WO2019194151A1 - Solar cell module and method for manufacturing solar cell module - Google Patents

Solar cell module and method for manufacturing solar cell module Download PDF

Info

Publication number
WO2019194151A1
WO2019194151A1 PCT/JP2019/014564 JP2019014564W WO2019194151A1 WO 2019194151 A1 WO2019194151 A1 WO 2019194151A1 JP 2019014564 W JP2019014564 W JP 2019014564W WO 2019194151 A1 WO2019194151 A1 WO 2019194151A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
light
cell module
base material
substrate
Prior art date
Application number
PCT/JP2019/014564
Other languages
French (fr)
Japanese (ja)
Inventor
順次 荒浪
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2019194151A1 publication Critical patent/WO2019194151A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present disclosure relates to a solar cell module and a method for manufacturing the solar cell module.
  • a solar cell module in which a plurality of solar cell elements are arranged side by side between a translucent member and a back member is known (for example, JP-A-11-307791, JP-A-2015-185712, JP-A-11-298029 and JP-A-2012-104612).
  • the solar cell module includes a first base material, a second base material, a plurality of solar cell elements, and a light scattering member.
  • the first substrate has translucency.
  • the second base material faces the first base material.
  • the plurality of solar cell elements are located between the first base material and the second base material and are adjacent to each other in plan view.
  • the light scattering member avoids at least a part of the first region overlapping with the plurality of solar cell elements in a plan view, and at least part of the second region not overlapping with the plurality of solar cell elements on the second substrate. And having a plurality of particles.
  • FIG. 1 is a cross-sectional view schematically showing an example of the configuration of the solar cell module 200
  • FIG. 2 is a plan view schematically showing an example of a partial configuration of the solar cell module 200.
  • the solar cell module 200 includes a pair of base materials 210 and 220, a plurality of solar cell elements 100, a filler 230, a wiring material 240, and a light scattering member 250.
  • the base materials 210 and 220 have, for example, a plate shape, and the thickness direction is positioned in a posture along the Z-axis direction.
  • the base materials 210 and 220 are positioned so as to face each other with a gap in the Z-axis direction.
  • the distance between the base materials 210 and 220 (the distance between the ⁇ Z side main surface 210a of the base material 210 and the + Z side main surface 220a of the base material 220) is about 1.2 mm or less, for example.
  • the base materials 210 and 220 have, for example, a rectangular shape in plan view (that is, viewed along the Z-axis direction), and one side thereof is positioned in a posture along the X-axis direction.
  • the base material 210 is located on the + Z side with respect to the base material 220.
  • the light source for example, the sun
  • the base material 210 is located on the + Z side with respect to the solar cell module 200.
  • the base material 210 is located on the light source side.
  • the base material 210 is a substrate having high translucency.
  • High translucency here means that the transmittance
  • the transmittance is, for example, 60% or more.
  • the substrate 210 can be formed of, for example, glass or a resin such as acrylic or polycarbonate.
  • the thickness of the substrate 210 is, for example, about 3.2 [mm] or less.
  • the base material 220 may have high translucency or may not have high translucency.
  • the base material 220 can be formed of, for example, glass or a resin such as acrylic or polycarbonate, as with the base material 210.
  • the thickness of the base material 220 is also about 3.2 [mm] or less, for example.
  • the base material 220 is one resin of polyvinyl fluoride (PVF), polyethylene terephthalate (PET), and polyethylene naphthalate (PEN), or these resins It may be formed of at least one kind of resin.
  • the thickness of the base material 220 is, for example, about 0.3 [mm] to 0.5 [mm].
  • the base material 220 is thin, light can permeate
  • the plurality of solar cell elements 100 are located between the pair of base materials 210 and 220.
  • the plurality of solar cell elements 100 have a substantially plate shape, and the thickness direction thereof is positioned in a posture along the Z-axis direction.
  • the solar cell element 100 has a substantially rectangular shape in plan view.
  • the corners of the solar cell element 100 are chamfered, and precisely, the solar cell element 100 has an octagonal shape.
  • the plurality of solar cell elements 100 are positioned adjacent to each other with an interval in plan view. That is, the plurality of solar cell elements 100 are two-dimensionally positioned on the XY plane.
  • the plurality of solar cell elements 100 are positioned in a matrix with the X-axis direction and the Y-axis direction as row and column directions, respectively.
  • the light transmitted through the substrate 210 from the + Z side is incident on the plurality of solar cell elements 100.
  • the base material 220 has translucency
  • light that has passed through the base material 220 from the ⁇ Z side also enters the plurality of solar cell elements 100.
  • the solar cell element 100 converts light incident on itself into electric power. That is, the solar cell element 100 generates power based on the photovoltaic effect that converts incident light into electric power.
  • FIG. 3 is a cross-sectional view schematically showing an example of the configuration of the solar cell element 100.
  • the solar cell element 100 has a semiconductor substrate 1 (laminated semiconductor) and electrodes 6 to 8.
  • the semiconductor substrate 1 has a substantially plate shape.
  • the + Z side main surface of the semiconductor substrate 1 is also referred to as a first surface 1a
  • the ⁇ Z side main surface is also referred to as a second surface 1b
  • the periphery of the first surface 1a and the periphery of the second surface 1b are connected to each other.
  • the side surface to be called is also referred to as the third surface 1c.
  • the semiconductor substrate 1 includes a first semiconductor layer 2 which is a first conductivity type (for example, p-type) semiconductor region and a second conductivity type (for example, an n-type) semiconductor region which is opposite to the first conductivity type. And a semiconductor layer 3.
  • the 1st semiconductor layer 2 and the 2nd semiconductor layer 3 are located in the state laminated
  • the second semiconductor layer 3 is located on the + Z side with respect to the first semiconductor layer 2.
  • the semiconductor substrate 1 for example, a monocrystalline or polycrystalline silicon substrate can be adopted.
  • the semiconductor substrate 1 may be an inorganic semiconductor substrate such as germanium, selenium, or gallium arsenide.
  • the thickness is, for example, about 100 to 250 [ ⁇ m].
  • the first semiconductor layer 2 contains an impurity such as boron or gallium as a dopant.
  • the second semiconductor layer 3 is formed by diffusing impurities such as phosphorus as a dopant on the first surface 1 a side with respect to the first semiconductor layer 2.
  • a pn junction is formed at the interface between the first semiconductor layer 2 and the second semiconductor layer 3. Electric power is generated when light enters the pn junction. That is, the semiconductor substrate 1 generates power.
  • the first surface 1a of the semiconductor substrate 1 may have a fine uneven shape (texture) for reducing the reflectance of incident light.
  • the height of the convex portions of this texture is, for example, about 0.1 to 10 [ ⁇ m], and the interval between adjacent convex portions is, for example, about 0.1 to 20 [ ⁇ m].
  • the convex portion of the texture may have a pyramid shape, or the concave portion of the texture may have a shape along the spherical shape, for example.
  • the electrode 6 is located on the first surface 1 a of the semiconductor substrate 1. Since the first surface 1 a corresponds to the surface of the semiconductor substrate 1, the electrode 6 is also referred to as a surface electrode 6 hereinafter.
  • the surface electrode 6 is electrically connected to the second semiconductor layer 3.
  • the surface electrode 6 has, for example, a long shape extending along the X-axis direction.
  • the length (hereinafter referred to as the width) of the surface electrode 6 in the short direction (here, the Y-axis direction) is, for example, about 0.5 to 2.5 [mm].
  • a plurality of current collecting electrodes that extend so as to intersect the surface electrode 6 and are connected to the surface electrode 6 may be located.
  • the current collecting electrode has a linear shape, and is located, for example, in a state extending along the Y-axis direction.
  • the width of the current collecting electrode (here, the length along the X-axis direction) is, for example, about 30 to 200 [ ⁇ m].
  • the interval between the plurality of current collecting electrodes is, for example, about 1 to 3 [mm].
  • the thickness of the surface electrode 6 is, for example, 10 to 40 [ ⁇ m].
  • Such a surface electrode 6 and a current collecting electrode are, for example, the first surface 1a of the semiconductor substrate 1 so that a metal paste mainly composed of metal (for example, silver) has a desired pattern shape by a screen printing method or the like. After coating on the substrate, the coating film can be formed by baking.
  • the main component means that the contained mass with respect to the total components is 50 [% by mass] or more.
  • the solar cell element 100 may have an antireflection layer 5.
  • the antireflection layer 5 is located on the first surface 1 a of the semiconductor substrate 1. More specifically, it is located on a region of the first surface 1 a of the semiconductor substrate 1 that is not covered by the surface electrode 6.
  • the antireflection layer 5 suppresses reflection of light incident on the solar cell element 100.
  • the antireflection layer 5 has a layer made of, for example, silicon oxide, aluminum oxide, or silicon nitride.
  • the refractive index of the antireflection layer 5 is, for example, about 1.8 to 2.5, and the thickness thereof is, for example, about 20 to 120 [nm].
  • the antireflection layer 5 can be formed, for example, by PECVD (Plasma-Enhanced Chemical Vapor Deposition) method.
  • the electrodes 7 and 8 are electrodes located on the second surface 1b side of the semiconductor substrate 1 as shown in FIG. Since the second surface 1b corresponds to the back surface of the semiconductor substrate 1, the electrodes 7 and 8 are also referred to as back electrodes.
  • the electrodes 6 and 7 are power extraction electrodes for extracting the electric power generated by the semiconductor substrate 1 to the outside.
  • the electrode 7 may be located in a dot shape (or island shape).
  • the plurality of electrodes 7 may be positioned in a matrix having the X-axis direction and the Y-axis direction as row and column directions, respectively.
  • Each electrode 7 may have a long shape.
  • the electrode 7 may have a linear shape extending from end to end of the semiconductor substrate 1.
  • the thickness of the electrode 7 is, for example, about 10 to 30 [ ⁇ m], and the width thereof is, for example, about 1.3 to 7 [mm].
  • the electrode 7 contains, for example, a metal (for example, silver) as a main component.
  • a metal for example, silver
  • such an electrode 7 is formed by applying a metal paste mainly composed of silver onto the second surface 1b of the semiconductor substrate 1 so as to have a predetermined pattern shape by a screen printing method or the like, and then baking. Can be formed.
  • a passivation layer 9 may be located on the second surface 1 b side of the semiconductor substrate 1. This passivation layer 9 is located on the second surface 1 b of the semiconductor substrate 1.
  • a through hole is formed in the passivation layer 9 in a region corresponding to the electrode 7. The through hole penetrates the passivation layer 9 in the Z-axis direction, and the electrode 7 is located inside the through hole.
  • the electrode 8 is an electrode for collecting the electric power generated by the semiconductor substrate 1 on the electrode 7 and is located in a state of being connected to the electrode 7. As illustrated in FIG. 3, when the passivation layer 9 is located, the electrode 8 is located on the passivation layer 9. In the passivation layer 9, a plurality of through holes 22 are formed in a region facing the electrode 8. The plurality of through holes 22 penetrates the passivation layer 9 in the Z-axis direction. A part of the electrode 8 is located in a state where the through-hole 22 is filled, and is located in a state where the electrode 8 is in contact with the second surface 1 b of the semiconductor substrate 1. Thereby, the electrode 8 is positioned in a state of being electrically connected to the first semiconductor layer 2.
  • the passivation layer 9 has a function of reducing minority carrier recombination because it reduces defect levels that cause minority carrier recombination at the interface between the passivation layer 9 and the semiconductor substrate 1.
  • the passivation layer 9 is an insulating film such as silicon oxide, aluminum oxide, or silicon nitride.
  • the thickness of the passivation layer 9 is, for example, about 5 to 200 [nm].
  • the electrode 8 is located, for example, in a state extending in a direction intersecting with the electrode 7, and is located in a state of being connected to the electrode 7.
  • the electrode 8 can function as a current collecting electrode.
  • the electrode 8 may have a main component (for example, aluminum) different from the electrode 7, for example.
  • the thickness of the electrode 8 is, for example, about 15 to 50 [ ⁇ m].
  • the electrode 8 can be formed by, for example, applying a metal paste mainly composed of aluminum on the passivation layer 9 so as to have a predetermined pattern shape by a screen printing method or the like, and then baking the applied film.
  • a BSF (Back Surface Field) layer 4 may be located in the vicinity of the interface with the electrode 8.
  • the BSF layer 4 is a semiconductor of the same first conductivity type as the first semiconductor layer 2, and the concentration of the dopant is higher than the concentration of the dopant contained in the portion of the first semiconductor layer 2 other than the BSF layer 4.
  • the BSF layer 4 can be formed by diffusing a dopant such as boron or aluminum.
  • the BSF layer 4 can be formed by diffusing aluminum in the metal paste by firing the metal paste.
  • the plurality of solar cell elements 100 are located in a state of being electrically connected to each other via a wiring member 240.
  • the wiring member 240 can be formed of metal, for example.
  • solar cell elements 100A and 100B are shown as a pair of solar cell elements 100 that are adjacent to each other in the X-axis direction, and the wiring material 240A is a wiring material 240 that connects the solar cell elements 100A and 100B. It is shown.
  • Solar cell element 100A is located on the ⁇ X side with respect to solar cell element 100B.
  • the portion on the ⁇ X side of the wiring member 240A is located in a state of being connected to the first surface 100a (more specifically, the electrode 6) on the + Z side of the solar cell element 100A.
  • the wiring member 240A is located in a state of being connected to the electrode 6 by solder or conductive resin.
  • the wiring member 240A extends between the solar cell elements 100A and 100B from the first surface 100a of the solar cell element 100A and extends to the second surface 100b on the ⁇ Z side of the solar cell element 100B. is doing.
  • the + X side portion of the wiring member 240A is located in a state of being connected to the second surface 100b (more specifically, the electrode 7) of the solar cell element 100B.
  • the wiring member 240A is positioned in a state of being connected to the electrode 7 by solder or conductive resin. Thereby, 240 A of wiring materials can connect solar cell element 100A, 100B in series. Other wiring members 240 are also located in a state where adjacent solar cell elements 100 are connected. Thereby, the several solar cell element 100 located in a line along the X-axis direction is located in the state connected mutually in series.
  • the two solar cell elements 100 located at the end in the X-axis direction are appropriately connected to each other in series by the wiring member 240.
  • the two solar cell elements 100 located at the ends in the X-axis direction are connected so that series-connected bodies including a plurality of solar cell elements 100 arranged along the X-axis direction are connected in series to each other.
  • solar cell elements 100 ⁇ / b> C and 100 ⁇ / b> D are shown as a pair of solar cell elements 100 that are located at the + X side end and are adjacent in the Y-axis direction.
  • Material 240B is shown.
  • the wiring member 240B is connected to the first surface 100a (more specifically, the electrode 6) of the solar cell element 100C, and extends in the Y-axis direction in the + X side region from the solar cell elements 100C and 100D.
  • the solar cell element 100D is positioned in a state of being connected to the second surface 100b (more specifically, the electrode 7). Thereby, the solar cell elements 100C and 100D can be connected in series.
  • not all of the plurality of solar cell elements 100 need to be connected in series.
  • several solar cell elements 100 may be connected in series with each other, and a plurality of the series connection bodies may be connected in parallel with each other.
  • the solar cell module 200 is provided with a pair of wiring members (not shown) for outputting the power generated by the plurality of solar cell elements 100 to the outside.
  • the pair of wiring members are connected to, for example, the solar cell elements 100 positioned at both ends of the series connection body, and are positioned in a state of extending through the base material 220 to the outside, for example.
  • the light scattering member 250 has a plurality of particles that scatter light.
  • the plurality of particles for example, inorganic particles such as titanium oxide can be employed.
  • the particle diameter of the particles is, for example, about 0.05 to 1 [ ⁇ m]
  • the light scattering member 250 has a plurality of particles in a range of, for example, about 12 [g / m 3 ] or more.
