WO2019194540A1 - 복합 rf 주파수를 사용하는 플라즈마 건식 세정 장치 - Google Patents

복합 rf 주파수를 사용하는 플라즈마 건식 세정 장치 Download PDF

Info

Publication number
WO2019194540A1
WO2019194540A1 PCT/KR2019/003879 KR2019003879W WO2019194540A1 WO 2019194540 A1 WO2019194540 A1 WO 2019194540A1 KR 2019003879 W KR2019003879 W KR 2019003879W WO 2019194540 A1 WO2019194540 A1 WO 2019194540A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
plasma
complex
gas
power
Prior art date
Application number
PCT/KR2019/003879
Other languages
English (en)
French (fr)
Inventor
임두호
박재양
이길광
Original Assignee
무진전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 무진전자 주식회사 filed Critical 무진전자 주식회사
Publication of WO2019194540A1 publication Critical patent/WO2019194540A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32422Arrangement for selecting ions or species in the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like

Definitions

  • the present invention relates to a plasma dry cleaning apparatus using a complex RF frequency. More specifically, the present invention provides a complex RF frequency that allows a plasma having a high density and uniform distribution to generate a uniform dispersion when generating ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ) on a substrate. It relates to a plasma dry cleaning device to be used.
  • a complex RF frequency that allows a plasma having a high density and uniform distribution to generate a uniform dispersion when generating ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ) on a substrate. It relates to a plasma dry cleaning device to be used.
  • plasma dry cleaning utilizes plasma to activate the reactants to clean objects such as substrates using chemical or physical reactions of the reactants and the substrate.
  • This dry cleaning has the advantage of having a high aspect ratio and having a low temperature process, while removing the damaging layer due to the ion bombardment incident on the substrate. There is a problem that subsequent processes are required to do so.
  • the dielectrics are reacted with gas (Gas) or radicals to produce ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ), which is then heated and removed. Dry Clean technology is spreading.
  • FIG. 1 is a diagram showing a plasma density generated inside a chamber when using a high frequency of 13.56 MHz or more according to the prior art.
  • the current flows to a lower resistance where the current flows to the center portion where the lowest resistance is formed inside the chamber. Therefore, since the plasma density is relatively higher at the center portion than at both edge portions, there is a problem in that the plasma density is generally nonuniform.
  • FIG 2 is a view showing the plasma density generated inside the chamber when using a low frequency of 400KHz according to the prior art.
  • the present invention provides a plasma dry method using a complex RF frequency that can produce a uniform dispersion when a plasma having a high density and a uniform distribution is generated to form ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ) on a substrate. It is a technical subject to provide a washing
  • Plasma dry cleaning apparatus using a complex RF frequency for solving this technical problem is provided in the lower end of the chamber chuck (chuck) is disposed on the substrate is formed one or more of silicon, silicon oxide, silicon nitride And an RF electrode part provided at an upper end of the chamber, the RF electrode part including an upper RF electrode disposed above the plasma generation area and a lower RF electrode disposed below the plasma generation area, and a first RF frequency in the RF electrode part.
  • An RF power supply unit supplying a first RF power source having a second RF power having a second RF frequency higher than the first RF frequency, wherein the range of the first RF frequency is 300 KHz or more and 4 MHz or less; The frequency range is 10 MHz or more and 41 MHz or less.
  • Plasma dry cleaning apparatus using a complex RF frequency further comprises an ion suppression plate installed in the lower portion of the plasma generation region to pass the reactive active species supplied to the substrate and suppresses the ion (Ion) It features.
  • the first RF frequency of the first RF power source is a fixed frequency
  • the second RF frequency of the second RF power source is characterized in that the variable frequency.
  • the second RF power is supplied first, and the first RF power is characterized in that the supply after the supply time of the second RF power.
  • the time difference between the supply time of the first RF power supply and the supply time of the second RF power is characterized in that less than 3 seconds.
  • the first matcher for matching the impedance of the first RF power supply is a fixed matching method
  • the second matcher for matching the impedance of the second RF power supply is It is characterized by a variable matching method.
  • a first gas is supplied to the plasma generation region to generate the reactive active species, and a second gas is supplied to the substrate without passing through the plasma generation region. It is characterized by.
  • the second gas is characterized in that it is supplied to the lower portion of the ion suppression plate.
  • the first gas is a fluorine-containing gas
  • the second gas is a hydrogen-containing gas
  • a plasma having a high density and a uniform distribution is generated to use a complex RF frequency to ensure uniform dispersion in generating ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ) on a substrate.
  • ammonium hexafluorosilicate (NH 4 ) 2 SiF 6 )
  • FIG. 1 is a diagram showing a plasma density generated inside a chamber when using a high frequency of 13.56 MHz or more according to the related art.
  • FIG. 2 is a view showing the plasma density generated inside the chamber when using a low frequency of 400KHz according to the prior art
  • FIG. 3 is a view showing a plasma dry cleaning apparatus using a complex RF frequency according to an embodiment of the present invention
  • FIG. 4 is a diagram illustrating a combination of a first RF power source having a first RF frequency, a second RF power source having a second RF frequency, a first RF power source, and a second RF power source such that the frequency is modulated;
  • FIG. 5 is a diagram illustrating generation of a plasma having a high density and a uniform distribution according to an embodiment of the present invention.
  • first or second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another, for example without departing from the scope of the rights according to the inventive concept, and the first component may be called a second component and similarly the second component. The component may also be referred to as the first component.
  • Plasma is formed using 13 MHz, which is a relatively high frequency of plasma discharge, and a low plasma resistance of 4 k ⁇ or less is formed inside the chamber.
  • a low plasma resistance of 4 k ⁇ or less is formed inside the chamber.
  • FIG. 3 is a view showing a plasma dry cleaning apparatus using a complex RF frequency according to an embodiment of the present invention
