WO2019194156A1 - 排気管 - Google Patents

排気管 Download PDF

Info

Publication number
WO2019194156A1
WO2019194156A1 PCT/JP2019/014582 JP2019014582W WO2019194156A1 WO 2019194156 A1 WO2019194156 A1 WO 2019194156A1 JP 2019014582 W JP2019014582 W JP 2019014582W WO 2019194156 A1 WO2019194156 A1 WO 2019194156A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust pipe
pipe
rotating body
tube
exhaust gas
Prior art date
Application number
PCT/JP2019/014582
Other languages
English (en)
French (fr)
Inventor
遊大 景山
悠貴 上田
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2019194156A1 publication Critical patent/WO2019194156A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present disclosure relates to an exhaust pipe provided in a vehicle.
  • Patent Document 1 discloses an exhaust gas purification apparatus having a urea spray nozzle, a stirring member, and a selective reduction catalyst (SCR (SCR: Selective Catalytic Reduction) catalyst).
  • SCR selective reduction catalyst
  • the stirring member has a shaft body at the center of the stirring member
  • the stirring member may have a structure in which the shaft body is supported so as not to rotate. In this case, there has been a problem that it is difficult for the stirring member to mix the exhaust gas and the reducing agent, or the stirring member becomes a resistance and pressure loss is likely to increase.
  • an object of the present disclosure is to provide an exhaust pipe in which exhaust gas and a reducing agent are easily mixed and pressure loss due to a stirring member is difficult to increase.
  • an exhaust pipe that allows exhaust gas generated in a vehicle engine to pass therethrough, a cylindrical outer pipe, and a cylindrical inner pipe that is rotatable on an inner surface side of the outer pipe;
  • the exhaust pipe is provided on the inner side surface of the inner pipe and has a plurality of recesses and projections that form a space between the inner side surface of the inner pipe and the exhaust gas flows inside the plurality of recesses.
  • an exhaust pipe having a rotating body.
  • the tip of the convex portion may be fixed to the inner side surface of the inner tube.
  • the plurality of recesses of the rotating body may each have the same shape.
  • the plurality of recesses of the rotating body may be formed outside a center between the center of the rotating body and the inner surface of the inner tube in the radial direction of the rotating body.
  • the inner tube may have a bearing that can rotate on the inner surface side of the outer tube, and the rotating body may be welded to the bearing.
  • FIG. 1 shows a state in which an exhaust pipe according to the first embodiment is provided in a vehicle.
  • FIG. 2 shows the structure of the exhaust pipe according to the first embodiment.
  • FIG. 3 shows the structure of the bearing.
  • FIG. 4 shows the structure of the exhaust pipe according to the second embodiment.
  • FIG. 1 is a diagram illustrating a state in which an exhaust pipe 2 according to the first embodiment is provided in a vehicle.
  • the vehicle has an engine 1, an exhaust pipe 2, a second exhaust pipe 3, and an inflow portion 4.
  • the engine 1 generates power for driving the vehicle by supplying fuel and air for combustion.
  • the engine 1 is a diesel engine, for example.
  • the fuel is, for example, light oil.
  • the exhaust pipe 2, the second exhaust pipe 3, and the inflow portion 4 are members constituting, for example, a urea selective catalytic reduction (urea SCR: Urea Selective Catalytic Reduction) system.
  • urea SCR Urea Selective Catalytic Reduction
  • the urea selective reduction catalyst system purifies the exhaust gas by adding urea water as a reducing agent to reduce nitrogen oxide (NO x ) in the exhaust gas.
  • the exhaust pipe 2 passes exhaust gas generated in the engine 1 and mixes the exhaust gas and the reducing agent.
  • the reducing agent is, for example, urea water (CO (NH 2 ) 2 ).
  • Urea water (CO (NH 2 ) 2 ) is accommodated in a urea water tank provided in the vehicle.
  • One end of the exhaust pipe 2 is connected to the engine 1, for example, and the other end is connected to the second exhaust pipe 3. Details of the exhaust pipe 2 will be described later.
  • the second exhaust pipe 3 is an exhaust pipe that can accommodate a selective reduction catalyst (SCR catalyst).
  • a selective reduction catalyst (SCR catalyst) is accommodated inside the second exhaust pipe 3.
  • the selective reduction catalyst (SCR catalyst) promotes a denitration reaction described later.
  • the selective reduction catalyst (SCR catalyst) includes, for example, ceramics or titanium oxide.
  • the second exhaust pipe 3 is connected to the end of the exhaust pipe 2 opposite to the engine 1 side in the longitudinal direction.
