WO2019221224A1 - 排気浄化装置 - Google Patents

排気浄化装置 Download PDF

Info

Publication number
WO2019221224A1
WO2019221224A1 PCT/JP2019/019495 JP2019019495W WO2019221224A1 WO 2019221224 A1 WO2019221224 A1 WO 2019221224A1 JP 2019019495 W JP2019019495 W JP 2019019495W WO 2019221224 A1 WO2019221224 A1 WO 2019221224A1
Authority
WO
WIPO (PCT)
Prior art keywords
upstream
downstream
exhaust
flow path
opening
Prior art date
Application number
PCT/JP2019/019495
Other languages
English (en)
French (fr)
Inventor
公一 木村
幸子 吉澤
健一 宮澤
Original Assignee
日新工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新工業株式会社 filed Critical 日新工業株式会社
Priority to JP2020519912A priority Critical patent/JP6948088B2/ja
Publication of WO2019221224A1 publication Critical patent/WO2019221224A1/ja
Priority to US17/097,234 priority patent/US11268424B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • B01F25/103Mixing by creating a vortex flow, e.g. by tangential introduction of flow components with additional mixing means other than vortex mixers, e.g. the vortex chamber being positioned in another mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3141Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit with additional mixing means other than injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • B01F25/423Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components
    • B01F25/4231Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components using baffles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/93Arrangements, nature or configuration of flow guiding elements
    • B01F2025/931Flow guiding elements surrounding feed openings, e.g. jet nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/14Exhaust treating devices having provisions not otherwise provided for for modifying or adapting flow area or back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust purification device.
  • a urea SCR (Selective Catalytic Reduction) system is known as an exhaust purification device in an internal combustion engine such as a diesel engine.
  • the urea SCR system includes an injector that injects urea water serving as a reducing agent into an exhaust passage, and a reduction catalyst that is provided in the exhaust passage downstream of the injector.
  • urea water when urea water is injected into the exhaust gas by the injector, the injected urea water undergoes a thermal decomposition and hydrolysis reaction to generate NH 3 (ammonia). Due to the generated NH3, NOx (nitrogen oxide) in the exhaust is reduced to N2 (nitrogen) and H2O (water) in the reduction catalyst.
  • the conventional exhaust purification device purifies NOx in the exhaust gas by selectively reducing it, thereby making the exhaust gas harmless.
  • an exhaust emission control device that provides a mixer having a spiral exhaust passage upstream of a reduction catalyst and promotes mixing of exhaust gas and reducing agent by injecting the reducing agent into the exhaust passage (for example, see Patent Document 1).
  • an exhaust gas purification device as disclosed in Patent Document 1
  • the structure of the mixer becomes complicated and large in order to increase the homogeneity of the reducing agent in the exhaust gas, and the pressure of the exhaust gas is increased. Since the loss increases and the back pressure acting on the internal combustion engine increases, the degree of freedom in designing the entire vehicle decreases, which is not preferable.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an exhaust emission control device capable of mixing a reducing agent uniformly in a short distance in exhaust gas and suppressing the pressure loss of exhaust gas.
  • An exhaust emission control device includes a selective catalyst reduction device arranged in a downstream exhaust passage, and a spiral flow arranged upstream of the selective catalyst reduction device to guide the exhaust flow from the internal combustion engine in a spiral shape And a mixer having a channel, wherein the mixer has an upstream opening and a downstream opening, the casing having the spiral channel therein, the spiral channel disposed in the spiral channel, and the spiral An injector for adding a reducing agent to the flow path; and a dividing plate that is arranged so as to divide the internal space of the casing into an upstream side and a downstream side and that defines the spiral flow path.
  • the upstream opening is narrower than the upstream exhaust passage from the internal combustion engine, and the downstream opening is narrower than the downstream exhaust passage.
  • the dividing plate is continuous from the upstream opening to the downstream opening.
  • the upstream opening is eccentric to the opposite side with respect to the position of the injector with respect to the center of the casing as seen in the flow direction. .
  • the upstream opening is disposed so as not to overlap the position of the injector when viewed in the flow direction.
  • the upstream opening and the downstream opening are arranged symmetrically when viewed in the flow direction.
  • the upstream opening and the downstream opening are arranged so as to have overlapping portions when viewed in the flow direction.
  • the dividing plate has a bilaterally symmetric shape with the vertical center line of the overlapping portion as the center.
  • the overlapping portion is formed at a central portion of the casing as viewed in the flow direction.
  • the dividing plate has a pressure loss suppressing hole that allows exhaust to pass from upstream to downstream.
  • the dividing plate has a gate valve that prevents backflow.
  • the injector is provided with an axis inclined at the downstream opening side.
  • an exhaust emission control device that can uniformly mix a reducing agent in exhaust gas at a short distance and can suppress pressure loss of exhaust gas.
  • FIG. 5 is a view in the ejection direction INJ in FIG. 4 in which parts other than the injector body are not displayed. It is a top view of a mixer. It is A arrow sectional drawing in FIG. It is a left view of a mixer. It is B arrow sectional drawing in FIG. It is a right view of a mixer. It is C arrow sectional drawing in FIG.
  • FIG. 9 is a left side view of a mixer that is a modification of the mixer and that does not display the reducer. It is a modification of a mixer, Comprising: It is drawing equivalent to B arrow sectional drawing in FIG.
  • the exhaust purification device 1 includes an exhaust flow path S including an upstream exhaust flow path S1, a spiral flow path S2, and a downstream exhaust flow path S3, which are sequentially continuous from the upstream, inside an airtight sleeve. It is formed and is linear as a whole.
  • the upstream exhaust flow path S1 and the downstream exhaust flow path S3 are defined by cylindrical containers, and the cross sections of the upstream exhaust flow path S1 and the downstream exhaust flow path S3 (inner space of the container) suppress pressure loss as much as possible. To make it round.
  • the exhaust purification device 1 includes an oxidation catalyst (Diesel Oxidation Catalyst) DOC disposed in the upstream exhaust passage S1, a diesel particulate collection filter (Diesel Particulate Filter) DPF disposed in the upstream exhaust passage S1. And a selective catalytic reduction device (Selective Catalytic Reduction) SCR arranged in the downstream exhaust passage S3 and carrying a reduction catalyst.
  • the exhaust purification device 1 is appropriately disposed downstream of the selective catalyst reduction device SCR in the downstream exhaust flow path S3, and is an ammonia slip catalyst ASC that is an oxidation catalyst for preventing ammonia NH3 from passing through and being released into the outside air. It has.
  • the oxidation catalyst DOC oxidizes and purifies hydrocarbon HC and carbon monoxide CO, which are one of the harmful components in the exhaust gas.
  • the ceramic honeycomb, metal mesh, etc. are subjected to hydrocarbon HC and carbon monoxide CO.
  • a catalyst component such as platinum or palladium that promotes the oxidation reaction is supported.
  • the diesel particulate filter DPF is a filter that collects particulate matter in the exhaust gas.
  • the selective catalyst reduction device SCR is one in which a catalyst such as zeolite, vanadium oxide, or tungsten oxide is supported on a porous ceramic substrate such as cordierite.
  • the mixer 100 includes an injector 30 that injects urea water serving as a reducing agent into the spiral flow path S2.
  • the exhaust gas purification device 1 when urea water is injected into the exhaust gas flowing through the spiral flow path S2 by the injector 30, the injected urea water undergoes a thermal decomposition and hydrolysis reaction to generate ammonia NH3. The Then, the produced ammonia NH3 reduces the nitrogen oxide NOx in the exhaust gas to nitrogen N2 and water H2O in the selective catalytic reduction device SCR. The reduced nitrogen N2 and water H2O are released into the outside air. In this way, the exhaust purification device 1 purifies the exhaust gas by harming the exhaust gas by selectively reducing nitrogen oxide NOx in the exhaust gas.
  • FIG. 2 is a perspective view of the mixer 100 as viewed from the upstream.
  • FIG. 3 is a perspective view of the mixer 100 as viewed from the downstream.
  • FIG. 7 is a plan view of the mixer 100.
  • 8 is a cross-sectional view taken along arrow A in FIG.
  • FIG. 9 is a left side view of the mixer 100.
  • 10 is a cross-sectional view taken along arrow B in FIG.
  • FIG. 11 is a right side view of the mixer 100.
  • FIG. 12 is a cross-sectional view taken along arrow C in FIG.
  • the mixer 100 is arranged so as to divide the cylindrical casing 20 and the internal space of the casing 20 so as to be divided into an upstream side and a downstream side, and the spiral flow path S ⁇ b> 2 together with the casing 20.
  • a partition plate 10 that delimits, an injector 30 that protrudes from the spiral flow path S2 and adds a reducing agent to the spiral flow path S2, a transition portion from the upstream exhaust flow path S1 to the casing 20, and a downstream exhaust from the casing 20
  • a reducer 40 provided at a transition portion up to the flow path S3.
  • the mixer 100 is configured in this way, so that even if the spiral flow path S2 is short (even if the internal space of the casing 20 is narrow or the distance from the upstream opening 21a to the downstream opening 22a is short).
  • the flow rate of the exhaust gas passing through the mixer 100 can be increased while the direction of the exhaust gas is changed spirally, and the reducing agent can be uniformly diffused and mixed in the exhaust gas, and the reducing agent adheres to the inside of the casing 20. Can be suppressed.
  • each part which comprises the mixer 100 is demonstrated separately.
  • FIG. 4 is a left side view of the mixer 100 in which the reducer 40 is not displayed.
  • the casing 20 is in the flow direction (the arrow direction indicating the upstream exhaust flow path S1 and the downstream exhaust flow path S3 in FIGS. 2 and 3, that is, the direction seen from the left side.
  • the outer shape is substantially annular as seen in the figure and has a predetermined length in the flow direction, and defines the spiral flow path S2 together with the dividing plate 10. .
  • the casing 20 includes an upstream casing 21 and a downstream casing 22.
  • the upstream casing 21 and the downstream casing 22 have an upstream opening 21a narrower than the upstream exhaust passage S1 and a downstream opening 22a narrower than the downstream exhaust passage S3, respectively.
  • the upstream casing 21 can smoothly increase the flow velocity while smoothly deflecting the exhaust flow from the upstream exhaust flow path S1 toward the spiral flow path S2, and the downstream casing 22 causes the exhaust flow to spiral.
  • the flow velocity can be lowered smoothly while smoothly deflecting from the path S2 toward the downstream exhaust flow path S3.
  • the upstream opening 21a and the downstream opening 22a are arranged substantially parallel to each other.
  • the upstream opening 21a and the downstream opening 22a are disposed substantially perpendicular to the flow direction. Since the upstream casing 21 and the downstream casing 22 are separate bodies and can be assembled together in a state of abutting each other, the dividing plate 10 and the injector 30 are easily incorporated.
  • the upstream opening 21 a is arranged eccentrically on the opposite side with respect to the center of the casing 20 with respect to the position where the injector 30 is arranged as viewed in the flow direction. Specifically, since the injector 30 is disposed at the upper left portion when viewed in the flow direction, the upstream opening 21 a is disposed at the lower right portion of the upstream casing 21. Instead of this embodiment, the injector 30 may be arranged so as to be reversed left and right when viewed in the flow direction, and the mixer 100 may be reversed left and right. Further, the upstream opening 21 a is arranged so as not to overlap the position of the injector 30 when viewed in the flow direction. Thereby, the injector 30 can be protruded into the internal space of the casing 20, and the injector 30 can be disposed along the spiral flow path S2. Therefore, the reducing agent can be efficiently added to the exhaust gas, and both can be mixed efficiently.
  • the length of the spiral flow path S2 that is, the length of the line connecting the cross-sectional center of the flow path through which the exhaust from the center of the upstream opening 21a to the center of the downstream opening 22a flows, as shown by the arrows in FIG.