  • Figure 4 is a first RF power source having a first RF frequency
  • FIG. 5 is a view illustrating conceptual waveforms of a frequency modulated RF power source by combining a second RF power source having a second RF frequency, a first RF power source, and a second RF power source
  • a plasma dry cleaning apparatus using a complex RF frequency includes a chamber 10, a chuck 20, a chuck heating unit 30, and an RF electrode unit 50. ), An RF power supply unit 60 and an ion suppression plate 80.
  • FIG. 3 In addition to the components disclosed in FIG. 3, other components may be included in an embodiment of the present disclosure, but components having low relevance to the features of the present disclosure are omitted from FIG. 3.
  • the substrate 40 may have a silicon material, and silicon oxide or silicon nitride is formed on the substrate 40.
  • the chamber 10 provides a space in which the substrate 40 is disposed to perform a whole process of highly selective removing at least one of silicon oxide and silicon nitride through a plasma treatment for dry cleaning.
  • the chuck 20 is provided at the lower end of the chamber 10 and is a component in which the substrate 40 on which one or more of silicon, silicon oxide, and silicon nitride are formed is disposed.
  • the chuck heating unit 30 is a component that heats the chuck 20.
  • the RF electrode unit 50 is provided at the upper end of the chamber 10 and may include an upper RF electrode 51 and a lower RF electrode 52.
  • the upper RF electrode 51 is disposed above the plasma generation region, and the lower RF electrode 52 is disposed below the plasma generation region. That is, the plasma generation region is located in the space between the upper RF electrode 51 and the lower RF electrode 52.
  • a reaction region separate from the plasma generation region is positioned between the lower RF electrode 52 and the chuck 20 on which the substrate 40 is disposed.
  • the plasma generated in the plasma generation region by the power supplied to the upper RF electrode 51 and the lower RF electrode 52 that is, the first RF power supply 61 and the second RF power supply 62. Is supplied to the substrate 40 disposed in the chuck 20 positioned in the reaction region through the lower RF electrode 52 to perform a reaction for cleaning.
  • the RF power supply unit 60 supplies a first RF power supply 61 having a first RF frequency and a second RF power supply 62 having a second RF frequency higher than the first RF frequency to the RF electrode unit 50.
  • the range of the first RF frequency is 300 KHz or more and 4 MHz or less, and the range of the second RF frequency is 10 MHz or more and 41 MHz or less.
  • the first RF frequency of the first RF power source 61 may be a fixed frequency
  • the second RF frequency of the second RF power source 62 may be a variable frequency
  • the second RF power supply 62 may be supplied first, and the first RF power supply 61 may be supplied after a supply time point of the second RF power supply 62.
  • a time difference between a supply time of the first RF power supply 61 and a supply time of the second RF power supply 62 may be 0.1 second or more and 3 seconds or less.
  • the first matcher 71 matching the impedance of the first RF power supply 61 is a fixed matching method
  • the second matcher 72 matching the impedance of the second RF power supply 62 is variable. It may be a matching type matcher.
  • a plasma is formed by applying a second RF power source 62 having a second RF frequency at which the plasma discharge is relatively high.
  • Plasma resistance is formed.
  • the first RF power supply 61 having the first RF frequency which is a low frequency
  • plasma ignition by the already formed low resistance loop circuit is stabilized in a short time.
  • high frequency is synthesized at a low frequency as shown in FIG.
  • first RF frequency eg, 400 KHz
  • second RF frequency Eg, 13.56 MHz
  • the second RF power supply 62 having a high frequency is supplied to the chamber 10.
  • the reason for supplying the high frequency power first is that the ionization, excitation, and gas decomposition are increased with increasing frequency, which leads to stable plasma. This is because it becomes a condition that can maintain, and in particular, the higher the plasma density, the lower the electrical resistance. When the electrical resistance is lowered from several mega ohms to several ohms, plasma discharge easily occurs, and thus, even when the first RF power supply 61 having a low frequency is applied to the chamber 10, the discharge can be easily generated.
  • the first matching unit 71 that matches the impedance of the first RF power supply 61 having a relatively low frequency first RF frequency to 50 ohms is a method of lowering the manufacturing cost by implementing a fixed matching method rather than an automatic matching method.
  • the change in impedance is low frequency, so there is no big change, so the fixed matching method is sufficient.
  • the fixed matcher may be used after fixing the position of the fixed matcher in the region where the plasma discharge is most stabilized in a preset manner.
  • the second matcher 72 matching the impedance of the second RF power supply 62 uses the variable matching type automatic matching device to continuously follow the impedance value at the time of the generation of plasma to find and change the region with low reflected wave.
  • the method of applying an automatic matcher is advantageous for process stabilization.
  • the ion suppression plate 80 may be disposed under the plasma generation region, for example, under the lower RF electrode 52 to allow the reactive active species supplied to the substrate 40 to pass through, and to suppress ions. .
  • the temperature of the chuck 20 is controlled at 20 degrees-120 degrees
  • the shower head into which the gases are injected is heated to 100 degrees-200 degrees to prevent particle adsorption and generation
  • the inner wall of the chamber 10 is 80 degrees. Can be heated to 100 degrees.
  • the first gas is supplied to the plasma generation region to generate reactive active species by the first RF power supply 61 and the second RF power supply 62, and the second gas does not pass through the plasma generation region.
  • 40 may be supplied to the second gas, and the second gas may be supplied to the lower portion of the ion filter 80 installed under the plasma generation region.
  • the first gas may be a fluorine-containing gas
  • the second gas may be a hydrogen-containing gas
  • the first gas may include a fluorine-containing gas such as NF 3 and an inert gas such as N 2 , Ar, or He, but is not limited thereto.
  • the second gas may be H 2 or a hydrogen containing gas such as NH 3 or H 2 O, but is not limited thereto.
  • the plasma having a high density and uniform distribution generates a complex RF frequency that can ensure uniform dispersion when generating ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ) on the substrate.
  • ammonium hexafluorosilicate (NH 4 ) 2 SiF 6 ) on the substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)

