WO2019196217A1 - 用于核电站构件放射性去污的复合激光去污装置及方法 - Google Patents

用于核电站构件放射性去污的复合激光去污装置及方法 Download PDF

Info

Publication number
WO2019196217A1
WO2019196217A1 PCT/CN2018/095091 CN2018095091W WO2019196217A1 WO 2019196217 A1 WO2019196217 A1 WO 2019196217A1 CN 2018095091 W CN2018095091 W CN 2018095091W WO 2019196217 A1 WO2019196217 A1 WO 2019196217A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
decontamination
module
decontaminated
nuclear power
Prior art date
Application number
PCT/CN2018/095091
Other languages
English (en)
French (fr)
Inventor
魏少翀
陈国星
吴树辉
马学英
陆海峰
潘晨阳
黄骞
王博
尹嵩
覃恩伟
叶林
刘艺武
史一岭
Original Assignee
苏州热工研究院有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州热工研究院有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 苏州热工研究院有限公司
Publication of WO2019196217A1 publication Critical patent/WO2019196217A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • G21F9/005Decontamination of the surface of objects by ablation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/041Analysing solids on the surface of the material, e.g. using Lamb, Rayleigh or shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/32Processing by incineration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils

Definitions

  • the invention relates to the field of radioactive decontamination in the nuclear industry, and in particular to a composite laser decontamination apparatus and method for radioactive decontamination of nuclear power plant components.
  • the corrosion products of the structural materials and the primary coolant are activated by neutrons to form radioactive materials that are transported, distributed, and deposited on the surfaces of the pipelines, valves, and pumps of the system.
  • the accumulation of these radioactive materials is increasing, resulting in an increase in the radiation field of the system and an increase in the radiation dose of workers. Therefore, it is necessary to carry out radioactive decontamination on a regular or irregular basis to ensure the safe operation of the power station and reduce the collective radiation dose of the operating personnel.
  • laser decontamination is generally used, but a single laser decontamination technique is adopted, and the same laser is used for decontamination treatment on the body of the component to be decontaminated and the body, and it is difficult to achieve the desired decontamination effect.
  • the present invention provides a composite laser decontamination apparatus comprising at least two laser emitting modules, a beam shaping module corresponding to the laser emitting modules, and a laser shaping module, the laser emitting module transmitting The laser enters the corresponding beam shaping module for beam shaping, and then enters the laser shaping module for laser shaping, and finally outputs to the surface of the nuclear power station component to be decontaminated;
  • the laser beams emitted by the respective laser emitting modules have different pulse widths, and the corresponding laser emitting modules are determined to be turned on according to the surface attachment conditions of the substrate to be decontaminated.
  • the device further includes a signal acquisition and detection system, wherein the signal acquisition and detection system is configured to detect a surface attachment condition of the to-be-decontaminated base layer, and the surface attachment state of the to-be-decontaminated base layer includes whether the surface is attached with radioactivity. substance.
  • the device further includes a controller, the signal acquisition detection system is connected to an input end of the controller, and an output end of the controller is connected to the laser emitting module, and the controller is configured according to the signal acquisition detection system.
  • the detection result controls the operation of the corresponding laser emitting module.
  • the at least two laser emitting modules are integrated in the same laser emitter or are disposed on different laser emitters.
  • the apparatus further includes a laser selective output mirror that reflects laser light output by the different beam shaping modules to an input end of the laser shaping module according to a change in the rotation angle.
  • the laser emitting module includes a nanosecond laser and a picosecond laser
  • the beam shaping module includes a first beam shaping module and a second beam shaping module, and the transmitting end of the nanosecond laser and the first beam shaping
  • the input ends of the modules are oppositely disposed, and the transmitting end of the picosecond laser is disposed opposite to the input end of the second beam shaping module.
  • the signal acquisition detection system includes an acoustic wave detecting unit, a visual analysis unit, and/or a LIBS laser induced breakdown spectroscopy detecting unit.
  • the nanosecond laser and the picosecond laser are coaxially disposed, and the laser selective output mirror is disposed between the first beam shaping module and the second beam shaping module.
  • the apparatus further includes a rotating electrical machine for driving the laser selective output mirror to rotate to a first position or a second position, and the laser selective output mirror rotated to the first position a laser outputted by a beam shaping module is reflected to an input end of the laser shaping module; a laser selective output mirror rotated to a second position reflects laser light output by the second beam shaping module to an input end of the laser shaping module
  • the laser shaping module is a two-dimensional galvanometer.
  • the laser emitting module includes a first laser emitting module, a second laser emitting module, and a third laser emitting module, wherein a pulse width of the laser emitted by the second laser emitting module is greater than a laser emitted by the first laser emitting module The pulse width, the pulse width of the laser light emitted by the third laser emitting module is greater than the pulse width of the laser light emitted by the second laser emitting module.
  • the present invention provides a composite laser decontamination method for radioactive decontamination of nuclear power plant components, utilizing the composite laser decontamination apparatus as described above, comprising the steps of:
  • the decontamination method comprises the following steps:
  • the laser emitted by the nanosecond laser passes through the first beam shaping module and the laser shaping module to reach the surface of the substrate to be decontaminated and decontaminate the deposit and/or the oxide layer.
  • the laser light emitted by the picosecond laser passes through the second beam shaping module and the laser shaping module, reaches the surface of the substrate to be decontaminated, and ablate and decontaminate the body to be decontaminated;
  • the decontamination method further includes pre-establishing an analysis database, wherein the analysis database stores a corresponding matching relationship between the detection result of the signal acquisition detection system and the laser emission module.
  • the S11 further includes:
  • the surface attachment condition of the decontamination base layer is detected by selecting one or more of the sound wave detecting unit, the visual analysis unit, and/or the LIBS laser induced breakdown spectroscopy detecting unit according to the decontamination condition.
