WO2019192297A1 - 一种电磁离合控制器的电流采样电路 - Google Patents

一种电磁离合控制器的电流采样电路 Download PDF

Info

Publication number
WO2019192297A1
WO2019192297A1 PCT/CN2019/077980 CN2019077980W WO2019192297A1 WO 2019192297 A1 WO2019192297 A1 WO 2019192297A1 CN 2019077980 W CN2019077980 W CN 2019077980W WO 2019192297 A1 WO2019192297 A1 WO 2019192297A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
current
electromagnetic clutch
load coil
resistor
Prior art date
Application number
PCT/CN2019/077980
Other languages
English (en)
French (fr)
Inventor
张涛
王颖
董双来
Original Assignee
精进电动科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 精进电动科技股份有限公司 filed Critical 精进电动科技股份有限公司
Publication of WO2019192297A1 publication Critical patent/WO2019192297A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/30Structural combination of electric measuring instruments with basic electronic circuits, e.g. with amplifier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/02Measuring effective values, i.e. root-mean-square values

Definitions

  • the invention relates to the technical field of electromagnetic clutch controller current collection control, in particular to a circuit sampling circuit of an electromagnetic clutch controller.
  • the controller In the field of automotive power, the controller is the core component of the vehicle's power system, and the reliability of the system is extremely high. With the development of the times, people are increasingly pursuing the driving and riding experience of the whole vehicle. If you want to make the shifting flexible and smooth, the controller is required to have high accuracy of current control. Therefore, the current of the load coil is accurate. Feedback is especially important.
  • the invention provides a circuit sampling circuit of an electromagnetic clutch controller for accurately collecting the current effective value of the load coil at the driving time and the freewheeling time.
  • the electromagnetic clutch circuit sampling circuit comprises: a pre-drive module, a switch circuit, a freewheeling circuit and a current sampling circuit;
  • a pre-driver module for controlling turn-on and turn-off of the MOSFET tube in the switch circuit
  • a current sampling circuit for calculating the current value at the end of the load coil.
  • the pre-drive module includes: a pre-drive chip U1, a first diode D1 and a third capacitor C3; the input end of the pre-drive chip U1 receives the PWM signal, and the power supply end of the pre-drive chip U1 is connected to the first power supply and connected in series.
  • a diode D1 is connected to the driving voltage output terminal VB, and a third capacitor C3 is connected in series to the driving voltage output terminal VB and the driving reference ground terminal VS.
  • the switching circuit comprises: a first resistor R1, a second resistor R2, and a MOSFET tube Q1; the control terminal HO of the pre-driver chip U1 is sequentially connected to the first resistor R1 and the second resistor R2 and is connected to the gate of the MOSFET Q1.
  • the drain of the MOSFET Q1 is connected to the second power supply, and the source of the MOSFET Q1 is connected to the load coil.
  • the switch circuit further includes: a first capacitor C1 connected between the second power source and the ground.
  • the freewheeling circuit comprises: a second diode D2, a third resistor R3; the load coil is connected in series with the third resistor R3 and is connected in parallel with the second diode D2 to connect the drive reference ground VS of the pre-driver chip U1 .
  • the first power source is 15V.
  • the second power source is 24V.
  • the utility model has the beneficial effects that the current sampling circuit of the electromagnetic clutch controller of the invention can collect the real current at any moment of the coil end of the electromagnetic clutch controller, so that the electromagnetic clutch controller can adopt the current closed loop control mode to ensure the controller can Flexible and quick pull-in and off-position to improve driving and riding experience.
  • FIG. 1 is a structural block diagram of a current sampling circuit of an electromagnetic clutch controller provided by the present invention
  • FIG. 2 is a circuit diagram of a current sampling circuit of an electromagnetic clutch controller provided by the present invention.
  • FIG. 3 is a schematic view showing a current direction of a driving coil of the present invention at a driving timing
  • FIG. 4 is a schematic view showing the current direction of the freewheeling moment of the load coil provided by the present invention.
  • the current collected by the present application is the real current at any moment of the coil end of the electromagnetic clutch controller. Since the load coil will self-heat when it works, the impedance of the load coil will become larger after the heat is generated. If the PWM performs current control with the same duty cycle voltage, the load coil current will be too small, which is very likely to cause the gearbox to be out of gear.
  • the electromagnetic clutch controller of the present application adopts a current closed loop control mode to ensure that the controller can flexibly and quickly pull in and out of the gear position, and the current closed loop must first ensure that the actual output of the load coil can be collected.
  • the exact current so the current sampling circuit topology of this application is very necessary.
  • the current sampling circuit of the electromagnetic clutch controller of the embodiment includes: a pre-drive module, a switch circuit, and a continuation a flow circuit and a current sampling circuit;