  • the inflow part 4 allows the reducing agent to flow.
  • the inflow portion 4 is provided closer to the engine 1 than the inner tube 22 and the rotating body 23 in the longitudinal direction of the exhaust pipe 2.
  • the inflow portion 4 has, for example, a cylindrical shape and has a jet port 41.
  • the ejection port 41 is an opening through which the reducing agent is ejected.
  • the inflow part 4 has a nozzle at the tip, for example, and the ejection port 41 is an opening of the nozzle.
  • the inflow portion 4 is provided in the exhaust pipe 2 such that, for example, it passes through a hole provided in the outer surface of the exhaust pipe 2 and the jet outlet 41 is located inside the exhaust pipe 2.
  • the reducing agent that has flowed into the exhaust pipe 2 from the inflow portion 4 is mixed with the exhaust gas flowing from the engine 1 side inside the exhaust pipe 2.
  • a hydrolysis reaction occurs inside the exhaust pipe 2.
  • the reducing agent reacts with water contained in the exhaust gas to generate a plurality of first reaction products.
  • the first reaction product includes, for example, ammonia (NH 3 ) and carbon dioxide (CO 2 ).
  • the chemical reaction formula at this time is shown by the following formula 1). (NH 2 ) 2 CO + H 2 O ⁇ 2NH 3 + CO 2 Formula 1)
  • a denitration reaction occurs after a hydrolysis reaction occurs.
  • the first reaction product generated by the hydrolysis reaction reacts with nitrogen oxide (NO x ) in the exhaust gas to generate a plurality of second reaction products. More specifically, ammonia (NH 3 ) among the plurality of first reaction products reacts with nitrogen oxide (NO x ) in the exhaust gas, and thus nitrogen (N 2 ) and water (H 2 O) are reacted. ) Is generated.
  • the chemical reaction formula at this time is represented by, for example, the following formulas 2) to 4).
  • the selective reduction catalyst (SCR catalyst) accommodated in the second exhaust pipe 3 promotes the denitration reaction shown above.
  • the selective exhaust catalyst (SCR catalyst) is stored in the second exhaust pipe 3, the selective reduction catalyst stored in the second exhaust pipe 3 in the exhaust pipe 2 and the second exhaust pipe 3.
  • a catalyst that promotes the hydrolysis reaction described above may be provided on the engine 1 side of the (SCR catalyst).
  • nitrogen oxides (NO x ) in the exhaust gas generated in the engine 1 are reduced by being decomposed into nitrogen (N 2 ) and water (H 2 O). As a result, the degree of cleanness of the exhaust gas generated in the engine 1 is improved.
  • FIG. 2 is a view showing the structure of the exhaust pipe 2 according to the first embodiment.
  • FIG. 3 is a view showing the structure of the bearing 221.
  • the exhaust pipe 2 includes an outer pipe 21, an inner pipe 22, and a rotating body 23.
  • the outer tube 21 has a cylindrical shape. One end of the outer pipe 21 is connected to the engine 1, for example, and the other end is connected to the second exhaust pipe 3.
  • the inner tube 22 has a cylindrical shape that can rotate on the inner surface side of the outer tube 21. The length of the inner tube 22 in the longitudinal direction is shorter than the length of the outer tube 21 in the longitudinal direction.
  • the inner tube 22 has a bearing 221 that can rotate, for example, on the inner surface side of the outer tube 21, and the rotating body 23 is welded to the bearing 221.
  • the bearing 221 includes an outer ring pipe 222, an inner ring pipe 223, and rolling elements 224.
  • the inner diameter of the outer ring tube 222 is larger than the outer diameter of the inner ring tube 223.
  • the inner ring pipe 223 is located inside the outer ring pipe 222.
  • the rolling element 224 has, for example, a spherical shape or a cylindrical shape, and is provided between the inner surface of the outer ring tube 222 and the outer surface of the inner ring tube 223 so as to be rotatable and slidable.
  • the position of the rolling element 224 may be determined by a cage.
  • the outer ring tube 222 and the inner ring tube 223 are relatively rotatable.
  • the outer surface of the outer ring tube 222 of the bearing 221 is fixed to the inner surface of the outer tube 21 by, for example, welding. Further, the outer surface of the inner tube 22 is fixed to the inner surface of the inner ring tube 223 of the bearing 221 by welding, for example. Therefore, the inner tube 22 fixed to the inner surface of the inner ring tube 223 of the bearing 221 is rotatable with respect to the outer tube 21 fixed to the outer surface of the outer ring tube 222 of the bearing 221.
  • the inner tube 22 is fixed to the inner surface of the inner ring tube 223 of the bearing 221, the inner tube 22 may be the inner ring tube 223 of the bearing 221.