Abstract

본 발명은 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치에 관한 것이다. 본 발명은 챔버의 하단부에 구비되며 실리콘, 실리콘 산화물, 실리콘 질화물 중에서 하나 이상이 형성되어 있는 기판이 배치되는 척(chuck), 상기 챔버의 상단부에 구비되며, 플라즈마 생성영역의 상부에 배치된 상부 RF 전극과 상기 플라즈마 생성영역의 하부에 배치된 하부 RF 전극을 포함하는 RF 전극부 및 상기 RF 전극부에 제1 RF 주파수를 갖는 제1 RF 전원과 상기 제1 RF 주파수보다 높은 제2 RF 주파수를 갖는 제2 RF 전원을 공급하는 RF 전원부를 포함하고, 상기 제1 RF 주파수의 범위는 300KHz 이상 4MHz 이하이고, 상기 제2 RF 주파수의 범위는 10MHz 이상 41MHz 이하이다. 본 발명에 따르면, 본 발명에 따르면, 높은 밀도와 균일한 분포도를 갖는 플라즈마가 생성하여 기판에 헥사플루오르규산암모늄((NH4)2SiF6)을 생성시에 균일한 산포를 확보할 수 있다.

Description

복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치
본 발명은 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치에 관한 것이다. 보다 구체적으로, 본 발명은 높은 밀도와 균일한 분포도를 갖는 플라즈마가 생성하여 기판에 헥사플루오르규산암모늄((NH4)2SiF6)을 생성시에 균일한 산포를 확보할 수 있는 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치에 관한 것이다.
건식 세정 공정 중에, 플라즈마(plasma) 건식 세정법은 플라즈마를 이용하여 반응물을 활성화시켜, 반응물과 기판의 화학적 또는 물리적 반응을 이용하여 기판 등과 같은 대상물을 세정한다. 이런 건식 세정은 고 선택비(High Aspect Ratio)를 가지고 저온 공정이 유리하다는 장점이 있는 반면, 기판에 입사되는 이온 충돌(Ion Bombardment)로 인하여, 손상층(Damage layer)이 생성되기 때문에, 이를 제거하기 위한 후속 공정들이 필요하다는 문제가 있다.
최근 들어, 이러한 문제점을 해결하기 위한 대체 기술로, 유전체들을 가스(Gas) 또는 라디칼(Radical)과 반응시켜 헥사플루오르규산암모늄((NH4)2SiF6)을 생성시킨 후, 이를 가열하여 제거하는 건식 세정(Dry Clean) 기술이 확산되고 있다.
이때 제거하려는 유전체들이 가스 또는 라디칼과 반응하여 헥사플루오르규산암모늄((NH4)2SiF6)을 생성시킬 때 전체적으로 균일한 두께로 생성시켜야 할 필요가 있다.
도 1은 종래 기술에 따라 13.56MHz 이상의 높은 주파수 사용시에 챔버 내부에 발생하는 플라즈마 밀도(plasma density)를 나타낸 도면이다.
도 1을 참조하면, 높은 주파수를 사용하면 전류는 저항이 낮은 곳으로 흐르기 때문에 챔버 내부의 가장 낮은 저항이 형성되는 센터(center) 부분으로의 전류 흐름이 높다. 따라서 플라즈마 밀도는 양측 가장자리 부분에 비하여 센터 부분에서 상대적으로 높아지기 때문에, 플라즈마 밀도가 전체적으로 불균일해지는 문제점이 발생한다.
도 2는 종래 기술에 따라 400KHz의 낮은 주파수 사용시에 챔버 내부에 발생하는 플라즈마 밀도를 나타낸 도면이다.
도 2를 참조하면, 전체적인 플라즈마 밀도의 균일도를 위해 낮은 주파수를 적용하는 경우에는, 플라즈마 밀도의 균일도는 확보되지만, 플라즈마 밀도가 전체적으로 낮아져 원하는 라디칼을 확보할 수 없게 되는 문제점이 발생한다.
[선행기술문헌]
[특허문헌]
대한민국 공개특허공보 제10-2016-0007441호(공개일자: 2016년 01월 20일, 명칭: 기판의 고정밀 플라즈마 에칭을 위한 방법)
본 발명은 높은 밀도와 균일한 분포도를 갖는 플라즈마가 생성하여 기판에 헥사플루오르규산암모늄((NH4)2SiF6)을 생성시에 균일한 산포를 확보할 수 있는 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치를 제공하는 것을 기술적 과제로 한다.
이러한 기술적 과제를 해결하기 위한 본 발명에 따른 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치는 챔버의 하단부에 구비되며 실리콘, 실리콘 산화물, 실리콘 질화물 중에서 하나 이상이 형성되어 있는 기판이 배치되는 척(chuck), 상기 챔버의 상단부에 구비되며, 플라즈마 생성영역의 상부에 배치된 상부 RF 전극과 상기 플라즈마 생성영역의 하부에 배치된 하부 RF 전극을 포함하는 RF 전극부 및 상기 RF 전극부에 제1 RF 주파수를 갖는 제1 RF 전원과 상기 제1 RF 주파수보다 높은 제2 RF 주파수를 갖는 제2 RF 전원을 공급하는 RF 전원부를 포함하고, 상기 제1 RF 주파수의 범위는 300KHz 이상 4MHz 이하이고, 상기 제2 RF 주파수의 범위는 10MHz 이상 41MHz 이하이다.