  • a pre-drive module for controlling turn-on and turn-off of a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) in a switching circuit;
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • a current sampling circuit for calculating a current value of the load coil end.
  • the current sampling circuit of the embodiment adopts a high-side pre-drive to control the on and off of the MOSFET, and realizes the output target current through the PWM control mode.
  • the pre-driver module of this embodiment includes: a pre-driver chip U1, a first diode D1, and a third capacitor C3; wherein the input terminal 2 of the pre-driver chip U1 receives the PWM signal, and the pre-driver chip U1
  • the power terminal 1 is connected to the first power source and connected in series with the first diode D1 and then connected to the driving voltage output terminal VB.
  • the third capacitor C3 is connected in series to the driving voltage output terminal VB 8 and the driving reference ground terminal VS 6 .
  • the switching circuit includes: a first resistor R1, a second resistor R2, and a MOSFET tube Q1; the control terminal HO7 of the pre-driver chip U1 is sequentially connected to the first resistor R1 and the second resistor R2, and is connected to the gate 1 of the MOSFET Q1.
  • the drain 2 of the MOSFET Q1 is connected to the second power supply, and the source 3 of the MOSFET Q1 is connected to the load coil.
  • the switch circuit further includes: a first capacitor C1, the first capacitor C1 is connected between the second power source and the GND ground, and the first capacitor C1 of the embodiment is a decoupling capacitor.
  • the freewheeling circuit comprises: a second diode D2, a third resistor R3; the load coil is connected in series with the third resistor R3 and is connected in parallel with the second diode D2 to connect the driving reference ground VS 6 of the pre-driver chip U1.
  • a second diode D2, a third resistor R3 the load coil is connected in series with the third resistor R3 and is connected in parallel with the second diode D2 to connect the driving reference ground VS 6 of the pre-driver chip U1.
  • one end of the series line of the load coil and the third resistor R3 is connected in parallel with the second diode D2 and then connected to the GND ground, and the other end of the series line of the load coil and the third resistor R3 is connected to the second diode.
  • the driving reference ground VS 6 of the pre-driver chip U1 is connected.
  • the first power source is 15V
  • the second power source is 24V
  • the second diode D2 is a freewheeling dio
  • this embodiment is to accurately collect the current of the load coil, and the above current sampling circuit of the present application is designed for each load coil.
  • the Load_coil in FIGS. 2 to 4 of the present embodiment is the load coil of the embodiment of the present application.
  • the pre-driver chip U1 in this embodiment is an integrated circuit or integrated chip having the functions of the embodiments of the present application integrated by the prior art.
  • the pre-drive chip U1 of the present embodiment is integrated with a charge pump.
  • the basic principle of the charge pump is that the charging and discharging of the capacitor adopt different connection modes, such as parallel charging, series discharging, series charging, parallel discharging, etc., in order to realize voltage conversion functions such as boost, buck, and negative voltage.
  • a complete sampling current loop mode is adopted to accurately collect the current of the load coil.
  • the first power source and the second power source operate, and the third capacitor C3 is fully charged in an instant, and the pre-driver circuit starts to work.
  • the method for collecting the current effective value of the load coil at the freewheeling time and the driving time is as follows:
  • the control terminal HO7 of the pre-driver chip U1 is turned on with the internal MOSFET Q1 of the driving voltage output terminal VB8, and the control terminal HO7 outputs a high level, and then the MOSFET tube
  • the Vgs ⁇ 15V of Q1 reaches the conduction condition of the MOSFET, and the drain 2 and the source 3 of the MOSFET are turned on.
  • the driving reference ground of the pre-drive chip U1 is VS 6 to ground voltage is 24V
  • the pre-driver chip U1 The voltage of the driving voltage output terminal VB 8 is 24V+15V, which can ensure that the voltage of Vgs is still 15V, and the MOSFET can be stably turned on.
  • the current loop is: current flows from the second power supply 24V+ through the MOSFET Q1 to the load.
  • the coil is subjected to current sampling through the third resistor R3, and then the current value I2 of the load coil end can be calculated through the peripheral amplifying circuit.
  • the current of the load coil at the driving time is I1:
  • the embodiment of the present application provides a current sampling circuit of an electromagnetic clutch controller, which collects real current at any moment of the coil end of the electromagnetic clutch controller, so that the electromagnetic clutch controller can adopt a current closed loop control mode to ensure that the controller can Flexible and quick pull-in and off-position.
  • the words “first” and “second” are used to distinguish the same items or similar items whose functions and functions are substantially the same. Personnel can understand that the words “first” and “second” do not limit the quantity and order of execution.

