU用户面资源。通过上述第一指示模块和第二指示模块使得在选择了新的SGwU地址后,建立新的SGwU用户面资源,删除老的SGwU用户面资源。
在本发明的一个实施例中,上述装置还可以包括:第二发送模块,与上述第一发送模块1808连接,设置为第一SGW在根据第一SGwU地址确定SGwU发生变化之后,将第一SGwU地址发送给移动管理单元MME和节点eNodeB。将第一SGwU地址发送给MME和eNodeB,可以实现数据的正确上传,保证业务的连续性和数据的完整性。
在本发明的一个实施例中,上述装置还可以包括:第二选择模块,设置为若判断出SGwC地址发生变化,则从SGwU列表中选择第二SGwU地址;第三发送模块,设置为将第二SGwU地址发送给第二SGW,其中,第一SGW为改变前的SGW,第二SGW为改变后的SGW。在SGwC地址发生变化的情况下,上述第二选择模块重新选择一个新的SGwU地址后,第三发送模块将新的SGwU地址发送给改变后的SGW。
需要说明的是,上述第二选择模块还可以设置为根据SGwU列表中各个SGwU的信息选择第二SGwU地址,其中,信息包括以下至少之一:优先级、权重。
需要说明的是,此处根据SGwU列表中各个SGwU的信息选择第二SGwU地址的方式,与上述根据SGwU列表中各个SGwU的信息选择第一SGwU地址的方式类似,此处不再赘述。
在本发明的一个实施例中,上述装置还可以包括:第三选择模块,设置为在用户附着或分组数据网PDN连接建立时或在用户第一次分组数据协议PDP激活时,选择SGwC地址;第四选择模块,设置为根据SGwU列表中各个SGwU的信息选择第三SGwU地址,其中,信息包括以下至少之一:优先级、权重;第四发送模块,设置为将第三SGwU地址发送给第一SGW。需要说明的是,此处根据SGwU列表中各个SGwU的信息选 择第三SGwU地址的方式,与上述根据SGwU列表中各个SGwU的信息选择第一SGwU地址的方式类似,此处不再赘述。
需要说明的是,上述装置为MME或SGSN。
需要说明的是,上述装置可以应用于网关GW控制面和GW用户面分离,但并不限于此。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本发明实施例还提供了一种移动管理单元MME,包括实施例2中的SGwU地址的传输装置。
本发明实施例还提供了一种服务通用无线分组业务GPRS支持节点SGSN,包括实施例2中的SGwU地址的传输装置。
需要说明的是,对于上述SGwU地址的传输装置的解释,参考实施例2的解释,此处不再赘述。
实施例4
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行实施例1中的方法的步骤的程序代码。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行实施例1中的方法的步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式 中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
基于本发明实施例提供的上述技术方案,由于在SGwC地址未发生变化,且SGwU发生变化时,从SGwU列表中选择第一SGwU地址,然后将第一SGwU地址发送给第一服务网关SGW,即在SGwU发生变化时选择一个新的SGwU地址发送给第一SGW,进而使得SGwU进行重传时,能够获得最终的SGwU地址,可以保证数据流进行正确上传,因此,能够解决相关技术中在SGwU会重选的场景下无法支持数据流正确可靠的传输的问题,进而保证了业务的连续性和完整性。

Claims (31)