  • the length of the inner space of the casing 20 may be approximately one turn (360 degrees) or less than one turn.
  • the mixer 100 the reducing agent can be efficiently mixed in the exhaust gas. Therefore, even if the length of the spiral flow path S2 is short, the casing 20, that is, the mixer 100, and eventually the exhaust gas purification device. 1 can be made compact.
  • the upstream opening 21 a is elliptical when viewed in the flow direction, and is arranged so that a portion with a small curvature (lower right) in the elliptical shape is inscribed in the outer shape of the casing 20. As a result, the exhaust can be smoothly guided from the upstream opening 21 a to the internal space of the casing 20.
  • the downstream opening 22a is arranged symmetrically with respect to the longitudinal center line CL of the casing 20 with respect to the position where the upstream opening 21a is arranged as viewed in the flow direction. Specifically, since the upstream opening 21a is disposed at the lower right portion when viewed in the flow direction, the downstream opening 22a is disposed at the lower left portion of the downstream casing 22 when viewed in the flow direction.
  • the downstream opening 22 a has an elliptical shape when viewed in the flow direction, and is arranged so that a portion with a small curvature (lower left) in the elliptical shape is inscribed in the outer shape of the casing 20.
  • the downstream opening 22a has the same shape as the upstream opening 21a. Therefore, since the upstream upstream connection part 11 and the downstream downstream connection part 12 connected with the casing 20 in the division board 10 can be made into the same shape, the division board 10 can be manufactured easily.
  • the upstream opening 21a and the downstream opening 22a are arranged so as to have overlapping portions when viewed in the flow direction.
  • the portion where the upstream opening 21a and the downstream opening 22a overlap has a bowl shape.
  • the whole division board 10 can be made into plate shape, the magnitude
  • the dividing plate 10 can be formed in a substantially symmetrical shape in plan view (see FIG. 12), and the upstream and downstream bending processes of the dividing plate 10 can be made the same (for example, the same type can be pressed).
  • the board 10 can be easily manufactured.
  • the overlapping portion is formed in the central portion of the casing 20 when viewed in the flow direction.
  • An injector 30 is provided above the casing 20 so as to protrude from the spiral flow path S2 and add a reducing agent to the spiral flow path S2.
  • the injector 30 will be described later.
  • the mixer 100 is connected to the inside of the casing 20 from the upstream opening 21a to the downstream opening 22a, and is arranged so as to divide the internal space of the casing 20 into an upstream side and a downstream side.
  • a dividing plate 10 that defines the path S2 is provided.
  • the dividing plate 10 is continuous from the left part of the upstream opening 21a to the right part of the downstream opening 22a when viewed in the flow direction.
  • the dividing plate 10 includes an upstream upstream connecting portion 11 connected to the upstream opening 21 a of the upstream casing 21 and a downstream downstream connecting portion 12 connected to the downstream opening 22 a of the downstream casing 22. And a gate valve 13 and a pressure loss suppression hole 14.
  • the dividing plate 10 is airtightly connected to the casing 20 except for the upper end of the gate valve 13.
  • the upstream connecting portion 11 of the dividing plate 10 is in the upstream casing 21
  • the downstream connecting portion 12 of the dividing plate 10 is in the downstream casing 22
  • the upstream side at the lower end of the dividing plate 10 is in the upstream casing 21, and the lower end of the dividing plate 10.
  • the downstream side is connected to the downstream casing 22
  • the upstream end of the gate valve 13 is connected to the upstream casing 21
  • the downstream end of the gate valve 13 is connected to the downstream casing 22 in an airtight manner.
  • the upstream connection portion 11 is connected to the left portion, which is the portion on the left side of the longitudinal center line CL in the upstream opening 21a when viewed in the flow direction.
  • the shape of the upstream connecting portion 11 is the same as the shape of the left portion of the upstream opening 21a.
  • downstream connection portion 12 is connected to the right portion, which is the portion on the right side of the vertical center line CL in the downstream opening 22a when viewed in the flow direction.
  • the shape of the downstream connection part 12 is the same as the shape of the right part of the downstream opening 22a.
  • the split plate 10 has an upstream side where the upstream connecting portion 11 is connected to the upstream casing 21 curved in a convex manner from the center of the upstream opening 21a toward the center of the downstream opening 22a in plan view. doing.
  • the downstream side where the downstream connection portion 12 is connected to the downstream casing 22 is convexly curved from the center of the downstream opening 22a toward the center of the upstream opening 21a.
  • the dividing plate 10 has a substantially linear cross section in a front view, a side view, and a plan view. Thereby, the divided plate 10 can be easily manufactured by bending (pressing) using a flat plate as a material.
  • the gate valve 13 is a plate-like tongue piece that prevents backflow, and is provided on the upper part of the dividing plate 10.
  • the gate valve 13 is provided in a transition portion between the upstream side and the downstream side in the internal space of the casing 20, and the upstream end extends from the vertical center line CL in the upstream opening 21a so as to straddle the upstream casing 21 and the downstream casing 22. It is connected to the right part which is the part on the right side, and the downstream end is connected to the right part which is the part on the right side of the longitudinal center line CL in the downstream opening 22a.
  • the upper end of the gate valve 13 is open to the spiral flow path S2.
  • partition valve 13 configured in this way partitions the flow inside the upstream casing 21 and the flow inside the downstream casing 22, it is possible to suppress the flow from being delayed due to the backflow from the downstream side to the upstream side, etc.
  • the flow rate of the exhaust gas in the spiral flow path S2 can be maintained.
  • the pressure loss suppression hole 14 is a hole that allows exhaust to pass from upstream to downstream. Specifically, the pressure loss suppression hole 14 allows the exhaust from the upstream exhaust flow path S1 to directly pass through the downstream exhaust flow path S3 without passing through the spiral flow path S2, thereby suppressing pressure loss due to exhaust (pressure). In the center of the casing 20 when viewed in the flow direction. Further, the pressure loss suppression hole 14 is provided in the upper part of the dividing plate 10. Specifically, as shown in FIG. 4, the pressure loss suppression hole 14 has one hole in the center, six holes around the hole, and lines connecting the centers of the six holes are regular hexagons. A total of seven holes are arranged side by side at equal pitches.
  • the main flow of the exhaust from the upstream exhaust flow path S1 changes the direction, passes through the spiral flow path S2 and spirally passes through the internal space of the casing 20, and reaches the downstream exhaust flow path S3.
  • a part of the exhaust from the upstream exhaust flow path S1 can pass through the pressure loss suppression hole 14 and reach the downstream exhaust flow path S3 with almost no change in the flow direction. Therefore, the pressure loss of the exhaust gas by the dividing plate 10 can be suppressed (a change in the pressure in the space before and after the dividing plate 10 can be gently reduced), and the back pressure of the internal combustion engine ENG can be reduced.
  • the pressure loss suppression hole 14 which concerns on embodiment shown by FIG. 4 is comprised by seven holes, it may be comprised not only by this but by several other number of holes, The shape of the hole may not be a perfect circle, and the size of each hole may be changed as appropriate.
  • FIG. 5 is a perspective view of the injector body 31 viewed from the downstream side of the spiral flow path S2.
  • FIG. 6 is a view taken in the direction of the arrow INJ in FIG. 4 in which parts other than the injector body 31 are not displayed.
  • the injector 30 is a device for adding a reducing agent such as urea water to the spiral flow path S2.
  • the injector 30 is provided with an injector main body 31 and one end of the injector main body 31, and a nozzle (not shown) that ejects a reducing agent supplied from a supply source (not shown) such as a tank and a pump.
  • a supply source not shown
  • the nozzle mounting portion 32 that can be attached, the contact plate 33 that is disposed on the path of the reducing agent ejected from the nozzle and that refines the reducing agent ejected from the nozzle by collision.
  • the control blade 34 diffuses the refined reducing agent into the exhaust gas in the spiral flow path S2 and the intake opening 35 for taking in part of the exhaust gas flowing through the spiral flow path S2.
  • the nozzle is provided such that the reducing agent ejection direction INJ is along the spiral flow path S2.
  • the injector main body 31 has a cylindrical shape, and one end and the other end are opened, and the axial center thereof is disposed along the jetting direction INJ of the reducing agent from the nozzle and the spiral flow path S2.
  • the injector body 31 has a take-in opening 35 in the lower portion with reference to the ejection direction INJ at the center in the longitudinal direction.
  • the reducing agent ejected from the nozzle enters through the opening at one end of the injector body 31 and exits through the opening at the other end.
  • the exhaust from the upstream side of the spiral flow path S2 is taken in the intake opening. It enters from 35 and comes out of the opening at the other end.
  • the nozzle mounting portion 32 includes an opening that serves as a reducing agent ejection path from the nozzle in the center and a flange that has a plurality of mounting holes at the periphery.
  • the nozzle is attached to the flange of the nozzle attachment portion 32 with a bolt or the like. Thereby, the positional relationship between the nozzle and the injector 30 can be reliably defined.
  • the contact plate 33 protrudes inward of the injector body 31 with a predetermined length in the axial center of the injector body 31 (the ejection direction INJ in FIG. 6) when viewed in the ejection direction INJ. Plate-shaped body. Since the contact plate 33 protrudes to the inside of the injector body 31, the particle size can be reduced and made fine by colliding with a reducing agent such as urea water ejected from the nozzle. Moreover, since the contact plate 33 protrudes inside the injector body 31, it can be maintained at a relatively high temperature by the heat of the exhaust. For this reason, thermal decomposition and hydrolysis of the reducing agent can be promoted.
  • the contact plate 33 may have a length from the inner wall surface of the injector body 31 to the vicinity of the axial center of the injector body 31 (near the ejection direction INJ in FIG. 6) when viewed in the ejection direction INJ. . Thereby, a wider range of reducing agent ejected from the nozzle can collide with the contact plate 33.
  • the contact plate 33 cuts a part of the peripheral wall of the injector body 31 into an alphabetic U shape, and folds the cut portion toward the inside of the injector body 31 at an acute angle (for example, an angle of 10 degrees to 60 degrees). It is formed by that.
  • the contact plate 33 is arranged so that the fold line is upstream of the reducing agent ejection direction INJ and the free end is downstream of the reducing agent ejection direction INJ.
  • a portion of the injector main body 31 adjacent to the contact plate 33 is an opening having substantially the same shape as the contact plate 33.
  • the abutting plate 33 is not limited to the method of forming a part of the peripheral wall of the injector main body 31 as described above, and the abutting plate 33 separate from the injector main body 31 is welded to the injector main body 31 by welding or the like. You may form by the method of fixing to an inner wall surface. At this time, there is no need to have an opening having substantially the same shape as the contact plate 33 provided in a portion adjacent to the contact plate 33 in the injector body 31.
  • the contact plate 33 is provided on the upper portion of the peripheral wall of the injector body 31 when viewed in the reducing agent ejection direction INJ. This is because the reducing agent ejected from the nozzle is pushed upward with respect to the ejection direction INJ due to the influence of the flow of the exhaust gas flowing through the spiral flow path S2, so that the pushed reducing agent collides. . Thereby, the contact plate 33 can be provided on the opposite side of the intake opening 35 with reference to the ejection direction INJ. Therefore, since the abutting plate 33 and the intake opening 35 can be arranged to face each other, the length of the injector body 31 can be shortened and can be made compact. As shown in FIG.
  • the contact plate 33 is disposed at three locations on the upper portion of the peripheral wall of the injector body 31 and in an annular shape at an equal pitch (for example, a pitch of approximately 60 degrees).
  • the number of the contact plates 33 is not limited to three, and may be a single number or a plurality other than three.
  • the plurality of contact plates 33 arranged on the peripheral wall of the injector main body 31 are prepared by forming a part in which the plurality of contact plates 33 are integrally formed, and then welding the component to the peripheral wall of the injector main body 31. You may form by fixing with.
  • the control blade 34 diffuses the reducing agent ejected from the nozzle containing the reducing agent refined by the contact plate 33 into the exhaust gas in the spiral flow path S2.
  • the control blade 34 is provided at the other end of the injector body 31 and includes a rectifying blade 34 s and a crossing blade 34 v.
  • the rectifying blades 34s and the intersecting blades 34v are plate-like bodies, and can be formed by using a cylindrical part as a material and cutting the end of the part and then bending it.
  • the free end of the rectifying blade 34s has a flat surface substantially parallel to the reducing agent ejection direction INJ.
  • two rectifying blades 34 s are provided at opposite positions with respect to the ejection direction INJ at the other end of the injector main body 31.
  • the intersecting blade 34v has a flat surface whose free end obliquely intersects with the reducing agent ejection direction INJ.
  • Two crossed blades 34v according to the present embodiment are provided at opposite positions with respect to the ejection direction INJ at the other end of the injector body 31.
  • the present invention is not limited to this. It may be a plurality other than.
  • the flat surface may be a curved surface along a spiral shape.
  • the reducing agent and the exhaust gas flowing in the ejection direction INJ are deflected by the flat surface and diffused and flow in a spiral shape. Therefore, the exhaust gas and the reducing agent passing through the injector body 31 are straightened by the flat surface at the free end of the flow straightening blade 34s and flow straight and are diffused in a spiral shape by the flat surface at the free end of the cross blade 34v. Thereby, a spiral flow can be further formed in the spiral flow path S2, and the reducing agent can be efficiently mixed in the exhaust gas.
  • the added reducing agent can be refined, and the thermal decomposition and hydrolysis of the reducing agent can be promoted to generate a spiral flow in the refined reducing agent. It can be diffused and mixed in the exhaust gas passing through the flow path S2. Moreover, since the flow velocity is high, it can be suppressed that the reducing agent remains attached to the inner wall surface of the casing 20. Therefore, the nitrogen oxide NOx in the exhaust can be efficiently reduced at a short flow distance, that is, in a limited narrow space.
  • two cross blades 34v are provided as a material for the cylindrical part so that it can be formed by bending after cutting the end of the part.
  • the present invention is not limited to this. For example, a configuration in which three crossing blades 34v are provided and the rectifying blades 34s are not provided can be formed in the same manner and diffused more spirally. The flow to do is strengthened.
  • the reducer 40 includes an upstream reducer 41 that contracts the flow path from the upstream exhaust flow path S1 toward the upstream opening 21a, and a downstream exhaust flow path S3 from the downstream opening 22a. And a downstream reducer 42 that expands the flow path as it goes.
  • the upstream reducer 41 has an upstream reducer inlet 41in having a cross section equivalent to the cross section of the upstream exhaust flow path S1, and an upstream reducer outlet 41out having a cross section equivalent to the cross section of the upstream opening 21a of the casing 20. .
  • the upstream reducer inlet 41in and the upstream reducer outlet 41out are arranged so that their cross sections are substantially parallel to each other.
  • the cross section of the upstream reducer outlet 41out is smaller than the cross section of the upstream reducer inlet 41in.
  • the upstream reducer outlet 41out has an elliptical shape, like the upstream opening 21a of the casing 20, and is arranged eccentrically with respect to the upstream reducer inlet 41in when viewed in the flow direction of the exhaust gas.
  • the upstream reducer 41 is formed so as to connect the upstream reducer inlet 41in and the upstream reducer outlet 41out, and has a side wall 41s that forms a side surface in a truncated cone shape having the upstream reducer inlet 41in and the upstream reducer outlet 41out as bottom surfaces. ing.
  • the upstream reducer 41 has a flange 41f for connecting to the container that forms the upstream exhaust passage S1 therein.
  • the upstream reducer 41 has a funnel-like shape as a whole, the flow rate is reduced by narrowing the flow path while changing the flow direction by decentering the exhaust from the upstream exhaust flow path S1. Can be guided smoothly toward the inside of the casing 20 while suppressing pressure loss.
  • the downstream reducer 42 has a downstream reducer inlet 42in having a section equivalent to the section of the downstream opening 22a of the casing 20, and a downstream reducer outlet 42out having a section equivalent to the section of the downstream exhaust passage S3. ing.
  • the downstream reducer inlet 42in and the downstream reducer outlet 42out are arranged so that their cross sections are substantially parallel to each other.
  • the cross section of the downstream reducer outlet 42out is larger than the cross section of the downstream reducer inlet 42in.
  • the downstream reducer inlet 42in has an elliptical shape, like the downstream opening 22a of the casing 20, and is arranged eccentrically with respect to the downstream reducer outlet 42out when viewed in the exhaust flow direction.
  • the downstream reducer 42 is formed so as to connect the downstream reducer inlet 42in and the downstream reducer outlet 42out, and has a side wall 42s that forms a side surface in a truncated cone shape with the downstream reducer inlet 42in and the downstream reducer outlet 42out as bottom surfaces. ing.
  • the downstream reducer 42 has a flange 42f for connecting to the container that forms the downstream exhaust passage S3 therein.
  • exhaust gas containing nitrogen oxides NOx discharged from the internal combustion engine ENG is guided to the exhaust gas purification device 1.
  • the exhaust gas guided to the exhaust gas purification device 1 passes through the oxidation catalyst DOC disposed in the upstream exhaust flow path S1. At that time, hydrocarbon HC and carbon monoxide CO, which are one of harmful components in the exhaust, are oxidized and purified by the oxidation catalyst DOC.
  • Exhaust gas that has passed through the oxidation catalyst DOC passes through the diesel particulate filter DPF disposed in the upstream exhaust passage S1. At that time, the particulate matter in the exhaust gas is collected by the diesel particulate filter DPF.
  • the exhaust gas that has passed through the diesel particulate filter DPF is guided to the mixer 100.
  • the exhaust gas that has passed through the diesel particulate filter DPF is first deflected by the upstream reducer 41 and the flow velocity is increased.
  • the exhaust gas that has passed through the upstream reducer 41 flows spirally along the spiral flow path S2 defined by the casing 20 and the dividing plate 10. At this time, part of the exhaust gas that has passed through the upstream reducer 41 flows directly from the upstream side to the downstream side through the pressure loss suppression hole 14. Thereby, it can reduce that a pressure concentrates in the vicinity of the pressure loss suppression hole 14, and the pressure distribution inside the casing 20 can be made uniform.
  • the generated ammonia NH3 merges with the exhaust gas that has reached the inside of the injector main body 31, and reaches the control blade 34 while being mixed with each other.
  • Exhaust gas and ammonia NH3 reaching the control blade 34 are divided into rectification and spiral flow by the control blade 34, and are mixed homogeneously without excessively reducing the flow velocity.
  • the exhaust gas and ammonia NH3 mixed with each other flow in a spiral shape while maintaining a flow rate while being mixed more homogeneously and exit from the casing 20 to the downstream reducer 42.
  • the flow of exhaust gas and ammonia NH3 mixed with each other reaching the downstream reducer 42 is gradually deflected by the downstream reducer 42 to become a straight flow along the downstream exhaust flow path S3 from the spiral flow along the helical flow path S2.
  • the flow path cross section increases and the flow velocity is suppressed.
  • the nitrogen oxides NOx and ammonia NH3 in the exhaust gas that have reached the selective catalyst reduction device SCR are decomposed by a reduction reaction by the action of the catalyst supported on the selective catalyst reduction device SCR, and become nitrogen N2 and water H2O.
  • the ammonia NH3 remaining in the exhaust gas that has passed through the selective catalyst reduction device SCR is captured by the ammonia slip catalyst ASC disposed downstream of the selective catalyst reduction device SCR in the downstream exhaust flow path S3. Then, nitrogen N2 and water H2O are appropriately released into the outside air.
  • the exhaust gas purification device 1 efficiently purifies the nitrogen oxide NOx in the exhaust gas and renders the exhaust gas harmless. Therefore, the whole exhaust gas purification device 1 can be made compact.
  • the selective catalyst reduction device SCR arranged in the downstream exhaust passage S3, and the spiral passage S2 arranged upstream of the selective catalyst reduction device SCR and guiding the flow of exhaust gas from the internal combustion engine ENG in a spiral manner.
  • the mixer 100 has an upstream opening 21a and a downstream opening 22a, protrudes into the spiral flow path S2 with a casing 20 having a spiral flow path S2 therein.
  • the dividing plate 10 that defines the spiral flow path S2 the reducing agent can be uniformly mixed in the exhaust gas at a short distance, and the pressure loss of the exhaust gas can be reduced. It can be suppressed.
  • FIG. 13 is a perspective view of the mixer as a modification of the mixer of the exhaust gas purification apparatus according to the embodiment of the present invention as seen from the upstream.
  • FIG. 14 is a left side view of the mixer, which is a modification of the mixer, in which the reducer is not displayed.
  • FIG. 15 is a modification of the mixer, and corresponds to a cross-sectional view taken along arrow B in FIG.
  • the mixer 101 of the modified example is arranged so as to divide the cylindrical casing 20 and the internal space of the casing 20 so as to be divided into an upstream side and a downstream side, similarly to the mixer 100.
  • the casing 20 includes an upstream casing 21 and a downstream casing 22, and the upstream casing 21 is provided with an upstream opening 21a, and the downstream casing 22 is provided with a downstream opening 22a.
  • the injector 130 is provided at one end of the injector main body 131 and the injector main body 131, and ejects a reducing agent supplied from a supply source (not shown) such as a tank and a pump (not shown). And a nozzle mounting portion 132 and the like to which a mounting is possible.
  • a supply source such as a tank and a pump (not shown).
  • a nozzle mounting portion 132 and the like to which a mounting is possible.
  • the mixer 101 according to the modification is different from the mixer 100 in that the position where the injector 130 is attached and the direction of the injector 130 is inclined.
  • the injector main body 131 has a cylindrical shape, and one end and the other end are opened, and the axis is arranged so as to follow the jetting direction INJ of the reducing agent from the nozzle.
  • the injector 130 is provided such that its axis is inclined toward the downstream opening 22a.
  • the injector main body 131 is provided so as to be inclined from the vicinity of the upstream opening 21a of the upstream casing 21 so that the axis crosses the downstream opening 22a.
  • the pressure loss suppression hole 14 of the mixer 100 described above is provided in the dividing plate 10 and has one hole at the center, six holes around the hole, and lines connecting the centers of the six holes. A regular hexagon was formed, and a total of seven holes were arranged at equal pitches.
  • the pressure loss suppression holes 114 of the mixer 101 according to the modification are provided in the dividing plate 10 and are configured by a total of 13 holes, one row of seven holes and two rows of six holes.
  • the upstream reducer 41 and the downstream reducer 42 of the mixer 100 described above have flanges 41f and 42f, respectively.
  • the upstream reducer 141 and the downstream reducer 142 are respectively provided with flanges. It has no configuration.
  • the gate valve 13 for preventing the backflow is provided, but the modified mixer 101 is configured without the gate valve for preventing the backflow.
  • the injector body 31 protrudes to the inside of the mixer 100.
  • the injector body 131 extends to the inside of the mixer 130. It can also be configured not to protrude. With this configuration, the pressure loss of the exhaust gas in the spiral flow path S2 can be reduced.
  • Various modifications are possible as described in the modification.