Abstract

一种电磁离合控制器的电流采样电路,电磁离合控制器的电流采样电路包括:预驱模块、开关电路、续流电路和电流采样电路;预驱模块,用于控制开关电路中MOSFET管(Q1)的开通和关断;开关电路,用于调整电磁离合控制器中负载线圈的电流大小;续流电路,用于消耗负载线圈上的残余能量;电流采样电路,用于计算负载线圈端的电流值。电磁离合控制器的电流采样电路能够采集电磁离合控制器线圈端任何时刻的真实电流,使得电磁离合控制器可以采用电流闭环的控制方式,保证控制器能灵活、迅速的吸合、脱开档位,提高驾驶与乘坐体验。

Description

一种电磁离合控制器的电流采样电路 技术领域
本发明涉及电磁离合控制器电流采集控制技术领域,特别涉及一种电磁离合控制器的电路采样电路。
发明背景
在汽车动力等领域,控制器作为整车动力系统的核心部件,对于系统的可靠性要求极高。随着时代的发展,人们越来越追求整车的驾驶与乘坐体验,若想做到换挡的灵活平顺,则要求控制器对电流控制的准确性很高,因此,准确的负载线圈的电流反馈显得尤为重要。
发明内容
本发明提供了一种电磁离合控制器的电路采样电路,以准确采集负载线圈在驱动时刻和续流时刻的电流有效值。
为达到上述目的,本发明的技术方案是这样实现的:
本发明的提供的电磁离合器电路采样电路,包括:预驱模块、开关电路、续流电路和电流采样电路;
预驱模块,用于控制开关电路中MOSFET管的开通和关断;
开关电路,用于调整电磁离合器中负载线圈的电流大小;
续流电路,用于消耗负载线圈上的残余能量;
电流采样电路,用于计算负载线圈端的电流值。
优选地,预驱模块包括:预驱芯片U1、第一二极管D1和第三电容C3;预驱芯片U1的输入端接收PWM信号,预驱芯片U1的电源端连接第一电源并串联第一二极管D1后连接到驱动电压输出端VB,第三电容C3串联连接在驱动电压输出端VB和驱动参考地端VS。
优选地,开关电路包括:第一电阻R1、第二电阻R2、MOSFET管Q1;预驱芯片U1的控制端HO顺次连接第一电阻R1、第二电阻R2后连接到MOSFET管Q1的栅极,MOSFET管Q1的漏极连接第二电源,MOSFET管Q1的源极连接负载线圈。
优选地,开关电路还包括:第一电容C1,第一电容C1连接在第二电源与地之间。
优选地,续流电路包括:第二二极管D2,第三电阻R3;负载线圈串联第三电阻R3并且与第二二极管D2并联后连接所述预驱芯片U1的驱动参考地端VS。
优选地,第一电源为15V。
优选地,第二电源为24V。
本发明的有益效果是:本发明的电磁离合控制器的电流采样电路,能够采集电磁离合控制器线圈端任何时刻的真实电流,使得电磁离合控制器可以采用电流闭环的控制方式,保证控制器能灵活、迅速的吸合、脱开档位,提高驾驶与乘坐体验。
附图简要说明
图1为本发明的提供的电磁离合控制器的电流采样电路的结构框图;
图2为本发明的提供的电磁离合控制器的电流采样电路的电路示意图;
图3为本发明的提供的负载线圈的驱动时刻的电流方向示意图;
图4为本发明的提供的负载线圈的续流时刻的电流方向示意图。
实施本发明的方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
参考图4所示,常规的电流检测方案中只能检测到PWM(Pulse Width Modulation,脉冲宽度调整)在高电平驱动时刻的线圈电流,本申请不仅可以采集到负载线圈在驱动时刻的电流,还可以采集到负载线圈在续流时刻的电流,也即本申请采集到的电流是电磁离合控制器线圈端任何时刻的真实电流。由于负载线圈工作时会自发热,发热以后负载线圈的阻抗会变大,如果PWM以同样占空比的电压进行电流控制,负载线圈电流就会偏小,非常容易造成变速箱脱档问题。
本申请基于上述情况,本申请的电磁离合控制器采用电流闭环的控制方式,以保证控制器能灵活、迅速的吸合、脱开档位,而电流闭环首先要保证能采集到负载线圈实际输出的准确电流,所以本申请的电流采样电路拓扑结构非常有必要。
图1为本发明实施例提供的电磁离合控制器的电流采样电路的结构框图,如图1所示,本实施例的电磁离合控制器的电流采样电路,包括:预驱模块、开关电路、续流电路和电流采样电路;其中,
预驱模块,用于控制开关电路中MOSFET管(Metal-Oxide-Semiconductor Field-Effect Transistor,金氧半场效晶体管)的开通和关断;
开关电路,用于调整电磁离合控制器中负载线圈的电流大小;
续流电路,用于消耗该负载线圈上的残余能量;
电流采样电路,用于计算该负载线圈端的电流值。
本实施例的电流采样电路采用高边预驱,控制MOSFET管的导通和断开,通过PWM控制方式实现输出目标电流。
参考图2所示,本实施例的预驱模块包括:预驱芯片U1、第一二极管D1和第三电容C3;其中,预驱芯片U1的输入端2接收PWM信号,预驱芯片U1的电源端1连接第一电源并串联第一二极管D1后连接到驱动电压输出端VB,第三电容C3串联连接在驱动电压输出端VB 8和驱动参考地端VS 6。
开关电路包括:第一电阻R1、第二电阻R2、MOSFET管Q1;预驱芯片U1的控制端HO 7顺次连接第一电阻R1、第二电阻R2后连接到MOSFET管Q1的栅极1,MOSFET管Q1的漏极2连接第二电源,MOSFET管Q1的源极3连接负载线圈。如图2所示,开关电路还包括:第一电容C1,第一电容C1连接在第二电源与GND地之间,本实施例的第一电容C1为去耦电容。
续流电路包括:第二二极管D2,第三电阻R3;负载线圈串联第三电阻R3并且与第二二极管D2并联后连接预驱芯片U1的驱动参考地端VS 6。如图2所示,Load coil与第三电阻R3的串联线路的一端与第二二极管D2并联后接GND地,Load coil与第三电阻R3的串联线路的另一端与第二二极管D2并联后连接预驱芯片U1的驱动参考地端VS 6。其中,第一电源为15V,第二电源为24V,第二二极管D2为续流二极管。
可以理解的是:本实施例为对负载线圈的电流进行准确采集,为每个负载线圈设计本申请的上述的电流采样电路。
需要说明的是,本实施例附图2~4中的Load_coil为本申请实施例的负载线圈。
本实施例中的预驱芯片U1为利用现有技术集成的具有本申请实施例功能的集成电路或集成芯片。示例性的,本实施例的预驱芯片U1集成有电荷泵。电荷泵的基本原理是电容的充电和放电采用不同的连接方式,如并联充电、串联放电,串联充电、并联放电等,以实现升压、降压、负压等电压转换功能。
本实施例采用完整的采样电流回路方式,对负载线圈的电流进行精确采集。当系统上电时,第一电源和第二电源工作,第三电容C3瞬间被充满电,预驱电路开 始工作。本申请采集负载线圈在续流时刻和驱动时刻的电流有效值的方法如下:
负载线圈在续流时刻的电流为I2:
如图3所示,当PWM输入为高电平时,预驱芯片U1的控制端HO 7与驱动电压输出端VB 8内部MOSFET管Q1导通,控制端HO 7输出为高电平,然后MOSFET管Q1的Vgs≈15V,达到MOSFET管的导通条件,MOSFET管的漏极2和源极3导通,此时预驱芯片U1的驱动参考地端VS 6对地电压为24V,预驱芯片U1的驱动电压输出端VB 8对地电压为24V+15V,能保证Vgs的电压仍为15V,可以稳定的开通MOSFET管,此时电流回路为:电流从第二电源24V+流经MOSFET管Q1到负载线圈,通过第三电阻R3进行电流采样,再经过外围的放大电路可以计算出此时负载线圈端的电流值I2。
负载线圈在驱动时刻的电流为I1:
如图4所示,当PWM输入为低电平时,预驱芯片U1的控制端HO 7与驱动电压输出端VB 8内部MOSFET管关断,控制端HO 7输出为低电平,MOSFET管Q1的Vgs=0V,达到MOSFET管Q1的关断条件,MOSFET管Q1的漏极2和源极3关断,此时第二电源24V+不再为负载线圈提供电流。由于负载线圈为感性负载,两端的电流不能突变,会保持原来的电流方向工作,电流将经过第二二极管D2,流经第三电阻R3完成续流回路,第三电阻R3上的分压在经过外围的放大电路可以计算出此时负载线圈端的电流值I1。
综上,本申请实施例提供了一种电磁离合控制器的电流采样电路,采集电磁离合控制器线圈端任何时刻的真实电流,使得电磁离合控制器可以采用电流闭环的控制方式,保证控制器能灵活、迅速的吸合、脱开档位。
为了便于清楚描述本发明实施例的技术方案,在发明的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。
以上所述,仅为本发明的具体实施方式,在本发明的上述教导下,本领域技术人员可以在上述实施例的基础上进行其他的改进或变形。本领域技术人员应该明白,上述的具体描述只是更好的解释本发明的目的,本发明的保护范围应以权利要求的保护范围为准。