  • Rotating body 23 has a function of promoting mixing of exhaust gas and reducing agent.
  • the rotating body 23 is provided on the inner surface of the inner tube 22.
  • the rotating body 23 has a concave portion 231 and a convex portion 232.
  • the plurality of concave portions 231 and the convex portions 232 form a space between the inner surface of the inner tube 22.
  • the plurality of concave portions 231 and convex portions 232 are formed on the outer edge of the rotating body 23.
  • the exhaust gas flows inside the recess 231.
  • the convex portion 232 has a tip fixed to the inner surface of the inner tube 22.
  • the tip of the convex portion 232 is fixed to the inner surface of the inner tube 22 by, for example, welding. Therefore, the movement of the rotating body 23 is the same as the movement of the inner tube 22. For example, movement of the rotating body 23 in the longitudinal direction of the exhaust pipe 2 is restricted.
  • the rotating body 23 rotates as exhaust gas flows inside the plurality of recesses 231. At this time, the inner tube 22 also rotates simultaneously.
  • the exhaust pipe 2 can be easily manufactured by using the bearing 221 as a structure that allows the inner pipe 22 to rotate with respect to the outer pipe 21.
  • the concave portions 231 and the convex portions 232 are formed, for example, alternately adjacent to each other. As shown in FIG. 2, seven concave portions 231 and seven convex portions 232 are formed, for example, alternately adjacent to each other, but the number of concave portions 231 and the number of convex portions 232 are arbitrary.
  • each of the plurality of recesses 231 has the same shape. Moreover, each of the plurality of convex portions 232 has the same shape.
  • the plurality of recesses 231 have the same shape, so that exhaust gas flowing from the engine 1 side to the second exhaust pipe 3 side in the longitudinal direction of the exhaust pipe 2 through the rotating body 23 can be exhausted from the exhaust pipe 2. Can be more uniformly dispersed in the circumferential direction.
  • the plurality of recesses 231 are formed outside the center between the center of the rotating body 23 and the inner surface of the inner tube 22 in the radial direction of the rotating body 23.
  • FIG. 4 is a view showing the structure of the exhaust pipe 2a according to the second embodiment.
  • the exhaust pipe 2a according to the second embodiment rotates to a point having an outer pipe 21a instead of the outer pipe 21 and a diameter-expanded portion 211a of the outer pipe 21a
  • the difference is that the body 23 is provided.
  • the outer tube 21a has an enlarged diameter portion 211a.
  • the inner diameter of the outer tube 21a is larger than the inner diameter of the region where the enlarged diameter portion 211a is not formed in the longitudinal direction of the outer tube 21a.
  • the outer pipe 21a is provided with the enlarged diameter portion 211a in this way, the position of the inner surface of the inner pipe 22 in the radial direction of the exhaust pipe 2a and the inner pipe of the exhaust pipe 2a in the radial direction of the exhaust pipe 2a.
  • the position of the inner surface in the region where 22 is not provided can be made the same position. Therefore, in the exhaust pipe 2a, the exhaust gas easily flows along the inner surface of the exhaust pipe 2a. Further, in the exhaust pipe 2a, a space formed between the inner surface of the inner pipe 22 and the concave portion 231 of the rotating body 23 can be increased. As a result, in the exhaust pipe 2a, the exhaust gas easily flows and the pressure loss is difficult to increase.
  • the exhaust pipe 2 according to the first embodiment is an exhaust pipe 2 through which exhaust gas generated in the engine 1 of the vehicle passes, and has a cylindrical outer pipe 21 and a cylindrical shape that can rotate on the inner side surface of the outer pipe 21.
  • the exhaust pipe 2 is provided on the inner surface of the inner tube 22 and has a plurality of concave portions 231 and convex portions 232 that form spaces between the inner surface of the inner tube 22 and the plurality of concave portions 231. It has a rotating body 23 that rotates by exhaust gas flowing inside.
  • the exhaust pipe 2 according to the first embodiment has such a configuration, the exhaust gas and the reducing agent are easily mixed, and pressure loss due to the stirring member is difficult to increase. Further, the rotating body 23 is less likely to fail due to deposit accumulation.
  • the exhaust pipe of the present disclosure is useful in that the exhaust gas and the reducing agent are easily mixed and the pressure loss due to the stirring member is difficult to increase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

排気管2は、車両のエンジン1で生じる排気ガスを通す排気管2であって、円筒形状の外管21と、外管21の内側面側において回転可能な円筒形状の内管22と、内管22の内側面に設けられており、かつ内管22の内側面との間に空間を形成する複数の凹部231及び凸部232を有し、複数の凹部231の内側を排気ガスが流れることで回転する回転体23と、を有する。

Description

排気管
 本開示は、車両に設けられている排気管に関する。
 従来、車両には排気ガスを浄化する排気ガス浄化装置が設けられている。特許文献1には、尿素噴霧ノズル、撹拌部材、及び選択型還元触媒(SCR(SCR:Selective Catalytic Reduction)触媒)を有する排気ガス浄化装置が開示されている。特許文献1で示す排気ガス浄化装置においては、撹拌部材が、撹拌部材の中心に軸体を有し、撹拌部材は、当該軸体が軸受に回転可能に支持されている構造が開示されている。
日本国特開2009-108726号公報
 排気ガス浄化装置においては、撹拌部材が、撹拌部材の中心に軸体を有するものの、撹拌部材が、当該軸体が回転不能に支持されている構造である場合があった。この場合、撹拌部材によって排気ガスと還元剤とが混合されづらかったり、撹拌部材が抵抗となって圧力損失が大きくなり易かったりするという問題が生じていた。
 そこで、本開示はこれらの点に鑑みてなされたものであり、排気ガスと還元剤とが混合し易くなり、かつ撹拌部材による圧力損失が大きくなりづらい排気管を提供することを目的とする。
 本開示の第1の態様においては、車両のエンジンで生じる排気ガスを通す排気管であって、円筒形状の外管と、前記外管の内側面側において回転可能な円筒形状の内管と、前記内管の内側面に設けられており、かつ前記内管の内側面との間に空間を形成する複数の凹部及び凸部を有し、前記複数の凹部の内側を前記排気ガスが流れることで回転する回転体と、を有する排気管を提供する。
 また、前記凸部の先端が前記内管の内側面に固定されていてもよい。また、前記回転体の前記複数の凹部は、それぞれが同一の形状であってもよい。また、前記回転体の前記複数の凹部は、前記回転体の径方向における前記回転体の中心と前記内管の内側面との間の中心よりも外側に形成されていてもよい。
 また、前記内管が、前記外管の内側面側において回転可能なベアリングを有しており、前記回転体は、前記ベアリングに溶接されていてもよい。
 本開示によれば、排気管において、排気ガスと還元剤とが混合し易くなり、かつ撹拌部材による圧力損失が大きくなりづらくなるという効果を奏する。
図1は、第1の実施形態に係る排気管が車両に設けられている状態を示す。 図2は、第1の実施形態に係る排気管の構造を示す。 図3は、ベアリングの構造を示す。 図4は、第2の実施形態に係る排気管の構造を示す。
<第1の実施形態>
[第1の実施形態に係る排気管が車両に設けられている状態]
 図1は、第1の実施形態に係る排気管2が車両に設けられている状態を示す図である。
 車両は、エンジン1、排気管2、第2排気管3、及び流入部4を有する。エンジン1は、燃料と空気を供給して燃焼させることで、車両を駆動するための動力を発生する。エンジン1は、例えばディーゼルエンジンである。燃料は、例えば軽油である。
 排気管2、第2排気管3、及び流入部4は、例えば、尿素選択型還元触媒(尿素SCR:Urea Selective Catalytic Reduction)システムを構成する部材である。尿素選択型還元触媒システムは、還元剤として尿素水を添加して排気ガス中の窒素酸化物(NO)を低減させることで排気ガスを浄化する。
 排気管2は、エンジン1で生じる排気ガスを通し、排気ガスと還元剤を混合する。還元剤は、例えば尿素水(CO(NH)である。尿素水(CO(NH)は、車両に設けられている尿素水タンクに収容されている。排気管2は、一端が、例えばエンジン1に接続されており、かつ他端が第2排気管3に接続されている。排気管2の詳細は後述する。
 第2排気管3は、選択型還元触媒(SCR触媒)を収容可能な排気管である。第2排気管3の内側には、選択型還元触媒(SCR触媒)が収容されている。選択型還元触媒(SCR触媒)は、後述する脱硝反応を促進する。選択型還元触媒(SCR触媒)は、例えばセラミックス、又は酸化チタンが含まれる。第2排気管3は、排気管2の長手方向におけるエンジン1側とは反対側の端部に接続されている。
 流入部4は、還元剤を流入させる。流入部4は、排気管2の長手方向における内管22及び回転体23よりもエンジン1側に設けられている。流入部4は、例えば円筒形状であり、噴出口41を有する。噴出口41は、還元剤が噴出する開口である。流入部4は、例えば先端にノズルを有し、噴出口41は、当該ノズルの開口である。流入部4は、例えば、排気管2の外側面に設けられている孔を貫通して、噴出口41が排気管2の内側に位置するようにして排気管2に設けられている。
 流入部4から排気管2の内側に流入した還元剤は、排気管2の内側において、エンジン1側から流れてきた排気ガスと混合する。そして、排気管2の内側では、加水分解反応が生じる。具体的には、排気管2の内側において、還元剤は、排気ガス中に含まれる水と反応して複数の第1反応生成物を生じる。第1反応生成物は、例えばアンモニア(NH)と二酸化炭素(CO)を含む。このときの化学反応式は、以下の式1)で示される。
   (NHCO+HO→2NH+CO  ・・・式1)
 そして、排気管2では、加水分解反応が生じた後に、脱硝反応が生じる。具体的には、排気管2では、加水分解反応によって生じた第1反応生成物が、排気ガス中の窒素酸化物(NO)と反応して複数の第2反応生成物を生じる。より具体的には、複数の第1反応生成物のうちのアンモニア(NH)は、排気ガス中の窒素酸化物(NO)と反応して、窒素(N)と水(HO)を生成する。このときの化学反応式は、例えば、以下の式2)~式4)で示される。
   4NH+4NO+O→4N+6HO  ・・・式2)
   4NH+2NO+O→3N+6HO  ・・・式3)
   2NH+NO+NO→2N+3HO  ・・・式4)
 第2排気管3に収納されている選択型還元触媒(SCR触媒)は、上記で示す脱硝反応を促進する。第2排気管3には、選択型還元触媒(SCR触媒)が収納されているとしたが、排気管2及び第2排気管3における、第2排気管3に収納されている選択型還元触媒(SCR触媒)よりもエンジン1側には、上記で示す加水分解反応を促進する触媒が設けられていてもよい。
 このようにして、エンジン1で生じた排気ガス中の窒素酸化物(NO)は、窒素(N)と水(HO)に分解されることで低減する。この結果、エンジン1で生じた排気ガスの清浄度合いは向上する。
[排気管2の構造]
 図2は、第1の実施形態に係る排気管2の構造を示す図である。図3は、ベアリング221の構造を示す図である。
 排気管2は、外管21、内管22、及び回転体23を有する。
 外管21は、円筒形状である。外管21は、一端が例えばエンジン1に接続されており、かつ他端が第2排気管3に接続されている。内管22は、外管21の内側面側において回転可能な円筒形状である。内管22の長手方向における長さは、外管21の長手方向における長さよりも短い。
 具体的には、内管22は、例えば外管21の内側面側において回転可能なベアリング221を有しており、回転体23は、ベアリング221に溶接されている。ベアリング221は、例えば図3で示すように、外輪管222、内輪管223、及び転動体224を有する。外輪管222の内径は、内輪管223の外径よりも大きい。内輪管223は、外輪管222の内側に位置する。転動体224は、例えば球形状又は円柱形状を有し、外輪管222の内側面と内輪管223の外側面との間に、回転及び摺動可能な状態で設けられている。転動体224は、保持器によって位置が決められていてもよい。外輪管222と内輪管223は、相対的に回転可能である。
 ベアリング221の外輪管222の外側面は、外管21の内側面に、例えば溶接することで固定されている。また、ベアリング221の内輪管223の内側面には、内管22の外側面が例えば溶接することで固定されている。よって、ベアリング221の内輪管223の内側面に固定されている内管22は、ベアリング221の外輪管222の外側面に固定されている外管21に対して回転可能である。
 内管22は、ベアリング221の内輪管223の内側面に固定されているとしたが、内管22は、ベアリング221の内輪管223であってもよい。
 回転体23は、排気ガスと還元剤との混合を促進する機能を有する。回転体23は、内管22の内側面に設けられている。回転体23は、凹部231、及び凸部232を有する。複数の凹部231及び凸部232は、内管22の内側面との間に空間を形成する。具体的には、複数の凹部231及び凸部232は、回転体23の外縁に形成されている。凹部231は、内側を排気ガスが流れる。