  • the light scattering member 250 may have a filler (for example, silica or resin) for fixing the plurality of particles. This filler has high translucency and is formed of a material having a refractive index different from that of the particles.
  • the light scattering member 250 is located on the base material 220.
  • the light scattering member 250 is located on the main surface 220 a on the + Z side of the base material 220.
  • the film thickness of the light scattering member 250 is, for example, about 3 [ ⁇ m].
  • the light scattering member 250 avoids at least a part of a region overlapping with the solar cell element 100 (hereinafter referred to as an overlapping region) in a plan view and is a region not overlapping with the solar cell element 100 (hereinafter referred to as a non-overlapping region). Located at least in part. Since this overlapping region is a region overlapping with the plurality of solar cell elements 100, it is a matrix-like region in plan view.
  • region is an area
  • the first region is a region between the plurality of solar cell elements 100 and has a substantially lattice shape.
  • the second region is a region surrounding the whole of the plurality of solar cell elements 100, and has a frame shape along the periphery of the base material 220.
  • the existing region of the light scattering member 250 is indicated by hatching of sand.
  • the light scattering member 250 is not located in the overlapping region, but is entirely located in the non-overlapping region.
  • the light scattering member 250 is located in a lattice-shaped first region extending between the plurality of solar cell elements 100 and a frame-shaped second region surrounding the plurality of solar cell elements 100.
  • the light scattering member 250 may protrude from the peripheral portion of each overlapping region. That is, the light scattering member 250 may enter so as to overlap the peripheral portion of the overlapping region.
  • the light scattering member 250 may not be located in a part of the non-overlapping region.
  • Such a light scattering member 250 is, for example, a liquid light scattering paste containing a plurality of particles (for example, silica paste containing titanium oxide particles) is applied in a predetermined pattern shape on the substrate 220 by a screen printing method or the like, Then, it can form by drying the said light-scattering paste.
  • a liquid light scattering paste containing a plurality of particles for example, silica paste containing titanium oxide particles
  • a filler 230 is filled between the pair of base materials 210 and 220.
  • the filler 230 is positioned in close contact with the main surfaces 210 a and 220 a of the bases 210 and 220 facing each other, the light scattering member 250, the solar cell element 100, and the wiring member 240.
  • the filler 230 is a light-transmitting insulating resin, and the filler 230 may be formed of an organic material.
  • the material of the filler 230 may be, for example, a polyester resin such as an ethylene vinyl acetate copolymer (EVA), triacetyl cellulose (TAC), or polyethylene naphthalate (PEN) having high translucency. Etc. apply.
  • the filler 230 may be composed of two or more types of materials, for example.
  • the filler 230 can be formed, for example, by performing a laminating process. Specifically, the sheet that becomes the filler 230 by melting is placed between the base materials 210 and 220 together with the solar cell element 100, the wiring material 240, and the light scattering member 250, and the structure By performing a laminating process, the filler 230 is formed.
  • the filler 230 can fix the positional relationship among the base materials 210 and 220, the solar cell element 100, and the wiring material 240, and can reduce the amount of moisture or the like that enters from the outside to the inside.
  • ⁇ Power generation by solar cell module> When light enters the solar cell module 200 from the + Z side, a part of the light enters the plurality of solar cell elements 100 from the + Z side. This light is converted into electric power in the plurality of solar cell elements 100. Another part of the light is transmitted through the base material 210 and the filler 230 in the non-overlapping region (the region between the plurality of solar cell elements 100 or the peripheral region of the base material 210) and enters the light scattering member 250. . This light is scattered by the light scattering member 250, and a part of the light enters the solar cell element 100 from the ⁇ Z side. Therefore, the amount of light incident on the solar cell element 100 can be increased. Thereby, the electric power generation amount in the solar cell element 100 can be increased, and by extension, the electric power generation efficiency of the solar cell module 200 can be improved.
  • the other part of the light incident on the base material 220 from the ⁇ Z side enters the light scattering member 250. Since the light incident on the light scattering member 250 is scattered, a part of the light does not enter the solar cell element 100. Therefore, the amount of light incident on the solar cell element 100 from the ⁇ Z side can be reduced accordingly.
  • the amount of light incident on the solar cell module 200 from the ⁇ Z side is originally as small as about 20% or less of the total light incident on the solar cell module 200.
  • light incident on the solar cell module 200 from the + Z side occupies about 80% or more of the whole. Therefore, the amount of increase in the amount of power generated by scattering the light incident on the light scattering member 250 from the + Z side and entering the solar cell element 100 is the light incident on the light scattering member 250 from the ⁇ Z side.
  • the light scattering member 250 can scatter part of the light incident from the ⁇ Z side to the + Z side. Therefore, the amount of light incident on the solar cell element 100 can be improved as compared with a structure that employs a reflector.
  • the light scattering member 250 separate from the base material 220 is located.
  • the case where a scatterer is formed by processing the main surface 220a of the substrate 220 to form irregularities will also be considered.
  • a portion having a large thickness and a portion having a small thickness are generated in the base material 220, and the strength of the base material 220 can be reduced.
  • foreign matters are likely to adhere to the irregularities of the main surface 220a of the base material 220.
  • the light scattering member 250 separate from the base material 220 is located, it is not necessary to form irregularities on the main surface 220a of the base material 220. Strength reduction and adhesion of foreign matter can be suppressed.
  • mechanical damage due to the temperature cycle is unlikely to occur in the base material 220, and the long-term reliability of the base material 220 and thus the solar cell module 200 can be improved.
  • the light scattering member 250 is located on the main surface 220 a of the base material 220. Therefore, the light scattering member 250 is positioned between the base materials 210 and 220 and is surrounded by the filler 230. Since the light scattering member 250 is protected by these, the reliability of the light scattering member 250 can be improved.
  • titanium oxide is used as the particles of the light scattering member 250. Titanium oxide can absorb ultraviolet rays. This is suitable when there is a member vulnerable to ultraviolet rays on the ⁇ Z side of the solar cell module 200. Alternatively, even when there is a person on the ⁇ Z side with respect to the solar cell module 200, the amount of ultraviolet rays to the person can be reduced.
  • the particle size of the particles of the light scattering member 250 may be set according to the wavelength of light that is a target of photoelectric conversion of the solar cell element 100. More specifically, the solar cell element 100 may be set to a particle size at which scattering is likely to occur in a wavelength range (high absorption band) in which the amount of power generation is high in the wavelength band of light targeted for photoelectric conversion.
  • the high absorption band here can be defined as, for example, a band where the power generation amount is higher than at least the average value of the power generation amount in the wavelength band.
  • the light scattering member 250 can scatter light that is easily absorbed by the solar cell element 100 (that is, easily converted into electric power) with high scattering properties. Therefore, light that is easily absorbed by the solar cell element 100 can easily enter the solar cell element 100 from the ⁇ Z side, and the amount of power generation in the solar cell element 100 can be effectively improved.
  • FIG. 4 is a graph schematically illustrating an example of wavelength dependency in the solar cell element 100. In FIG. 4, the result in the solar cell module which does not have the light-scattering member 250 is shown.
  • the solar cell element 100 easily absorbs light having a medium wavelength (for example, from 350 [nm] to 750 [nm]).
  • the solar cell element 100 is easy to photoelectrically convert medium wavelength light. Therefore, the particle size of the particles of the light scattering member 250 may be set so that the scattering property of the wavelength in the middle wavelength band is increased. For example, when setting the particle size in this way, the particle size is, for example, about 0.13 to 1 [ ⁇ m].
  • the solar cell element 100 hardly absorbs light having a short wavelength (for example, 350 [nm] or less). This is due to the following reason. That is, short-wavelength light is absorbed by the base material 210, the filler 230, and the like and hardly reaches the solar cell element 100 in the first place. Therefore, the amount of power generated by the solar cell element 100 based on short-wavelength light is small.
  • a short wavelength for example, 350 [nm] or less.
  • the light scattering member 250 Even if light having a short wavelength is scattered by the light scattering member 250 and incident on the solar cell element 100, the light is absorbed by another member, so that the effective power generation amount of the solar cell element 100 is increased. Does not contribute. This is because the light path from the ⁇ Z side to the solar cell element 100 via the light scattering member 250 is longer than the light path directly from the + Z side to the solar cell element 100 without passing through the light scattering member 250, so This is because light of a wavelength is further absorbed by the filler 230.
  • the solar cell element 100 hardly absorbs light having a long wavelength (for example, 750 [nm] or more). This is due to the following reason. That is, long-wavelength light passes through the substrate 210 and the filler 230 and reaches the solar cell element 100, but is slightly photoelectrically converted in the solar cell element 100, and most of the light passes through the solar cell element 100. is there.
  • the particle size of the light scattering member 250 a particle size that can easily scatter light in the medium wavelength band and the long wavelength band may be adopted.
  • the short wavelength light scattering property may be low.
  • FIG. 5 is a diagram illustrating an example of a method for manufacturing the solar cell module 200.
  • the light scattering member 250 is disposed on the main surface 220 a of the base material 220.
  • the light scattering paste is applied on the main surface 220a of the base material 220 in a predetermined pattern shape (for example, the same shape as the non-overlapping region), and then dried. Thereby, the light scattering member 250 is fixed on the main surface 220 a of the base material 220.
  • step S ⁇ b> 2 a plurality of solar cell elements 100 connected to each other by the wiring material 240 are placed on the main surface 220 a of the base material 220, and a sheet that becomes the filler 230 is placed thereon. Then, the base material 210 is placed thereon.
  • a laminating process is performed. Specifically, laminating is performed on the structures obtained in steps S1 and S2.
  • a laminating device (laminator) is used to integrate the structures.
  • the structure is placed on a heater panel in the chamber, and the structure is reduced from about 50 [Pa] to about 150 [Pa] while the structure is 100 [° C.] to 200 [° C.]. Heated to a degree.
  • the sheet is melted by heating and becomes flowable.
  • the structure is pressed by a diaphragm sheet or the like, so that the structure is integrated.
  • the filler 230 filled between the base materials 210 and 220 is formed, and the solar cell module 200 is formed.
  • the light scattering member 250 is already fixed to the base material 220 during the laminating process, the light scattering member 250 and the solar cell element 100 are positioned with higher accuracy.
  • the laminating process can be performed.
  • FIG. 6 is a cross-sectional view schematically showing an example of the configuration of the solar cell module 200A.
  • This solar cell module 200 ⁇ / b> A is the same as the solar cell module 200 except for the position of the light scattering member 250.
  • the light scattering member 250 is located on the ⁇ Z side main surface 220b of the base material 220.
  • the existence region in plan view of the light scattering member 250 is as described above.
  • the light scattering member 250 is formed, for example, by applying a light scattering paste in a predetermined pattern shape on the main surface 220b of the substrate 220 and then drying it.
  • part of the light from the + Z side causes the base material 210, the filler 230, and the base material 220 in the region between the plurality of solar cell elements 100 or the peripheral region of the base material 210.
  • the light passes through and enters the light scattering member 250. Since the light scattering member 250 scatters the incident light, part of the light is again transmitted through the base material 220 and the filler 230 and enters the solar cell element 100 from the ⁇ Z side. Therefore, the amount of light incident on the solar cell element 100 can be increased, and as a result, the power generation efficiency of the solar cell module 200A can be improved.
  • the light scattering member 250 is located on the ⁇ Z side main surface 220b of the base material 220. Therefore, the light scattering member 250 can be easily attached to an existing solar cell module that does not have the light scattering member 250. Thereby, the power generation efficiency of a solar cell module can be improved.
  • FIG. 7 is a cross-sectional view illustrating another example of the configuration of the light scattering member 250.
  • the light scattering member 250 is located on one main surface of the film-like substrate 260.
  • the film-like substrate 260 has high translucency and can be formed of glass or the like, for example.
  • the thickness of the substrate 260 is, for example, about several hundreds [ ⁇ m] or less, and is separate from the substrate 220.
  • the base body 260 has, for example, a rectangular shape in plan view, and the light scattering member 250 is located on the main surface.
  • the light scattering member 250 is formed, for example, by applying a light scattering paste in a predetermined pattern shape on one main surface of the substrate 260 and then drying it.
  • the substrate 260 is a substrate for fixing the light scattering member 250.
  • the structure composed of the light scattering member 250 and the base body 260 is disposed on the main surface 220a or the main surface 220b of the base material 220, and is fixed to the base material 220 with, for example, a resin.
  • Such a light scattering member 250 and the substrate 260 can be handled independently of the substrate 220. Therefore, when the solar cell module 200 (200A) is assembled, the light scattering member 250 can be easily disposed on the main surface 220a or the main surface 220b of the substrate 220.
  • the light scattering member 250 may have a multilayer structure.
  • FIG. 8 is a diagram illustrating an example of the configuration of the light scattering member 250.
  • the light scattering member 250 has scattering layers 250a and 250b.
  • the scattering layers 250a and 250b are stacked in the Z-axis direction.
  • the scattering layer 250a is located on the + Z side with respect to the scattering layer 250b.
  • the scattering layer 250a includes a plurality of particles 251a and a filler 252a
  • the scattering layer 250b includes a plurality of particles 251b and a filler 252b.
  • the particles 251a and 251b may be formed of the same material or different materials.
  • the particles 251a and 251b are made of, for example, titanium oxide.
  • the filler 252a is a filler for fixing the plurality of particles 251a and has translucency.
  • the filler 252b is a filler for fixing the plurality of particles 251b and has translucency.
  • the fillers 252a and 252b may be formed of the same material or different materials. However, the fillers 252a and 252b are formed of a material different from that of the particles 251a and 251b, respectively.
  • the fillers 252a and 252b are, for example, silica or resin.
  • the scattering layer 250b is formed, for example, by applying a light scattering paste including a plurality of particles 251b on the main surface 220a or the main surface 220b of the substrate 220 in a predetermined pattern shape, and then drying.
  • the scattering layer 250a is formed, for example, by applying a light scattering paste including a plurality of particles 251a on the scattering layer 250b and then drying.
  • the light scattering member 250 may not be directly formed on the substrate 220 but may be formed on another substrate 260 and then the substrate 260 may be disposed on the substrate 220.
  • the particle size (average value) of the particles 251a is different from the particle size (average value) of the particles 251b, and is set to be small, for example.
  • the particle diameter (average value) of the particles 251a is about 0.13 to 1 [ ⁇ m] corresponding to the medium wavelength band
  • the particle diameter (average value) of the particles 251b is 0.25 to 10 corresponding to the long wavelength band. It is about [ ⁇ m].
  • the light scattering member 250 may further include a black pigment. According to this, the solar cell module 200 viewed from the ⁇ Z side is entirely black, and a black module can be realized.
  • Solar cell element 200,200A Solar cell module 210 1st base material (base material) 220 Second base material (base material) 250 light scattering member 250a first scattering layer (scattering layer) 250b Second scattering layer (scattering layer) 251a First particle (particle) 251b Second particle (particle)