본 발명에 따른 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치는 상기 플라즈마 생성영역의 하부에 설치되어 상기 기판으로 공급되는 반응 활성종은 통과시키고 이온(Ion)은 억제하는 이온 억제 플레이트를 더 포함하는 것을 특징으로 한다.
본 발명에 따른 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치에 있어서, 상기 제1 RF 전원의 제1 RF 주파수는 고정 주파수이고, 상기 제2 RF 전원의 제2 RF 주파수는 가변 주파수인 것을 특징으로 한다.
본 발명에 따른 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치에 있어서, 상기 제2 RF 전원이 먼저 공급되고, 상기 제1 RF 전원은 상기 제2 RF 전원의 공급 시점 후에 공급되는 것을 특징으로 한다.
본 발명에 따른 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치에 있어서, 상기 제1 RF 전원의 공급 시점과 상기 제2 RF 전원의 공급 시점의 시간차는 3초 이하인 것을 특징으로 한다.
본 발명에 따른 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치에 있어서, 상기 제1 RF 전원의 임피던스를 정합하는 제1 정합기는 고정 정합 방식이고, 상기 제2 RF 전원의 임피던스를 정합하는 제2 정합기는 가변 정합 방식인 것을 특징으로 한다.
본 발명에 따른 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치에 있어서, 제1 가스가 상기 플라즈마 생성영역으로 공급되어 상기 반응 활성종을 생성시키고, 제2 가스가 플라즈마 생성영역을 거치지 않고 상기 기판으로 공급되는 것을 특징으로 한다.
본 발명에 따른 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치에 있어서, 상기 제2 가스는 상기 이온 억제 플레이트의 하부로 공급되는 것을 특징으로 한다.
본 발명에 따른 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치에 있어서, 상기 제1 가스는 불소함유가스이고, 상기 제2 가스는 수소함유가스인 것을 특징으로 한다.
본 발명에 따르면, 높은 밀도와 균일한 분포도를 갖는 플라즈마가 생성하여 기판에 헥사플루오르규산암모늄((NH4)2SiF6)을 생성시에 균일한 산포를 확보할 수 있는 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치가 제공되는 효과가 있다.
도 1은 종래 기술에 따라 13.56MHz 이상의 높은 주파수 사용시에 챔버 내부에 발생하는 플라즈마 밀도(plasma density)를 나타낸 도면이고,
도 2는 종래 기술에 따라 400KHz의 낮은 주파수 사용시에 챔버 내부에 발생하는 플라즈마 밀도를 나타낸 도면이고,
도 3은 본 발명의 일 실시 예에 따른 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치를 나타낸 도면이고,
도 4는 본 발명의 일 실시 예에 있어서, 제1 RF 주파수를 갖는 제1 RF 전원, 제2 RF 주파수를 갖는 제2 RF 전원, 제1 RF 전원과 제2 RF 전원이 합성되어 주파수가 변조된 RF 전원의 개념적인 파형을 나타낸 도면이고,
도 5는 본 발명의 일 실시 예에 따라, 높은 밀도와 균일한 분포도를 갖는 플라즈마가 생성되는 것을 나타낸 도면이다.
본 명세서에 개시되어 있는 본 발명의 개념에 따른 실시 예들에 대해서 특정한 구조적 또는 기능적 설명은 단지 본 발명의 개념에 따른 실시 예들을 설명하기 위한 목적으로 예시된 것으로서, 본 발명의 개념에 따른 실시 예들은 다양한 형태들로 실시될 수 있으며 본 명세서에 설명된 실시 예들에 한정되지 않는다.
본 발명의 개념에 따른 실시 예들은 다양한 변경들을 가할 수 있고 여러 가지 형태들을 가질 수 있으므로 실시 예들을 도면에 예시하고 본 명세서에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시 예들을 특정한 개시 형태들에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물, 또는 대체물을 포함한다.
제1 또는 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만, 예컨대 본 발명의 개념에 따른 권리 범위로부터 벗어나지 않은 채, 제1 구성 요소는 제2 구성 요소로 명명될 수 있고 유사하게 제2구성 요소는 제1구성 요소로도 명명될 수 있다.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성 요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 본 명세서에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 나타낸다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