Claims (7)

  1. 一种电磁离合控制器的电流采样电路,其特征在于,包括:预驱模块、开关电路、续流电路和电流采样电路;
    预驱模块,用于控制开关电路中MOSFET管的开通和关断;
    开关电路,用于调整电磁离合控制器中负载线圈的电流大小;
    续流电路,用于消耗所述负载线圈上的残余能量;
    电流采样电路,用于计算所述负载线圈端的电流值。
  2. 根据权利要求1所述的电路,其特征在于,所述预驱模块包括:预驱芯片U1、第一二极管D1和第三电容C3;
    所述预驱芯片U1的输入端接收脉冲宽度调制PWM信号,所述预驱芯片U1的电源端连接第一电源并串联第一二极管D1后连接到驱动电压输出端VB,所述第三电容C3串联连接在驱动电压输出端VB和驱动参考地端VS。
  3. 根据权利要求1所述的电路,其特征在于,所述开关电路包括:第一电阻R1、第二电阻R2、MOSFET管Q1;
    所述预驱芯片U1的控制端HO顺次连接第一电阻R1、第二电阻R2后连接到所述MOSFET管Q1的栅极,所述MOSFET管Q1的漏极连接第二电源,所述MOSFET管Q1的源极连接所述负载线圈。
  4. 根据权利要求3所述的电路,其特征在于,所述开关电路还包括:第一电容C1,所述第一电容C1连接在第二电源与地之间。
  5. 根据权利要求1所述的电路,其特征在于,所述续流电路包括:第二二极管D2,第三电阻R3;
    所述负载线圈串联第三电阻R3并且与第二二极管D2并联后连接所述预驱芯片U1的驱动参考地端VS。
  6. 根据权利要求2所述的电路,其特征在于,所述第一电源为15V。
  7. 根据权利要求3所述的电路,其特征在于,所述第二电源为24V。
PCT/CN2019/077980 2018-04-04 2019-03-13 一种电磁离合控制器的电流采样电路 WO2019192297A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201820474763.3U CN208076605U (zh) 2018-04-04 2018-04-04 一种电磁离合控制器的电流采样电路
CN201820474763.3 2018-04-04

Publications (1)

Publication Number Publication Date
WO2019192297A1 true WO2019192297A1 (zh) 2019-10-10

Family

ID=64043249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077980 WO2019192297A1 (zh) 2018-04-04 2019-03-13 一种电磁离合控制器的电流采样电路

Country Status (2)

Country Link
CN (1) CN208076605U (zh)
WO (1) WO2019192297A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208076605U (zh) * 2018-04-04 2018-11-09 精进电动科技股份有限公司 一种电磁离合控制器的电流采样电路