Abstract

This solar cell module comprises: a transparent first substrate; a second substrate opposing the first substrate; a plurality of solar cell elements that are positioned between the first substrate and second substrate and are adjacent to each other in a plan view; and a light scattering member that avoids at least a part of a first area overlapping the plurality of solar cell elements in a plan view, is positioned above the second substrate in at least a part of a second area that does not overlap the plurality of solar cell elements, and has a plurality of particles.

Description

太陽電池モジュールおよび太陽電池モジュールの製造方法Solar cell module and method for manufacturing solar cell module
 本開示は、太陽電池モジュールおよび太陽電池モジュールの製造方法に関する。 The present disclosure relates to a solar cell module and a method for manufacturing the solar cell module.
 透光性部材と背面部材との間において、複数の太陽電池素子が並んで配置された太陽電池モジュールが知られている(例えば、特開平11-307791号公報、特開2015-185712号公報、特開平11-298029号公報および特開2012-104612号公報)。 A solar cell module in which a plurality of solar cell elements are arranged side by side between a translucent member and a back member is known (for example, JP-A-11-307791, JP-A-2015-185712, JP-A-11-298029 and JP-A-2012-104612).
 太陽電池モジュールが開示される。一実施の形態において、太陽電池モジュールは、第1基材と第2基材と複数の太陽電池素子と光散乱部材とを備える。第1基材は透光性を有する。第2基材は第1基材と対向する。複数の太陽電池素子は、第1基材と第2基材との間に位置し、平面視において互いに隣り合う。光散乱部材は、平面視において複数の太陽電池素子と重なる第1領域のうち少なくとも一部を避けて、複数の太陽電池素子と重ならない第2領域の少なくとも一部において、第2基材の上に位置し、複数の粒子を有する。 A solar cell module is disclosed. In one embodiment, the solar cell module includes a first base material, a second base material, a plurality of solar cell elements, and a light scattering member. The first substrate has translucency. The second base material faces the first base material. The plurality of solar cell elements are located between the first base material and the second base material and are adjacent to each other in plan view. The light scattering member avoids at least a part of the first region overlapping with the plurality of solar cell elements in a plan view, and at least part of the second region not overlapping with the plurality of solar cell elements on the second substrate. And having a plurality of particles.
太陽電池モジュールの構成の一例を概略的に示す断面図である。It is sectional drawing which shows an example of a structure of a solar cell module roughly. 太陽電池モジュールの一部の構成の一例を概略的に示す平面図である。It is a top view which shows roughly an example of a structure of a part of solar cell module. 太陽電池素子の構成の一例を概略的に示す断面図である。It is sectional drawing which shows roughly an example of a structure of a solar cell element. 太陽電池素子の波長依存性の一例を概略的に示すグラフである。It is a graph which shows roughly an example of the wavelength dependence of a solar cell element. 太陽電池モジュールの製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of a solar cell module. 太陽電池モジュールの構成の一例を概略的に示す断面図である。It is sectional drawing which shows an example of a structure of a solar cell module roughly. 光散乱部材の構成の一例を概略的に示す断面図である。It is sectional drawing which shows an example of a structure of a light-scattering member roughly. 光散乱部材の構成の一例を概略的に示す断面図である。It is sectional drawing which shows an example of a structure of a light-scattering member roughly.
 実施の形態
 以下、実施形態の各例ならびに各種変形例を図面に基づいて説明する。なお、図面においては同様な構成および機能を有する部分については同じ符号が付されており、下記説明では重複説明が省略される。また、図面は模式的に示されたものであり、各図における各種構造のサイズおよび位置関係などは適宜変更され得る。また、各図において、各構成の位置関係を示すべく、適宜にXYZ座標が付記されている。以下では、Z軸方向の一方側を+Z側とも呼び、Z軸方向の他方側を-Z側とも呼ぶ。X軸およびY軸についても同様である。
DESCRIPTION OF EMBODIMENTS Embodiments and various modifications of embodiments will be described below with reference to the drawings. In the drawings, parts having the same configuration and function are denoted by the same reference numerals, and redundant description is omitted in the following description. Further, the drawings are schematically shown, and the sizes and positional relationships of various structures in each drawing can be appropriately changed. In each drawing, XYZ coordinates are appropriately added to indicate the positional relationship of each component. Hereinafter, one side in the Z-axis direction is also referred to as + Z side, and the other side in the Z-axis direction is also referred to as -Z side. The same applies to the X axis and the Y axis.
 <太陽電池モジュール>
 図1は、太陽電池モジュール200の構成の一例を概略的に示す断面図であり、図2は、太陽電池モジュール200の一部の構成の一例を概略的に示す平面図である。太陽電池モジュール200は一対の基材210,220と複数の太陽電池素子100と充填材230と配線材240と光散乱部材250とを備えている。
<Solar cell module>
FIG. 1 is a cross-sectional view schematically showing an example of the configuration of the solar cell module 200, and FIG. 2 is a plan view schematically showing an example of a partial configuration of the solar cell module 200. The solar cell module 200 includes a pair of base materials 210 and 220, a plurality of solar cell elements 100, a filler 230, a wiring material 240, and a light scattering member 250.
 <基材>
 基材210,220は例えば板状の形状を有しており、その厚み方向がZ軸方向に沿う姿勢で位置している。基材210,220はZ軸方向において間隔を空けて互いに対向する状態で位置している。基材210,220の間の間隔(基材210の-Z側の主面210aと基材220の+Z側の主面220aとの間の距離)は例えば1.2[mm]程度以下である。基材210,220は平面視において(つまりZ軸方向に沿って見て)、例えば長方形形状を有しており、その一辺がX軸方向に沿う姿勢で位置している。
<Base material>
The base materials 210 and 220 have, for example, a plate shape, and the thickness direction is positioned in a posture along the Z-axis direction. The base materials 210 and 220 are positioned so as to face each other with a gap in the Z-axis direction. The distance between the base materials 210 and 220 (the distance between the −Z side main surface 210a of the base material 210 and the + Z side main surface 220a of the base material 220) is about 1.2 mm or less, for example. . The base materials 210 and 220 have, for example, a rectangular shape in plan view (that is, viewed along the Z-axis direction), and one side thereof is positioned in a posture along the X-axis direction.
 基材210は基材220に対して+Z側に位置している。ここでは、光源(例えば太陽)は太陽電池モジュール200に対して+Z側に位置するものとする。言い換えれば、太陽電池モジュール200は基材210が光源側に位置する。この場合、基材210は高い透光性を有する基板である。ここでいう高い透光性とは、太陽電池素子100の光電変換の対象となる光(例えば太陽光)に対する透過率が高いことをいう。その透過率は例えば60%以上である。基材210は例えばガラス、あるいは、アクリルまたはポリカーボネートなどの樹脂などによって形成され得る。基材210の厚みは例えば3.2[mm]程度以下である。 The base material 210 is located on the + Z side with respect to the base material 220. Here, it is assumed that the light source (for example, the sun) is located on the + Z side with respect to the solar cell module 200. In other words, in the solar cell module 200, the base material 210 is located on the light source side. In this case, the base material 210 is a substrate having high translucency. High translucency here means that the transmittance | permeability with respect to the light (for example, sunlight) used as the object of the photoelectric conversion of the solar cell element 100 is high. The transmittance is, for example, 60% or more. The substrate 210 can be formed of, for example, glass or a resin such as acrylic or polycarbonate. The thickness of the substrate 210 is, for example, about 3.2 [mm] or less.
 基材220は高い透光性を有していてもよく、あるいは、高い透光性を有していなくてもよい。基材220が高い透光性を有している場合には、基材220は基材210と同様に、例えばガラス、あるいは、アクリルまたはポリカーボネートなどの樹脂などによって形成され得る。基材220の厚みも例えば3.2[mm]程度以下である。 The base material 220 may have high translucency or may not have high translucency. When the base material 220 has high translucency, the base material 220 can be formed of, for example, glass or a resin such as acrylic or polycarbonate, as with the base material 210. The thickness of the base material 220 is also about 3.2 [mm] or less, for example.
 基材220が高い透光性を有していない場合、基材220はポリビニルフルオライド(PVF)、ポリエチレンテレフタレート(PET)およびポリエチレンナフタレート(PEN)のうちの1種の樹脂、あるいはこれらの樹脂の少なくとも1種の樹脂等によって形成され得る。基材220の厚みは例えば0.3[mm]から0.5[mm]程度である。なお、基材220が薄い場合には、光はわずかながら基材220を透過し得る。この基材220は透光性を有している。 When the base material 220 does not have high translucency, the base material 220 is one resin of polyvinyl fluoride (PVF), polyethylene terephthalate (PET), and polyethylene naphthalate (PEN), or these resins It may be formed of at least one kind of resin. The thickness of the base material 220 is, for example, about 0.3 [mm] to 0.5 [mm]. In addition, when the base material 220 is thin, light can permeate | transmit the base material 220 slightly. This base material 220 has translucency.
 <太陽電池素子>
 複数の太陽電池素子100は一対の基材210,220の間に位置している。複数の太陽電池素子100は略板状の形状を有しており、その厚み方向がZ軸方向に沿う姿勢で位置している。図2の例では、太陽電池素子100は平面視において略矩形状の形状を有している。ただし、図2の例では、太陽電池素子100の角は面取りされており、正確には太陽電池素子100は8角形形状を有している。複数の太陽電池素子100は平面視において、間隔を空けて互いに隣り合って位置している。つまり、複数の太陽電池素子100はXY平面において2次元的に位置している。より具体的な一例として、図2に例示するように、複数の太陽電池素子100はX軸方向およびY軸方向をそれぞれ行方向および列方向としたマトリックス状に位置している。
<Solar cell element>
The plurality of solar cell elements 100 are located between the pair of base materials 210 and 220. The plurality of solar cell elements 100 have a substantially plate shape, and the thickness direction thereof is positioned in a posture along the Z-axis direction. In the example of FIG. 2, the solar cell element 100 has a substantially rectangular shape in plan view. However, in the example of FIG. 2, the corners of the solar cell element 100 are chamfered, and precisely, the solar cell element 100 has an octagonal shape. The plurality of solar cell elements 100 are positioned adjacent to each other with an interval in plan view. That is, the plurality of solar cell elements 100 are two-dimensionally positioned on the XY plane. As a more specific example, as illustrated in FIG. 2, the plurality of solar cell elements 100 are positioned in a matrix with the X-axis direction and the Y-axis direction as row and column directions, respectively.
 複数の太陽電池素子100には、+Z側から基材210を透過した光が入射する。基材220が透光性を有している場合には、複数の太陽電池素子100には、-Z側から基材220を透過した光も入射する。太陽電池素子100は自身に入射した光を電力に変換する。つまり、太陽電池素子100は入射した光を電力に変換する光起電力効果に基づいて発電する。 The light transmitted through the substrate 210 from the + Z side is incident on the plurality of solar cell elements 100. When the base material 220 has translucency, light that has passed through the base material 220 from the −Z side also enters the plurality of solar cell elements 100. The solar cell element 100 converts light incident on itself into electric power. That is, the solar cell element 100 generates power based on the photovoltaic effect that converts incident light into electric power.
 この太陽電池素子100の内部構成は特に制限される必要がないものの、その一例について説明する。図3は、太陽電池素子100の構成の一例を概略的に示す断面図である。 Although the internal structure of the solar cell element 100 does not need to be particularly limited, an example thereof will be described. FIG. 3 is a cross-sectional view schematically showing an example of the configuration of the solar cell element 100.
 太陽電池素子100は半導体基板1(積層半導体)と電極6~8とを有している。半導体基板1は略板状の形状を有している。以下では、半導体基板1の+Z側の主面を第1面1aとも呼び、-Z側の主面を第2面1bとも呼び、第1面1aの周縁および第2面1bの周縁を互いに連結する側面を第3面1cとも呼ぶ。 The solar cell element 100 has a semiconductor substrate 1 (laminated semiconductor) and electrodes 6 to 8. The semiconductor substrate 1 has a substantially plate shape. Hereinafter, the + Z side main surface of the semiconductor substrate 1 is also referred to as a first surface 1a, the −Z side main surface is also referred to as a second surface 1b, and the periphery of the first surface 1a and the periphery of the second surface 1b are connected to each other. The side surface to be called is also referred to as the third surface 1c.
 半導体基板1は、第1導電型(例えばp型)の半導体領域である第1半導体層2と、第1導電型とは逆の第2導電型(例えばn型)の半導体領域である第2半導体層3とを有している。第1半導体層2および第2半導体層3は第1面1aと第2面1bとの間でZ軸方向において互いに積層された状態で位置している。図3の例では、第2半導体層3は第1半導体層2に対して+Z側に位置している。 The semiconductor substrate 1 includes a first semiconductor layer 2 which is a first conductivity type (for example, p-type) semiconductor region and a second conductivity type (for example, an n-type) semiconductor region which is opposite to the first conductivity type. And a semiconductor layer 3. The 1st semiconductor layer 2 and the 2nd semiconductor layer 3 are located in the state laminated | stacked mutually in the Z-axis direction between the 1st surface 1a and the 2nd surface 1b. In the example of FIG. 3, the second semiconductor layer 3 is located on the + Z side with respect to the first semiconductor layer 2.
 半導体基板1としては、例えば単結晶または多結晶のシリコン基板を採用することができる。あるいは、半導体基板1として、ゲルマニウム、セレンまたはガリウムヒ素などの無機半導体の基板を採用してもよい。 As the semiconductor substrate 1, for example, a monocrystalline or polycrystalline silicon substrate can be adopted. Alternatively, the semiconductor substrate 1 may be an inorganic semiconductor substrate such as germanium, selenium, or gallium arsenide.
 以下、第1半導体層2としてp型半導体を用いる例について述べる。半導体基板1として単結晶または多結晶シリコン基板を採用する場合には、その厚みは、例えば、100~250[μm]程度である。 Hereinafter, an example in which a p-type semiconductor is used as the first semiconductor layer 2 will be described. When a single crystal or polycrystalline silicon substrate is employed as the semiconductor substrate 1, the thickness is, for example, about 100 to 250 [μm].
 多結晶のシリコン基板を用いてp型の第1半導体層2を形成する場合、第1半導体層2は、ドーパントとして、例えばボロン、ガリウムなどの不純物を含む。第2半導体層3は、第1半導体層2に対して第1面1a側にドーパントとして例えばリン等の不純物を拡散させることによって形成される。このような太陽電池素子100において、第2半導体層3は第1半導体層2に積層されているので、第1半導体層2と第2半導体層3との界面にpn接合部が形成される。このpn接合部に光が入射することにより、電力が発生する。つまり、半導体基板1は発電する。 When the p-type first semiconductor layer 2 is formed using a polycrystalline silicon substrate, the first semiconductor layer 2 contains an impurity such as boron or gallium as a dopant. The second semiconductor layer 3 is formed by diffusing impurities such as phosphorus as a dopant on the first surface 1 a side with respect to the first semiconductor layer 2. In such a solar cell element 100, since the second semiconductor layer 3 is stacked on the first semiconductor layer 2, a pn junction is formed at the interface between the first semiconductor layer 2 and the second semiconductor layer 3. Electric power is generated when light enters the pn junction. That is, the semiconductor substrate 1 generates power.
 図3に例示するように、半導体基板1の第1面1aは、入射する光の反射率を低減するための微細な凹凸形状(テクスチャ)を有していてもよい。このテクスチャの凸部の高さは例えば0.1~10[μm]程度であり、隣接する凸部同士の間隔は例えば0.1~20[μm]程度である。テクスチャの凸部はピラミッド形状を有していてもよく、あるいは、例えばテクスチャの凹部が球面形状に沿う形状を有していてもよい。 3, the first surface 1a of the semiconductor substrate 1 may have a fine uneven shape (texture) for reducing the reflectance of incident light. The height of the convex portions of this texture is, for example, about 0.1 to 10 [μm], and the interval between adjacent convex portions is, for example, about 0.1 to 20 [μm]. The convex portion of the texture may have a pyramid shape, or the concave portion of the texture may have a shape along the spherical shape, for example.
 電極6は半導体基板1の第1面1aの上に位置している。第1面1aは半導体基板1の表面に相当するので、以下、電極6を表面電極6とも呼ぶ。表面電極6は第2半導体層3に電気的に接続される。表面電極6は例えばX軸方向に沿って延在する長尺状の形状を有している。表面電極6の短手方向(ここではY軸方向)の長さ(以下、幅と呼ぶ)は例えば0.5~2.5[mm]程度である。 The electrode 6 is located on the first surface 1 a of the semiconductor substrate 1. Since the first surface 1 a corresponds to the surface of the semiconductor substrate 1, the electrode 6 is also referred to as a surface electrode 6 hereinafter. The surface electrode 6 is electrically connected to the second semiconductor layer 3. The surface electrode 6 has, for example, a long shape extending along the X-axis direction. The length (hereinafter referred to as the width) of the surface electrode 6 in the short direction (here, the Y-axis direction) is, for example, about 0.5 to 2.5 [mm].