  • one or a combination of the acoustic wave detecting unit, the visual analysis unit and the LIBS laser induced breakdown spectroscopy detecting unit is selected, and the surface of the decontaminating base layer is accurately detected to lay a foundation for matching the corresponding laser emitting module;
  • the composite laser is used to decontaminate the components, and different laser emission modules are used for different decontamination objects to improve the decontamination effect.
  • FIG. 1 is a schematic structural view of a composite laser decontamination apparatus according to an embodiment of the present invention
  • FIG. 2 is a flow chart of a method for decontamination of a composite laser decontamination apparatus according to an embodiment of the present invention
  • FIG. 3 is a flow chart of a method for performing composite laser decontamination of a decommissioning member according to an embodiment of the present invention
  • FIG. 4 is a flow chart of a method for decontaminating an in-service component according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a LIBS laser induced breakdown spectroscopy detecting unit according to an embodiment of the present invention
  • FIG. 6 is a schematic view showing a state of laser decontamination of a radioactive element according to an embodiment of the present invention.
  • FIG. 7 is a schematic view showing an initial state of decontamination and decontamination of iron oxides according to an embodiment of the present invention.
  • Figure 8 is a spectrum detection result corresponding to the state of Figure 7;
  • FIG. 9 is a schematic view showing a completed state of decontamination and decontamination of iron oxides according to an embodiment of the present invention.
  • Fig. 10 is a result of spectrum detection corresponding to the state of Fig. 9.
  • the reference numerals are: 1-to be decontaminated base layer, 2-laser shaping module, 3-signal acquisition detection system, 4-laser selective output mirror, 51-nanosecond laser, 52-picosecond laser, 61- Beam shaping module, 62-second beam shaping module, 71-power supply, 72-digital pulse timing synchronizer, 73-processor, 74-CCD detector, 75-grating, 76-light collector, 81-stainless steel area , 82-iron oxide region.
  • a composite laser decontamination apparatus including a first laser emitting module, a second laser emitting module, and a beam shaping module corresponding to the laser emitting module (including a first beam)
  • the shaping module 61 and the second beam shaping module 62 ), and a laser shaping module 2.
  • the laser emission mode has the following two types: First, the laser light emitted by the first laser emitting module enters the first beam shaping module 61 for beam shaping (the shaping process from the laser spot to the laser line), and then enters the laser shaping module.
  • the laser light emitted by the second laser emitting module enters the second beam shaping module 62 for light beam Shaping (from the laser spot to the shaping process of the laser line), then entering the laser shaping module 2 for laser shaping (shaping from the laser line to the laser surface), and finally outputting to the surface of the nuclear power station component to be decontaminated base layer 1,
  • the pulse width of the laser emitted by the first laser emitting module and the second laser emitting module is different.
  • the first laser emitting module is a nanosecond laser 51
  • the second laser emitting module is The picosecond laser 52 determines to turn on the corresponding nanosecond laser 51 or the picosecond laser 5 according to the surface attachment condition of the substrate to be decontaminated 1 2.
  • Nanosecond laser decontamination and picosecond laser decontamination have their own advantages and disadvantages.
  • the mature nanosecond laser for laser decontamination can achieve 500-1000W at present, high efficiency, and can be widely used for the surface attachment of radioactive components. Stained, but the surface of the activated stainless steel substrate can not be effectively removed, the control precision is limited; the picosecond laser used for laser decontamination can achieve 30-100W at present, ultra-short pulse, small heat effect, precise control, and The single pulse energy is high, and the high-speed galvanometer is used for multi-pulse ablation at the same position to ablate and remove the stainless steel base layer. Through process control (including control of power, pulse width, repetitive frequency, sweep frequency, etc.
  • the thickness of the stainless steel base layer can be precisely controlled.
  • the nanosecond laser 51 or the picosecond laser 52 is turned on, depending on whether there is an attachment on the surface of the substrate 1 to be decontaminated: if present, the nanosecond laser 51 is turned on, and the plasma blasting vibration and photoablation principle are used to make The deposit quickly peels off the base layer 1 to be decontaminated to achieve non-destructive cleaning and decontamination of the substrate 1 to be decontaminated; if there is no deposit, and the base layer 1 to be decontaminated is a decommissioning member (the nuclear decommissioning component, not only the surface attached) At the object, a part of the surface of the substrate is also activated.
  • the composite laser decontamination apparatus in the embodiment of the present invention further includes a signal.
  • the detection and detection system 3 is used to detect the surface attachment condition of the substrate 1 to be decontaminated.
  • the signal acquisition detection system 3 comprises an acoustic wave detection unit, a visual analysis unit and/or a LIBS laser induced breakdown spectroscopy detection unit.
  • the sound wave detecting unit emits sound waves to the substrate to be decontaminated by the sound wave emitting device, and the sound waves are reflected on the surface of the substrate to be decontaminated and received by the sound wave receiving device, according to the time difference between the sound wave emission time and the sound wave receiving time, and the sound wave propagation.
  • Speed the distance between the acoustic wave detecting unit and the to-be-decontaminated base layer 1 can be calculated, and the calculated value of the distance is compared with the preset distance value. If the calculated value is less than the preset value, the detection result is the to be decontaminated There is an attachment on the surface of the base layer 1 (the presence of the attachment shortens the distance value), otherwise the detection result is that there is no attachment on the surface of the substrate 1 to be decontaminated;
  • the visual analysis unit uses image processing and analysis techniques to analyze the surface of the substrate to be decontaminated 1 from the characteristics of shape, particle size and color, respectively, to determine whether there is an attachment;
  • the LIBS laser induced breakdown spectroscopy detection unit forms a plasma by focusing the surface of the sample by ultrashort pulse laser, and analyzes the plasma emission spectrum by using a spectrometer to identify the surface element composition, if it is different from the base layer to be decontaminated 1
  • the element is composed, and the detection result is that there is an attachment on the surface of the substrate 1 to be decontaminated.
  • the LIBS laser induced breakdown spectrum detecting unit includes a light collector 76, a grating 75, a CCD detector 74, and processing.
  • a digital pulse timing synchronizer 72 wherein the laser emitting module emits laser light to the surface of the substrate to be decontaminated under the power supply of the power source 71, and the light collector 76 collects and marks the substrate to be decontaminated
  • the reflected light at the laser spot on 1 is passed through the grating 75 and sent to the CCD detector 74, which sends the detection result to the processor 73 for processing, wherein the digital pulse timing Synchronizer 72 is used for laser pulse synchronization.
  • the laser emitter demineralizes the oxide region 82 of the iron until the stainless steel region 81 is exposed. Detection and control during the decontamination process Referring to Figures 7-10, the iron oxide region 82 is laser-destroyed. Stain, there is a strong oxygen atom emission line in the emission spectrum, see Figure 8, as the oxide region 82 of the iron is decontaminated, as shown in Figure 9, the corresponding spectral detection results, the emission of oxygen atoms in the emission spectrum The line strength drops sharply below a preset threshold, see the horizontal dashed line in Figure 10, indicating that the oxide decontamination of iron in this region meets the specified requirements.
  • the signal acquisition and detection system 3 can be modularly integrated by one or more units of the above-mentioned acoustic wave detecting unit, visual analysis unit and LIBS laser induced breakdown spectroscopy detecting unit, and can be selected according to different decontamination conditions. Suitable detection units are used in combination.
  • the composite laser decontamination device further includes a controller, and the signal collecting and detecting system 3 is connected to the input end of the controller.
  • the output end of the controller is connected to the laser emitting module, and the controller controls the corresponding laser emitting module to operate according to the detection result of the signal acquisition detecting system 3.
  • the two laser emitting modules are integrated on the same laser emitter, that is, the laser can be tuned.
  • the two laser emitting modules are disposed on different laser emitters, as shown in FIG. 1, the emitting end of the nanosecond laser 51 and the first beam shaping module
  • the input ends of 61 are oppositely disposed, and the transmitting end of the picosecond laser 52 is disposed opposite to the input end of the second beam shaping module 62.
  • the apparatus further includes a laser selective output mirror 4 that reflects laser light output by the different beam shaping modules to the input of the laser shaping module 2 in response to changes in the angle of rotation.
  • the nanosecond laser 51 and the picosecond laser 52 are disposed coaxially opposite each other, and the laser selective output mirror 4 is disposed between the first beam shaping module 61 and the second beam shaping module 62.
  • the laser selective output mirror 4 is preferably driven to rotate to a first position or a second position by a rotating electrical machine, and the laser selective output mirror 4 rotated to the first position outputs the output of the first beam shaping module 61
  • the laser light is reflected to the input end of the laser shaping module 2; the laser selective output mirror 4 rotated to the second position reflects the laser light output by the second beam shaping module 62 to the input end of the laser shaping module 2,
  • the laser shaping module 2 is preferably a two-dimensional galvanometer.
  • the simple transformation made on the basis of the technical solution of the present invention should also fall within the protection scope required by the present invention, for example, changing the number of laser emitting modules from two to three: including the first laser emission. a module, a second laser emitting module, and a third laser emitting module, wherein a pulse width of the laser light emitted by the second laser emitting module is greater than a pulse width of the laser light emitted by the first laser emitting module, and the laser light emitted by the third laser emitting module The pulse width is greater than the pulse width of the laser light emitted by the second laser emitting module.
  • a nanosecond laser is simply replaced with a picosecond laser with a pulse width of 999 picoseconds, or a picosecond laser is simply replaced with a nanosecond laser with a pulse width of 1 nanosecond.
  • a tunable laser shift adjustment or stepless adjustment
  • a decontamination method of a composite laser decontamination apparatus is provided.
  • the integrated method includes the following steps:
  • the laser emitting module having a longer pulse width is matched; if there is no attached object, the laser emitting module having a shorter pulse width is matched according to whether it is a decommissioning member.
  • one or more of the sound wave detecting unit, the visual analysis unit, and/or the LIBS laser induced breakdown spectroscopy detecting unit in the signal acquisition detecting system may be selected according to the decontamination working condition, and the surface attachment state of the decontamination base layer is performed. Detection.
  • the surface of the decontamination substrate is scanned for decontamination using a matched laser emitting module.
  • the peeled deposits are removed from the surface of the substrate to be decontaminated, and then S11 is performed, and the surface of the decontamination base layer is again detected. Decontamination is completed until the attachment and radioactive material are removed.
  • the decontamination method further comprises:
  • a composite laser decontamination method for a decommissioning member is provided. Referring to Figure 3, the method includes the following steps:
  • the laser emitted by the nanosecond laser passes through the first beam shaping module and the laser shaping module to reach the surface of the substrate to be decontaminated and decontaminate the deposit and/or the oxide layer.
  • the laser light emitted by the picosecond laser passes through the second beam shaping module and the laser shaping module, reaches the surface of the substrate to be decontaminated, and ablate and decontaminate the body to be decontaminated;
  • the embodiment of the present invention provides a decontamination method for the in-service component.
  • the method includes the following steps:
  • the laser beam emitted by the nanosecond laser passes through the first beam shaping module and the laser shaping module to reach the surface of the substrate to be decontaminated and decontaminate the deposit and/or the oxide layer.
  • the invention proposes a new composite laser decontamination solution for decontamination of nuclear power plants, and selects a corresponding laser emission module according to the actual situation of the surface to be decontaminated to improve the decontamination effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Prevention Of Fouling (AREA)