  1. 一种SGwU地址的传输方法,包括:
    在用户切换或跟踪区更新时,判断服务网关控制面SGwC地址是否发生变化;
    若判断出所述SGwC地址未发生变化,则判断服务网关用户面SGwU是否变化;
    若判断出所述SGwU发生变化,则从SGwU列表中选择第一SGwU地址;
    将所述第一SGwU地址发送给第一服务网关SGW。
  2. 根据权利要求1所述的方法,其中,所述判断SGwU是否变化包括:
    判断所述第一SGW的当前SGwU地址是否在所述SGwU列表中;
    若所述当前SGwU地址在所述SGwU列表中,则判断出所述SGwU未发生变化;若所述当前SGwU地址不在所述SGwU列表中,则判断出所述SGwU发生变化。
  3. 根据权利要求2所述的方法,其中,在判断所述第一SGW的当前SGwU地址是否在所述SGwU列表中之前,所述判断SGwU是否变化还包括:
    根据终端的当前位置构造与所述当前位置对应的全称域名FQDN;
    根据所述FQDN解析出所述SGwU列表。
  4. 根据权利要求3所述的方法,其中,所述当前位置包括:跟踪区TA和/或路由区RA。
  5. 根据权利要求3所述的方法,其中,在判断所述第一SGW的当前SGwU地址是否在所述SGwU列表中时,还包括:
    使用直接名称权威指针S-NAPTR查询过程,查询所述第一SGW 的当前SGwU地址是否在所述SGwU列表中;其中,所述查询过程中的服务参数被设置为用于查找所述当前位置对应的SGwU地址。
  6. 根据权利要求1所述的方法,其中,所述从SGwU列表中选择第一SGwU地址包括:
    根据所述SGwU列表中各个SGwU的信息选择所述第一SGwU地址,其中,所述信息包括以下至少之一:优先级、权重。
  7. 根据权利要求1所述的方法,其中,在将所述第一SGwU地址发送给第一SGW之后,还包括:
    指示所述第一SGW建立与所述第一SGwU地址对应的SGwU用户面资源;
    指示所述第一SGW删除与所述第一SGW的当前SGwU地址对应的SGwU用户面资源。
  8. 根据权利要求1所述的方法,其中,在将所述第一SGwU地址发送给第一SGW之后,还包括:
    所述第一SGW在根据所述第一SGwU地址确定所述SGwU发生变化之后,将所述第一SGwU地址发送给移动管理单元MME和节点eNodeB。
  9. 根据权利要求1所述的方法,其中,在判断SGwC地址是否发生变化之后,还包括:
    若判断出所述SGwC地址发生变化,则从所述SGwU列表中选择第二SGwU地址;
    将所述第二SGwU地址发送给第二SGW,其中,所述第一SGW为改变前的SGW,所述第二SGW为改变后的SGW。
  10. 根据权利要求9所述的方法,其中,所述从所述SGwU列表 中选择第二SGwU地址包括:
    根据所述SGwU列表中各个SGwU的信息选择所述第二SGwU地址,其中,所述信息包括以下至少之一:优先级、权重。
  11. 根据权利要求9所述的方法,其中,在将所述第二SGwU地址发送给第二SGW之后,还包括:
    所述第二SGW将所述第二SGwU地址发送给MME和eNodeB。
  12. 根据权利要求1所述的方法,其中,还包括:
    在用户附着或分组数据网PDN连接建立时或在用户第一次分组数据协议PDP激活时,选择所述SGwC地址;
    根据所述SGwU列表中各个SGwU的信息选择第三SGwU地址,其中,所述信息包括以下至少之一:优先级、权重;
    将所述第三SGwU地址发送给所述第一SGW。
  13. 根据权利要求1至12中任一项所述的方法,其中,所述方法由MME或服务通用无线分组业务GPRS支持节点SGSN执行。
  14. 根据权利要求1至12中任一项所述的方法,其中,网关GW控制面和GW用户面分离。
  15. 一种SGwU地址的传输装置,包括:
    第一判断模块,设置为在用户切换或跟踪区更新时,判断服务网关控制面SGwC地址是否发生变化;
    第二判断模块,设置为若判断出所述SGwC地址未发生变化,则判断服务网关用户面SGwU是否变化;
    第一选择模块,设置为若判断出所述SGwU发生变化,则从SGwU列表中选择第一SGwU地址;