본 발명의 실시 예를 설명하기에 앞서 본 발명의 핵심적인 원리를 설명한다.
플라즈마 방전이 비교적 빠른 주파수인 13MHz을 사용하여 플라즈마를 형성하며 챔버 내부에 4Ω 이하의 낮은 플라즈마 저항이 형성된다. 낮은 저항이 안정 상태를 확보한 시점에 저주파수 파워를 인가하면 형성된 낮은 저항의 루프회로에 의한 플라즈마 착화가 빠른 시간 내에 안정화된다. 주파수가 다른 RF 파워를 공급하게 되면 주파수 변조로 인하여 도 4와 같이 저주파수에 고주파수가 합성되는 현상이 발생하여 저주파수(400KHz)의 특성을 확보하며서 고주파수(13.56MHz) 영향으로 가스를 이온화하는데 효율적이기 때문에 플라즈마 밀도가 증가한다.
상기의 방법을 적용하면, 예를 들어, 13MHz에서 발생하는 높은 밀도의 라디칼(radical)을 확보할 수 있으며, 저주파수인 400KHz 전력의 영향으로 균일한 플라즈마를 형성하여 기판에 헥사플루오르규산암모늄((NH4)2SiF6)을 생성시에 균일한 산포를 확보할 수 있다.
이하에서는, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
도 3은 본 발명의 일 실시 예에 따른 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치를 나타낸 도면이고, 도 4는 본 발명의 일 실시 예에 있어서, 제1 RF 주파수를 갖는 제1 RF 전원, 제2 RF 주파수를 갖는 제2 RF 전원, 제1 RF 전원과 제2 RF 전원이 합성되어 주파수가 변조된 RF 전원의 개념적인 파형을 나타낸 도면이고, 도 5는 본 발명의 일 실시 예에 따라, 높은 밀도와 균일한 분포도를 갖는 플라즈마가 생성되는 것을 나타낸 도면이다.
도 3 내지 도 5를 참조하면, 본 발명의 일 실시 예에 따른 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치는 챔버(10), 척(20), 척 가열부(30), RF 전극부(50), RF 전원부(60) 및 이온 억제 플레이트(80)를 포함한다. 도 3에 개시된 구성요소 이외에도 다른 구성요소들이 본 발명의 일 실시 예에 포함될 수 있으나, 본 발명의 특징과 관련성이 낮은 구성요소들은 도 3에서 생략하였음을 밝혀둔다.
기판(40)은 실리콘 재질을 가질 수 있으며, 이 기판(40)에는 실리콘 산화물 또는 실리콘 질화물이 형성되어 있다.
챔버(10)는 기판(40)이 배치되어 건식 세정을 위한 플라즈마 처리를 통해 실리콘 산화물, 실리콘 질화물 중에서 적어도 하나를 고 선택적으로 제거하는 전체 공정이 수행되는 공간을 제공한다.
척(20)은 챔버(10)의 하단부에 구비되며 실리콘, 실리콘 산화물, 실리콘 질화물 중에서 하나 이상이 형성되어 있는 기판(40)이 배치되는 구성요소이다.
척 가열부(30)는 척(20)을 가열하는 구성요소이다.
RF 전극부(50)는 챔버(10)의 상단부에 구비되며, 상부 RF 전극(51)과 하부 RF 전극(52)을 포함할 수 있다.
상부 RF 전극(51)은 플라즈마 생성영역의 상부에 배치되어 있고, 하부 RF 전극(52)은 플라즈마 생성영역의 하부에 접지된 상태로 배치되어 있다. 즉, 상부 RF 전극(51)과 하부 RF 전극(52) 사이의 공간에 플라즈마 생성영역이 위치한다. 또한, 하부 RF 전극(52)과 기판(40)이 배치되는 척(20) 사이에는 상기 플라즈마 생성영역과는 구분되는 반응영역이 위치한다. 이러한 배치구조에 따르면, 상부 RF 전극(51)과 하부 RF 전극(52)에 공급되는 전원, 즉, 제1 RF 전원(61)과 제2 RF 전원(62)에 의해 플라즈마 생성영역에서 생성된 플라즈마가 하부 RF 전극(52)을 통과하여 반응영역에 위치하는 척(20)에 배치된 기판(40)으로 공급되어 세정을 위한 반응이 진행된다.
RF 전원부(60)는 RF 전극부(50)에 제1 RF 주파수를 갖는 제1 RF 전원(61)과 제1 RF 주파수보다 높은 제2 RF 주파수를 갖는 제2 RF 전원(62)을 공급한다.
제1 RF 주파수의 범위는 300KHz 이상 4MHz 이하이고, 제2 RF 주파수의 범위는 10MHz 이상 41MHz 이하이다.
예를 들어, 제1 RF 전원(61)의 제1 RF 주파수는 고정 주파수이고, 제2 RF 전원(62)의 제2 RF 주파수는 가변 주파수일 수 있다.
예를 들어, 제2 RF 전원(62)이 먼저 공급되고, 제1 RF 전원(61)은 제2 RF 전원(62)의 공급 시점 후에 공급될 수 있다.
예를 들어, 제1 RF 전원(61)의 공급 시점과 제2 RF 전원(62)의 공급 시점의 시간차는 0.1초 이상 3초 이하일 수 있다.