 図示を省略しているものの、表面電極6と交差するように延在して表面電極6に接続される複数の集電用電極が位置していてもよい。この集電用電極は線状の形状を有しており、例えばY軸方向に沿って延在した状態で位置している。集電用電極の幅(ここではX軸方向に沿う長さ)は、例えば30~200[μm]程度である。複数の集電用電極の間隔は例えば1~3[mm]程度である。表面電極6の厚みは、例えば10~40[μm]である。 Although not shown, a plurality of current collecting electrodes that extend so as to intersect the surface electrode 6 and are connected to the surface electrode 6 may be located. The current collecting electrode has a linear shape, and is located, for example, in a state extending along the Y-axis direction. The width of the current collecting electrode (here, the length along the X-axis direction) is, for example, about 30 to 200 [μm]. The interval between the plurality of current collecting electrodes is, for example, about 1 to 3 [mm]. The thickness of the surface electrode 6 is, for example, 10 to 40 [μm].
 このような表面電極6および集電用電極は、例えば、金属(例えば銀)を主成分とする金属ペーストをスクリーン印刷法等によって所望のパターン形状となるように、半導体基板1の第1面1aの上に塗布した後、その塗布膜を焼成することによって形成され得る。なお本実施の形態において、主成分とは、全体の成分に対する含有質量が50[質量%]以上であることをいう。 Such a surface electrode 6 and a current collecting electrode are, for example, the first surface 1a of the semiconductor substrate 1 so that a metal paste mainly composed of metal (for example, silver) has a desired pattern shape by a screen printing method or the like. After coating on the substrate, the coating film can be formed by baking. In the present embodiment, the main component means that the contained mass with respect to the total components is 50 [% by mass] or more.
 図3に例示するように、太陽電池素子100は反射防止層5を有していてもよい。反射防止層5は半導体基板1の第1面1aの上に位置している。より具体的には、半導体基板1の第1面1aのうち、表面電極6によって覆われていない領域の上に位置している。反射防止層5は、太陽電池素子100に入射した光の反射を抑制する。反射防止層5は例えば酸化シリコン、酸化アルミニウムまたは窒化シリコン等の層を有している。反射防止層5の屈折率は例えば1.8~2.5程度であり、その厚みは例えば20~120[nm]程度である。反射防止層5は例えばPECVD(Plasma-Enhanced Chemical Vapor Deposition)法により形成され得る。 As illustrated in FIG. 3, the solar cell element 100 may have an antireflection layer 5. The antireflection layer 5 is located on the first surface 1 a of the semiconductor substrate 1. More specifically, it is located on a region of the first surface 1 a of the semiconductor substrate 1 that is not covered by the surface electrode 6. The antireflection layer 5 suppresses reflection of light incident on the solar cell element 100. The antireflection layer 5 has a layer made of, for example, silicon oxide, aluminum oxide, or silicon nitride. The refractive index of the antireflection layer 5 is, for example, about 1.8 to 2.5, and the thickness thereof is, for example, about 20 to 120 [nm]. The antireflection layer 5 can be formed, for example, by PECVD (Plasma-Enhanced Chemical Vapor Deposition) method.
 電極7,8は、図3に示すように、半導体基板1の第2面1b側に位置する電極である。第2面1bは半導体基板1の裏面に相当するので、電極7,8は裏面電極とも呼ぶ。電極6,7は、半導体基板1によって生成された電力を外部に取り出すための電力取出用電極である。 The electrodes 7 and 8 are electrodes located on the second surface 1b side of the semiconductor substrate 1 as shown in FIG. Since the second surface 1b corresponds to the back surface of the semiconductor substrate 1, the electrodes 7 and 8 are also referred to as back electrodes. The electrodes 6 and 7 are power extraction electrodes for extracting the electric power generated by the semiconductor substrate 1 to the outside.
 電極7は、ドット状(または島状)に位置していてもよい。例えば複数の電極7が、X軸方向およびY軸方向をそれぞれ行方向および列方向としたマトリックス状に位置していてもよい。各電極7は長尺形状を有していてもよい。あるいは、電極7は半導体基板1の端から端まで延在する直線状の形状を有していてもよい。 The electrode 7 may be located in a dot shape (or island shape). For example, the plurality of electrodes 7 may be positioned in a matrix having the X-axis direction and the Y-axis direction as row and column directions, respectively. Each electrode 7 may have a long shape. Alternatively, the electrode 7 may have a linear shape extending from end to end of the semiconductor substrate 1.
 電極7の厚みは例えば10~30[μm]程度であり、その幅は例えば1.3~7[mm]程度である。電極7は例えば金属(例えば銀)を主成分として含んでいる。このような電極7は、例えば、銀を主成分とする金属ペーストをスクリーン印刷法等によって所定のパターン形状となるように、半導体基板1の第2面1bの上に塗布した後、焼成することによって形成され得る。 The thickness of the electrode 7 is, for example, about 10 to 30 [μm], and the width thereof is, for example, about 1.3 to 7 [mm]. The electrode 7 contains, for example, a metal (for example, silver) as a main component. For example, such an electrode 7 is formed by applying a metal paste mainly composed of silver onto the second surface 1b of the semiconductor substrate 1 so as to have a predetermined pattern shape by a screen printing method or the like, and then baking. Can be formed.
 図3に示すように、半導体基板1の第2面1b側にはパッシベーション層9が位置していてもよい。このパッシベーション層9は半導体基板1の第2面1bの上に位置している。図3の例では、このパッシベーション層9には、電極7に相当する領域において貫通孔が形成されている。この貫通孔はパッシベーション層9をZ軸方向に貫通しており、電極7は貫通孔の内部に位置している。 As shown in FIG. 3, a passivation layer 9 may be located on the second surface 1 b side of the semiconductor substrate 1. This passivation layer 9 is located on the second surface 1 b of the semiconductor substrate 1. In the example of FIG. 3, a through hole is formed in the passivation layer 9 in a region corresponding to the electrode 7. The through hole penetrates the passivation layer 9 in the Z-axis direction, and the electrode 7 is located inside the through hole.
 電極8は、半導体基板1によって生成した電力を電極7に集めるための電極であり、電極7に接続された状態で位置している。図3に例示するように、パッシベーション層9が位置する場合には、電極8はパッシベーション層9の上に位置している。パッシベーション層9には、電極8と対向する領域において、複数の貫通孔22が形成されている。複数の貫通孔22はパッシベーション層9をZ軸方向に貫通している。電極8の一部はこの貫通孔22を充填した状態で位置しており、半導体基板1の第2面1bに当接した状態で位置している。これにより、電極8は第1半導体層2に電気的に接続された状態で位置している。 The electrode 8 is an electrode for collecting the electric power generated by the semiconductor substrate 1 on the electrode 7 and is located in a state of being connected to the electrode 7. As illustrated in FIG. 3, when the passivation layer 9 is located, the electrode 8 is located on the passivation layer 9. In the passivation layer 9, a plurality of through holes 22 are formed in a region facing the electrode 8. The plurality of through holes 22 penetrates the passivation layer 9 in the Z-axis direction. A part of the electrode 8 is located in a state where the through-hole 22 is filled, and is located in a state where the electrode 8 is in contact with the second surface 1 b of the semiconductor substrate 1. Thereby, the electrode 8 is positioned in a state of being electrically connected to the first semiconductor layer 2.
 パッシベーション層9は、パッシベーション層9と半導体基板1との界面において、少数キャリアの再結合の原因となる欠陥準位を低減するので、少数キャリアの再結合を低減する機能を有する。パッシベーション層9は、例えば、酸化シリコン、酸化アルミニウム、または、窒化シリコン等の絶縁膜である。パッシベーション層9の厚みは例えば5~200[nm]程度である。 The passivation layer 9 has a function of reducing minority carrier recombination because it reduces defect levels that cause minority carrier recombination at the interface between the passivation layer 9 and the semiconductor substrate 1. The passivation layer 9 is an insulating film such as silicon oxide, aluminum oxide, or silicon nitride. The thickness of the passivation layer 9 is, for example, about 5 to 200 [nm].
 電極8は、例えば電極7と交差する方向に延在した状態で位置しており、電極7と接続された状態で位置している。電極8は集電用電極として機能できる。電極8は例えば電極7とは異なる主成分(例えばアルミニウム)を有していてもよい。電極8の厚みは例えば15~50[μm]程度である。電極8は、例えばアルミニウムを主成分とする金属ペーストをスクリーン印刷法等によって所定のパターン形状となるように、パッシベーション層9の上に塗布した後、その塗布膜を焼成することによって形成され得る。 The electrode 8 is located, for example, in a state extending in a direction intersecting with the electrode 7, and is located in a state of being connected to the electrode 7. The electrode 8 can function as a current collecting electrode. The electrode 8 may have a main component (for example, aluminum) different from the electrode 7, for example. The thickness of the electrode 8 is, for example, about 15 to 50 [μm]. The electrode 8 can be formed by, for example, applying a metal paste mainly composed of aluminum on the passivation layer 9 so as to have a predetermined pattern shape by a screen printing method or the like, and then baking the applied film.
 第1半導体層2のうち、電極8との界面近傍においては、BSF(Back Surface Field)層4が位置していてもよい。BSF層4は第1半導体層2と同じ第1導電型の半導体であって、そのドーパントの濃度は、第1半導体層2のうちBSF層4以外の部分が含有するドーパントの濃度よりも高い。BSF層4は、例えばボロンまたはアルミニウムなどのドーパントを拡散させることによって形成され得る。例えば電極8の主成分としてアルミニウムを採用する場合には、金属ペーストの焼成によって、金属ペースト中のアルミニウムが拡散してBSF層4が形成され得る。 In the first semiconductor layer 2, a BSF (Back Surface Field) layer 4 may be located in the vicinity of the interface with the electrode 8. The BSF layer 4 is a semiconductor of the same first conductivity type as the first semiconductor layer 2, and the concentration of the dopant is higher than the concentration of the dopant contained in the portion of the first semiconductor layer 2 other than the BSF layer 4. The BSF layer 4 can be formed by diffusing a dopant such as boron or aluminum. For example, when aluminum is employed as the main component of the electrode 8, the BSF layer 4 can be formed by diffusing aluminum in the metal paste by firing the metal paste.
 <配線材>
 図1および図2を参照して、複数の太陽電池素子100は配線材240を介して相互に電気的に接続された状態で位置している。配線材240は例えば金属によって形成され得る。図1の例では、X軸方向において互いに隣り合う一対の太陽電池素子100として太陽電池素子100A,100Bが示されており、太陽電池素子100A,100Bを接続する配線材240として、配線材240Aが示されている。太陽電池素子100Aは太陽電池素子100Bに対して-X側に位置している。
<Wiring material>
With reference to FIG. 1 and FIG. 2, the plurality of solar cell elements 100 are located in a state of being electrically connected to each other via a wiring member 240. The wiring member 240 can be formed of metal, for example. In the example of FIG. 1, solar cell elements 100A and 100B are shown as a pair of solar cell elements 100 that are adjacent to each other in the X-axis direction, and the wiring material 240A is a wiring material 240 that connects the solar cell elements 100A and 100B. It is shown. Solar cell element 100A is located on the −X side with respect to solar cell element 100B.
 配線材240Aのうち-X側の部分は、太陽電池素子100Aの+Z側の第1面100a(より具体的には電極6)に接続された状態で位置している。例えば配線材240Aは半田または導電性樹脂等により、電極6に接続された状態で位置している。この配線材240Aは太陽電池素子100Aの第1面100aから太陽電池素子100A,100Bの間を延在して、太陽電池素子100Bの-Z側の第2面100bへと延在した状態で位置している。配線材240Aの+X側の部分は太陽電池素子100Bの第2面100b(より具体的には電極7)に接続された状態で位置している。例えば、配線材240Aは半田または導電性樹脂等により、電極7に接続された状態で位置している。これにより、配線材240Aは太陽電池素子100A,100Bを直列に接続することができる。他の配線材240も同様に隣り合う太陽電池素子100を接続した状態で位置している。これにより、X軸方向に沿って並ぶ複数の太陽電池素子100が相互に直列に接続された状態で位置している。 The portion on the −X side of the wiring member 240A is located in a state of being connected to the first surface 100a (more specifically, the electrode 6) on the + Z side of the solar cell element 100A. For example, the wiring member 240A is located in a state of being connected to the electrode 6 by solder or conductive resin. The wiring member 240A extends between the solar cell elements 100A and 100B from the first surface 100a of the solar cell element 100A and extends to the second surface 100b on the −Z side of the solar cell element 100B. is doing. The + X side portion of the wiring member 240A is located in a state of being connected to the second surface 100b (more specifically, the electrode 7) of the solar cell element 100B. For example, the wiring member 240A is positioned in a state of being connected to the electrode 7 by solder or conductive resin. Thereby, 240 A of wiring materials can connect solar cell element 100A, 100B in series. Other wiring members 240 are also located in a state where adjacent solar cell elements 100 are connected. Thereby, the several solar cell element 100 located in a line along the X-axis direction is located in the state connected mutually in series.
 図2の例では、X軸方向の端に位置する2つの太陽電池素子100は配線材240によって適宜に互いに直列に接続された状態で位置している。具体的には、X軸方向に沿って並ぶ複数の太陽電池素子100からなる直列接続体が相互に直列接続されるように、そのX軸方向の端に位置する2つの太陽電池素子100同士が接続された状態で位置する。図2の例では、+X側の端に位置してY軸方向において隣り合う一対の太陽電池素子100として、太陽電池素子100C,100Dが示されており、これらを接続する配線材240として、配線材240Bが示されている。この配線材240Bは、太陽電池素子100Cの第1面100a(より具体的には電極6)に接続されており、太陽電池素子100C,100Dよりも+X側の領域をY軸方向に延在して、太陽電池素子100Dの第2面100b(より具体的には電極7)に接続された状態で位置している。これにより、太陽電池素子100C,100Dを直列に接続できる。 In the example of FIG. 2, the two solar cell elements 100 located at the end in the X-axis direction are appropriately connected to each other in series by the wiring member 240. Specifically, the two solar cell elements 100 located at the ends in the X-axis direction are connected so that series-connected bodies including a plurality of solar cell elements 100 arranged along the X-axis direction are connected in series to each other. Located in a connected state. In the example of FIG. 2, solar cell elements 100 </ b> C and 100 </ b> D are shown as a pair of solar cell elements 100 that are located at the + X side end and are adjacent in the Y-axis direction. Material 240B is shown. The wiring member 240B is connected to the first surface 100a (more specifically, the electrode 6) of the solar cell element 100C, and extends in the Y-axis direction in the + X side region from the solar cell elements 100C and 100D. The solar cell element 100D is positioned in a state of being connected to the second surface 100b (more specifically, the electrode 7). Thereby, the solar cell elements 100C and 100D can be connected in series.
 なお複数の太陽電池素子100の全てが直列に接続されている必要はない。例えば、いくつかの太陽電池素子100が相互に直列接続され、その直列接続体の複数が互いに並列に接続されていてもよい。 Note that not all of the plurality of solar cell elements 100 need to be connected in series. For example, several solar cell elements 100 may be connected in series with each other, and a plurality of the series connection bodies may be connected in parallel with each other.
 太陽電池モジュール200には、複数の太陽電池素子100が発電した電力を外部に出力するための一対の配線材(不図示)が設けられる。この一対の配線材は、例えば直列接続体の両端に位置する太陽電池素子100にそれぞれ接続され、例えば基材220を貫通して外部へと延在した状態で位置する。 The solar cell module 200 is provided with a pair of wiring members (not shown) for outputting the power generated by the plurality of solar cell elements 100 to the outside. The pair of wiring members are connected to, for example, the solar cell elements 100 positioned at both ends of the series connection body, and are positioned in a state of extending through the base material 220 to the outside, for example.
 <光散乱部材>
 光散乱部材250は光を散乱させる複数の粒子を有している。複数の粒子としては、例えば酸化チタンなどの無機系粒子を採用できる。この粒子の粒径は例えば0.05~1[μm]程度であり、光散乱部材250は例えば12[g/m]程度以上の範囲で複数の粒子を有している。複数の粒子に光が入射することで当該光が散乱する(例えばミー散乱)。光散乱部材250はこれら複数の粒子を固定するための充填材(例えばシリカまたは樹脂)を有していてもよい。なお、この充填材は高い透光性を有しており、粒子とは屈折率の異なる材質で形成される。
<Light scattering member>
The light scattering member 250 has a plurality of particles that scatter light. As the plurality of particles, for example, inorganic particles such as titanium oxide can be employed. The particle diameter of the particles is, for example, about 0.05 to 1 [μm], and the light scattering member 250 has a plurality of particles in a range of, for example, about 12 [g / m 3 ] or more. When light is incident on a plurality of particles, the light is scattered (for example, Mie scattering). The light scattering member 250 may have a filler (for example, silica or resin) for fixing the plurality of particles. This filler has high translucency and is formed of a material having a refractive index different from that of the particles.
 この光散乱部材250は基材220上に位置している。図1の例では、光散乱部材250は基材220の+Z側の主面220a上に位置している。光散乱部材250の膜厚は例えば3[μm]程度である。 The light scattering member 250 is located on the base material 220. In the example of FIG. 1, the light scattering member 250 is located on the main surface 220 a on the + Z side of the base material 220. The film thickness of the light scattering member 250 is, for example, about 3 [μm].