 凸部232は、先端が内管22の内側面に固定されている。凸部232の先端は、例えば溶接されることで、内管22の内側面に固定されている。よって、回転体23の動きは、内管22の動きと同じになる。回転体23は、例えば、排気管2の長手方向における移動が規制されている。回転体23は、複数の凹部231の内側を排気ガスが流れることで回転する。このとき、内管22も同時に回転する。また、上述したように、内管22を外管21に対して回転可能とさせる構造としてベアリング221を用いることで、排気管2は、製造が容易になる。
 凹部231及び凸部232は、例えば交互に隣接して形成されている。図2に示すように、凹部231及び凸部232は、例えば交互に隣接して7個ずつ形成されているが、凹部231の数、及び凸部232の数は任意である。
 図2に示すように、複数の凹部231は、それぞれが同一の形状である。また、複数の凸部232も、それぞれが同一の形状である。排気管2は、複数の凹部231が、それぞれ同一の形状であることで、回転体23を排気管2の長手方向におけるエンジン1側から第2排気管3側に流れる排気ガスを、排気管2の周方向において、より均一に分散させることができる。
 また、複数の凹部231は、回転体23の径方向における回転体23の中心と内管22の内側面との間の中心よりも外側に形成されている。この結果、排気管2は、排気管2におけるエンジン1側から回転体23のエンジン1側の面に向かって流れてきた排気ガス及び還元剤が、回転体23のエンジン1側の面と衝突する面積を増加させることができる。よって、排気管2においては、排気ガスと還元剤がより混合され易くなる。
<第2の実施形態>
 図4は、第2の実施形態に係る排気管2aの構造を示す図である。
 第2の実施形態に係る排気管2aは、第1の実施形態に係る排気管2と比べて、外管21の代わりに外管21aを有する点と、外管21aの拡径部211aに回転体23が設けられている点とで相違する。
 外管21aは、拡径部211aを有する。拡径部211aは、外管21aの内径が、外管21aの長手方向における拡径部211aが形成されていない領域の内径と比べて大きい。
 外管21aにこのように拡径部211aに設けられていることで、排気管2aの径方向において、排気管2aの径方向における内管22の内側面の位置と、排気管2aの内管22が設けられていない領域における内側面の位置とを同じ位置にすることができる。よって、排気管2aでは、排気ガスは排気管2aの内側面に沿って流れ易くなる。また、排気管2aでは、内管22の内側面と回転体23の凹部231との間で形成される空間を大きくすることが可能となる。この結果、排気管2aでは、排気ガスは流れ易くなり圧力損失が大きくなりづらくなる。
[第1の実施形態に係る排気管2による効果]
 第1の実施形態に係る排気管2は、車両のエンジン1で生じる排気ガスを通す排気管2であって、円筒形状の外管21と、外管21の内側面側において回転可能な円筒形状の内管22と、を有する。また、排気管2は、内管22の内側面に設けられており、かつ内管22の内側面との間に空間を形成する複数の凹部231及び凸部232を有し、複数の凹部231の内側を排気ガスが流れることで回転する回転体23を有する。
 第1の実施形態に係る排気管2は、このような構成を有することで、排気ガスと還元剤とが混合し易くなり、かつ撹拌部材による圧力損失が大きくなりづらくなる。また、回転体23は、デポジット堆積による故障が生じづらくなる。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、装置の分散・統合の具体的な実施の形態は、以上の実施の形態に限られず、その全部又は一部について、任意の単位で機能的又は物理的に分散・統合して構成することができる。また、複数の実施の形態の任意の組み合わせによって生じる新たな実施の形態も、本発明の実施の形態に含まれる。組み合わせによって生じる新たな実施の形態の効果は、もとの実施の形態の効果を合わせ持つ。
 本出願は、2018年4月3日付で出願された日本国特許出願(特願2018-071343)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示の排気管は、排気ガスと還元剤とが混合し易くなり、かつ撹拌部材による圧力損失が大きくなりづらい、という点において有用である。
1・・・エンジン
2、2a・・・排気管
21、21a・・・外管
211a・・・拡径部
22・・・内管
221・・・ベアリング
222・・・外輪管
223・・・内輪管
224・・・転動体
23・・・回転体
231・・・凹部
232・・・凸部
3・・・第2排気管
4・・・流入部
41・・・噴出口