Abstract

一种用于核电站构件放射性去污的复合激光去污装置及方法,所述复合激光去污装置包括至少两个激光发射模块(51,52)、与所述激光发射模块(51,52)一一对应的光束整形模块(61,62),以及一激光整形模块(2),所述激光发射模块(51,52)发射的激光进入对应的光束整形模块(61,62)进行光束整形,再进入所述激光整形模块(2)进行激光整形,最后输出至核电站构件的待去污基层(1)的表面;各个激光发射模块(51,52)发射的激光的脉冲宽度不同,根据所述待去污基层(1)的表面附着物状况确定开启相应的激光发射模块(51,52)。这种针对核电站的全新的复合激光去污解决方案,根据实际待去污表面的情况选择开启相应的激光发射模块(51,52)。

Description

用于核电站构件放射性去污的复合激光去污装置及方法 技术领域
本发明涉及核工业放射性去污领域,尤其涉及一种用于核电站构件放射性去污的复合激光去污装置及方法。
背景技术
核电站在运行过程中,结构材料的腐蚀产物和一回路冷却剂受中子活化形成放射性物质,传送、分配、沉积在系统的管道、阀门和水泵的表面。随着核电站服役时间的增长,这些放射性物质积累日益增多,导致系统辐射场增强,工作人员受辐照剂量增加。因此,需要定期或不定期进行放射性去污,保障电站安全运行,并降低运行人员集体辐射剂量。随着国内核电站大规模建设及运行,亟需进行放射性去污的部件将越来越多。
技术问题
现有技术中一般采用激光去污,但是采用的是单一激光去污技术,对于待去污部件本体及本体上的附着物采用相同的激光器进行去污处理,难以达到理想的去污效果。
技术解决方案
鉴于以上内容,有必要提供一种用于核电站构件放射性去污的复合激光去污装置及方法,技术方案如下:
一方面,本发明提供了一种复合激光去污装置,包括至少两个激光发射模块、与所述激光发射模块一一对应的光束整形模块,以及一激光整形模块,所述激光发射模块发射的激光进入对应的光束整形模块进行光束整形,再进入所述激光整形模块进行激光整形,最后输出至核电站构件的待去污基层的表面;
各个激光发射模块发射的激光的脉冲宽度不同,根据所述待去污基层的表面附着物状况确定开启相应的激光发射模块。
进一步地,所述装置还包括信号采集检测系统,所述信号采集检测系统用于检测所述待去污基层的表面附着物状况,所述待去污基层的表面附着物状况包括表面是否附着放射性物质。
进一步地,所述装置还包括控制器,所述信号采集检测系统与控制器的输入端连接,所述控制器的输出端与激光发射模块连接,所述控制器根据所述信号采集检测系统的检测结果,控制相应的激光发射模块工作。
进一步地,所述至少两个激光发射模块集成于同一个激光发射器或者被设置在不同的激光发射器上。
进一步地,所述装置还包括激光选择输出反射镜,所述激光选择输出反射镜根据旋转角度的变化将不同的光束整形模块输出的激光反射至所述激光整形模块的输入端。
进一步地,所述激光发射模块包括纳秒激光器和皮秒激光器,所述光束整形模块包括第一光束整形模块和第二光束整形模块,所述纳秒激光器的发射端与所述第一光束整形模块的输入端相对设置,所述皮秒激光器的发射端与所述第二光束整形模块的输入端相对设置。
进一步地,所述信号采集检测系统包括声波检测单元、视觉分析单元和/或LIBS激光诱导击穿光谱检测单元。
进一步地,所述纳秒激光器和皮秒激光器同轴相对设置,所述激光选择输出反射镜设置在所述第一光束整形模块与第二光束整形模块之间。
进一步地,所述装置还包括旋转电机,所述旋转电机用于驱动所述激光选择输出反射镜旋转至第一位置或第二位置,旋转至第一位置的激光选择输出反射镜将所述第一光束整形模块输出的激光反射至所述激光整形模块的输入端;旋转至第二位置的激光选择输出反射镜将所述第二光束整形模块输出的激光反射至所述激光整形模块的输入端,所述激光整形模块为二维振镜。
进一步地,所述激光发射模块包括第一激光发射模块、第二激光发射模块和第三激光发射模块,所述第二激光发射模块发射的激光的脉冲宽度大于第一激光发射模块发射的激光的脉冲宽度,所述第三激光发射模块发射的激光的脉冲宽度大于第二激光发射模块发射的激光的脉冲宽度。
另一方面,本发明提供了一种用于核电站构件放射性去污的复合激光去污方法,利用如上所述的复合激光去污装置,包括以下步骤:
S11、检测待去污基层的表面附着物状况,并匹配与其对应的激光发射模块;
S12、打开并移动所述对应的激光发射模块,使所述激光发射模块对所述待去污基层的表面进行激光去污;
S13、重复执行S11,直至所述待去污基层完成去污。
进一步地,所述去污方法包括以下步骤:
S21、利用信号采集检测系统对待去污基层的表面进行附着物状况检测;
S22、若检测到待去污基层的表面存在附着物和/或氧化层,则执行S23-S25,否则执行S26-S28;
S23、控制纳秒激光器打开;
S24、所述纳秒激光器发射的激光依次经过第一光束整形模块、激光整形模块后,到达所述待去污基层的表面并对所述附着物和/或氧化层进行去污;
S25、移动所述纳秒激光器,使激光扫描所述待去污基层的表面后,重复执行S21;
S26、控制皮秒激光器打开;
S27、所述皮秒激光器发射的激光依次经过第二光束整形模块、激光整形模块后,到达所述待去污基层的表面并对所述待去污基层本体进行烧蚀去污;
S28、移动所述皮秒激光器,使激光扫描所述待去污基层的表面。
进一步地,所述去污方法还包括预建立分析数据库,所述分析数据库中存储有信号采集检测系统的检测结果与激光发射模块的对应匹配关系。
进一步地,所述S11进一步包括:
根据去污工况选用声波检测单元、视觉分析单元和/或LIBS激光诱导击穿光谱检测单元中的一种或者多种,对待去污基层的表面附着物状况进行检测。
有益效果
本发明具有下列优点:
a. 根据工况,选择声波检测单元、视觉分析单元和LIBS激光诱导击穿光谱检测单元中的一种或组合使用,对待去污基层表面进行精准检测,为匹配相应的激光发射模块奠定基础;