Abstract

排気中に還元剤を均質に短い距離で混合できるとともに、排気の圧力損失を抑制できる排気浄化装置を提供することを目的とする。 本発明の排気浄化装置1は、下流排気流路S3に配置された選択触媒還元装置SCRと、選択触媒還元装置SCRより上流に配置されて内燃機関ENGからの排気の流れを螺旋状に導く螺旋流路S2を有するミキサ100と、を備えた排気浄化装置1において、ミキサ100は、上流開口部21a及び下流開口部22aを有し、螺旋流路S2を内部に有するケーシング20と、螺旋流路S2に配置され、螺旋流路S2に還元剤を添加するインジェクタ30と、上流開口部21aから下流開口部22aまで連なり、ケーシング20の内部空間を上流側及び下流側に二分するように仕切るように配置されるとともに、螺旋流路S2を画定する分割板10と、を備える。

Description

排気浄化装置
 本発明は、排気浄化装置に関するものである。
 従来、ディーゼルエンジン等の内燃機関における排気浄化装置として、尿素SCR(Selective Catalytic Reduction)システムが知られている。尿素SCRシステムは、還元剤となる尿素水を排気流路内に噴射するインジェクタと、インジェクタの下流における排気流路に設けられた還元触媒と、を備えている。
 そして、従来の尿素SCRシステムにおいて、インジェクタによって尿素水が排気中に噴射されると、噴射された尿素水が熱分解及び加水分解の反応をして、NH3(アンモニア)が生成される。発生したNH3により、排気中のNOx(窒素酸化物)は、還元触媒において、N2(窒素)とH2O(水)に還元される。このようにして、従来の排気浄化装置は、排気中のNOxを選択的に還元することにより浄化して、排気を無害にする。
 また、従来、還元触媒の上流に螺旋状の排気流路を有する混合器を設け、その排気流路に還元剤を噴射することによって排気と還元剤との混合を促進させる排気浄化装置がある(例えば、特許文献1参照)。
特開2014-190177号公報
 しかしながら、例えば、特許文献1に開示されているような排気浄化装置においては、排気中における還元剤の均質度合いを高めるために、混合器の構造が複雑となって大型となり、また、排気の圧力損失が大きくなって内燃機関に作用する背圧が高まるので、車両全体の設計自由度が低下し、好ましくない。
 本発明は、上記事情に鑑みてなされたものであり、排気中に還元剤を均質に短い距離で混合できるとともに、排気の圧力損失を抑制できる排気浄化装置を提供することを目的とする。
 上記目的を達成するために、以下の構成によって把握される。
(1)本発明の排気浄化装置は、下流排気流路に配置された選択触媒還元装置と、前記選択触媒還元装置より上流に配置されて内燃機関からの排気の流れを螺旋状に導く螺旋流路を有するミキサと、を備えた排気浄化装置において、前記ミキサは、上流開口部及び下流開口部を有し、前記螺旋流路を内部に有するケーシングと、前記螺旋流路に配置され、前記螺旋流路に還元剤を添加するインジェクタと、前記ケーシングの内部空間を上流側及び下流側に二分するように仕切るように配置されるとともに、前記螺旋流路を画定する分割板と、を備える。
(2)上記(1)の構成において、前記上流開口部は、前記内燃機関からの上流排気流路より狭く、前記下流開口部は、前記下流排気流路より狭い。
(3)上記(1)又は(2)の構成において、前記分割板は、前記上流開口部から前記下流開口部まで連なる。
(4)上記(1)から(3)のいずれかの構成において、前記上流開口部は、流れ方向に見て、前記インジェクタの位置に対して前記ケーシングの中心を基準として反対側に偏心している。
(5)上記(1)から(4)のいずれかの構成において、前記上流開口部は、前記流れ方向に見て、前記インジェクタの位置と重ならないように配置される。
(6)上記(1)から(5)のいずれかの構成において、前記上流開口部及び前記下流開口部は、前記流れ方向に見て左右対称に配置される。
(7)上記(1)から(6)のいずれかの構成において、前記上流開口部及び前記下流開口部は、前記流れ方向に見て重なる部分を有するように配置される。
(8)上記(7)の構成において、前記分割板は、前記重なる部分の縦中心線を中心とする左右対称な形状を有する。
(9)上記(7)又は(8)の構成において、前記重なる部分は、前記流れ方向に見て前記ケーシングの中心部分に形成される。
(10)上記(1)から(9)のいずれかの構成において、前記分割板は、上流から下流へ排気を通過させる圧損抑制孔を有する。
(11)上記(1)から(10)のいずれかの構成において、前記分割板は、逆流を防止する仕切弁を有する。
(12)上記(1)から(10)のいずれかの構成において、前記インジェクタは、軸心が前記下流開口部側に傾斜して設けられている。
 本発明によれば、排気中に還元剤を均質に短い距離で混合できるとともに、排気の圧力損失を抑制できる排気浄化装置を提供できる。
実施形態に係る排気浄化装置の正面図である。 上流から見たミキサの斜視図である。 下流から見たミキサの斜視図である。 レデューサが非表示とされているミキサの左側面図である。 螺旋流路の下流から見たインジェクタ本体の斜視図である。 インジェクタ本体以外が非表示とされている図4における噴出方向INJ矢視図である。 ミキサの平面図である。 図7におけるA矢視断面図である。 ミキサの左側面図である。 図8におけるB矢視断面図である。 ミキサの右側面図である。 図8におけるC矢視断面図である。 本発明の実施形態に係る空気浄化装置のミキサの変形例であって、上流から見たミキサの斜視図である。 ミキサの変形例であって、レデューサが非表示とされているミキサの左側面図である。 ミキサの変形例であって、図8におけるB矢視断面図に相当する図面である。
(実施形態)
 以下、図面を参照して本発明を実施するための形態(以下、実施形態)について詳細に説明する。なお、実施形態の説明の全体を通して同じ要素には同じ符号が付される。
 図1は実施形態に係る排気浄化装置1の正面図である。なお、図1における白抜き矢印は、排気が流れる方向を示している。
 本実施形態に係る排気浄化装置1は、ディーゼルエンジン等の内燃機関ENGから排出される排気を浄化する装置であり、排気の下流に設けられる。排気浄化装置1は、例えば、尿素水(尿素水溶液)を還元剤として利用して、内燃機関ENGから排出された排気中の窒素酸化物NOxを選択的に還元する選択触媒還元(SCR:Selective Catalytic Reduction)タイプの浄化装置である。
 図1に示すように、排気浄化装置1は、気密なスリーブの内部に、上流から順に連続する上流排気流路S1、螺旋流路S2及び下流排気流路S3から構成される排気流路Sを形成しており、全体として直線状になっている。上流排気流路S1及び下流排気流路S3は、円筒状のコンテナで画定されており、上流排気流路S1及び下流排気流路S3(コンテナの内部空間)の断面は、圧力損失をできる限り抑制するために円形となっている。
 詳細には、排気浄化装置1は、上流排気流路S1に配置された酸化触媒(Diesel Oxidation Catalyst)DOCと、上流排気流路S1に配置されたディーゼル微粒子捕集フィルタ(Diesel Particulate Filter)DPFと、下流排気流路S3に配置された、還元触媒が担持された選択触媒還元装置(Selective Catalytic Reduction)SCRと、を備えている。排気浄化装置1は、適宜、下流排気流路S3における選択触媒還元装置SCRより下流に配置され、アンモニアNH3が通り抜けて外気中に放出されるのを防止するための酸化触媒であるアンモニアスリップ触媒ASCを備えている。
 酸化触媒DOCは、排気中の有害成分の一つである炭化水素HC及び一酸化炭素COを酸化浄化するものであり、セラミック製ハニカムや金属製メッシュ等に、炭化水素HC及び一酸化炭素COの酸化反応を促進させる白金又はパラジウム等の触媒成分を担持させたものである。
 ディーゼル微粒子捕集フィルタDPFは、排気ガス中の粒子状物質を捕集するフィルタである。
 選択触媒還元装置SCRは、例えば、コージライト等の多孔質セラミックス基材に、ゼオライト系、酸化バナジウム系、酸化タングステン系等の触媒を担持させたものである。
 そして、排気浄化装置1は、還元触媒が担持された選択触媒還元装置SCRより上流に配置されて、内燃機関ENGからの排気の流れを螺旋状に導く螺旋流路S2を有するミキサ100を備えている。
 ミキサ100は、還元剤となる尿素水を螺旋流路S2内に噴射するインジェクタ30を有している。
 そして、排気浄化装置1において、インジェクタ30によって尿素水が螺旋流路S2を流れる排気中に噴射されると、噴射された尿素水は熱分解及び加水分解の反応をして、アンモニアNH3が生成される。すると、生成されたアンモニアNH3により、排気中の窒素酸化物NOxは、選択触媒還元装置SCRにおいて、窒素N2と水H2Oに還元される。還元された窒素N2と水H2Oは、外気中に放出される。
 このようにして、排気浄化装置1は、排気中の窒素酸化物NOxを選択的に還元することにより浄化して、排気を無害にする。
(ミキサ100)
 次に、ミキサ100について詳細に説明する。
 図2は、上流から見たミキサ100の斜視図である。図3は、下流から見たミキサ100の斜視図である。図7は、ミキサ100の平面図である。図8は、図7におけるA矢視断面図である。図9は、ミキサ100の左側面図である。図10は、図8におけるB矢視断面図である。図11は、ミキサ100の右側面図である。図12は、図8におけるC矢視断面図である。
 図2及び図3に示すように、ミキサ100は、筒状のケーシング20と、ケーシング20の内部空間を上流側及び下流側に二分するように仕切るように配置されてケーシング20とともに螺旋流路S2を画定する分割板10と、螺旋流路S2に突出して配置され、螺旋流路S2に還元剤を添加するインジェクタ30と、上流排気流路S1からケーシング20までの遷移部分及びケーシング20から下流排気流路S3までの遷移部分に設けられるレデューサ40と、を備えている。