 光散乱部材250は平面視において、太陽電池素子100と重なる領域(以下、重複領域と呼ぶ)の少なくとも一部を避けて、太陽電池素子100と重ならない領域(以下、非重複領域と呼ぶ)の少なくとも一部に位置している。この重複領域は、複数の太陽電池素子100と重なる領域であるので、平面視においてマトリックス状の領域である。一方で、非重複領域は、複数の太陽電池素子100と重ならない領域であり、第1領域と第2領域とを含む。第1領域は、複数の太陽電池素子100の相互間の領域であり、略格子状の形状を有している。第2領域は、複数の太陽電池素子100の全体を囲む領域であり、基材220の周縁に沿う枠状の形状を有している。 The light scattering member 250 avoids at least a part of a region overlapping with the solar cell element 100 (hereinafter referred to as an overlapping region) in a plan view and is a region not overlapping with the solar cell element 100 (hereinafter referred to as a non-overlapping region). Located at least in part. Since this overlapping region is a region overlapping with the plurality of solar cell elements 100, it is a matrix-like region in plan view. On the other hand, a non-overlapping area | region is an area | region which does not overlap with the some solar cell element 100, and contains a 1st area | region and a 2nd area | region. The first region is a region between the plurality of solar cell elements 100 and has a substantially lattice shape. The second region is a region surrounding the whole of the plurality of solar cell elements 100, and has a frame shape along the periphery of the base material 220.
 図2では、光散乱部材250の存在領域を砂地のハッチングで示している。図2の例では、光散乱部材250は重複領域には位置しておらず、非重複領域に全体的に位置している。言い換えれば、この光散乱部材250は、複数の太陽電池素子100の間で延在する格子状の第1領域と、複数の太陽電池素子100を取り囲む枠状の第2領域とに位置している。ただし、実際には、光散乱部材250は各重複領域の周縁部分にはみ出していても構わない。つまり、光散乱部材250は重複領域の周縁部分に重なるように入り込んでいても構わない。また逆に、非重複領域の一部に光散乱部材250が位置していなくても構わない。 In FIG. 2, the existing region of the light scattering member 250 is indicated by hatching of sand. In the example of FIG. 2, the light scattering member 250 is not located in the overlapping region, but is entirely located in the non-overlapping region. In other words, the light scattering member 250 is located in a lattice-shaped first region extending between the plurality of solar cell elements 100 and a frame-shaped second region surrounding the plurality of solar cell elements 100. . However, actually, the light scattering member 250 may protrude from the peripheral portion of each overlapping region. That is, the light scattering member 250 may enter so as to overlap the peripheral portion of the overlapping region. Conversely, the light scattering member 250 may not be located in a part of the non-overlapping region.
 このような光散乱部材250は、例えば、複数の粒子を含む液状の光散乱ペースト(例えば酸化チタン粒子を含むシリカペースト)をスクリーン印刷法等によって基材220上に所定のパターン形状で塗布し、その後、当該光散乱ペーストを乾燥させることで形成され得る。 Such a light scattering member 250 is, for example, a liquid light scattering paste containing a plurality of particles (for example, silica paste containing titanium oxide particles) is applied in a predetermined pattern shape on the substrate 220 by a screen printing method or the like, Then, it can form by drying the said light-scattering paste.
 <充填材>
 一対の基材210,220の間には、充填材230が充填されている。この充填材230は、基材210,220の互いに向かい合う主面210a,220aと、光散乱部材250と、太陽電池素子100と、配線材240とに密着した状態で位置している。充填材230は透光性を有する絶縁樹脂であり、このような充填材230は有機材料で形成され得る。より具体的な一例として、充填材230の素材には、例えば、高い透光性を有するエチレン酢酸ビニル共重合体(EVA)、トリアセチルセルロース(TAC)またはポリエチレンナフタレート(PEN)などのポリエステル樹脂などが適用される。充填材230は例えば2種類以上の素材によって構成されていてもよい。
<Filler>
A filler 230 is filled between the pair of base materials 210 and 220. The filler 230 is positioned in close contact with the main surfaces 210 a and 220 a of the bases 210 and 220 facing each other, the light scattering member 250, the solar cell element 100, and the wiring member 240. The filler 230 is a light-transmitting insulating resin, and the filler 230 may be formed of an organic material. As a more specific example, the material of the filler 230 may be, for example, a polyester resin such as an ethylene vinyl acetate copolymer (EVA), triacetyl cellulose (TAC), or polyethylene naphthalate (PEN) having high translucency. Etc. apply. The filler 230 may be composed of two or more types of materials, for example.
 充填材230は例えばラミネート処理を行うことで、形成され得る。具体的には、溶融することで充填材230となるシートを、太陽電池素子100、配線材240および光散乱部材250とともに、基材210,220の間に載置し、その構造体に対してラミネート処理を行うことで、充填材230が形成される。充填材230は基材210,220、太陽電池素子100および配線材240の位置関係を固定することができるとともに、外部から内部へ浸入する水分等の量を低減することができる。 The filler 230 can be formed, for example, by performing a laminating process. Specifically, the sheet that becomes the filler 230 by melting is placed between the base materials 210 and 220 together with the solar cell element 100, the wiring material 240, and the light scattering member 250, and the structure By performing a laminating process, the filler 230 is formed. The filler 230 can fix the positional relationship among the base materials 210 and 220, the solar cell element 100, and the wiring material 240, and can reduce the amount of moisture or the like that enters from the outside to the inside.
 <太陽電池モジュールによる発電>
 このような太陽電池モジュール200に対して+Z側から光が入射すると、その光の一部は+Z側から複数の太陽電池素子100に入射する。この光は複数の太陽電池素子100において電力に変換される。光の他の一部は非重複領域(複数の太陽電池素子100の間の領域または基材210の周縁領域)において、基材210および充填材230を透過して、光散乱部材250に入射する。この光は光散乱部材250によって散乱されて、その一部が-Z側から太陽電池素子100に入射する。よって、太陽電池素子100に入射する光の量を増加させることができる。これにより、太陽電池素子100における発電量を増加させることができ、ひいては、太陽電池モジュール200の発電効率を向上できる。
<Power generation by solar cell module>
When light enters the solar cell module 200 from the + Z side, a part of the light enters the plurality of solar cell elements 100 from the + Z side. This light is converted into electric power in the plurality of solar cell elements 100. Another part of the light is transmitted through the base material 210 and the filler 230 in the non-overlapping region (the region between the plurality of solar cell elements 100 or the peripheral region of the base material 210) and enters the light scattering member 250. . This light is scattered by the light scattering member 250, and a part of the light enters the solar cell element 100 from the −Z side. Therefore, the amount of light incident on the solar cell element 100 can be increased. Thereby, the electric power generation amount in the solar cell element 100 can be increased, and by extension, the electric power generation efficiency of the solar cell module 200 can be improved.
 なお基材220が透光性を有している場合には、-Z側から基材220に入射する光が基材220を透過する。この光の一部は、光散乱部材250が位置していない領域を通過して-Z側から太陽電池素子100に入射する。つまり、太陽電池素子100と重なる重複領域の少なくとも一部には光散乱部材250が設けられていないので、-Z側から基材220に入射する光の一部を、光散乱部材250を介さずに直接に太陽電池素子100に入射させることができる。 When the base material 220 has translucency, light incident on the base material 220 from the −Z side passes through the base material 220. Part of this light passes through the region where the light scattering member 250 is not located and enters the solar cell element 100 from the −Z side. That is, since the light scattering member 250 is not provided in at least a part of the overlapping region overlapping with the solar cell element 100, a part of the light incident on the base material 220 from the −Z side is not passed through the light scattering member 250. Can directly enter the solar cell element 100.
 -Z側から基材220に入射する光の他の一部は光散乱部材250に入射する。光散乱部材250に入射した光は散乱してしまうので、その一部は太陽電池素子100に入射しない。したがって、太陽電池素子100に対して-Z側から入射する光の光量はその分、低減され得る。 The other part of the light incident on the base material 220 from the −Z side enters the light scattering member 250. Since the light incident on the light scattering member 250 is scattered, a part of the light does not enter the solar cell element 100. Therefore, the amount of light incident on the solar cell element 100 from the −Z side can be reduced accordingly.
 しかしながら、そもそも-Z側から太陽電池モジュール200に入射する光の量は、太陽電池モジュール200に入射する光の全体の2割程度以下と少ない。言い換えれば、+Z側から太陽電池モジュール200に入射する光が全体の8割程度以上を占める。よって、光散乱部材250に対して+Z側から入射する光を散乱させて、太陽電池素子100に入射させることによる発電量の増加量が、光散乱部材250に対して-Z側から入射する光を散乱させることによる発電量の低減量を上回る。つまり、基材220が透光性を有する太陽電池モジュール200においても、光散乱部材250によって発電効率を向上できる。 However, the amount of light incident on the solar cell module 200 from the −Z side is originally as small as about 20% or less of the total light incident on the solar cell module 200. In other words, light incident on the solar cell module 200 from the + Z side occupies about 80% or more of the whole. Therefore, the amount of increase in the amount of power generated by scattering the light incident on the light scattering member 250 from the + Z side and entering the solar cell element 100 is the light incident on the light scattering member 250 from the −Z side. Exceeds the reduction in power generation due to scattering. That is, the power generation efficiency can be improved by the light scattering member 250 even in the solar cell module 200 in which the base material 220 has translucency.
 ここで、比較のために、光散乱部材250に替えて反射材が採用された場合について考察する。この構造では、+Z側から複数の太陽電池素子100の間を通過して反射材へと略垂直に入射した光は、当該反射材で略垂直に反射して再び太陽電池素子100の間を通過する。したがって、この光は太陽電池素子100には入射せず、発電に寄与しない。これに対して、複数の太陽電池素子100の間を通過して光散乱部材250へと略垂直に入射する光は光散乱部材250で散乱するので、その一部が太陽電池素子100へと-Z側から入射する。よって、太陽電池素子100に入射する光の量が増加する。太陽電池モジュール200は光が垂直に入射しやすいように、その設置角度を調整して設置されることが多いので、そのような光を有効利用することは発電効率の向上に特に有益である。 Here, for comparison, a case where a reflective material is employed instead of the light scattering member 250 will be considered. In this structure, light that passes between the plurality of solar cell elements 100 from the + Z side and enters the reflecting material substantially perpendicularly is reflected by the reflecting material substantially vertically and passes between the solar cell elements 100 again. To do. Therefore, this light does not enter the solar cell element 100 and does not contribute to power generation. On the other hand, the light that passes between the plurality of solar cell elements 100 and enters the light scattering member 250 substantially perpendicularly is scattered by the light scattering member 250, and a part of the light enters the solar cell element 100 − Incident from the Z side. Therefore, the amount of light incident on the solar cell element 100 increases. Since the solar cell module 200 is often installed with its installation angle adjusted so that light is likely to be incident vertically, the effective use of such light is particularly beneficial for improving power generation efficiency.
 また-Z側から反射材に入射した光は-Z側に反射するので、太陽電池素子100には入射しない。これに対して、光散乱部材250は-Z側から入射した光の一部を+Z側にも散乱させ得る。よって、太陽電池素子100に入射する光の量を、反射材を採用する構造に比して向上することができる。 Also, light incident on the reflecting material from the −Z side is reflected on the −Z side, and therefore does not enter the solar cell element 100. On the other hand, the light scattering member 250 can scatter part of the light incident from the −Z side to the + Z side. Therefore, the amount of light incident on the solar cell element 100 can be improved as compared with a structure that employs a reflector.
 また上述の例では、基材220とは別体の光散乱部材250が位置している。比較のために、基材220の主面220aを加工して凹凸を形成することによって散乱体を形成する場合についても考察する。この場合、基材220には厚みの大きい部分と小さい部分とが生じ、基材220の強度が低下し得る。また基材220の主面220aの凹凸に異物が付着しやすい。これに対して、本実施の形態では、基材220とは別体の光散乱部材250が位置しているので、基材220の主面220aに凹凸を形成する必要がなく、基材220の強度低下および異物の付着を抑制できる。また温度サイクルに起因した機械的な損傷が基材220に生じにくく、基材220ひいては太陽電池モジュール200の長期信頼性を向上できる。 In the above example, the light scattering member 250 separate from the base material 220 is located. For comparison, the case where a scatterer is formed by processing the main surface 220a of the substrate 220 to form irregularities will also be considered. In this case, a portion having a large thickness and a portion having a small thickness are generated in the base material 220, and the strength of the base material 220 can be reduced. In addition, foreign matters are likely to adhere to the irregularities of the main surface 220a of the base material 220. On the other hand, in the present embodiment, since the light scattering member 250 separate from the base material 220 is located, it is not necessary to form irregularities on the main surface 220a of the base material 220. Strength reduction and adhesion of foreign matter can be suppressed. In addition, mechanical damage due to the temperature cycle is unlikely to occur in the base material 220, and the long-term reliability of the base material 220 and thus the solar cell module 200 can be improved.
 また上述の例では、光散乱部材250が基材220の主面220aの上に位置している。よって、光散乱部材250が基材210,220の間に位置し、充填材230によって囲まれる。光散乱部材250はこれらによって保護されるので、光散乱部材250の信頼性を向上できる。 In the above example, the light scattering member 250 is located on the main surface 220 a of the base material 220. Therefore, the light scattering member 250 is positioned between the base materials 210 and 220 and is surrounded by the filler 230. Since the light scattering member 250 is protected by these, the reliability of the light scattering member 250 can be improved.
 また上述の例では、光散乱部材250の粒子として酸化チタンが採用されている。酸化チタンは紫外線を吸収することができる。これは、太陽電池モジュール200について-Z側において紫外線に脆弱な部材が存在する場合に好適である。あるいは、太陽電池モジュール200に対して-Z側に人がいる場合にも、当該人への紫外線の量を低減できる。 In the above example, titanium oxide is used as the particles of the light scattering member 250. Titanium oxide can absorb ultraviolet rays. This is suitable when there is a member vulnerable to ultraviolet rays on the −Z side of the solar cell module 200. Alternatively, even when there is a person on the −Z side with respect to the solar cell module 200, the amount of ultraviolet rays to the person can be reduced.
 <粒径>
 光散乱部材250の粒子の粒径は、太陽電池素子100の光電変換の対象となる光の波長に応じて設定されるとよい。より具体的には、太陽電池素子100が光電変換の対象とする光の波長帯域のうち発電量が高い波長範囲(高吸収帯)において、散乱が生じやすい粒径に設定してもよい。ここでいう高吸収帯は、例えば、少なくとも、波長帯域における発電量の平均値よりも発電量が高い帯域と定義することができる。
<Particle size>
The particle size of the particles of the light scattering member 250 may be set according to the wavelength of light that is a target of photoelectric conversion of the solar cell element 100. More specifically, the solar cell element 100 may be set to a particle size at which scattering is likely to occur in a wavelength range (high absorption band) in which the amount of power generation is high in the wavelength band of light targeted for photoelectric conversion. The high absorption band here can be defined as, for example, a band where the power generation amount is higher than at least the average value of the power generation amount in the wavelength band.
 これによれば、光散乱部材250は、太陽電池素子100に吸収されやすい(つまり電力に変換されやすい)光を高い散乱性で散乱させることができる。したがって、太陽電池素子100に吸収されやすい光を-Z側から太陽電池素子100へ入射させやすく、太陽電池素子100における発電量を効果的に向上できる。 According to this, the light scattering member 250 can scatter light that is easily absorbed by the solar cell element 100 (that is, easily converted into electric power) with high scattering properties. Therefore, light that is easily absorbed by the solar cell element 100 can easily enter the solar cell element 100 from the −Z side, and the amount of power generation in the solar cell element 100 can be effectively improved.
 図4は、太陽電池素子100における波長依存性の一例を模式的に例示するグラフである。図4では、光散乱部材250を有さない太陽電池モジュールにおける結果が示されている。 FIG. 4 is a graph schematically illustrating an example of wavelength dependency in the solar cell element 100. In FIG. 4, the result in the solar cell module which does not have the light-scattering member 250 is shown.
 図4に示すように、太陽電池素子100は中波長(例えば350[nm]から750[nm]まで)の光を吸収しやすい。言い換えれば、太陽電池素子100は中波長の光を光電変換しやすい。そこで、光散乱部材250の粒子の粒径を、中波長帯域の波長の散乱性が高くなるように設定してもよい。例えばそのように粒径を設定する場合、粒径は例えば0.13~1[μm]程度である。 As shown in FIG. 4, the solar cell element 100 easily absorbs light having a medium wavelength (for example, from 350 [nm] to 750 [nm]). In other words, the solar cell element 100 is easy to photoelectrically convert medium wavelength light. Therefore, the particle size of the particles of the light scattering member 250 may be set so that the scattering property of the wavelength in the middle wavelength band is increased. For example, when setting the particle size in this way, the particle size is, for example, about 0.13 to 1 [μm].