采用复合激光对构件进行去污,针对不同的去污对象,采用不同的激光发射模块,提高去污效果。
附图说明
图1是本发明实施例提供的复合激光去污装置的结构示意图;
图2是本发明实施例提供的复合激光去污装置的去污综合方法流程图;
图3是本发明实施例提供的对退役构件进行复合激光去污方法的流程图;
图4是本发明实施例提供的对在役构件进行去污的方法流程图;
图5是本发明实施例提供的LIBS激光诱导击穿光谱检测单元的结构示意图;
图6是本发明实施例提供的对放射性元素进行激光去污的状态示意图;
图7是本发明实施例提供的的对铁的氧化物去污去污初始状态示意图;
图8是图7状态对应的光谱检测结果;
图9是本发明实施例提供的对铁的氧化物去污去污的完成状态示意图;
图10是图9状态对应的光谱检测结果。
其中,附图标记为:1-待去污基层,2-激光整形模块,3-信号采集检测系统,4-激光选择输出反射镜,51-纳秒激光器,52-皮秒激光器,61-第一光束整形模块,62-第二光束整形模块,71-电源,72-数字脉冲时序同步器,73-处理器,74-CCD探测器,75-光栅,76-光收集器,81-不锈钢区域,82-铁的氧化物区域。
本发明的实施方式
以下结合说明书附图及具体实施例进一步说明本发明的技术方案。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
在本发明的一个实施例中,提供了一种复合激光去污装置,包括第一激光发射模块、第二激光发射模块、与所述激光发射模块一一对应的光束整形模块(包括第一光束整形模块61和第二光束整形模块62),以及一激光整形模块2。所述激光发射模式有以下两种:其一、第一激光发射模块发射的激光进入第一光束整形模块61进行光束整形(由激光点到激光线的整形处理),再进入所述激光整形模块2进行激光整形(由激光线到激光面的整形处理),最后输出至核电站构件的待去污基层1的表面;其二、第二激光发射模块发射的激光进入第二光束整形模块62进行光束整形(由激光点到激光线的整形处理),再进入所述激光整形模块2进行激光整形(由激光线到激光面的整形处理),最后输出至核电站构件的待去污基层1的表面,其中,第一激光发射模块与第二激光发射模块发射的激光的脉冲宽度不同,在一个优选的实施例中,所述第一激光发射模块为纳秒激光器51,所述第二激光发射模块为皮秒激光器52,根据所述待去污基层1的表面附着物状况确定开启相应纳秒激光器51或皮秒激光器52。
纳秒激光去污和皮秒激光去污各有优缺点,成熟的用于激光去污的纳秒激光器目前最大可以做到500-1000W,效率高,可广泛用于放射性构件表面附着物的去污,但无法对已经活化的不锈钢基材表面进行有效去除,控制精度有限;用于激光去污的皮秒激光器目前最大可以做到30-100W,超短脉冲,热影响小,控制精确,同时单脉冲能量较高,同一位置利用高速振镜进行多脉冲烧蚀可以对不锈钢基层进行烧蚀去除。通过工艺控制(包括功率、脉宽、重频、扫描频率等的控制和时间控制),可以精确控制不锈钢基层去除厚度。具体开启纳秒激光器51还是皮秒激光器52,根据待去污基层1的表面是否存在附着物而定:若存在,则开启纳秒激光器51,利用等离子体爆破振动及光致烧蚀原理,使附着物快速剥离所述待去污基层1,实现对待去污基层1的无损清洗去污;若不存在附着物,且该待去污基层1为退役构件(核电退役部件,不仅仅是表面附着物,基材表层也有一部分被活化,因为退役不用,需要最大限度降低放射性剂量),因此使用纳秒激光对表面附着物进行去污后,还需要再使用皮秒激光去污工艺,(主要利用其烧蚀作用)对基材进行去污,将基材表面一层直接去除。
为了检测所述待去污基层1的表面附着物状况,即检测所述待去污基层1的表面附着物状况包括表面是否附着放射性物质,本发明实施例中的复合激光去污装置还包括信号采集检测系统3,所述信号采集检测系统3用于检测所述待去污基层1的表面附着物状况。在激光去污过程中,有各种信号产生,包括声信号、光信号、电信号、磁信号、光谱信息,利用各种相应的传感器如:麦克风、LIBS等光谱仪、激光测距仪、电磁探头、机器视觉等,我们可以实时的捕捉到这些信号,分析信号的强度,波长和频谱与激光去污过程的联系,建立起实时反馈控制系统,实现在线检测、矫正、控制,以实现最优激光去污的效果。在一个优选的实施例中,所述信号采集检测系统3包括声波检测单元、视觉分析单元和/或LIBS激光诱导击穿光谱检测单元。以下分别对各单元的工作过程及工作原理作出详细介绍:
声波检测单元,利用声波发射装置向待去污基层1发射声波,声波在待去污基层1表面发生反射而被声波接收装置接收,根据声波发射时间与声波接收时间之间的时间差,以及声波传播速度,可以计算声波检测单元与待去污基层1之间的距离,将此距离的计算值与预设的距离值比较,若计算值小于预设值,则检测结果即为所述待去污基层1表面上存在附着物(附着物的存在会缩短距离值),否则检测结果为所述待去污基层1表面上不存在附着物;
视觉分析单元,利用图像处理与分析技术,分别从形状、颗粒大小及颜色等特征,分析待去污基层1的表面成像,判断是否存在附着物;
LIBS激光诱导击穿光谱检测单元,通过超短脉冲激光聚焦样品表面形成等离子体,利用光谱仪对等离子体发射光谱进行分析,以此来识别表层元素组成成分,如果识别出异于待去污基层1的元素组成,则检测结果为所述待去污基层1表面上存在附着物,参见图5,所述LIBS激光诱导击穿光谱检测单元包括光收集器76、光栅75、CCD探测器74、处理器73、数字脉冲时序同步器72,所述激光发射模块在电源71的供电作用下,向所述待去污基层1表面发射激光,所述光收集器76收集打在所述待去污基层1上的激光点处的反射光,并将收集的光通过光栅75后发送至CCD探测器74,所述CCD探测器74将探测结果发送至处理器73进行处理,其中,所述数字脉冲时序同步器72用于激光脉冲同步,下面以对铁的氧化物进行激光去污为例作出说明:
参见图6,激光发射器对铁的氧化物区域82进行激光去污,直至露出不锈钢区域81,去污过程中的检测及控制参见图7-图10,对铁的氧化物区域82进行激光去污使,发射光谱中有较强的氧原子发射线,参见图8,随着铁的氧化物区域82被去污,如图9所示,对应的光谱检测结果中,发射光谱中氧原子发射线强度急剧降低,直至低于预设的阈值,参见图10中的水平虚线,则表明该区域的铁的氧化物去污达到指定要求。
需要说明的是,所述信号采集检测系统3可以由上述声波检测单元、视觉分析单元和LIBS激光诱导击穿光谱检测单元中的一个或多个单元模块化集成,可以根据不同去污工况选用合适的检测单元或者组合使用。
进一步地,为了实现根据信号采集检测系统3的检测结果对激光发射模块进行自动控制,所述复合激光去污装置还包括控制器,所述信号采集检测系统3与控制器的输入端连接,所述控制器的输出端与激光发射模块连接,所述控制器根据所述信号采集检测系统3的检测结果,控制相应的激光发射模块工作。
在本发明的一个实施例中,所述两个激光发射模块集成于同一个激光发射器上,即可调激光器。
在本发明的另一个实施例中,所述两个激光发射模块被设置在不同的激光发射器上,如图1所示,所述纳秒激光器51的发射端与所述第一光束整形模块61的输入端相对设置,所述皮秒激光器52的发射端与所述第二光束整形模块62的输入端相对设置。所述装置还包括激光选择输出反射镜4,所述激光选择输出反射镜4根据旋转角度的变化将不同的光束整形模块输出的激光反射至所述激光整形模块2的输入端。优选地,所述纳秒激光器51和皮秒激光器52同轴相对设置,所述激光选择输出反射镜4设置在所述第一光束整形模块61与第二光束整形模块62之间。
进一步地,所述激光选择输出反射镜4优选通过旋转电机来驱动旋转至第一位置或第二位置,旋转至第一位置的激光选择输出反射镜4将所述第一光束整形模块61输出的激光反射至所述激光整形模块2的输入端;旋转至第二位置的激光选择输出反射镜4将所述第二光束整形模块62输出的激光反射至所述激光整形模块2的输入端,所述激光整形模块2优选为二维振镜。
需要说明的是,在本发明技术方案的基础上做出的简单变换应当同样落入本发明要求的保护范围,比如,将激光发射模块的数量由两个改为三个:包括第一激光发射模块、第二激光发射模块和第三激光发射模块,所述第二激光发射模块发射的激光的脉冲宽度大于第一激光发射模块发射的激光的脉冲宽度,所述第三激光发射模块发射的激光的脉冲宽度大于第二激光发射模块发射的激光的脉冲宽度。再比如,将纳秒激光器简单置换为脉冲宽度为999皮秒的皮秒激光器,或者将皮秒激光器简单置换为脉冲宽度为1纳秒的纳秒激光器。又或者,采用可调激光器(分档调节或无级调节)在激光去污过程中逐步调节激光脉冲宽度变小等等,都是在本发明的技术方案的基础上做出的简单改变,不需要付出创造性的劳动,都应当属于本发明要求的保护范围。
实施例2
在本发明的一个实施例中,提供了一种复合激光去污装置的去污方法,参见图2,综合方法包括以下步骤:
S11、检测待去污基层的表面附着物状况,并匹配与其对应的激光发射模块。
具体地,若检测到待去污基层的表面存在附着物,则匹配脉冲宽度较长的激光发射模块;若无附着物,则根据是否是退役构件,则匹配脉冲宽度较短的激光发射模块。
具体可根据去污工况选用信号采集检测系统中的声波检测单元、视觉分析单元和/或LIBS激光诱导击穿光谱检测单元中的一种或者多种,对待去污基层的表面附着物状况进行检测。
S12、打开并移动所述对应的激光发射模块,使所述激光发射模块对所述待去污基层的表面进行激光去污。
具体地,采用匹配的激光发射模块对待去污基层的表面进行扫描去污。
S13、重复执行S11,直至所述待去污基层完成去污。
具体地,完成扫描后将剥离的附着物从所述待去污基层的表面清除,然后再执行S11,再次对待去污基层的表面进行检测。直至附着物及放射性物质被去除,则完成去污。
优选地,所述去污方法还包括:
S10、预建立分析数据库,所述分析数据库中存储有信号采集检测系统的检测结果与激光发射模块的对应匹配关系。
在一个具体的方法实施例中,提供了一种对退役构件的复合激光去污方法,参见图3,所述方法包括以下步骤:
S21、利用信号采集检测系统对待去污基层的表面进行附着物状况检测;
S22、若检测到待去污基层的表面存在附着物和/或氧化层,则执行S23-S25,否则执行S26-S28;
S23、控制纳秒激光器打开;
S24、所述纳秒激光器发射的激光依次经过第一光束整形模块、激光整形模块后,到达所述待去污基层的表面并对所述附着物和/或氧化层进行去污;
S25、移动所述纳秒激光器,使激光扫描所述待去污基层的表面后,重复执行S21;
S26、控制皮秒激光器打开;
S27、所述皮秒激光器发射的激光依次经过第二光束整形模块、激光整形模块后,到达所述待去污基层的表面并对所述待去污基层本体进行烧蚀去污;
S28、移动所述皮秒激光器,使激光扫描所述待去污基层的表面,以对所述待去污基层的表面进行烧蚀去污。
针对在役构件,本发明实施例提供了一种对在役构件的去污方法,参见图4,所述方法包括以下步骤:
S31、利用信号采集检测系统对待去污基层的表面进行附着物状况检测;
S32、若检测到待去污基层的表面存在附着物和/或氧化层,则执行S33-S35,否则执行S36;
S33、控制纳秒激光器打开;
S34、所述纳秒激光器发射的激光依次经过第一光束整形模块、激光整形模块后,到达所述待去污基层的表面并对所述附着物和/或氧化层进行去污;
S35、移动所述纳秒激光器,使激光扫描所述待去污基层的表面后,重复执行S31;
S36、关闭纳秒激光器,完成在役构件去污。
本发明针对核电站去污提出了一种全新的复合激光去污解决方案,根据实际待去污表面的情况选择开启相应的激光发射模块,改善去污效果。
以上所述仅为本发明的优选实施例,并非因此限制其专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (14)