 ミキサ100は、このように構成されていることにより、螺旋流路S2が短くても(ケーシング20の内部空間が狭くても、上流開口部21aから下流開口部22aまでの距離が短くても)、ミキサ100を通過する排気の流れを螺旋状に向きを変えながら流速を増すことができ、排気中に還元剤を均一に拡散して混合できるとともに、還元剤がケーシング20の内部に付着することを抑制できる。
 以下、ミキサ100を構成する各部について個別に説明する。
(ケーシング20及び分割板10)
 主に、図2から図4を用いて、ミキサ100を構成するケーシング20及び分割板10について説明する。
 図4は、レデューサ40が非表示とされているミキサ100の左側面図である。
 図2から図4に示すように、ケーシング20は流れ方向(図2及び図3において上流排気流路S1及び下流排気流路S3を示す矢印方向、すなわち左側面から見た方向である。以下、特に説明のない限り、同様の意味である。)に見て外形が略環状で、流れ方向に所定長さを有する筒状であり、分割板10とともに螺旋流路S2を内部に画定している。
 ケーシング20は、上流ケーシング21と下流ケーシング22とを備えている。そして、上流排気流路S1より狭い上流開口部21a及び下流排気流路S3より狭い下流開口部22aを、それぞれ上流ケーシング21及び下流ケーシング22に有している。これにより、上流ケーシング21において、上流排気流路S1から螺旋流路S2に向けて排気の流れを滑らかに偏向しながら滑らかに流速を上げることができ、下流ケーシング22において、排気の流れを螺旋流路S2から下流排気流路S3に向けて滑らかに偏向しながら滑らかに流速を下げることができる。
 上流開口部21a及び下流開口部22aは、互いに略平行に配置されている。上流開口部21a及び下流開口部22aは、流れ方向に対して、略垂直に配置されている。上流ケーシング21と下流ケーシング22とは別体であり、互いを突き合わせた状態で一体に組み立てることができるので、分割板10及びインジェクタ30を組み込みやすくなっている。
 上流開口部21aは、図4に示すように、流れ方向に見て、インジェクタ30が配置された位置に対してケーシング20の中心を基準として反対側に偏心して配置される。具体的には、インジェクタ30が流れ方向に見て左上部に配置されるので、上流開口部21aは、上流ケーシング21の右下部に配置される。なお、本実施形態に換えて、インジェクタ30を流れ方向に見て左右反転させて配置し、ミキサ100を左右反転させた構造としてもよい。
 また、上流開口部21aは、流れ方向に見て、インジェクタ30の位置と重ならないように配置される。これにより、ケーシング20の内部空間にインジェクタ30を突出させ、インジェクタ30を螺旋流路S2に沿って配置できる。よって、還元剤を排気中に効率的に添加でき、両者を効率的に混合できる。
 螺旋流路S2の長さ、すなわち、上流開口部21aの中心から下流開口部22aの中心までの排気が流れる流路の断面中心を結ぶ線の長さは、図4において矢印で示すように、ケーシング20の内部空間を略1周(360度)か1周に満たない程度の長さであってよい。このように、ミキサ100によれば、還元剤を排気中に効率的に混合できるので、螺旋流路S2の長さが短くても、ケーシング20、すなわち、ミキサ100、惹いては、排気浄化装置1をコンパクトにできる。
 詳細には、上流開口部21aは、流れ方向に見て、楕円形状となっており、楕円形状における曲率が小さい部分(右下部)がケーシング20の外形状に内接するように配置されている。これにより、排気を、上流開口部21aからケーシング20の内部空間へと、滑らかに誘導できる。
 一方、下流開口部22aは、図4に示すように、流れ方向に見て、上流開口部21aが配置された位置に対してケーシング20の縦中心線CLを基準として左右対称に配置される。具体的には、上流開口部21aが流れ方向に見て右下部に配置されるので、下流開口部22aは、流れ方向に見て下流ケーシング22の左下部に配置される。下流開口部22aは、流れ方向に見て、楕円形状となっており、楕円形状における曲率が小さい部分(左下部)がケーシング20の外形状に内接するように配置されている。
 ここで、下流開口部22aは、上流開口部21aと同じ形状となっている。これにより、分割板10におけるケーシング20と接続される上流側の上流接続部11及び下流側の下流接続部12を、同じ形状にできるので、分割板10を製造しやすくできる。
 また、上流開口部21aと下流開口部22aとは、流れ方向に見て、重なる部分を有するように配置されている。例えば、図4に示すように、上流開口部21aと下流開口部22aとが重なる部分は、雫型になっている。これにより、上流開口部21aから下流開口部22aまでの距離が短くできるので、分割板10の全体を板状にでき、分割板10の大きさをできる限り小さく抑えることができ、軽量にできる。また、分割板10を平面視において略対称形状(図12参照)で形成でき、分割板10の上流側と下流側の曲げ加工を同じようにできる(例えば、同型でプレス加工できる)ので、分割板10を製造しやすくできる。
 さらに、重なる部分は、流れ方向に見てケーシング20の中心部分に形成される。これにより、上流開口部21a及び下流開口部22aをできるだけ大きく確保でき、ミキサ100を通過することによる圧力損失を抑制できる。
 ケーシング20の上部には、螺旋流路S2に突出して配置され、螺旋流路S2に還元剤を添加するインジェクタ30が設けられている。インジェクタ30については後述する。
 また、ミキサ100は、ケーシング20の内部に、上流開口部21aから下流開口部22aまで連なり、ケーシング20の内部空間を上流側及び下流側に二分するように仕切るように配置されるとともに、螺旋流路S2を画定する分割板10を備えている。
 これにより、上流排気流路S1からの排気は上流開口部21aを通過し、分割板10によって螺旋状に流れるように誘導される。よって、短い距離で排気中に還元剤を均質に混合できるとともに、排気の圧力損失を抑制できる。
 詳細には、分割板10は、流れ方向に見て、上流開口部21aの左部から、下流開口部22aの右部まで連なっている。
 具体的には、分割板10は、上流ケーシング21の上流開口部21aに接続される上流側の上流接続部11と、下流ケーシング22の下流開口部22aに接続される下流側の下流接続部12と、仕切弁13と、圧損抑制孔14と、を備えている。
 分割板10は、仕切弁13の上端を除き、ケーシング20に対して気密に接続されている。すなわち、分割板10の上流接続部11は上流ケーシング21に、分割板10の下流接続部12は下流ケーシング22に、分割板10の下端における上流側は上流ケーシング21に、分割板10の下端における下流側は下流ケーシング22に、仕切弁13の上流端は上流ケーシング21に、仕切弁13の下流端は下流ケーシング22に、それぞれ気密に接続されている。
 上流接続部11は、流れ方向に見て、上流開口部21aにおける縦中心線CLより左側にある部分である左部に接続されている。上流接続部11の形状は、上流開口部21aの左部の形状と同じとなっている。
 同様に、下流接続部12は、流れ方向に見て、下流開口部22aにおける縦中心線CLより右側にある部分である右部に接続されている。下流接続部12の形状は、下流開口部22aの右部の形状と同じとなっている。
 分割板10は、図12に示すように、平面視において、上流ケーシング21に上流接続部11が接続された上流側が、上流開口部21aの中心から下流開口部22aの中心に向けて凸に湾曲している。同様に、下流ケーシング22に下流接続部12が接続された下流側が、下流開口部22aの中心から上流開口部21aの中心に向けて凸に湾曲している。
 また、分割板10は、図8、図10及び図12に示すように、正面視、側面視及び平面視において、略直線状の断面を有している。これにより、分割板10は、平板を素材として、曲げ加工(プレス加工)により、簡単に製造できる。
 ここで、説明は一部重複するが、上流開口部21aと下流開口部22aとは、流れ方向に見て、一部が重なるように配置されており、上流開口部21aと下流開口部22aとが重なる部分は、雫型になっている。そして、分割板10は、流れ方向に見て、上流開口部21aと下流開口部22aとが重なる部分と同じように、雫型になっている。
 また、分割板10は、流れ方向に見て、上流開口部21aと下流開口部22aとが重なる部分の縦中心線CLを中心とする略左右対称な形状を有している。これにより、分割板10の加工がしやすくなっている。
 仕切弁13は、逆流を防止する板状の舌片であり、分割板10の上部に設けられている。仕切弁13は、ケーシング20の内部空間において上流側と下流側との遷移部分に設けられ、上流ケーシング21と下流ケーシング22を跨ぐようにして、上流端が上流開口部21aにおける縦中心線CLより右側にある部分である右部に接続され、下流端が下流開口部22aにおける縦中心線CLより右側にある部分である右部に接続されている。仕切弁13の上端は、螺旋流路S2に対して開放されている。このように構成された仕切弁13により、上流ケーシング21の内部の流れと下流ケーシング22の内部の流れとを仕切れるので、下流側から上流側への逆流等によって流れが滞ることを抑制でき、螺旋流路S2における排気の流速を維持できる。
 圧損抑制孔14は、上流から下流へ排気を通過させる孔である。詳細には、圧損抑制孔14は、上流排気流路S1からの排気を、螺旋流路S2を経ずに、直接、下流排気流路S3に通じさせ、排気による圧力の損失を抑制する(圧力の変化をなだらかにする)ための孔であり、流れ方向に見て、ケーシング20の略中央に設けられる。
 また、圧損抑制孔14は、分割板10の上部に設けられる。
 具体的には、図4に示すように、圧損抑制孔14は、中央に一つの孔を有し、その周囲に6つの孔を有し、6つの孔のそれぞれの中心を結ぶ線が正六角形を形成しており、合計7つの孔が互いに等ピッチで並んで配置されている。これにより、上流排気流路S1からの排気の主流は、向きを変えながら、螺旋流路S2を通って螺旋状にケーシング20の内部空間を通過して下流排気流路S3に至り、一方で、上流排気流路S1からの排気の一部は、流れの向きをほとんど変えることなく圧損抑制孔14を通過して下流排気流路S3に至ることができる。よって、分割板10による排気の圧力損失を抑制(分割板10の前後空間の圧力の変化をなだらかに)でき、内燃機関ENGの背圧を低減できる。なお、図4に示される実施形態に係る圧損抑制孔14は、7つの孔で構成されているが、これに限らず、他の数の複数の孔で構成されてよく、単数であってもよく、孔の形状は真円でなくてもよく、各孔の大きさは適宜変えてもよい。
(インジェクタ30)
 次に、主に図4から図6を用いてインジェクタ30について説明する。
 図5は、螺旋流路S2の下流から見たインジェクタ本体31の斜視図である。図6は、インジェクタ本体31以外が非表示とされている図4における噴出方向INJ矢視図である。
 インジェクタ30は、螺旋流路S2に尿素水等の還元剤を添加するための装置である。
 図4に示すように、インジェクタ30は、インジェクタ本体31と、インジェクタ本体31の一端に設けられ、タンク及びポンプ等の供給源(不図示)から供給された還元剤を噴出するノズル(不図示)を取り付け可能なノズル取付部32と、ノズルから噴出された還元剤の経路上に配置され、ノズルから噴出された還元剤を衝突により微細化する当て板33と、インジェクタ本体31の他端に設けられ、微細化された還元剤を螺旋流路S2における排気中に拡散する制御羽根34と、螺旋流路S2を流れる排気の一部を取り込む取込開口35を備えている。なお、ノズルは、還元剤の噴出方向INJが螺旋流路S2に沿うように設けられる。
 インジェクタ本体31は、筒状であり、一端及び他端がそれぞれ開口しており、その軸心が、ノズルからの還元剤の噴出方向INJ及び螺旋流路S2に沿うように配置される。インジェクタ本体31は、長手方向中央における噴出方向INJを基準とする下部に取込開口35を有している。これにより、ノズルから噴出された還元剤は、インジェクタ本体31の一端の開口から入って他端の開口を抜けるようになっており、同時に、螺旋流路S2の上流側からの排気は取込開口35から入って他端の開口を抜けるようになっている。
 ノズル取付部32は、ノズルからの還元剤の噴出経路となる開口を中央に有し、複数の取り付け孔を周縁に有するフランジを備えている。そして、ノズル取付部32のフランジには、ボルト等によりノズルが取り付けられる。これにより、ノズルとインジェクタ30との位置関係を確実に規定できる。
 当て板33は、図6に示すように、噴出方向INJ方向に見て、インジェクタ本体31の軸心(図6中の噴出方向INJ)方向に、所定の長さでインジェクタ本体31の内側に突出した板状体である。当て板33がインジェクタ本体31の内側に突出しているので、ノズルから噴出された尿素水等の還元剤を衝突させて粒径を小さくし、微細化できる。また、当て板33がインジェクタ本体31の内側に突出しているので、排気の熱によって比較的高温に維持できる。このため、還元剤の熱分解及び加水分解を促進できる。
 なお、当て板33は、噴出方向INJ方向に見て、インジェクタ本体31の内壁面からインジェクタ本体31の軸心近傍(図6中の噴出方向INJ近傍)まで至る長さを有していてもよい。これにより、ノズルから噴出されたより広範囲の還元剤を当て板33に衝突させることができる。
 当て板33は、インジェクタ本体31の周壁の一部をアルファベットのU字状に切り欠き、切り欠いた部分をインジェクタ本体31の内側に向けて鋭角(例えば、10度から60度の角度)に折ることで形成されている。当て板33は、折り目が還元剤の噴出方向INJの上流側になり、自由端が還元剤の噴出方向INJの下流側になるように配置されている。そして、インジェクタ本体31における当て板33に隣接する部分は、当て板33と略同形状の開口となっている。
 なお、当て板33は、上記のようなインジェクタ本体31の周壁の一部を切り欠くことによって形成する方法に限らず、インジェクタ本体31とは別体の当て板33を溶接等によってインジェクタ本体31の内壁面に固定する方法によって形成してもよい。この際、インジェクタ本体31における当て板33に隣接する部分に設けられる当て板33と略同形状の開口は、なくてもよい。
 当て板33は、図6に示すように、還元剤の噴出方向INJに見て、インジェクタ本体31の周壁の上部に設けられている。これは、螺旋流路S2を流れる排気の流れの影響により、ノズルから噴出された還元剤が噴出方向INJに対して上部に押し流されるので、押し流された還元剤が衝突するようにするためである。これにより、当て板33を、噴出方向INJを基準として、取込開口35の反対側に設けることができる。よって、当て板33と取込開口35とを対向して配置できるため、インジェクタ本体31の長さを短縮でき、コンパクトにできる。
 当て板33は、図6に示すように、インジェクタ本体31の周壁の上部に3箇所、円環状に等ピッチ(例えば、略60度ピッチ)で配設されている。なお、当て板33の個数は3に限らず、単数でも、3以外の複数であってもよい。
 なお、インジェクタ本体31の周壁に配置された複数の当て板33は、複数の当て板33を一体に形成した部品を作成してから、その部品をインジェクタ本体31の周壁に溶接等の適宜の手段で固定することで形成してもよい。
 制御羽根34は、当て板33によって微細化された還元剤を含むノズルから噴出された還元剤を、螺旋流路S2における排気中に拡散するものである。
 制御羽根34は、図5及び図6に示すように、インジェクタ本体31の他端に設けられ、整流羽根34sと、交差羽根34vとを備えている。整流羽根34s及び交差羽根34vは、板状体であり、円筒状の部品を素材として、その部品の端部に切り込みを入れた後に曲げ加工を施すことで形成できる。
 整流羽根34sは、自由端が、還元剤の噴出方向INJと実質的に平行な平坦面を有している。ここで、本実施形態に係る整流羽根34sは、インジェクタ本体31の他端において、噴出方向INJを基準とする対向する位置に、2つ設けられているが、これに限らず、単数であっても、2以外の複数であってもよい。
 交差羽根34vは、自由端が、還元剤の噴出方向INJに対して斜めに交差する平坦面を有している。本実施形態に係る交差羽根34vは、インジェクタ本体31の他端において、噴出方向INJを基準とする対向する位置に、2つ設けられているが、これに限らず、単数であっても、2以外の複数であってもよい。なお、平坦面は、螺旋形状に沿う曲面であってよい。この平坦面は還元剤の噴出方向INJに対して斜めに交差するので、噴出方向INJに流れる還元剤及び排気は、この平坦面によって偏向されて、螺旋状に拡散して流れるようになる。
 したがって、インジェクタ本体31を通過する排気及び還元剤は、整流羽根34sの自由端における平坦面によって整流されて真っ直ぐに流れ、交差羽根34vの自由端における平坦面によって螺旋状に拡散して流れる。これにより、螺旋流路S2の中に、更に螺旋流を形成でき、排気中に還元剤を効率的に混合できる。
 このような制御羽根34によれば、添加された還元剤を微細化するとともに、還元剤の熱分解及び加水分解を促進し、微細化された還元剤に螺旋流を生じさせることができ、螺旋流路S2を通る排気中に拡散させて混合させることができる。また、流速が高いので、還元剤がケーシング20の内壁面に付着したままになることを抑制できる。よって、排気中の窒素酸化物NOxを、短い流れの距離、すなわち、限られた狭い空間で効率的に還元できる。
 なお、本実施形態においては、円筒状の部品の素材として、その部品の端部に切り込みを入れた後に曲げ加工を施すことで形成できるようにするため、交差羽根34vを2つ設け、整流羽根34sを2つ設けた構成としたが、これに限らず、例えば、交差羽根34vを3つ設け、整流羽根34sを設けない構成とすることによっても、同様に形成できるとともに、より螺旋状に拡散する流れを強められる。
(レデューサ40)
 次に、主に図2及び図3を用いてレデューサ40について説明する。
 図2及び図3に示すように、レデューサ40は、上流排気流路S1から上流開口部21aに向かうに連れて流路を縮小する上流レデューサ41と、下流開口部22aから下流排気流路S3に向かうに連れて流路を拡大する下流レデューサ42とを備えている。
 上流レデューサ41は、上流排気流路S1の断面と同等の断面を有する上流レデューサ入口41inと、ケーシング20の上流開口部21aの断面と同等の断面を有する上流レデューサ出口41outと、を有している。
 上流レデューサ入口41inと上流レデューサ出口41outとは、互いに断面が略平行になるように配置されている。
 上流レデューサ出口41outの断面は、上流レデューサ入口41inの断面より小さくなっている。
 上流レデューサ出口41outは、ケーシング20の上流開口部21aと同じように、楕円形状となっており、排気の流れ方向に見て、上流レデューサ入口41inに対して偏心して配置されている。このように、上流レデューサ出口41outは、楕円形状であるので、上流レデューサ入口41inに対して上流レデューサ出口41outが小さく、偏心していても、流路をできる限り確保できるとともに滑らかに流れを誘導できるので、圧力損失を抑制しつつ流速を変化させることができる。
 上流レデューサ41は、上流レデューサ入口41inと上流レデューサ出口41outを繋ぐように形成され、上流レデューサ入口41in及び上流レデューサ出口41outを底面とする錐台状の立体における側面となるような側壁41sを有している。
 上流レデューサ41は、上流排気流路S1を内部に形成するコンテナに対して連結するためのフランジ41fを有している。
 このように、上流レデューサ41は、全体が漏斗のような形状となっているので、上流排気流路S1からの排気を、偏心させることで流れの向きを変えながら、流路を絞ることで流速を上げて、ケーシング20の内部に向けて、圧力損失を抑制しつつ滑らかに誘導できる。
 一方、下流レデューサ42は、ケーシング20の下流開口部22aの断面と同等の断面を有する下流レデューサ入口42inと、下流排気流路S3の断面と同等の断面を有する下流レデューサ出口42outと、を有している。
 下流レデューサ入口42inと下流レデューサ出口42outとは、互いに断面が略平行になるように配置されている。
 下流レデューサ出口42outの断面は、下流レデューサ入口42inの断面より大きくなっている。
 下流レデューサ入口42inは、ケーシング20の下流開口部22aと同じように、楕円形状となっており、排気の流れ方向に見て、下流レデューサ出口42outに対して偏心して配置されている。このように、下流レデューサ入口42inは、楕円形状であるので、下流レデューサ出口42outに対して下流レデューサ入口42inが小さく、偏心していても、流路をできる限り確保できるとともに滑らかに流れを誘導できるので、圧力損失を抑制できる。
 下流レデューサ42は、下流レデューサ入口42inと下流レデューサ出口42outを繋ぐように形成され、下流レデューサ入口42in及び下流レデューサ出口42outを底面とする錐台状の立体における側面となるような側壁42sを有している。
 下流レデューサ42は、下流排気流路S3を内部に形成するコンテナに対して連結するためのフランジ42fを有している。
 このように、下流レデューサ42は、全体が漏斗のような形状となっているので、螺旋流路S2からの排気を、滑らかに流路を拡大しながら、下流排気流路S3に向けて、圧力損失を抑制しつつ誘導できる。
(排気浄化装置1による作用)
 以上説明した排気浄化装置1によって排気が浄化されるまでの作用を、排気の流れに沿って説明する。
 図1に示すように、内燃機関ENGから排出された窒素酸化物NOxを含む排気は、排気浄化装置1に導かれる。
 続いて、排気浄化装置1に導かれた排気は、上流排気流路S1に配置された酸化触媒DOCを通過する。その際、排気中の有害成分の一つである炭化水素HC及び一酸化炭素COは、酸化触媒DOCにより酸化浄化される。
 酸化触媒DOCを通過した排気は、上流排気流路S1に配置されたディーゼル微粒子捕集フィルタDPFを通過する。その際、排気中の粒子状物質は、ディーゼル微粒子捕集フィルタDPFにより捕集される。
 ディーゼル微粒子捕集フィルタDPFを通過した排気は、ミキサ100に導かれる。
 ここで、ディーゼル微粒子捕集フィルタDPFを通過した排気は、まず、上流レデューサ41によって、偏向されるとともに、流速が増加する。
 上流レデューサ41を通過した排気は、ケーシング20及び分割板10によって画定された螺旋流路S2に沿って螺旋状に流れる。この際、上流レデューサ41を通過した排気の一部は、圧損抑制孔14を通じて、上流側から下流側に直接流れる。これにより、圧損抑制孔14の近傍に圧力が集中することを低減でき、ケーシング20内部の圧力分布を均一にできる。
 螺旋流路S2に沿って流れる排気は、ケーシング20における上流側と下流側との遷移部分(分割板10の仕切弁13の近傍)を通過すると、遷移部分を通過した排気の一部が取込開口35を通過してインジェクタ本体31の内部に至る。
 同時に、インジェクタ30に取り付けられたノズルから噴出されて霧状になった尿素水は、インジェクタ本体31の内部に突出するように設けられた当て板33に衝突して、更に微細化されるとともに、熱分解及び加水分解の反応をして、アンモニアNH3を生成する。
 生成されたアンモニアNH3は、インジェクタ本体31の内部に至った排気と合流し、互いに混ざり合いながら、制御羽根34に至る。
 制御羽根34に至った排気とアンモニアNH3は、制御羽根34によって、整流と螺旋流とに分けられ、流速が過度に落とされることなく、均質に混ざり合っていく。
 互いに混ざり合った排気及びアンモニアNH3は、更に均質に混ざり合いながら、流速を維持しつつ、螺旋状に流れてケーシング20から出て下流レデューサ42に至る。
 下流レデューサ42に至った、互いに混ざり合った排気及びアンモニアNH3の流れは、下流レデューサ42によって徐々に偏向されて螺旋流路S2に沿う螺旋流から下流排気流路S3に沿う真っ直ぐな流れになり、流路断面が増加して流速が抑えられる。
 下流レデューサ42を通過した、互いに混ざり合った排気及びアンモニアNH3は、下流レデューサ42を通過すると、下流排気流路S3に配置された選択触媒還元装置SCRを通過する。
 選択触媒還元装置SCRに至った、排気中の窒素酸化物NOx及びアンモニアNH3は、選択触媒還元装置SCRに担持された触媒の作用によって還元反応して分解され、窒素N2及び水H2Oになる。
 そして、選択触媒還元装置SCRを通過すると、下流排気流路S3において選択触媒還元装置SCRより下流に配置されたアンモニアスリップ触媒ASCによって、選択触媒還元装置SCRを通過した排気に残存するアンモニアNH3は捕獲され、窒素N2と水H2Oは、適宜、外気中に放出される。
 このようにして、排気浄化装置1は、排気中の窒素酸化物NOxを効率的に浄化して、排気を無害にする。よって、排気浄化装置1の全体をコンパクトにできる。
 以上、本発明の好ましい実施形態について詳述したが、本発明に係る排気浄化装置1は上述した実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変化が可能である。
 本発明によれば、下流排気流路S3に配置された選択触媒還元装置SCRと、選択触媒還元装置SCRより上流に配置されて内燃機関ENGからの排気の流れを螺旋状に導く螺旋流路S2を有するミキサ100と、を備えた排気浄化装置1において、ミキサ100は、上流開口部21a及び下流開口部22aを有し、螺旋流路S2を内部に有するケーシング20と、螺旋流路S2に突出して配置され、螺旋流路S2に還元剤を添加するインジェクタ30と、上流開口部21aから下流開口部22aまで連なり、ケーシング20の内部空間を上流側及び下流側に二分するように仕切るように配置されるとともに、螺旋流路S2を画定する分割板10と、を備えるので、排気中に還元剤を均質に短い距離で混合できるとともに、排気の圧力損失を抑制できる。
 次に、変形例について図13~図15を用いて説明する。図13は、本発明の実施形態に係る排気浄化装置のミキサの変形例であって、上流から見たミキサの斜視図である。図14は、ミキサの変形例であって、レデューサが非表示とされているミキサの左側面図である。図15は、ミキサの変形例であって、図8におけるB矢視断面図に相当する図面である。
 図13~図15に示すように、変形例のミキサ101は、ミキサ100と同様に、筒状のケーシング20と、ケーシング20の内部空間を上流側及び下流側に二分するように仕切るように配置されてケーシング20とともに螺旋流路S2を画定する分割板10と、螺旋流路S2に突出して配置され、螺旋流路S2に還元剤を添加するインジェクタ130と、上流排気流路S1からケーシング20までの遷移部分及びケーシング20から下流排気流路までの遷移部分に設けられるレデューサ40と、を備えている。
 ケーシング20は、上流ケーシング21と下流ケーシング22とを備えており、上流ケーシング21には、上流開口部21a、下流ケーシング22には、下流開口部22aが設けられている。
(インジェクタ130)
 図13~15に示すように、インジェクタ130は、インジェクタ本体131と、インジェクタ本体131の一端に設けられ、タンク及びポンプ等の供給源(不図示)から供給された還元剤を噴出するノズル(不図示)を取り付け可能なノズル取付部132等を備えている。
 変形例のミキサ101では、インジェクタ130を取り付ける位置と、インジェクタ130の向きを斜めにしている点で、ミキサ100と異なる。
 インジェクタ本体131は、筒状であり、一端及び他端がそれぞれ開口しており、その軸心が、ノズルからの還元剤の噴出方向INJに沿うように配置されている。
 また、インジェクタ130は、軸心が下流開口部22a側に傾斜して設けられている。インジェクタ本体131は、上流ケーシング21の上流開口部21aの近傍から、軸心が下流開口部22aを横切るよう傾斜して設けられている。
 上述したミキサ100の圧損抑制孔14は、分割板10に設けられており、中央に一つの孔を有し、その周囲に6つの孔を有し、6つの孔のそれぞれの中心を結ぶ線が正六角形を形成しており、合計7つの孔が互いに等ピッチで並んで配置されていた。
 変形例のミキサ101の圧損抑制孔114は、分割板10に設けられており、7つの孔の1列と、6つの孔の2列の合計13個の孔によって構成されている。
 上述したミキサ100の上流レデューサ41と、下流レデューサ42は、それぞれフランジ41f、42fを有していたが、変形例のミキサ101では、上流レデューサ141と、下流レデューサ142は、それぞれフランジが設けられていない構成となっている。
 上述したミキサ100では、逆流を防止する仕切弁13を設けて構成していたが、変形例のミキサ101では、逆流を防止する仕切弁を設けないで構成している。
 図4の破線で示したように、上述したミキサ100では、インジェクタ本体31がミキサ100の内部まで突き出している構成であったが、変形例のミキサ101では、インジェクタ本体131はミキサ130の内部まで突き出さないように構成することもできる。この構成により、螺旋流路S2における排気の圧力損失を軽減させることができる。
 変形例で説明したように種々の変形が可能である。
1     排気浄化装置
10    分割板
11    上流接続部
12    下流接続部
13    仕切弁
14、114    圧損抑制孔
20    ケーシング
21    上流ケーシング
21a   上流開口部
22    下流ケーシング
22a   下流開口部
30、130    インジェクタ
31、131    インジェクタ本体
32、132    ノズル取付部
33    当て板
34    制御羽根
34s   整流羽根
34v   交差羽根
35    取込開口
40    レデューサ
41、141    上流レデューサ
41f   フランジ
41in  上流レデューサ入口
41out 上流レデューサ出口
41s   側壁
42、142    下流レデューサ
42f   フランジ
42in  下流レデューサ入口
42out 下流レデューサ出口
42s   側壁
100、101   ミキサ
S     排気流路
S1    上流排気流路
S2    螺旋流路
S3    下流排気流路
CL    縦中心線
INJ   噴出方向
ASC   アンモニアスリップ触媒
CO    一酸化炭素
H2O   水
HC    炭化水素
N2    窒素
NH3   アンモニア
NOx   窒素酸化物
DOC   酸化触媒
DPF   ディーゼル微粒子捕集フィルタ
ENG   内燃機関
SCR   選択触媒還元装置

Claims (12)

  1.  下流排気流路に配置された選択触媒還元装置と、前記選択触媒還元装置より上流に配置されて内燃機関からの排気の流れを螺旋状に導く螺旋流路を有するミキサと、を備えた排気浄化装置において、
     前記ミキサは、
     上流開口部及び下流開口部を有し、前記螺旋流路を内部に有するケーシングと、
     前記螺旋流路に配置され、前記螺旋流路に還元剤を添加するインジェクタと、
     前記ケーシングの内部空間を上流側及び下流側に二分するように仕切るように配置されるとともに、前記螺旋流路を画定する分割板と、を備える
    ことを特徴とする排気浄化装置。
  2.  前記上流開口部は、前記内燃機関からの上流排気流路より狭く、前記下流開口部は、前記下流排気流路より狭い
    ことを特徴とする請求項1に記載の排気浄化装置。
  3.  前記分割板は、前記上流開口部から前記下流開口部まで連なる
    ことを特徴とする請求項1又は請求項2に記載の排気浄化装置。
  4.  前記上流開口部は、流れ方向に見て、前記インジェクタの位置に対して前記ケーシングの中心を基準として反対側に偏心している
    ことを特徴とする請求項1から請求項3のいずれか1項に記載の排気浄化装置。
  5.  前記上流開口部は、前記流れ方向に見て、前記インジェクタの位置と重ならないように配置される
    ことを特徴とする請求項1から請求項4のいずれか1項に記載の排気浄化装置。
  6.  前記上流開口部及び前記下流開口部は、前記流れ方向に見て左右対称に配置される
    ことを特徴とする請求項1から請求項5のいずれか1項に記載の排気浄化装置。
  7.  前記上流開口部及び前記下流開口部は、前記流れ方向に見て重なる部分を有するように配置される
    ことを特徴とする請求項1から請求項6のいずれか1項に記載の排気浄化装置。
  8.  前記分割板は、前記重なる部分の縦中心線を中心とする左右対称な形状を有する
    ことを特徴とする請求項7に記載の排気浄化装置。
  9.  前記重なる部分は、前記流れ方向に見て前記ケーシングの中心部分に形成される
    ことを特徴とする請求項7又は請求項8に記載の排気浄化装置。
  10.  前記分割板は、上流から下流へ排気を通過させる圧損抑制孔を有する
    ことを特徴とする請求項1から請求項9のいずれか1項に記載の排気浄化装置。
  11.  前記分割板は、逆流を防止する仕切弁を有する
    ことを特徴とする請求項1から請求項10のいずれか1項に記載の排気浄化装置。
  12.  前記インジェクタは、軸心が前記下流開口部側に傾斜して設けられている
    ことを特徴とする請求項1から請求項11のいずれか1項に記載の排気浄化装置。
PCT/JP2019/019495 2018-05-16 2019-05-16 排気浄化装置 WO2019221224A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020519912A JP6948088B2 (ja) 2018-05-16 2019-05-16 排気浄化装置
US17/097,234 US11268424B2 (en) 2018-05-16 2020-11-13 Exhaust gas purification device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-094778 2018-05-16
JP2018094778 2018-05-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/097,234 Continuation US11268424B2 (en) 2018-05-16 2020-11-13 Exhaust gas purification device

Publications (1)

Publication Number Publication Date
WO2019221224A1 true WO2019221224A1 (ja) 2019-11-21

Family

ID=68540398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019495 WO2019221224A1 (ja) 2018-05-16 2019-05-16 排気浄化装置

Country Status (3)

Country Link
US (1) US11268424B2 (ja)
JP (1) JP6948088B2 (ja)
WO (1) WO2019221224A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2607398B (en) * 2019-09-13 2024-01-03 Cummins Inc Exhaust gas and reductant mixer for an aftertreatment system
CN114458428B (zh) * 2022-01-05 2023-07-18 潍柴动力股份有限公司 Scr混合器和发动机
US11781457B2 (en) 2022-02-25 2023-10-10 Deere & Company Diesel exhaust fluid injection shield and diesel exhaust fluid injection system
US11732630B1 (en) * 2022-02-25 2023-08-22 Deere & Company Diesel exhaust fluid injection shield and diesel exhaust fluid injection system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099333A (ja) * 2009-11-04 2011-05-19 Hino Motors Ltd 排気浄化装置
US20120216513A1 (en) * 2009-06-19 2012-08-30 Frederic Greber Exhaust line with injection system
JP2014025378A (ja) * 2012-07-25 2014-02-06 Hino Motors Ltd 排気浄化装置
US20160319724A1 (en) * 2015-04-30 2016-11-03 Faurecia Emissions Control Technologies, Usa, Llc Mixer with integrated doser cone
US20170089246A1 (en) * 2015-09-29 2017-03-30 Faurecia Systemes D 'echappement Exhaust line with a reagent injector
US20170152782A1 (en) * 2014-06-17 2017-06-01 Daimler Ag Mixing Device of an Exhaust Gas Purification System of a Motor Vehicle Internal Combustion Engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190177A (ja) 2013-03-26 2014-10-06 Toyota Motor Corp 内燃機関の排気浄化装置
DE102015103425B3 (de) * 2015-03-09 2016-05-19 Tenneco Gmbh Mischvorrichtung
WO2018075061A1 (en) * 2016-10-21 2018-04-26 Faurecia Emissions Control Technologies Usa, Llc Reducing agent mixer
US10337380B2 (en) * 2017-07-07 2019-07-02 Faurecia Emissions Control Technologies, Usa, Llc Mixer for a vehicle exhaust system
WO2019045701A1 (en) * 2017-08-30 2019-03-07 Faurecia Emissions Control Technologies, Usa, Llc VENTURI TYPE INJECTOR CONE
US10907524B2 (en) * 2019-04-11 2021-02-02 Ford Global Technologies, Llc Helical diesel exhaust fluid mixer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120216513A1 (en) * 2009-06-19 2012-08-30 Frederic Greber Exhaust line with injection system
JP2011099333A (ja) * 2009-11-04 2011-05-19 Hino Motors Ltd 排気浄化装置
JP2014025378A (ja) * 2012-07-25 2014-02-06 Hino Motors Ltd 排気浄化装置
US20170152782A1 (en) * 2014-06-17 2017-06-01 Daimler Ag Mixing Device of an Exhaust Gas Purification System of a Motor Vehicle Internal Combustion Engine
US20160319724A1 (en) * 2015-04-30 2016-11-03 Faurecia Emissions Control Technologies, Usa, Llc Mixer with integrated doser cone
US20170089246A1 (en) * 2015-09-29 2017-03-30 Faurecia Systemes D 'echappement Exhaust line with a reagent injector

Also Published As

Publication number Publication date
US11268424B2 (en) 2022-03-08
JPWO2019221224A1 (ja) 2021-07-15
US20210062703A1 (en) 2021-03-04
JP6948088B2 (ja) 2021-10-13

Similar Documents

Publication Publication Date Title
WO2019221224A1 (ja) 排気浄化装置
US9217348B2 (en) Exhaust gas purification device
JP5099684B2 (ja) 排気浄化装置
US11465108B2 (en) Dosing and mixing arrangement for use in exhaust aftertreatment
CN100538037C (zh) 发动机的排气净化装置
US7784273B2 (en) Exhaust emission purifying apparatus for engine
CN109415964B (zh) 用于机动车的废气后处理系统的混合器设备,废气后处理系统和机动车
US20070274877A1 (en) Gas treatment appartatus
EP3093463B1 (en) Exhaust purification device
US11193412B2 (en) Automotive exhaust aftertreatment system
JP6636907B2 (ja) 排気ガス浄化装置
EP3978896A1 (en) Circular sampling device for an exhaust gas sensor
JP2020045774A (ja) インジェクタ及び排気浄化装置
JP6756629B2 (ja) 排気ガス浄化装置
EP3992442B1 (en) Exhaust gas purification device, flow path forming member, and tubular member
JP2020023953A (ja) 排気浄化装置
JP6787606B1 (ja) 排気浄化装置、流路形成部材、及び筒状部材
JP7432240B2 (ja) 排気浄化装置、流路形成部材、及び筒状部材
JP7459291B2 (ja) 混合装置
JP2022135628A (ja) エンジンの排気浄化装置
WO2022178231A1 (en) Exhaust aftertreatment apparatus
JP2019183667A (ja) 排気管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519912

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19804114

Country of ref document: EP

Kind code of ref document: A1