예를 들어, 제1 RF 전원(61)의 임피던스를 정합하는 제1 정합기(71)는 고정 정합 방식이고, 제2 RF 전원(62)의 임피던스를 정합하는 제2 정합기(72)는 가변 정합 방식의 정합기일 수 있다.
이와 같이 본 발명의 일 실시 예에 따르면, 먼저, 플라즈마 방전이 비교적 빠른 고주파인 제2 RF 주파수를 갖는 제2 RF 전원(62)을 인가하여 플라즈마를 형성하며 챔버(10) 내부에 4Ω 이하의 낮은 플라즈마 저항이 형성된다. 낮은 저항이 안정 상태를 확보한 시점에 저주파인 제1 RF 주파수를 갖는 제1 RF 전원(61)을 인가하면, 이미 형성된 낮은 저항의 루프회로에 의한 플라즈마 착화가 빠른 시간 내에 안정화된다. 주파수가 다른 RF 파워를 공급하게 되면 주파수 변조로 인하여 도 4와 같이 저주파수에 고주파수가 합성되는 현상이 발생하여 저주파수(제1 RF 주파수, 예, 400KHz)의 특성을 확보하며서 고주파수(제2 RF 주파수, 예, 13.56MHz) 영향으로 가스를 이온화하는데 효율적이기 때문에 플라즈마 밀도가 증가한다.
상기의 방법을 적용하면, 예를 들어, 13MHz에서 발생하는 높은 밀도의 라디칼(radical)을 확보할 수 있으며, 저주파수인 400KHz 전력의 영향으로 균일한 플라즈마를 형성하여 기판(40)에 헥사플루오르규산암모늄((NH4)2SiF6)을 생성시에 균일한 산포를 확보할 수 있다.
이를 보다 구체적으로 설명하면 다음과 같다.
먼저 높은 주파수를 갖는 제2 RF 전원(62)을 챔버(10)에 공급한다.이때 높은 주파수 전력을 먼저 공급하는 이유는 주파수가 증가함에 따라 이온화, 여기(excitation) 그리고 가스분해도가 증가되어 안정적인 플라즈마를 유지시킬 수 있는 있는 조건이 되고, 특히, 플라즈마 밀도가 높아지면 전기 저항이 낮아지게 되기 때문이다. 전기 저항이 수메가 옴에서 수 옴 단위로 낮아지면 플라즈마 방전이 쉽게 일어나기 때문에, 낮은 주파수를 갖는 제1 RF 전원(61)을 챔버(10)에 인가하여도 방전을 쉽게 일으킬 수 있다.
상대적으로 저주파인 제1 RF 주파수를 갖는 제1 RF 전원(61)의 임피던스를 50 옴으로 정합하는 제1 정합기(71)는 자동 정합 방식 보다는 고정 정합 방식으로 구현하는 것이 제작 단가를 낮추는 방안이다. 임피던스의 변화는 낮은 주파수 특성으로 큰 변화가 없기 때문에 고정 정합 방식도 충분하다. 단, 예를 들어, 목표 타켓의 변화가 큰 서로 상이한 공정을 대응할 경우는 프리셋(preset) 방식으로 미리 고정 정합기의 위치를 플라즈마 방전이 가장 안정화되는 영역에 고정시킨 후 사용할 수 있다.
상대적으로 고주파인 제2 RF 주파수를 갖는 제2 RF 전원(62)의 경우, 높은 주파수를 사용하기 때문에 플라즈마가 착화되는 시점부터 챔버(10) 내부의 임피던스가 계속적인 변화가 발생한다. 따라서, 제2 RF 전원(62)의 임피던스를 정합하는 제2 정합기(72)는 가변 정합 방식의 자동 정합기를 사용하여 플라즈마가 발생하는 시점에서 계속 임피던스값을 추종하여 반사파가 낮은 영역을 찾아 변화되는 자동 정합기를 적용하는 방식이 공정 안정화에 유리하다.
이온 억제 플레이트(80)는 플라즈마 생성영역의 하부, 예를 들어, 하부 RF 전극(52)의 하부에 설치되어 기판(40)으로 공급되는 반응 활성종은 통과시키고 이온(Ion)은 억제할 수 있다.
예를 들어, 척(20)의 온도는 20도 - 120도로 제어되고, 가스들이 주입되는 샤워 헤드는 파티클 흡착 및 발생 방지를 위해 100도 - 200도로 가열되고, 챔버(10)의 내부 벽면은 80도 - 100도로 가열될 수 있다.
예를 들어, 제1 가스가 플라즈마 생성영역으로 공급되어 제1 RF 전원(61), 제2 RF 전원(62)에 의해 반응 활성종을 생성시키고, 제2 가스가 플라즈마 생성영역을 거치지 않고 기판(40)으로 공급될 수 있으며, 제2 가스는 플라즈마 생성영역의 하부에 설치된 이온 필터(80)의 하부로 공급될 수 있다.
예를 들어, 제1 가스는 불소함유가스이고, 제2 가스는 수소함유가스일 수 있다.
보다 구체적인 예로, 제1 가스는 NF3와 같은 불소함유가스 및 N2, Ar, He와 같은 비활성가스를 포함할 수 있으나, 이에 한정되지는 않는다. 예를 들어, 제2 가스는 H2 또는 NH3 또는 H2O와 같은 수소함유가스일 수 있으나, 이에 한정되지는 않는다.
이상에서 상세히 설명한 바와 같이, 높은 밀도와 균일한 분포도를 갖는 플라즈마가 생성하여 기판에 헥사플루오르규산암모늄((NH4)2SiF6)을 생성시에 균일한 산포를 확보할 수 있는 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치가 제공되는 효과가 있다.
[부호의 설명]
10: 챔버
20: 척(chuck)
30: 척 가열부
40: 기판
50: RF 전극부
51: 상부 RF 전극
52: 하부 RF 전극
60: RF 전원부
61: 제1 RF 전원
62: 제2 RF 전원
71: 제1 정합기
72: 제2 정합기
80: 이온 억제 플레이트