 図4に例示するように、太陽電池素子100は短波長(例えば350[nm]以下)の光を吸収しにくい。これは次の理由による。即ち、短波長の光は、基材210および充填材230等によって吸収されて、そもそも太陽電池素子100に到達しにくい。よって、短波長の光に基づいた太陽電池素子100の発電量は小さい。 As illustrated in FIG. 4, the solar cell element 100 hardly absorbs light having a short wavelength (for example, 350 [nm] or less). This is due to the following reason. That is, short-wavelength light is absorbed by the base material 210, the filler 230, and the like and hardly reaches the solar cell element 100 in the first place. Therefore, the amount of power generated by the solar cell element 100 based on short-wavelength light is small.
 つまり、短波長の光を光散乱部材250によって散乱させて太陽電池素子100に入射させようとしても、この光は他の部材で吸収されるので、太陽電池素子100の効果的な発電量の増加に寄与しない。なぜなら、光散乱部材250を介して-Z側から太陽電池素子100に至る光路は、光散乱部材250を介さずに直接に+Z側から太陽電池素子100に至る光路に比して長いので、短波長の光は充填材230によって更に吸収されるからである。 That is, even if light having a short wavelength is scattered by the light scattering member 250 and incident on the solar cell element 100, the light is absorbed by another member, so that the effective power generation amount of the solar cell element 100 is increased. Does not contribute. This is because the light path from the −Z side to the solar cell element 100 via the light scattering member 250 is longer than the light path directly from the + Z side to the solar cell element 100 without passing through the light scattering member 250, so This is because light of a wavelength is further absorbed by the filler 230.
 また図4に示すように、太陽電池素子100は長波長(例えば750[nm]以上)の光も吸収しにくい。これは次の理由による。即ち、長波長の光は基材210および充填材230を透過して太陽電池素子100に至るものの、太陽電池素子100においてわずかに光電変換されて、その多くは太陽電池素子100を透過するからである。 Moreover, as shown in FIG. 4, the solar cell element 100 hardly absorbs light having a long wavelength (for example, 750 [nm] or more). This is due to the following reason. That is, long-wavelength light passes through the substrate 210 and the filler 230 and reaches the solar cell element 100, but is slightly photoelectrically converted in the solar cell element 100, and most of the light passes through the solar cell element 100. is there.
 ただし、長波長の光を光散乱部材250で散乱させれば、短波長の光と違って充填材230で吸収されにくく、-Z側から太陽電池素子100に入射する。よって、この長波長の光は短波長の光に比べれば発電には寄与する。そこで、光散乱部材250の粒子の粒径としては、中波長帯域および長波長帯域の光を散乱させやすいような粒径を採用してもよい。逆に言えば、短波長の光の散乱性は低くてもよい。そのように粒径を設定する場合、粒径は例えば0.13~10[μm]程度である。 However, if light having a long wavelength is scattered by the light scattering member 250, unlike the light having a short wavelength, the light is not easily absorbed by the filler 230 and enters the solar cell element 100 from the −Z side. Therefore, the long wavelength light contributes to power generation as compared with the short wavelength light. Therefore, as the particle size of the light scattering member 250, a particle size that can easily scatter light in the medium wavelength band and the long wavelength band may be adopted. Conversely, the short wavelength light scattering property may be low. When the particle size is set in this way, the particle size is, for example, about 0.13 to 10 [μm].
 <製造方法>
 図5は、太陽電池モジュール200の製造方法の一例を示す図である。まずステップS1にて、基材220の主面220aの上に光散乱部材250を配置する。例えば光散乱ペーストを基材220の主面220aの上に所定のパターン形状(例えば非重複領域と同様の形状)で塗布し、その後、乾燥させる。これにより、光散乱部材250が基材220の主面220a上に固定される。
<Manufacturing method>
FIG. 5 is a diagram illustrating an example of a method for manufacturing the solar cell module 200. First, in step S <b> 1, the light scattering member 250 is disposed on the main surface 220 a of the base material 220. For example, the light scattering paste is applied on the main surface 220a of the base material 220 in a predetermined pattern shape (for example, the same shape as the non-overlapping region), and then dried. Thereby, the light scattering member 250 is fixed on the main surface 220 a of the base material 220.
 次にステップS2にて、基材220の主面220aの上に、配線材240によって相互に接続された複数の太陽電池素子100を載置し、その上から、充填材230となるシートを載置し、その上から基材210を載置する。 Next, in step S <b> 2, a plurality of solar cell elements 100 connected to each other by the wiring material 240 are placed on the main surface 220 a of the base material 220, and a sheet that becomes the filler 230 is placed thereon. Then, the base material 210 is placed thereon.
 次にステップS3にて、ラミネート処理を行う。具体的には、ステップS1,S2によって得られた構造体を対象としてラミネート処理が行われる。ラミネート装置(ラミネータ)が用いられて、当該構造体が一体化される。例えばラミネータでは、チャンバー内のヒータ盤上に当該構造体が載置され、チャンバー内が50[Pa]から150[Pa]程度まで減圧されつつ、当該構造体が100[℃]から200[℃]程度まで加熱される。このとき、シートが加熱によって溶融されて流動可能な状態となる。この状態で、当該構造体がダイヤフラムシート等によって押圧されることで、当該構造体が一体化した状態となる。これにより、基材210,220の間に充填された充填材230が形成され、太陽電池モジュール200が形成される。 Next, in step S3, a laminating process is performed. Specifically, laminating is performed on the structures obtained in steps S1 and S2. A laminating device (laminator) is used to integrate the structures. For example, in a laminator, the structure is placed on a heater panel in the chamber, and the structure is reduced from about 50 [Pa] to about 150 [Pa] while the structure is 100 [° C.] to 200 [° C.]. Heated to a degree. At this time, the sheet is melted by heating and becomes flowable. In this state, the structure is pressed by a diaphragm sheet or the like, so that the structure is integrated. Thereby, the filler 230 filled between the base materials 210 and 220 is formed, and the solar cell module 200 is formed.
 このような製造方法によれば、ラミネート処理の際には光散乱部材250が基材220に対して既に固定されているので、光散乱部材250と太陽電池素子100とをより高い精度で位置決めしつつ、ラミネート処理を行うことができる。 According to such a manufacturing method, since the light scattering member 250 is already fixed to the base material 220 during the laminating process, the light scattering member 250 and the solar cell element 100 are positioned with higher accuracy. The laminating process can be performed.
 <光散乱部材の位置>
 図6は、太陽電池モジュール200Aの構成の一例を概略的に示す断面図である。この太陽電池モジュール200Aは、光散乱部材250の位置を除いて、太陽電池モジュール200と同様である。太陽電池モジュール200Aにおいては、光散乱部材250は基材220の-Z側の主面220bの上に位置している。光散乱部材250の平面視における存在領域は上述の通りである。この光散乱部材250は、例えば、基材220の主面220bの上に光散乱ペーストを所定のパターン形状で塗布し、その後、乾燥させることで形成される。
<Position of light scattering member>
FIG. 6 is a cross-sectional view schematically showing an example of the configuration of the solar cell module 200A. This solar cell module 200 </ b> A is the same as the solar cell module 200 except for the position of the light scattering member 250. In the solar cell module 200A, the light scattering member 250 is located on the −Z side main surface 220b of the base material 220. The existence region in plan view of the light scattering member 250 is as described above. The light scattering member 250 is formed, for example, by applying a light scattering paste in a predetermined pattern shape on the main surface 220b of the substrate 220 and then drying it.
 この太陽電池モジュール200Aによれば、+Z側からの光の一部は、複数の太陽電池素子100の間の領域または基材210の周縁領域において、基材210、充填材230および基材220を透過して光散乱部材250に入射する。光散乱部材250は入射した光を散乱させるので、その一部は再び基材220および充填材230を透過して、-Z側から太陽電池素子100に入射する。よって、太陽電池素子100に入射する光の量を増加させることができ、ひいては、太陽電池モジュール200Aの発電効率を向上できる。 According to this solar cell module 200A, part of the light from the + Z side causes the base material 210, the filler 230, and the base material 220 in the region between the plurality of solar cell elements 100 or the peripheral region of the base material 210. The light passes through and enters the light scattering member 250. Since the light scattering member 250 scatters the incident light, part of the light is again transmitted through the base material 220 and the filler 230 and enters the solar cell element 100 from the −Z side. Therefore, the amount of light incident on the solar cell element 100 can be increased, and as a result, the power generation efficiency of the solar cell module 200A can be improved.
 しかも、この太陽電池モジュール200Aにおいては、光散乱部材250が基材220の-Z側の主面220bの上に位置している。よって、光散乱部材250を有していない既設の太陽電池モジュールに対しても、光散乱部材250を容易に取り付けることができる。これにより、太陽電池モジュールの発電効率を向上させることができる。 Moreover, in this solar cell module 200A, the light scattering member 250 is located on the −Z side main surface 220b of the base material 220. Therefore, the light scattering member 250 can be easily attached to an existing solar cell module that does not have the light scattering member 250. Thereby, the power generation efficiency of a solar cell module can be improved.
 <光散乱部材>
 図7は、光散乱部材250の構成の他の一例を示す断面図である。図7の例では、光散乱部材250はフィルム状の基体260の一主面上に位置している。フィルム状の基体260は高い透光性を有しており、例えばガラス等によって形成され得る。基体260の厚みは例えば数百[μm]程度以下であり、基材220とは別体である。基体260は例えば平面視において長方形形状を有しており、その主面上に光散乱部材250が位置している。この光散乱部材250は、例えば、基体260の一主面上に所定のパターン形状で光散乱ペーストを塗布し、その後、乾燥させることで形成される。基体260は光散乱部材250を固定するための基体である。
<Light scattering member>
FIG. 7 is a cross-sectional view illustrating another example of the configuration of the light scattering member 250. In the example of FIG. 7, the light scattering member 250 is located on one main surface of the film-like substrate 260. The film-like substrate 260 has high translucency and can be formed of glass or the like, for example. The thickness of the substrate 260 is, for example, about several hundreds [μm] or less, and is separate from the substrate 220. The base body 260 has, for example, a rectangular shape in plan view, and the light scattering member 250 is located on the main surface. The light scattering member 250 is formed, for example, by applying a light scattering paste in a predetermined pattern shape on one main surface of the substrate 260 and then drying it. The substrate 260 is a substrate for fixing the light scattering member 250.
 光散乱部材250および基体260からなる構造体は、基材220の主面220aまたは主面220bの上に配置されて、例えば樹脂等により、基材220に固定される。 The structure composed of the light scattering member 250 and the base body 260 is disposed on the main surface 220a or the main surface 220b of the base material 220, and is fixed to the base material 220 with, for example, a resin.
 このような光散乱部材250および基体260は、基材220とは独立して取り扱うことができる。よって、太陽電池モジュール200(200A)の組立ての際に、光散乱部材250を基材220の主面220aまたは主面220bの上に容易に配置することができる。 Such a light scattering member 250 and the substrate 260 can be handled independently of the substrate 220. Therefore, when the solar cell module 200 (200A) is assembled, the light scattering member 250 can be easily disposed on the main surface 220a or the main surface 220b of the substrate 220.
 <多層構造>
 光散乱部材250は多層構造を有していてもよい。図8は、光散乱部材250の構成の一例を示す図である。光散乱部材250は散乱層250a,250bを有している。散乱層250a,250bはZ軸方向において積層されており、例えば散乱層250aは散乱層250bよりも+Z側に位置している。散乱層250aは複数の粒子251aと充填材252aとを有しており、散乱層250bは複数の粒子251bと充填材252bとを有している。粒子251a,251bは互いに同一の材料で形成されてもよく、異なる材料で形成されてもよい。粒子251a,251bは例えば酸化チタンで形成される。
<Multilayer structure>
The light scattering member 250 may have a multilayer structure. FIG. 8 is a diagram illustrating an example of the configuration of the light scattering member 250. The light scattering member 250 has scattering layers 250a and 250b. The scattering layers 250a and 250b are stacked in the Z-axis direction. For example, the scattering layer 250a is located on the + Z side with respect to the scattering layer 250b. The scattering layer 250a includes a plurality of particles 251a and a filler 252a, and the scattering layer 250b includes a plurality of particles 251b and a filler 252b. The particles 251a and 251b may be formed of the same material or different materials. The particles 251a and 251b are made of, for example, titanium oxide.
 充填材252aは複数の粒子251aを固定するための充填材であって、透光性を有している。充填材252bは複数の粒子251bを固定するための充填材であって、透光性を有している。充填材252a,252bは同じ材料で形成されてもよく、互いに異なる材料で形成されてもよい。ただし、充填材252a,252bはそれぞれ粒子251a,251bとは異なる材質で形成される。充填材252a,252bは例えばシリカまたは樹脂である。 The filler 252a is a filler for fixing the plurality of particles 251a and has translucency. The filler 252b is a filler for fixing the plurality of particles 251b and has translucency. The fillers 252a and 252b may be formed of the same material or different materials. However, the fillers 252a and 252b are formed of a material different from that of the particles 251a and 251b, respectively. The fillers 252a and 252b are, for example, silica or resin.
 散乱層250bは例えば複数の粒子251bを含む光散乱ペーストを所定のパターン形状で基材220の主面220aまたは主面220bの上に塗布し、その後、乾燥することで形成される。散乱層250aは例えば複数の粒子251aを含む光散乱ペーストを散乱層250bの上に塗布し、その後、乾燥することで形成される。 The scattering layer 250b is formed, for example, by applying a light scattering paste including a plurality of particles 251b on the main surface 220a or the main surface 220b of the substrate 220 in a predetermined pattern shape, and then drying. The scattering layer 250a is formed, for example, by applying a light scattering paste including a plurality of particles 251a on the scattering layer 250b and then drying.
 なお光散乱部材250を基材220の上に直接に形成せずに、他の基体260の上に形成した後で、その基体260を基材220の上に配置してもよい。 It should be noted that the light scattering member 250 may not be directly formed on the substrate 220 but may be formed on another substrate 260 and then the substrate 260 may be disposed on the substrate 220.
 粒子251aの粒径(平均値)は粒子251bの粒径(平均値)と異なっており、例えば小さく設定される。例えば粒子251aの粒径(平均値)は中波長帯域に応じた0.13~1[μm]程度であり、粒子251bの粒径(平均値)は長波長帯域に応じた0.25~10[μm]程度である。 The particle size (average value) of the particles 251a is different from the particle size (average value) of the particles 251b, and is set to be small, for example. For example, the particle diameter (average value) of the particles 251a is about 0.13 to 1 [μm] corresponding to the medium wavelength band, and the particle diameter (average value) of the particles 251b is 0.25 to 10 corresponding to the long wavelength band. It is about [μm].
 これによれば、粒子251aの粒径に応じた波長の光が散乱層250aで散乱されやすく、粒子251bの粒径に応じた波長の光が散乱層250bで散乱されやすい。つまり、より広い波長帯域で高い散乱性を実現できる。これにより、太陽電池素子100に入射する光の量を更に増加させることができ、ひいては太陽電池モジュール200の発電効率を更に向上できる。 According to this, light having a wavelength corresponding to the particle size of the particle 251a is easily scattered by the scattering layer 250a, and light having a wavelength corresponding to the particle size of the particle 251b is easily scattered by the scattering layer 250b. That is, high scattering can be realized in a wider wavelength band. Thereby, the quantity of the light which injects into the solar cell element 100 can further be increased, and the power generation efficiency of the solar cell module 200 can be further improved.
 <黒色顔料>
 光散乱部材250は、黒色の顔料を更に含んでいてもよい。これによれば、-Z側から見た太陽電池モジュール200は全面的に黒色を呈し、ブラックモジュールを実現できる。
<Black pigment>
The light scattering member 250 may further include a black pigment. According to this, the solar cell module 200 viewed from the −Z side is entirely black, and a black module can be realized.
 以上のように、太陽電池モジュールは詳細に説明されたが、上記した説明は、全ての局面において例示であって、この開示がそれに限定されるものではない。また、上述した各種変形例は、相互に矛盾しない限り組み合わせて適用可能である。そして、例示されていない多数の変形例が、この開示の範囲から外れることなく想定され得るものと解される。 As described above, the solar cell module has been described in detail, but the above description is an example in all aspects, and the disclosure is not limited thereto. The various modifications described above can be applied in combination as long as they do not contradict each other. And it is understood that many modifications which are not illustrated may be assumed without departing from the scope of this disclosure.
 100 太陽電池素子
 200,200A 太陽電池モジュール
 210 第1基材(基材)
 220 第2基材(基材)
 250 光散乱部材
 250a 第1散乱層(散乱層)
 250b 第2散乱層(散乱層)
 251a 第1粒子(粒子)
 251b 第2粒子(粒子)
DESCRIPTION OF SYMBOLS 100 Solar cell element 200,200A Solar cell module 210 1st base material (base material)
220 Second base material (base material)
250 light scattering member 250a first scattering layer (scattering layer)
250b Second scattering layer (scattering layer)
251a First particle (particle)
251b Second particle (particle)