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0438637A1 (de) * 1990-01-24 1991-07-31 Landis & Gyr Business Support AG Verfahren und Anordnung zur Ermittlung eines Effektivwertes Ieff eines mit Hilfe eines Hallelementes und einer Verstärkeranordnung zu messenden Stromes
CN202018474U (zh) * 2011-03-21 2011-10-26 青岛海信电器股份有限公司 一种电流采样电路及具有该电路的电源
CN202631617U (zh) * 2012-04-28 2012-12-26 绍兴光大芯业微电子有限公司 一种输出级过流检测电路
CN102937667A (zh) * 2012-10-29 2013-02-20 上海电器科学研究院 一种无线智能可控的用于插座的计量设备
CN103746543A (zh) * 2013-12-31 2014-04-23 广东威灵电机制造有限公司 一种桥式驱动电路的电流检测装置
CN203979586U (zh) * 2014-07-23 2014-12-03 东风汽车公司 一种多路电磁阀高边控制及高边电流采样电路
CN104678163A (zh) * 2014-12-30 2015-06-03 东南大学 一种直流电机绕组电流的采样电路和采样方法
CN105487456A (zh) * 2016-01-22 2016-04-13 安徽江淮汽车股份有限公司 一种离合器电磁阀控制电路及方法
CN208076605U (zh) * 2018-04-04 2018-11-09 精进电动科技股份有限公司 一种电磁离合控制器的电流采样电路

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0438637A1 (de) * 1990-01-24 1991-07-31 Landis & Gyr Business Support AG Verfahren und Anordnung zur Ermittlung eines Effektivwertes Ieff eines mit Hilfe eines Hallelementes und einer Verstärkeranordnung zu messenden Stromes
CN202018474U (zh) * 2011-03-21 2011-10-26 青岛海信电器股份有限公司 一种电流采样电路及具有该电路的电源
CN202631617U (zh) * 2012-04-28 2012-12-26 绍兴光大芯业微电子有限公司 一种输出级过流检测电路
CN102937667A (zh) * 2012-10-29 2013-02-20 上海电器科学研究院 一种无线智能可控的用于插座的计量设备
CN103746543A (zh) * 2013-12-31 2014-04-23 广东威灵电机制造有限公司 一种桥式驱动电路的电流检测装置
CN203979586U (zh) * 2014-07-23 2014-12-03 东风汽车公司 一种多路电磁阀高边控制及高边电流采样电路
CN104678163A (zh) * 2014-12-30 2015-06-03 东南大学 一种直流电机绕组电流的采样电路和采样方法
CN105487456A (zh) * 2016-01-22 2016-04-13 安徽江淮汽车股份有限公司 一种离合器电磁阀控制电路及方法
CN208076605U (zh) * 2018-04-04 2018-11-09 精进电动科技股份有限公司 一种电磁离合控制器的电流采样电路

Also Published As

Publication number Publication date
CN208076605U (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
CN109155587B (zh) Dc-dc转换器和控制电路
CN103095137B (zh) 动态mosfet栅极驱动器
CN101815382B (zh) 一种汽车照明用降压式恒流led驱动电路
CN207053838U (zh) 恒流控制器
US9853547B2 (en) Methods and apparatus for adaptive timing for zero voltage transition power converters
US20160276933A1 (en) Power supply circuit
US9391501B2 (en) VCC charge and free-wheeling detection via source controlled MOS transistor
CN111585444A (zh) 开关转换器和用于操作开关转换器的方法
CN102044971B (zh) 自激式开关电源电路
CN104333936A (zh) 一种用于led恒流驱动电路的闭环控制电路
JP2011019358A (ja) 電力変換回路の制御装置
WO2019192297A1 (zh) 一种电磁离合控制器的电流采样电路
CN206432888U (zh) 供电电路、开关电源控制芯片及开关电源系统
CN101511141B (zh) 开关电源电感电流控制技术
CN103312131B (zh) 一种高频直流变换器开关管关断速度实时调整方法
CN104185345A (zh) 一种用于led恒流驱动电路的控制装置
JP2011142815A (ja) コンバータの制御回路
JP2020171093A (ja) 車載用電圧変換装置
CN105704874A (zh) 一种基于pwm调光的pba驱动电路
CN2924914Y (zh) 微功率电源模块中的软启动电路
CN210093112U (zh) 一种高效率buck同步整流控制电路
CN104038061B (zh) 输入自适应自激式Buck变换器
CN202931193U (zh) 一种buck开关电源电路
CN105896955A (zh) 功率开关管的驱动装置
CN101359878B (zh) 具有自驱式同步整流器的回扫电压变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19782311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19782311

Country of ref document: EP

Kind code of ref document: A1