Claims (8)

  1. 챔버의 하단부에 구비되며 실리콘, 실리콘 산화물, 실리콘 질화물 중에서 하나 이상이 형성되어 있는 기판이 배치되는 척(chuck);
    상기 챔버의 상단부에 구비되며, 플라즈마 생성영역의 상부에 배치된 상부 RF 전극과 상기 플라즈마 생성영역의 하부에 배치되며 접지된 하부 RF 전극을 포함하는 RF 전극부; 및
    상기 RF 전극부의 상부 RF 전극에 제1 RF 주파수를 갖는 제1 RF 전원과 상기 제1 RF 주파수보다 높은 제2 RF 주파수를 갖는 제2 RF 전원을 공급하는 RF 전원부를 포함하고,
    상기 제1 RF 주파수의 범위는 300KHz 이상 4MHz 이하이고, 상기 제2 RF 주파수의 범위는 10MHz 이상 41MHz 이하이고,
    상기 제2 RF 주파수를 갖는 제2 RF 전원을 먼저 공급하여 상기 플라즈마 생성영역에 빠른 플라즈마 방전을 유도하여 상기 플라즈마 생성영역을 저 저항(low resistance) 상태로 유도한 이후,
    상기 제2 RF 주파수보다 낮은 제1 RF 주파수를 갖는 제1 RF 전원을 상기 제2 RF 전원의 공급 시점 후에 공급하여 상기 저 저항 상태의 플라즈마 생성영역을 안정화시키는, 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치.
  2. 제1항에 있어서,
    상기 플라즈마 생성영역의 하부에 설치되어 상기 기판으로 공급되는 반응 활성종은 통과시키고 이온(Ion)은 억제하는 이온 억제 플레이트를 더 포함하는 것을 특징으로 하는, 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치.
  3. 제1항에 있어서,
    상기 제1 RF 전원의 제1 RF 주파수는 고정 주파수이고, 상기 제2 RF 전원의 제2 RF 주파수는 가변 주파수인 것을 특징으로 하는, 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치.
  4. 제1항에 있어서,
    상기 제1 RF 전원의 공급 시점과 상기 제2 RF 전원의 공급 시점의 시간차는 3초 이하인 것을 특징으로 하는, 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치.
  5. 제1항에 있어서,
    상기 제1 RF 전원의 임피던스를 정합하는 제1 정합기는 고정 정합 방식이고, 상기 제2 RF 전원의 임피던스를 정합하는 제2 정합기는 가변 정합 방식인 것을 특징으로 하는, 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치.
  6. 제2항에 있어서,
    제1 가스가 상기 플라즈마 생성영역으로 공급되어 상기 반응 활성종을 생성시키고, 제2 가스가 플라즈마 생성영역을 거치지 않고 상기 기판으로 공급되는 것을 특징으로 하는, 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치.
  7. 제6항에 있어서,
    상기 제2 가스는 상기 이온 억제 플레이트의 하부로 공급되는 것을 특징으로 하는, 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치.
  8. 제6항에 있어서,
    상기 제1 가스는 불소함유가스이고, 상기 제2 가스는 수소함유가스인 것을 특징으로 하는, 복합 RF 주파수를 사용하는 플라즈마 건식 세정 장치.
PCT/KR2019/003879 2018-04-05 2019-04-02 복합 rf 주파수를 사용하는 플라즈마 건식 세정 장치 WO2019194540A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0039755 2018-04-05
KR1020180039755A KR102067184B1 (ko) 2018-04-05 2018-04-05 복합 rf 주파수를 사용하는 플라즈마 건식 세정 장치

Publications (1)

Publication Number Publication Date
WO2019194540A1 true WO2019194540A1 (ko) 2019-10-10

Family

ID=68101030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003879 WO2019194540A1 (ko) 2018-04-05 2019-04-02 복합 rf 주파수를 사용하는 플라즈마 건식 세정 장치