    第一发送模块,设置为将所述第一SGwU地址发送给第一服务网 关SGW。
  16. 根据权利要求15所述的装置,其中,所述第二判断模块还设置为判断所述第一SGW的当前SGwU地址是否在所述SGwU列表中;若所述当前SGwU地址在所述SGwU列表中,则判断出所述SGwU未发生变化;若所述当前SGwU地址不在所述SGwU列表中,则判断出所述SGwU发生变化。
  17. 根据权利要求16所述的装置,其中,所述第二判断模块还设置为根据终端的当前位置构造与所述当前位置对应的全称域名FQDN;根据所述FQDN解析出所述SGwU列表。
  18. 根据权利要求17所述的装置,其中,所述当前位置包括:跟踪区TA和/或路由区RA。
  19. 根据权利要求17所述的装置,其中,所述第二判断模块还设置为使用直接名称权威指针S-NAPTR查询过程,查询所述第一SGW的当前SGwU地址是否在所述SGwU列表中;其中,所述查询过程中的服务参数被设置为用于查找所述当前位置对应的SGwU地址。
  20. 根据权利要求15所述的装置,其中,所述选择模块还设置为根据所述SGwU列表中各个SGwU的信息选择所述第一SGwU地址,其中,所述信息包括以下至少之一:优先级、权重。
  21. 根据权利要求15所述的装置,其中,所述装置还包括:
    第一指示模块,设置为指示所述第一SGW建立与所述第一SGwU地址对应的SGwU用户面资源;
    第二指示模块,设置为指示所述第一SGW删除与所述第一SGW的当前SGwU地址对应的SGwU用户面资源。
  22. 根据权利要求15所述的装置,其中,所述装置还包括:
    第二发送模块,设置为在所述第一SGW根据所述第一SGwU地址确定所述SGwU发生变化之后,将所述第一SGwU地址发送给移动管理单元MME和节点eNodeB。
  23. 根据权利要求15所述的装置,其中,所述装置还包括:
    第二选择模块,设置为若判断出所述SGwC地址发生变化,则从所述SGwU列表中选择第二SGwU地址;
    第三发送模块,设置为将所述第二SGwU地址发送给第二SGW,其中,所述第一SGW为改变前的SGW,所述第二SGW为改变后的SGW。
  24. 根据权利要求23所述的装置,其中,所述第二选择模块还设置为根据所述SGwU列表中各个SGwU的信息选择所述第二SGwU地址,其中,所述信息包括以下至少之一:优先级、权重。
  25. 根据权利要求15所述的装置,其中,所述装置还包括:
    第三选择模块,设置为在用户附着或分组数据网PDN连接建立时或在用户第一次分组数据协议PDP激活时,选择所述SGwC地址;
    第四选择模块,设置为根据所述SGwU列表中各个SGwU的信息选择第三SGwU地址,其中,所述信息包括以下至少之一:优先级、权重;
    第四发送模块,设置为将所述第三SGwU地址发送给所述第一SGW。
  26. 根据权利要求15至25中任一项所述的装置,其中,所述装置为MME或SGSN。
  27. 根据权利要求15至25中任一项所述的装置,其中,网关 GW控制面和GW用户面分离。
  28. 一种移动管理单元MME,包括:权利要求15至权利要求25中任一项所述的装置。
  29. 一种服务通用无线分组业务GPRS支持节点SGSN,包括:权利要求15至权利要求25中任一项所述的装置。
  30. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至14中任一项所述的方法。
  31. 一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至14中任一项所述的方法。
PCT/CN2017/087257 2016-06-17 2017-06-06 SGwU地址的传输方法及装置、MME、SGSN WO2017215487A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610442558.4A CN107517455A (zh) 2016-06-17 2016-06-17 SGwU地址的传输方法及装置、MME、SGSN
CN201610442558.4 2016-06-17