  1. 一种用于核电站构件放射性去污的复合激光去污装置,其特征在于,包括至少两个激光发射模块、与所述激光发射模块一一对应的光束整形模块,以及一激光整形模块(2),所述激光发射模块发射的激光进入对应的光束整形模块进行光束整形,再进入所述激光整形模块(2)进行激光整形,最后输出至核电站构件的待去污基层(1)的表面;
    各个激光发射模块发射的激光的脉冲宽度不同,根据所述待去污基层(1)的表面附着物状况确定开启相应的激光发射模块。。
  2. 根据权利要求1所述的用于核电站构件放射性去污的复合激光去污装置,其特征在于,所述装置还包括信号采集检测系统(3),所述信号采集检测系统(3)用于检测所述待去污基层(1)的表面附着物状况,所述待去污基层(1)的表面附着物状况包括表面是否附着放射性物质。
  3. 根据权利要求2所述的用于核电站构件放射性去污的复合激光去污装置,其特征在于,所述装置还包括控制器,所述信号采集检测系统(3)与控制器的输入端连接,所述控制器的输出端与激光发射模块连接,所述控制器根据所述信号采集检测系统(3)的检测结果,控制相应的激光发射模块工作。。
  4. 根据权利要求1所述的用于核电站构件放射性去污的复合激光去污装置,其特征在于,所述至少两个激光发射模块集成于同一个激光发射器或者被设置在不同的激光发射器上。
  5. 根据权利要求2所述的用于核电站构件放射性去污的复合激光去污装置,其特征在于,所述装置还包括激光选择输出反射镜(4),所述激光选择输出反射镜(4)根据旋转角度的变化将不同的光束整形模块输出的激光反射至所述激光整形模块(2)的输入端。
  6. 根据权利要求5所述的用于核电站构件放射性去污的复合激光去污装置,其特征在于,所述激光发射模块包括纳秒激光器(51)和皮秒激光器(52),所述光束整形模块包括第一光束整形模块(61)和第二光束整形模块(62),所述纳秒激光器(51)的发射端与所述第一光束整形模块(61)的输入端相对设置,所述皮秒激光器(52)的发射端与所述第二光束整形模块(62)的输入端相对设置。
  7. 根据权利要求2所述的用于核电站构件放射性去污的复合激光去污装置,其特征在于,所述信号采集检测系统(3)包括声波检测单元、视觉分析单元和/或LIBS激光诱导击穿光谱检测单元。
  8. 根据权利要求6所述的用于核电站构件放射性去污的复合激光去污装置,其特征在于,所述纳秒激光器(51)和皮秒激光器(52)同轴相对设置,所述激光选择输出反射镜(4)设置在所述第一光束整形模块(61)与第二光束整形模块(62)之间。
  9. 根据权利要求6所述的用于核电站构件放射性去污的复合激光去污装置,其特征在于,所述装置还包括旋转电机,所述旋转电机用于驱动所述激光选择输出反射镜(4)旋转至第一位置或第二位置,旋转至第一位置的激光选择输出反射镜(4)将所述第一光束整形模块(61)输出的激光反射至所述激光整形模块(2)的输入端;旋转至第二位置的激光选择输出反射镜(4)将所述第二光束整形模块(62)输出的激光反射至所述激光整形模块(2)的输入端,所述激光整形模块(2)为二维振镜。
  10. 根据权利要求1所述的用于核电站构件放射性去污的复合激光去污装置,其特征在于,所述激光发射模块包括第一激光发射模块、第二激光发射模块和第三激光发射模块,所述第二激光发射模块发射的激光的脉冲宽度大于第一激光发射模块发射的激光的脉冲宽度,所述第三激光发射模块发射的激光的脉冲宽度大于第二激光发射模块发射的激光的脉冲宽度。
  11. 一种用于核电站构件放射性去污的复合激光去污方法,其特征在于,利用如权利要求1-10中任意一项所述的复合激光去污装置,包括以下步骤:
    S11、检测待去污基层的表面附着物状况,并匹配与其对应的激光发射模块;
    S12、打开并移动所述对应的激光发射模块,使所述激光发射模块对所述待去污基层的表面进行激光去污;
    S13、重复执行S11,直至所述待去污基层完成去污。
  12. 根据权利要求11所述的用于核电站构件放射性去污的复合激光去污方法,其特征在于,利用如权利要求6所述的复合激光去污装置,其特征在于,包括以下步骤:
    S21、利用信号采集检测系统对待去污基层的表面进行附着物状况检测;
    S22、若检测到待去污基层的表面存在附着物和/或氧化层,则执行S23-S25,否则执行S26-S28;
    S23、控制纳秒激光器打开;
    S24、所述纳秒激光器发射的激光依次经过第一光束整形模块、激光整形模块后,到达所述待去污基层的表面并对所述附着物和/或氧化层进行去污;
    S25、移动所述纳秒激光器,使激光扫描所述待去污基层的表面后,重复执行S21;
    S26、控制皮秒激光器打开;
    S27、所述皮秒激光器发射的激光依次经过第二光束整形模块、激光整形模块后,到达所述待去污基层的表面并对所述待去污基层本体进行烧蚀去污;
    S28、移动所述皮秒激光器,使激光扫描所述待去污基层的表面。
  13. 根据权利要求11所述的用于核电站构件放射性去污的复合激光去污方法,其特征在于,还包括预建立分析数据库,所述分析数据库中存储有信号采集检测系统的检测结果与激光发射模块的对应匹配关系。
  14. 根据权利要求11所述的用于核电站构件放射性去污的复合激光去污方法,其特征在于,利用如权利要求7所述的复合激光去污装置,其特征在于,所述S11进一步包括:
    根据去污工况选用声波检测单元、视觉分析单元和/或LIBS激光诱导击穿光谱检测单元中的一种或者多种,对待去污基层的表面附着物状况进行检测。
PCT/CN2018/095091 2018-04-10 2018-07-10 用于核电站构件放射性去污的复合激光去污装置及方法 WO2019196217A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810315736.6A CN108597638B (zh) 2018-04-10 2018-04-10 用于核电站构件放射性去污的复合激光去污装置及方法
CN201810315736.6 2018-04-10

Publications (1)

Publication Number Publication Date
WO2019196217A1 true WO2019196217A1 (zh) 2019-10-17

Family

ID=63621365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095091 WO2019196217A1 (zh) 2018-04-10 2018-07-10 用于核电站构件放射性去污的复合激光去污装置及方法

Country Status (4)

Country Link
CN (1) CN108597638B (zh)
AR (1) AR114759A1 (zh)
GB (1) GB2572833B (zh)
WO (1) WO2019196217A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030466A (zh) * 2018-09-30 2018-12-18 清华大学 一种基于光束整形的激光击穿光谱测量系统
CN112331377B (zh) * 2020-09-16 2024-01-02 中广核研究院有限公司 基于libs的自动化放射性核素去除方法
CN112382428B (zh) * 2020-11-03 2021-07-20 苏州热工研究院有限公司 用于放射性去污的复合式纳秒激光去污装置及去污方法
CN112845392A (zh) * 2021-04-02 2021-05-28 西南交通大学 核设施表面污染金属部件精准无损激光去污方法
CN113533304B (zh) * 2021-07-06 2023-03-17 长江大学 一种判断激光除垢效果的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1817549A (zh) * 2006-03-23 2006-08-16 北京工业大学 便携式激光清洗系统
US20100269851A1 (en) * 2009-04-28 2010-10-28 Eisuke Minehara Nuclear decontamination device and a method of decontaminating radioactive materials
CN201776251U (zh) * 2010-09-07 2011-03-30 上海天影激光科技有限公司 用于带电清洗的激光清洗机
CN105251736A (zh) * 2015-11-11 2016-01-20 苏州热工研究院有限公司 核电站激光去污系统配套用吸尘回收装置
CN106391591A (zh) * 2016-11-29 2017-02-15 苏州热工研究院有限公司 激光工作头及激光清洗系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1004453B (el) * 2002-03-01 2004-02-17 Ιδρυμαατεχνολογιασακαιαερευνασα}Ι@Τ@Ε@Bαα Μεθοδοσακαιασυστημααγιαατονακαθαρισμοαεπιφανειωναμεατηασυγχρονηαχρησηαπαλμωναlaserαδυοαδιαφορετικωναμηκωνακυματος
JP2010044030A (ja) * 2008-08-18 2010-02-25 Fujitsu Ltd レーザクリーニング装置およびレーザクリーニング方法
CN102709801B (zh) * 2012-06-04 2013-09-04 中国科学院半导体研究所 一种同时输出纳秒和皮秒脉冲的激光器
US9435742B2 (en) * 2013-01-21 2016-09-06 Sciaps, Inc. Automated plasma cleaning system
CN103736693B (zh) * 2014-01-10 2016-08-17 苏州热工研究院有限公司 一种用于核电站放射性污染去污的激光清洁系统
CN205236562U (zh) * 2015-11-27 2016-05-18 武汉市凯瑞迪激光技术有限公司 固体脉冲激光清洗装置
CN106513380B (zh) * 2016-10-27 2019-09-17 苏州菲镭泰克激光技术有限公司 多孔网状结构物体的激光清洗装置及方法
CN106807693A (zh) * 2017-02-14 2017-06-09 南通大学 一种激光清理供电系统绝缘子的方法及设备
CN206701862U (zh) * 2017-05-11 2017-12-05 苏州热工研究院有限公司 激光去污在线校正辅助装置及激光去污装置
CN107597737A (zh) * 2017-10-26 2018-01-19 张家港清研再制造产业研究院有限公司 一种激光清洗过程实时监测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1817549A (zh) * 2006-03-23 2006-08-16 北京工业大学 便携式激光清洗系统
US20100269851A1 (en) * 2009-04-28 2010-10-28 Eisuke Minehara Nuclear decontamination device and a method of decontaminating radioactive materials
CN201776251U (zh) * 2010-09-07 2011-03-30 上海天影激光科技有限公司 用于带电清洗的激光清洗机
CN105251736A (zh) * 2015-11-11 2016-01-20 苏州热工研究院有限公司 核电站激光去污系统配套用吸尘回收装置
CN106391591A (zh) * 2016-11-29 2017-02-15 苏州热工研究院有限公司 激光工作头及激光清洗系统

Also Published As

Publication number Publication date
CN108597638B (zh) 2020-07-07
AR114759A1 (es) 2020-10-14
CN108597638A (zh) 2018-09-28
GB2572833B (en) 2021-07-14
GB201813254D0 (en) 2018-09-26
GB2572833A (en) 2019-10-16

Similar Documents

Publication Publication Date Title
WO2019196217A1 (zh) 用于核电站构件放射性去污的复合激光去污装置及方法
JP5610356B2 (ja) レーザー除染装置
CN109269986B (zh) 相控阵激光超声检测系统
Zhang et al. Coaxial monitoring of the fibre laser lap welding of Zn-coated steel sheets using an auxiliary illuminant
CA1198482A (en) Laser decontamination method
JP3461948B2 (ja) 水中レーザ加工方法
US20040102764A1 (en) Laser ablation
CN105195468B (zh) 一种在线清洗和检测聚变装置第一镜的方法与装置
CN110116117A (zh) 一种激光复合清洗系统及方法
JP5127445B2 (ja) レーザ原子プローブ
CN109041393B (zh) 一种超快硬x射线源的产生装置及方法
CN108723615A (zh) 基于激光脉冲重叠率控制的微孔激光加工方法及系统
JP2002057143A (ja) 浮遊異物検出装置
EP1589335A2 (en) System and method to enable eye-safe laser ultrasound detection
JP2008502104A (ja) レーザ原子プロービング方法
CN106770311A (zh) 一种晶体激光预处理与点对点损伤测试装置及测试方法
Schmidt-Uhlig et al. New simplified coupling scheme for the delivery of 20 MW Nd: YAG laser pulses by large core optical fibers
CN112276344B (zh) 一种超快激光切割透明材料的焦点定位方法
CN112845387B (zh) 一种超薄网格薄膜用激光清洗装置及薄膜用激光清洗方法
JP2011058937A (ja) 構造物内部状態計測システム及び構造物内部状態計測方法
CN110434124A (zh) 一种铝合金无损探伤液干式激光清洗装置及方法
WO2018185973A1 (ja) レーザ加工監視方法及びレーザ加工監視装置
US6696692B1 (en) Process control methods for use with e-beam fabrication technology
Nomura et al. In-situ detection of weld defect during the welding process by laser ultrasonic technique
CN109799191B (zh) 固体材料粗糙表面声扰动的光学非接触检测装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914358

Country of ref document: EP

Kind code of ref document: A1