Claims (5)

  1.  車両のエンジンで生じる排気ガスを通す排気管であって、
     円筒形状の外管と、
     前記外管の内側面側において回転可能な円筒形状の内管と、
     前記内管の内側面に設けられており、かつ前記内管の内側面との間に空間を形成する複数の凹部及び凸部を有し、前記複数の凹部の内側を前記排気ガスが流れることで回転する回転体と、
     を有する排気管。
  2.  前記凸部の先端が前記内管の内側面に固定されている、
     請求項1に記載の排気管。
  3.  前記回転体の前記複数の凹部は、それぞれが同一の形状である、
     請求項1又は2に記載の排気管。
  4.  前記回転体の前記複数の凹部は、前記回転体の径方向における前記回転体の中心と前記内管の内側面との間の中心よりも外側に形成されている、
     請求項1から3のいずれか一項に記載の排気管。
  5.  前記内管が、前記外管の内側面側において回転可能なベアリングを有しており、
     前記回転体は、前記ベアリングに溶接されている、
     請求項1から4のいずれか一項に記載の排気管。
PCT/JP2019/014582 2018-04-03 2019-04-02 排気管 WO2019194156A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018071343A JP2019183666A (ja) 2018-04-03 2018-04-03 排気管
JP2018-071343 2018-04-03

Publications (1)

Publication Number Publication Date
WO2019194156A1 true WO2019194156A1 (ja) 2019-10-10

Family

ID=68100456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014582 WO2019194156A1 (ja) 2018-04-03 2019-04-02 排気管

Country Status (2)

Country Link
JP (1) JP2019183666A (ja)
WO (1) WO2019194156A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328742A (ja) * 2002-05-17 2003-11-19 Toyota Motor Corp 内燃機関の排気浄化装置
JP2005083276A (ja) * 2003-09-09 2005-03-31 Toyota Motor Corp 内燃機関の排気浄化装置
JP2009108726A (ja) * 2007-10-29 2009-05-21 Mitsubishi Heavy Ind Ltd 排ガス浄化装置
JP2011007057A (ja) * 2009-06-23 2011-01-13 Toyota Industries Corp 排気ガス浄化装置
JP2012067635A (ja) * 2010-09-21 2012-04-05 Mitsubishi Fuso Truck & Bus Corp 排気流案内用ガイド

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328742A (ja) * 2002-05-17 2003-11-19 Toyota Motor Corp 内燃機関の排気浄化装置
JP2005083276A (ja) * 2003-09-09 2005-03-31 Toyota Motor Corp 内燃機関の排気浄化装置
JP2009108726A (ja) * 2007-10-29 2009-05-21 Mitsubishi Heavy Ind Ltd 排ガス浄化装置
JP2011007057A (ja) * 2009-06-23 2011-01-13 Toyota Industries Corp 排気ガス浄化装置
JP2012067635A (ja) * 2010-09-21 2012-04-05 Mitsubishi Fuso Truck & Bus Corp 排気流案内用ガイド

Also Published As

Publication number Publication date
JP2019183666A (ja) 2019-10-24

Similar Documents

Publication Publication Date Title
CN101288827B (zh) 用于排放后处理系统的混合装置
JP3892452B2 (ja) エンジンの排気浄化装置
EP2512642B1 (en) Mixing system for an exhaust gases after-treatment arrangement
US9435240B2 (en) Perforated mixing pipe with swirler
US8916104B2 (en) Exhaust gas denitrifying system having noise-reduction structure
US9322309B2 (en) Compact exhaust gas treatment unit with mixing region, method for mixing an exhaust gas and vehicle
JP4090972B2 (ja) エンジンの排気浄化装置
JP4703260B2 (ja) エンジンの排気浄化装置及びこれに用いられる排気管の構造
CN104024596A (zh) 排气净化装置
EP3492718B1 (en) Exhaust line for a vehicle
JP5801472B2 (ja) 排ガス浄化装置
WO2019221224A1 (ja) 排気浄化装置
WO2019194156A1 (ja) 排気管
JP6756629B2 (ja) 排気ガス浄化装置
WO2019194169A1 (ja) 排気管
JP7494897B1 (ja) 排気ガス浄化装置
JP7432240B2 (ja) 排気浄化装置、流路形成部材、及び筒状部材
JP6787606B1 (ja) 排気浄化装置、流路形成部材、及び筒状部材
EP3992442B1 (en) Exhaust gas purification device, flow path forming member, and tubular member
WO2019069792A1 (ja) 内燃機関の排気浄化装置
KR20200004524A (ko) 촉매 코팅형 scr 믹서
WO2021199858A1 (ja) 排ガス脱硝装置
CN111566322A (zh) 废气净化装置
JP2019183665A (ja) 排ガス浄化装置
JP2020023914A (ja) エンジンの排気後処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19781213

Country of ref document: EP

Kind code of ref document: A1