Publications (1)

Publication Number Publication Date
WO2017215487A1 true WO2017215487A1 (zh) 2017-12-21

Family

ID=60662976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087257 WO2017215487A1 (zh) 2016-06-17 2017-06-06 SGwU地址的传输方法及装置、MME、SGSN

Country Status (2)

Country Link
CN (1) CN107517455A (zh)
WO (1) WO2017215487A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111836357A (zh) * 2019-04-17 2020-10-27 华为技术有限公司 通信方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11165681B2 (en) * 2019-09-27 2021-11-02 Juniper Networks, Inc. Inter-autonomous system trace route message

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011006322A1 (zh) * 2009-07-16 2011-01-20 中兴通讯股份有限公司 一种确定网元间拓扑关系的方法及系统
CN102137487A (zh) * 2010-12-31 2011-07-27 华为技术有限公司 一种选择服务网关实体的方法及设备
CN102170667A (zh) * 2010-02-25 2011-08-31 中兴通讯股份有限公司 一种实现基站间切换的方法、系统及基站装置
US20120040662A1 (en) * 2010-08-12 2012-02-16 At&T Intellectual Property I, L.P. Redirecting handovers in lte networks
CN103428792A (zh) * 2013-08-22 2013-12-04 大唐移动通信设备有限公司 一种跨sgw切换方法及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011006322A1 (zh) * 2009-07-16 2011-01-20 中兴通讯股份有限公司 一种确定网元间拓扑关系的方法及系统
CN102170667A (zh) * 2010-02-25 2011-08-31 中兴通讯股份有限公司 一种实现基站间切换的方法、系统及基站装置
US20120040662A1 (en) * 2010-08-12 2012-02-16 At&T Intellectual Property I, L.P. Redirecting handovers in lte networks
CN102137487A (zh) * 2010-12-31 2011-07-27 华为技术有限公司 一种选择服务网关实体的方法及设备
CN103428792A (zh) * 2013-08-22 2013-12-04 大唐移动通信设备有限公司 一种跨sgw切换方法及设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111836357A (zh) * 2019-04-17 2020-10-27 华为技术有限公司 通信方法及装置
CN111836357B (zh) * 2019-04-17 2022-08-26 华为技术有限公司 通信方法及装置

Also Published As

Publication number Publication date
CN107517455A (zh) 2017-12-26

Similar Documents

Publication Publication Date Title
US11405851B2 (en) Closed access group overload and congestion control
US9307388B2 (en) Method and apparatus for supporting user equipment mobility in a wireless communication system
JP5853112B2 (ja) 無線通信システムにおいて音声サービス支援方法及び装置
CN113785634A (zh) 通过无线网络进行无线设备寻呼
EP2449811B1 (en) Service continuity during outbound handover from a home network base station with local internet protocol access
US20110116469A1 (en) Local internet protocol access/selected internet protocol traffic offload packet encapsulation to support seamless mobility
EP2259657B1 (en) Method for indicating the bearer management of a serving gateway
WO2009094916A1 (fr) Procédé, système et dispositif de commande pour redémarrage après défaillance dans le domaine circuit
WO2015062098A1 (zh) 一种网络选择方法及核心网设备
WO2017162121A1 (zh) 用户面服务网关选择方法及系统
WO2008113235A1 (fr) Procédé pour éviter la libération erronée de ressources pendant une mise à jour de zone de suivi ou un transfert intercellulaire
WO2016180018A1 (zh) 一种接入方法及相应的接入节点、终端和通信网络
WO2018059401A1 (zh) 网络切换方法、装置及系统,网络接入方法及装置
WO2016180113A1 (zh) WiFi语音业务发起的方法、LTE通信设备、终端及通信系统
CN114009108A (zh) Ran寻呼处理
CN113676983A (zh) 通信系统
WO2012152130A1 (zh) 承载处理方法及装置
WO2016165307A1 (zh) 决策服务质量QoS的方法、网络侧网元及系统
CN107404715B (zh) 位置信息提供方法及装置
WO2011026391A1 (zh) 服务网关的负载重分配方法、系统及服务网关
JP2022520568A (ja) 接続確立のための方法および装置
WO2017215487A1 (zh) SGwU地址的传输方法及装置、MME、SGSN
WO2015117490A1 (zh) 承载的建立方法及装置
WO2018170740A1 (zh) 一种寻呼方法及装置
WO2020173146A1 (zh) 一种切换处理的方法、相关设备、程序产品以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17812598

Country of ref document: EP

Kind code of ref document: A1