Claims (6)

  1.  太陽電池モジュールであって、
     透光性を有する第1基材と、
     前記第1基材と対向する状態で位置する第2基材と、
     前記第1基材と前記第2基材との間に位置し、平面視において互いに隣り合う状態で位置する複数の太陽電池素子と、
     平面視において前記複数の太陽電池素子と重なる第1領域のうち少なくとも一部を避けて、前記複数の太陽電池素子と重ならない第2領域の少なくとも一部において、前記第2基材の上に位置し、複数の粒子を有する光散乱部材と
    を備える、太陽電池モジュール。
    A solar cell module,
    A first base material having translucency;
    A second substrate positioned in a state of facing the first substrate;
    A plurality of solar cell elements positioned between the first base material and the second base material and positioned adjacent to each other in plan view;
    Positioned on the second base material in at least part of the second region that does not overlap with the plurality of solar cell elements while avoiding at least part of the first region overlapping with the plurality of solar cell elements in plan view And a light scattering member having a plurality of particles.
  2.  請求項1に記載の太陽電池モジュールであって、
     前記光散乱部材は、前記第2基材のうち前記第1基材側の主面の上に位置している、太陽電池モジュール。
    The solar cell module according to claim 1,
    The said light-scattering member is a solar cell module located on the main surface by the side of the said 1st base material among the said 2nd base materials.
  3.  請求項1に記載の太陽電池モジュールであって、
     前記光散乱部材は、前記第2基材のうち前記第1基材とは反対側の主面の上に位置している、太陽電池モジュール。
    The solar cell module according to claim 1,
    The said light-scattering member is a solar cell module located on the main surface on the opposite side to the said 1st base material among the said 2nd base materials.
  4.  請求項1から請求項3のいずれか一つに記載の太陽電池モジュールであって、
     前記光散乱部材は、
     複数の第1粒子を含む第1散乱層と、
     前記第1散乱層に積層されて、前記複数の第1粒子とは径が異なる複数の第2粒子を含む第2散乱層と
    を有する、太陽電池モジュール。
    The solar cell module according to any one of claims 1 to 3, wherein
    The light scattering member is
    A first scattering layer comprising a plurality of first particles;
    A solar cell module comprising: a second scattering layer that is stacked on the first scattering layer and includes a plurality of second particles having a diameter different from that of the plurality of first particles.
  5.  請求項1から請求項4のいずれか一つに記載の太陽電池モジュールであって、
     前記光散乱部材が位置するフィルム状の基体を更に備え、
     前記基体が前記第2基材の上に位置している、太陽電池モジュール。
    The solar cell module according to any one of claims 1 to 4, wherein
    A film-like substrate on which the light scattering member is located;
    The solar cell module, wherein the substrate is located on the second substrate.
  6.  請求項1から請求項5のいずれか一つに記載の太陽電池モジュールの製造方法であって、
     前記第2基材の上に前記光散乱部材を配置して、前記光散乱部材を前記第2基材に対して固定する工程と、
     前記第2基材の上に、前記複数の太陽電池素子、溶融して充填材となるシート、および、前記第1基材を載置する工程と、
     前記シートを加熱するラミネート処理を行う工程と
    を備える、太陽電池モジュールの製造方法。
    It is a manufacturing method of the solar cell module according to any one of claims 1 to 5,
    Disposing the light scattering member on the second substrate and fixing the light scattering member to the second substrate;
    On the second substrate, the plurality of solar cell elements, a sheet that is melted to become a filler, and a step of placing the first substrate;
    And a step of performing a laminating process for heating the sheet.
PCT/JP2019/014564 2018-04-04 2019-04-02 Solar cell module and method for manufacturing solar cell module WO2019194151A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-072073 2018-04-04
JP2018072073 2018-04-04