Country Status (2)

Country Link
KR (1) KR102067184B1 (ko)
WO (1) WO2019194540A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102510247B1 (ko) * 2020-09-14 2023-03-15 주식회사 진영코퍼레이션 Pcb 표면 세정용 플라스마 발생 장치
WO2022216105A1 (ko) * 2021-04-09 2022-10-13 주성엔지니어링(주) 기판 처리 방법 및 기판 처리 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100344967B1 (ko) * 1994-04-20 2002-10-25 동경 엘렉트론 주식회사 플라즈마처리방법및플라즈마처리장치
KR20070061988A (ko) * 2005-12-12 2007-06-15 위순임 다중 주파수 유도 코일을 갖는 페라이트 코어를 구비한플라즈마 발생기 및 이를 구비한 플라즈마 처리 장치
KR20100007160A (ko) * 2008-07-11 2010-01-22 피에스케이 주식회사 할로우 캐소드 플라즈마 발생장치 및 할로우 캐소드플라즈마를 이용한 대면적 기판 처리장치
KR20130027935A (ko) * 2011-09-08 2013-03-18 성균관대학교산학협력단 다중 주파수의 rf 펄스 파워를 이용한 펄스 플라즈마의 특성 제어 방법
KR101590566B1 (ko) * 2014-08-22 2016-02-02 (주)젠 기상식각 및 세정을 위한 플라즈마 장치
KR20160134908A (ko) * 2015-05-13 2016-11-24 참엔지니어링(주) 기판 처리 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9768033B2 (en) 2014-07-10 2017-09-19 Tokyo Electron Limited Methods for high precision etching of substrates

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100344967B1 (ko) * 1994-04-20 2002-10-25 동경 엘렉트론 주식회사 플라즈마처리방법및플라즈마처리장치
KR20070061988A (ko) * 2005-12-12 2007-06-15 위순임 다중 주파수 유도 코일을 갖는 페라이트 코어를 구비한플라즈마 발생기 및 이를 구비한 플라즈마 처리 장치
KR20100007160A (ko) * 2008-07-11 2010-01-22 피에스케이 주식회사 할로우 캐소드 플라즈마 발생장치 및 할로우 캐소드플라즈마를 이용한 대면적 기판 처리장치
KR20130027935A (ko) * 2011-09-08 2013-03-18 성균관대학교산학협력단 다중 주파수의 rf 펄스 파워를 이용한 펄스 플라즈마의 특성 제어 방법
KR101590566B1 (ko) * 2014-08-22 2016-02-02 (주)젠 기상식각 및 세정을 위한 플라즈마 장치
KR20160134908A (ko) * 2015-05-13 2016-11-24 참엔지니어링(주) 기판 처리 장치

Also Published As

Publication number Publication date
KR20190116762A (ko) 2019-10-15
KR102067184B1 (ko) 2020-01-16

Similar Documents

Publication Publication Date Title
KR970058390A (ko) 플라즈마 처리장치의 챔버 에칭방법 및 그를 실시하기 위한 플라즈마 처리 장치
KR100807131B1 (ko) 단일 주파수 rf전력을 이용하여 웨이퍼를 처리하는 플라즈마 처리시스템, 웨이퍼를 식각하기 위한 플라즈마 처리장치, 및 단일 주파수 rf전력을 이용하여 플라즈마 처리챔버에서 웨이퍼를 처리하는 방법
US5385624A (en) Apparatus and method for treating substrates
JP4860087B2 (ja) エッチング方法
WO2019194540A1 (ko) 복합 rf 주파수를 사용하는 플라즈마 건식 세정 장치
CN106548914A (zh) 一种等离子体处理设备及其清洗系统和方法
CN111883410B (zh) 批次型衬底处理设备
WO2019059620A1 (ko) 기판 처리 방법 및 장치
TW202101588A (zh) 藉由減少化學成分來改善蝕刻均勻度的腔室陳化處理
US20030029833A1 (en) High speed photoresist stripping chamber
WO2009104919A2 (en) Apparatus and method for processing substrate
WO2019124736A1 (ko) 반도체 기판의 건식 세정을 위한 플라즈마 장치
WO2020235822A1 (ko) 플라즈마와 증기를 이용한 건식 세정 장치
WO2019156489A1 (ko) 챔버 세정 장치 및 챔버 세정 방법
WO2020040464A1 (ko) 대기압 플라즈마와 스팀을 이용한 건식 세정 장치 및 방법
JP2791287B2 (ja) プラズマエッチング処理方法及びその装置
WO2016108568A1 (ko) 플라즈마 처리장치
KR100810457B1 (ko) 기판 처리 장치 및 방법
WO2021054670A1 (ko) 플라즈마에칭공정상의 l-fc 제거 방법 및 그 시스템
WO2023182827A1 (ko) 소모성 금속부재를 포함하는 식각용 플라즈마 처리 장치
WO2020251148A1 (ko) 기판 처리 장치 및 기판 처리 방법
TWI739380B (zh) 批次型襯底處理設備
JP2765788B2 (ja) プラズマcvd装置
WO2016076468A1 (ko) 플라즈마를 이용한 기판 처리 방법
JPS58100430A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19781048

Country of ref document: EP

Kind code of ref document: A1