Publications (1)

Publication Number Publication Date
WO2019194151A1 true WO2019194151A1 (en) 2019-10-10

Family

ID=68100708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014564 WO2019194151A1 (en) 2018-04-04 2019-04-02 Solar cell module and method for manufacturing solar cell module

Country Status (1)

Country Link
WO (1) WO2019194151A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249418A (en) * 2010-05-24 2011-12-08 Mitsubishi Electric Corp Photovoltaic element module and method for manufacturing the same
JP2011258879A (en) * 2010-06-11 2011-12-22 Toyo Ink Sc Holdings Co Ltd Solar cell module
JP2014110330A (en) * 2012-12-03 2014-06-12 Mitsubishi Electric Corp Solar cell module
JP2014207305A (en) * 2013-04-12 2014-10-30 三洋電機株式会社 Solar cell module
KR20150060413A (en) * 2013-11-26 2015-06-03 엘지전자 주식회사 Solar cell module and rear substrate for the same
DE202015008286U1 (en) * 2015-11-30 2015-12-11 Solarworld Innovations Gmbh solar module
WO2017154384A1 (en) * 2016-03-10 2017-09-14 株式会社カネカ Solar cell module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249418A (en) * 2010-05-24 2011-12-08 Mitsubishi Electric Corp Photovoltaic element module and method for manufacturing the same
JP2011258879A (en) * 2010-06-11 2011-12-22 Toyo Ink Sc Holdings Co Ltd Solar cell module
JP2014110330A (en) * 2012-12-03 2014-06-12 Mitsubishi Electric Corp Solar cell module
JP2014207305A (en) * 2013-04-12 2014-10-30 三洋電機株式会社 Solar cell module
KR20150060413A (en) * 2013-11-26 2015-06-03 엘지전자 주식회사 Solar cell module and rear substrate for the same
DE202015008286U1 (en) * 2015-11-30 2015-12-11 Solarworld Innovations Gmbh solar module
WO2017154384A1 (en) * 2016-03-10 2017-09-14 株式会社カネカ Solar cell module

Similar Documents

Publication Publication Date Title
KR101130197B1 (en) Solar cell module and manufacturing method thereof
KR100990114B1 (en) Solar cell module having interconnector and fabricating method the same
US8872295B2 (en) Thin film photovoltaic device with enhanced light trapping scheme
KR20110000695A (en) Method for improving pv aesthetics and efficiency
WO2013168612A1 (en) Solar cell module
JP2014007384A (en) Solar cell module and ribbon assembly applied to the same
JP2018061056A (en) Solar cell module
WO2019146366A1 (en) Solar battery module
KR102107209B1 (en) Interconnector and solar cell module with the same
TWI539613B (en) High power solar cell module
CN108701734B (en) Solar cell module
KR20120044540A (en) Solar cell panel and manufacturing method thereof
WO2010016098A1 (en) Daylighting solar battery module
TWI445194B (en) Package structure of solar photovoltaic module and method of manufacturing the same
US20170194525A1 (en) High power solar cell module
KR102196929B1 (en) Solar cell module and rear substrate for the same
WO2019194151A1 (en) Solar cell module and method for manufacturing solar cell module
US10784392B2 (en) Solar cell module and method for manufacturing the same
JP6771200B2 (en) Solar cell module
TWI814224B (en) Photovoltaic module with light guide structure
KR101685350B1 (en) Solar cell module
JP2019192694A (en) Solar cell module and method for manufacturing solar cell module
KR20140121915A (en) Bifacial solar cell module
TWM523192U (en) High power solar cell module
TWM517475U (en) High power solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19781021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP