WO2019192229A1 - 显示方法和显示装置 - Google Patents

显示方法和显示装置 Download PDF

Info

Publication number
WO2019192229A1
WO2019192229A1 PCT/CN2019/070091 CN2019070091W WO2019192229A1 WO 2019192229 A1 WO2019192229 A1 WO 2019192229A1 CN 2019070091 W CN2019070091 W CN 2019070091W WO 2019192229 A1 WO2019192229 A1 WO 2019192229A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
unit
correction
display unit
display
Prior art date
Application number
PCT/CN2019/070091
Other languages
English (en)
French (fr)
Inventor
孙玉坤
王雪丰
苗京花
李文宇
彭金豹
赵斌
王立新
李茜
范清文
索健文
刘亚丽
雷雨
王亚坤
张�浩
陈丽莉
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/621,941 priority Critical patent/US11113799B2/en
Priority to EP19781161.5A priority patent/EP3779562B1/en
Priority to JP2020528399A priority patent/JP7334155B2/ja
Publication of WO2019192229A1 publication Critical patent/WO2019192229A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/80Geometric correction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/011Head-up displays characterised by optical features comprising device for correcting geometrical aberrations, distortion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0185Displaying image at variable distance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images

Definitions

  • the present disclosure belongs to the technical field of display devices, and in particular, to a display method and a display device.
  • the virtual reality display device may include a display unit and a lens unit when implementing a normal display function.
  • the distance between the display unit and the lens unit ie, object distance
  • the display may not be good; and it may cause visual fatigue and affect the viewing experience.
  • Embodiments of the present disclosure provide a display method and a display device.
  • Some embodiments of the present disclosure provide a display method for a display device having a lens unit and a display unit in normal display, the display method including the following steps:
  • the display unit displays the corrected image according to the correction information, so that the corrected image is condensed into the eyes of the user after the lens unit, wherein the corrected image is corrected by the original image according to the first distance. .
  • the step of calculating the correction information according to the first distance comprises the steps of: calculating a corrected image according to the first distance and the original image, using the modified image as the correction information;
  • the step of the display unit displaying the corrected image according to the correction information includes the step of the display unit displaying the corrected image.
  • the step of calculating the correction information according to the first distance comprises the steps of: calculating a correction instruction according to the first distance, using the correction instruction as the correction information;
  • the step of the display unit displaying the corrected image according to the correction information includes the step of: the display unit corrects the original image according to the correction instruction to obtain a corrected image, and displays the corrected image.
  • the step of calculating correction information according to the first distance and transmitting the correction information to the display unit comprises the following steps:
  • the correction information is updated according to the changed first distance and the updated correction information is transmitted to the display unit;
  • the correction information is obtained according to the previous first distance and the correction information is transmitted to the display unit.
  • the step of the display unit correcting the original image according to the correction instruction to obtain the corrected image comprises the following steps:
  • the original image is corrected according to the updated correction command to obtain a corrected image
  • the original image is corrected based on the previous correction command to obtain a corrected image.
  • the step of detecting the first distance between the lens unit and the display unit comprises the steps of:
  • the first distance is calculated according to the predetermined direction and the second distance.
  • the step of calculating the first distance according to the predetermined direction and the second distance comprises the following steps:
  • the step of correcting the corrected image from the original image according to the first distance comprises the following steps:
  • the original image is corrected based on the correction information to obtain a corrected image.
  • Some embodiments of the present disclosure provide a display device, including:
  • a lens unit for concentrating light emitted by the display unit into the eyes of the user
  • a correction unit configured to calculate correction information according to the first distance and send the correction information to the display unit to control the display unit to display a corrected image according to the correction information, wherein the corrected image is The original image is corrected based on the first distance.
  • the display device is a virtual reality display device, and the display unit includes a first sub display unit and a second sub display unit;
  • the lens unit includes:
  • a first sub-lens unit for concentrating light emitted by the first sub-display unit to a left eye of the user
  • a second sub-lens unit for concentrating light emitted by the second sub-display unit to a right eye of the user.
  • the adjusting unit is configured to adjust a first sub-distance between the first sub-lens unit and the first sub-display unit, and adjust the second sub-lens unit and the second a second sub-distance between the sub-display units, the first sub-distance being independent of the adjustment of the second sub-distance;
  • the correction unit is configured to calculate first correction information according to the first sub-distance and send the first correction information to the first sub-display unit to control the first sub-display unit to be according to the first correction
  • the information displays a first modified image, wherein the first corrected image is obtained by correcting the first original image according to the first sub-distance; the correcting unit is further configured to calculate a second correction according to the second sub-distance Transmitting the second correction information to the second sub-display unit to control the second sub-display unit to display a second correction image according to the second correction information, wherein the second correction image is The two original images are corrected based on the second sub-distance.
  • the adjustment unit includes a first adjustment unit having a guide rail and a second adjustment unit having a guide rail;
  • At least one of the first sub display unit and the first sub lens unit is mounted on the first adjustment unit by a fastener;
  • At least one of the second sub-display unit and the second sub-lens unit is mounted on the second adjustment unit by a fastener.
  • the correction information includes a correction instruction
  • the modifying unit is further configured to determine whether the first distance is changed with respect to the previous first distance
  • the correction unit updates the correction information according to the changed first distance and transmits the updated correction information to the display unit; as well as
  • the correction unit obtains correction information based on the previous first distance and transmits the correction information to the display unit.
  • the correction information includes a correction instruction
  • the display unit is further configured to determine whether the received correction instruction is updated with respect to the previous correction instruction
  • the display unit corrects the original image according to the updated correction instruction to obtain a corrected image
  • the display unit corrects the original image based on the previous correction command to obtain a corrected image.
  • the display device further includes:
  • the display unit is electrically connected to the correction unit.
  • the display device further includes:
  • a mounting unit for detachably mounting a display unit.
  • the correction unit is configured to wirelessly transmit the correction information to the display unit.
  • the ranging unit comprises:
  • a distance sensor fixedly coupled to the lens unit and configured to detect a second distance between the lens unit and the display unit in a predetermined direction
  • a calculating unit configured to calculate the first distance according to the predetermined direction and the second distance.
  • the distance sensor is an infrared distance sensor.
  • the display device further includes:
  • a storage unit wherein a plurality of first distances, a plurality of correction instructions, and a correspondence between the plurality of first distances and the plurality of correction instructions are prestored;
  • the correction unit searches for the pre-stored correction instruction corresponding to the current first distance in the storage unit according to the current first distance, and corrects the original image according to the found correction instruction to obtain the corrected image. .
  • FIG. 1 is a schematic structural diagram of a virtual reality display device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram showing a correspondence relationship between an actually displayed image and an image seen by a user's eyes, according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram showing the principle of a change in display effect when an object distance changes according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram showing the principle of measuring a first distance by a display device according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flow chart of a display method according to an embodiment of the present disclosure.
  • FIG. 7 is a block diagram showing the composition of a display device according to an embodiment of the present disclosure.
  • FIG. 8 is a block diagram showing the composition of another display device according to an embodiment of the present disclosure.
  • FIG. 9 is a block diagram showing the composition of a ranging unit in accordance with an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a virtual reality (VR) display device, which may be a VR glasses, a VR helmet, or the like.
  • the VR display device may include the display unit 1 and the lens unit 2. Different images displayed on different regions (for example, left and right regions) of the display unit 1 pass through the lens unit 2 and enter the left and right eyes of the user, respectively, so that the eyes see different images, and the user feels that the stereoscopic image (virtual image) is seen.
  • lens unit 2 may include one or more lenses. The different positions of the lens unit 2 vary the direction of propagation of light passing through these locations, i.e., different locations of the lens unit 2 have different distortion coefficients.
  • the anti-distortion is performed, ie the image displayed on the display unit 1 is deformed relative to the image to be displayed (or the original image).
  • the distortion in the image displayed on the display unit 1 and the deformation of the displayed image passing through the lens unit 2 cancel each other out so that the user finally sees the correct original image. For example, as shown in FIG. 2, if the user wants to see the image of the square grid (ie, the original image), the grid image actually displayed by the display unit 1 is distorted.
  • the VR display device may further include a storage unit in which an original image (hereinafter, referred to as a “first distance”) is stored in the storage unit (FIG. 2).
  • a corresponding mapping relationship between the image actually displayed on the display unit 1 (shown in the left part of FIG. 2) (hereinafter may be referred to as "correction instruction").
  • the correction instruction may be a mapping relationship between data of the original image (or an image to be displayed) and screen coordinates.
  • the deformation in the image displayed on the display unit 1 is also different under different object distances, so that the deformation of the displayed image passing through the lens unit 2 cancels each other, so that the user can see at different object distances.
  • the correct original image is also different under different object distances, so that the deformation of the displayed image passing through the lens unit 2 cancels each other, so that the user can see at different object distances.
  • the storage unit may be a storage unit (eg, non-volatile memory, flash memory, etc.) in display unit 1.
  • each of the mapping relationships (or each of the correction instructions) may be obtained in advance by experimentation and stored in advance in the storage unit.
  • the VR display device may further include an adjustment unit 4.
  • the adjustment unit 4 may be a support having a guide rail.
  • the display unit 1 may be mounted on the adjustment unit 4 by fasteners (eg, clamps, bolts, etc.), and the display unit 1 may be moved closer to the lens unit 2 or away from the lens along the guide rail of the adjustment unit 4 by adjusting the fasteners.
  • the unit 2 is moved to adjust the distance between the display unit 1 and the lens unit 2 (i.e., the object distance).
  • the VR display device can be adapted to different users (eg, nearsighted persons), and the user can adjust the distance between the display unit 1 and the lens unit (eg, the lens) 2 (ie, the object distance) by using the adjustment unit 4. .
  • the position of the same angle light emitted from the same point in the display unit 1 is changed to the lens, that is, the corresponding distortion coefficient changes.
  • the angle (field of view) of the light passing through the lens also changes, and the position of the virtual image at that point changes.
  • the points on the virtual image actually seen by the user are displaced.
  • the deformation in the image displayed on the display unit 1 is also different at different object distances, the deformation of the displayed image passing through the lens unit 2 cancels each other, thereby preventing Depth of field, parallax, etc. have changed, improving the display.
  • the user's eyes do not need to make any adjustments to the change in the object distance, reducing or preventing visual fatigue and improving the user's viewing experience.
  • an embodiment of the present disclosure provides a display method for a display device (for example, a VR display device) having a lens unit 2 and a display unit 1 in normal display.
  • the display method may include the following steps S61, S62A, and S63A.
  • Step S61 includes detecting a first distance (eg, a current first distance) between the lens unit 2 and the display unit 1.
  • a first distance eg, a current first distance
  • the first distance can be the object distance.
  • Step S62A includes calculating correction information based on the first distance and transmitting the correction information to the display unit 1.
  • the correction information may be a mapping relationship between the correction instruction (ie, an original image (or an image to be displayed) and an image actually displayed on the display unit 1).
  • the correction information may be data of the corrected image (i.e., an image actually displayed on the display unit 1, hereinafter may be referred to as a "corrected image"). It should be understood that in step S61, in the case where the current first distance is the same as the previous first distance, the correction information does not need to be updated, so the method can directly perform step S63A in FIG.
  • Step S63A includes: the display unit 1 displays the corrected image according to the correction information, so that the corrected image is condensed into the eyes of the user after passing through the lens unit 2, wherein the corrected image is obtained by correcting the original image according to the first distance.
  • the image displayed by the display unit 1 is concentrated by the lens unit 2 (which includes one or more lenses) into the eyes of the user.
  • the first distance (ie, the object distance) between the lens unit 2 and the display unit 1 can be detected in real time, and the correction information is obtained according to the first distance, and the display unit 1 displays the corrected image according to the correction information.
  • the corrected image is substantially corrected by the original image based on the first distance. That is, with the above correction, image distortion in the eyes of the user due to the change in the first distance is eliminated.
  • the corrected images respectively obtained at different first distances are identical in the virtual image formed by the lens unit 2 (for example, the shapes of the virtual images are the same), or the images in the eyes of the user are the same.
  • the first distance may be the distance between the main plane of the lens unit 2 and the light exit surface of the display unit 1.
  • the principal plane of the lens unit 2 is a plane that passes through the optical center of the lens unit 2 and is perpendicular to the optical axis of the lens unit 2.
  • the first distance (ie, the object distance) between the display unit 1 and the lens unit 2 can be detected in real time, and the correction information is obtained according to the first distance, so that the display unit 1 is corrected according to the correction.
  • the information shows the corrected image. Since the corrected image is essentially derived from the original image corrected according to the first distance, it is related to a specific value of the first distance (i.e., object distance). Therefore, when the object distance is changed, the corrected image can also be changed correspondingly, so that the corrected image can form a correct image after passing through the lens unit 2 at different first distances, so that the image seen by the user does not change (or less change). ) to avoid visual fatigue and improve the viewing experience.
  • calculating the correction information according to the first distance includes: calculating the corrected image according to the first distance and the original image (eg, using a pre-stored mapping relationship), The corrected image is used as the correction information.
  • Displaying the corrected image based on the correction information by the display unit 1 includes the display unit 1 displaying the corrected image in the correction information.
  • the correction information when calculating the correction information, it is possible to calculate how the original image should be corrected according to the first distance, and correct the original image in this way to obtain a corrected image (ie, change the position of each point in the original image), and This corrected image is directly displayed as the correction information supply display unit 1.
  • a pre-stored mapping relationship corresponding to the first distance may be searched in the storage unit, and the original image may be corrected using the mapping relationship to obtain a corrected image.
  • calculating the correction information according to the first distance includes: calculating a correction instruction according to the first distance, and using the correction instruction as the correction information.
  • the correction instruction includes a pre-stored mapping relationship corresponding to the first distance.
  • the display unit 1 displaying the corrected image based on the correction information includes the step of determining whether the correction information is a correction command (i.e., step S65). If the result of the determination is YES, the method proceeds to step S66. If the result of the determination is negative, it indicates that the correction information is a modified image, in which case the method proceeds to step S69.
  • the display unit 1 displays the corrected image according to the correction information (ie, step S63A).
  • the display unit 1 corrects the original image according to the correction instruction in the correction information to obtain a corrected image, and displays the corrected image (ie, steps S66 to S69). .
  • the correction information may also be a corresponding correction manner (ie, a correction instruction) calculated according to the first distance, and the correction instruction is sent to the display unit 1 by the display unit 1 (for example, by the display unit 1)
  • the central processing unit CPU and/or the graphics processor GPU corrects the original image according to the correction instruction.
  • calculating the correction information according to the first distance and transmitting it to the display unit 1 includes: determining whether the first distance is changed, that is, determining whether the current first distance is relative to the previous first distance.
  • the change ie, step S62
  • the correction information is updated based on the changed first distance and the updated correction information is transmitted to the display unit 1 (ie, step S63).
  • the previous first distance can be stored in the storage unit. If the result of the determination is negative, the correction information is obtained based on the previous first distance and transmitted to the display unit 1 (i.e., step S64).
  • the method it is possible to continuously judge whether the first distance has changed, and only recalculate the correction information and transmit the updated correction information to the display unit 1 when the first distance is changed. On the other hand, if the first distance has not changed, the correction information is not updated, and the previous correction information stored in the storage unit can be subsequently sent to the display unit 1.
  • the method has the advantage that, on the one hand, the method can reduce the amount of calculation and increase the processing speed.
  • the method makes the process of calculating the correction information to be independent of the process of testing the first distance (that is, the process of calculating the correction information is a separate thread), so that the above ranging cannot be completed due to an accident, but is not Update the correction command (correction information) without generating an error and not working.
  • the display unit 1 corrects the original image according to the correction instruction in the correction information to obtain the corrected image (ie, step S66 to step S68).
  • the display unit 1 determines whether the received correction instruction is updated (ie, the step S66) If the determination result is YES, the original image is corrected based on the updated correction command to obtain a corrected image (that is, step S67). If the result of the determination is negative, the original image is corrected based on the previous correction command to obtain a corrected image (ie, step S68). After the corrected image is obtained (ie, step S67 or step S68), the corrected image can be displayed (ie, step S69).
  • the display unit 1 may also store the previous correction information (correction instruction) in the storage unit, if the current correction information is not changed with respect to the previous correction information (not received). If the correction information or the received correction information is the same as the previous correction information, the original image is continuously corrected according to the stored previous correction information, and the correction information is changed (or updated) after receiving the changed (or updated) information. The subsequent correction information is used to correct the original image.
  • the above method makes the display process independent of the process of calculating the correction information (that is, the displayed process is a single thread). When the new correction information cannot be calculated in time due to an accident, the display unit 1 can still follow the previous correction. Information work does not affect the implementation of the basic display function.
  • detecting the first distance between the lens unit 2 and the display unit 1 comprises: detecting, by the distance sensor 31 fixedly connected to the lens unit 2, the lens unit 2 in a predetermined direction and the display unit 1 a second distance S; a first distance d is calculated according to the predetermined direction and the second distance S (as shown in FIG. 5).
  • the distance sensor 31 can be used to detect the distance in the vertical direction (eg, the direction in which the first distance d is located).
  • the distance sensor 31 may not be directed perpendicularly to the display unit 1. Therefore, the distance sensor 31 can be fixedly coupled to the lens unit 2 (as provided at the edge of the lens unit 2) and directed to the display unit 1 at a certain inclination angle (ie, a predetermined direction) to determine in real time the predetermined direction A second distance S from the display unit 1.
  • the current first distance d between the lens unit 2 and the display unit 1 is then calculated from the second distance S and the predetermined direction (ie, the angle ⁇ ).
  • the angle ⁇ may be set such that the distance sensor 31 faces, for example, one end of a diameter of the lens unit 2 when the first distance d is at a minimum, and the distance sensor 31 when the first distance d is a maximum value For example, toward the other end of the one diameter of the lens unit 2 opposite to the one end.
  • the ranging starting point of the distance sensor 31 for example, the emitting lens of infrared light
  • the lens unit 2 There is a distance S 0 between the center faces, and the angle between the distance sensor 31 and the direction perpendicular to the lens unit 2 (ie, the direction in which the first distance d is located) is ⁇ , and S 0 and ⁇ can be calculated by the following formula:
  • the step of correcting the corrected image by the original image according to the first distance comprises: searching for the pre-stored correction information corresponding to the first distance according to the first distance, and correcting the original image according to the correction information, to obtain Correct the image.
  • a correspondence relationship between a plurality of first distances and a plurality of mapping relationships may be stored in the storage unit in advance.
  • the image Since the light generally has distortion after passing through the lens, the image will be deformed after passing through the lens. However, if the image is to be passed through the lens unit 2 to form a normal image, the anti-distortion is performed, that is, the image actually displayed by the display unit 1 (i.e., the image before passing through the lens unit 2) itself is actually deformed. As long as the value of the first distance is determined, the relationship between the image displayed by the display unit 1 and the image formed after passing through the lens unit 2 can be determined experimentally, that is, how the image actually displayed by the display unit 1 should be deformed can be predetermined. .
  • the anti-distortion mode (or the deformation mode) corresponding to the different first distances can be stored in advance as a correction command in the storage unit. After detecting the current first distance, the correction instruction corresponding to the current first distance is searched, and the original image is corrected by the correction instruction to obtain a corrected image.
  • the correction instruction may be first obtained in the step of calculating the correction information, and the original image is corrected according to the correction instruction to obtain the corrected image, and the corrected image is sent to the display unit 1 as the correction information.
  • the correction command may also be correction information, and the correction unit calculates the correction image based on the correction command.
  • the specific manner in which the original image is corrected according to the first distance to obtain the corrected image is not limited to the above manner (for example, there may be no pre-stored correction instruction, but each time the corresponding distance is calculated according to the measured first distance. Correct the instruction) and will not be described in detail here.
  • Embodiments of the present disclosure also provide a display device (eg, a VR display device) as shown in FIG.
  • the display device may include a display unit 1, a lens unit 2, an adjustment unit 4, a ranging unit 3, and a correction unit 5.
  • the display unit 1 is configured to display a deformed image on the light emitting surface of the display unit 1 according to a given image to be displayed (or an original image), a first distance d, and a pre-stored mapping relationship (see FIG. 2).
  • the left part of the figure is such that the displayed image forms the correct original image in the user's eye through the lens unit 2 (as shown in the right part of Fig. 2).
  • the lens unit 2 is used to concentrate the light emitted by the display unit 1 into the eyes of the user.
  • the adjustment unit 4 is for adjusting the first distance d between the lens unit 2 and the display unit 1.
  • the ranging unit 3 is for detecting the first distance d in real time.
  • the correction unit 5 is configured to calculate the correction information according to the first distance d and send it to the display unit 1 to control the display unit 1 to display the corrected image according to the correction information, wherein the corrected image is corrected by the original image according to the first distance d.
  • the correction unit 5 can be implemented by hardware, software, or a combination of both.
  • the correction unit 5 may be a microprocessor, a central processing unit (CPU), an integrated circuit (IC) having the above functions, etc., and in this case, the correction unit 5 may have a wired communication function or wireless communication.
  • the correction unit 5 may store a computer program in a central location of the display unit 1 by a storage unit (eg, a flash memory or other suitable non-volatile memory) of the display unit 1 When the unit (CPU) is executed, the central processing unit (CPU) of the display unit 1 is simultaneously used as the correction unit 5.
  • a storage unit eg, a flash memory or other suitable non-volatile memory
  • the display device of the present embodiment includes an adjustment unit 4, which may have rails for adjusting the position of the lens unit 2 and/or the display unit 1 to change the first distance d therebetween.
  • the display device further includes a distance measuring unit 3, a correction unit 5, and the like, so that the above display method can be realized.
  • the corrected images respectively obtained at different first distances are the same as the virtual images formed by the lens unit 2, or the images in the eyes of the user are the same. .
  • the display device is a virtual reality display device
  • the display unit 1 includes a first sub display unit 11 and a second sub display unit 12, as shown in FIG.
  • the lens unit 2 may include a first sub-lens unit (for example, a lens) 21 for concentrating light emitted by the first sub-display unit 11 to a left eye of a user; a second sub-lens unit (for example, a lens) 22, which For concentrating the light emitted by the second sub-display unit 12 to the right eye of the user, as shown in FIG.
  • a first sub-lens unit for example, a lens
  • a second sub-lens unit for example, a lens 22
  • the adjusting unit 4 is configured to adjust a first sub-distance between the first sub-lens unit 21 and the first sub-display unit 11 and adjust a second between the second sub-lens unit 22 and the second sub-display unit 12
  • the two sub-distances, the adjustment of the first sub-distance and the second sub-distance may be independent of each other.
  • the adjustment unit 4 may include a first adjustment unit 41 having a rail and a second adjustment unit 42 having a rail. At least one of the first sub display unit 11 and the first sub lens unit 21 may be mounted on the first adjustment unit 41 in a manner similar to that described with reference to FIG.
  • the second sub display unit 12 and the second sub lens unit At least one of 22 may be mounted on the second adjustment unit 42 in a manner similar to that described with reference to FIG.
  • the first adjusting unit 41 is configured to adjust a first sub-distance between the first sub-lens unit 21 and the first sub-display unit 11
  • the second adjusting unit 42 is configured to adjust the second sub-lens unit 22 and the second sub-display unit The second sub-distance between 12.
  • the adjustment of the first sub-distance and the second sub-distance can be independent of each other.
  • the correcting unit 5 is configured to calculate the first correction information according to the first sub-distance and send it to the first sub-display unit 11 to control the first sub-display unit 11 to display the first modified image according to the first correction information, where the first The corrected image is obtained by correcting the first original image based on the first sub-distance.
  • the correction unit 5 is further configured to calculate the second correction information according to the second sub-distance and send it to the second sub-display unit 12 to control the second sub-display unit 12 to display the second corrected image according to the second correction information, where The second modified image is obtained by correcting the second original image according to the second sub-distance.
  • the display device of the embodiment may be a virtual reality display device such as VR glasses, a VR helmet, or the like.
  • each of the display unit 1 and the lens unit 2 may include two sub-units, and the light emitted by the two sub-display units is respectively transmitted to the left and right eyes of the user through the two sub-lens units, thereby receiving the left and right eyes.
  • the display unit 1 and the lens unit 2 may include two sub-units, and the light emitted by the two sub-display units is respectively transmitted to the left and right eyes of the user through the two sub-lens units, thereby receiving the left and right eyes.
  • first sub-display unit 11 and the second sub-display unit 12 may be two separate display screens.
  • first sub-display unit 11 and the second sub-display unit 12 may also be two different parts of a display screen such as a mobile phone display screen.
  • the distance (the first distance) between the two sub-lens units and the corresponding sub-display unit can be individually adjusted, thereby obtaining two Independent sub-distances.
  • two independent correction information are further calculated, and the two correction information can be used to respectively correct the images displayed by the two sub-display units to ensure that the images respectively displayed by the two sub-display units pass through the corresponding sub-lens unit.
  • the resulting virtual image does not change, or the imaging in the user's eyes is the same.
  • the correction information includes a correction instruction
  • the correction unit 5 is further configured to determine whether the first distance d is changed. If the result of the determination is YES, new correction information is calculated based on the changed first distance d and transmitted to the display unit 1.
  • the correction information includes a correction instruction
  • the display unit 1 is further configured to determine whether the correction information is updated. If the result of the determination is YES, the original image is corrected based on the updated correction command to obtain a corrected image. If the result of the determination is negative, the original image is corrected based on the correction command received last time to obtain a corrected image.
  • the display unit 1 can be connected to its manufacturer's website to detect whether there is a new mapping relationship from the original image to the corrected image. If such a new mapping relationship exists, it is downloaded and saved in the storage unit of the display unit 1 as an updated correction instruction.
  • the correction unit 5 and the display unit 1 can work in the above-mentioned "single-thread" manner to improve the reliability of the system.
  • the display device further includes a display unit 1 electrically connected to the correction unit 5.
  • the display device can be a VR helmet.
  • the display device may have a display unit 1 built therein, such as a display device being a VR helmet.
  • the display unit 1 can be two micro display screens mounted in the VR helmet, in which case the display unit 1 can be directly electrically connected to the correction unit 5.
  • the display device further includes a mounting unit 6 for detachably mounting a display unit (for example, a mobile phone) 1.
  • a display unit for example, a mobile phone
  • the display device can be VR glasses. The user installs the display unit such as a mobile phone in the mounting unit 6 before watching the video, and takes the mobile phone out of the mounting unit 6 after watching the video ends.
  • the correction unit 5 is for transmitting the correction information to the display unit 1 in a wireless manner.
  • the correction unit 5 may be a software component and located in the display unit 1, in which case the correction unit 5 may transmit the correction information to the display unit 1 via the bus of the display unit 1.
  • the display device itself may not include the display unit 1 (but the display unit 1 is also required to operate in the above manner), and only the mounting unit 6 for mounting the additional display unit 1 is provided.
  • the display device may be a VR glasses having a mounting unit (or bracket) 6 or the like for mounting the display unit 1, and the display unit 1 is a mobile phone or the like mountable at the above bracket.
  • the mounting unit 6 can be mounted on the adjustment unit 4 in a manner similar to that described with reference to Figure 1, such that the mounting unit 6 (i.e., display unit 1) and lens unit 2 can be adjusted by the adjustment unit 4.
  • the first distance between (ie, the object distance) d Since the display unit 1 can be taken out from the display device at this time, if it is inconvenient to be wired with the correction unit 5, the correction unit 5 and the display unit 1 can connect and transmit data by wireless means (such as wifi, Bluetooth, etc.). .
  • the distance measuring unit 3 comprises: a distance sensor 31 fixedly connected to the lens unit 2 and for detecting a second distance S between it and the display unit 1 in a predetermined direction; a computing unit (for example, a microprocessor 32) for calculating the first distance d according to the predetermined direction and the second distance S and using the formula described above, as shown in FIG.
  • the distance sensor 31 is an infrared distance sensor.
  • the ranging unit 3 may include the above distance sensor 31. Since the first distance d is usually small, the distance sensor 31 can use an infrared distance sensor from the viewpoints of applicability, cost, and the like.
  • the display device may further include: a storage unit 7 in which a correction instruction (for example, a mapping relationship) corresponding to each first distance d and other programs and data required for realizing normal display are prestored.
  • the storage unit 7 may be different from the storage unit of the display unit 1 and separated from the display unit 1.
  • the storage unit 7 may be a nonvolatile memory such as a hard disk or a flash memory.
  • the storage unit 7 can be connected to the correction unit 5 and the display unit 1.
  • the storage unit 7 may be a storage unit of the display unit 1.
  • the correction image is corrected by the original image according to the first distance d.
  • the correction unit 5 searches for the pre-stored correction instruction corresponding to the first distance d, and corrects the original image according to the correction instruction to obtain a corrected image.
  • the corrected image may be sent directly to the display unit 1, or may be stored in the storage unit 7 and then transmitted to the display unit 1.
  • the display device may include the storage unit 7 storing a plurality of first distances and a plurality of correction instructions and a correspondence relationship therebetween, so that the corrected image can be derived from the original image in the above manner.
  • the display device can display a constant depth of field when the object distance is changed, so that the user sees the same image, avoiding the problem of causing visual fatigue of the user.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Geometry (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种显示方法和一种显示装置。显示方法用于在正常显示时具有透镜单元(2)和显示单元(1)的显示装置,并且包括以下步骤:检测透镜单元(2)与显示单元(1)之间的第一距离(S61);根据第一距离计算修正信息并将修正信息发送给显示单元(1)(S62A);以及显示单元(1)根据修正信息显示修正图像,使得修正图像经透镜单元(2)后汇聚到用户的眼睛中,其中,修正图像由原始图像根据第一距离进行修正得出(S63A)。

Description

显示方法和显示装置
相关申请的交叉引用
本申请要求于2018年4月2日提交的中国专利申请No.201810283223.1的优先权,该专利申请的全部内容通过引用方式合并于此。
技术领域
本公开属于显示装置技术领域,具体涉及一种显示方法和一种显示装置。
背景技术
虚拟现实(VR,Virtual Reality)显示技术近年来获得了快速发展。虚拟现实显示装置在实现正常的显示功能时可包括显示单元和透镜单元。为适应不同用户(如,近视者)的需要,显示单元与透镜单元之间的距离(即,物距)可以是可调整的。在这种情况下,如果以一种固定不变的方法来显示要显示的图像,显示效果可能不佳;而且,还会导致视觉疲劳,影响观看体验。
发明内容
本公开的实施例提供了一种显示方法和一种显示装置。
本公开的一些实施例提供了一种显示方法,用于在正常显示时具有透镜单元和显示单元的显示装置,所述显示方法包括以下步骤:
检测所述透镜单元与所述显示单元之间的第一距离;
根据所述第一距离计算修正信息并将所述修正信息发送给所述显示单元;以及
所述显示单元根据所述修正信息显示修正图像,使得所述修 正图像经所述透镜单元后汇聚到用户的眼睛中,其中,所述修正图像由原始图像根据所述第一距离进行修正得出。
在一个实施例中,所述根据所述第一距离计算修正信息的步骤包括以下步骤:根据所述第一距离和原始图像计算出修正图像,将所述修正图像作为所述修正信息;以及
所述显示单元根据所述修正信息显示修正图像的步骤包括以下步骤:所述显示单元显示所述修正图像。
在一个实施例中,所述根据所述第一距离计算修正信息的步骤包括以下步骤:根据所述第一距离计算修正指令,将所述修正指令作为所述修正信息;以及
所述显示单元根据所述修正信息显示修正图像的步骤包括以下步骤:所述显示单元根据所述修正指令对原始图像进行修正而得到修正图像,并显示所述修正图像。
在一个实施例中,所述根据所述第一距离计算修正信息并将所述修正信息发送给所述显示单元的步骤包括以下步骤:
判断所述第一距离相对于之前的第一距离是否改变;
在所述第一距离相对于之前的第一距离改变的情况下,根据改变后的第一距离对所述修正信息进行更新并将更新后的修正信息发送给显示单元;以及
在所述第一距离相对于之前的第一距离未改变的情况下,根据之前的第一距离获得修正信息并将该修正信息发送给显示单元。
在一个实施例中,所述显示单元根据所述修正指令对原始图像进行修正而得到修正图像的步骤包括以下步骤:
通过所述显示单元判断接收到的修正指令相对于之前的修正指令是否有更新;
在接收到的修正指令相对于之前的修正指令有更新的情况下,根据更新后的修正指令对原始图像进行修正而得到修正图像;以及
在接收到的修正指令相对于之前的修正指令没有更新的情况 下,根据之前的修正指令对原始图像进行修正而得到修正图像。
在一个实施例中,所述检测所述透镜单元与所述显示单元之间的第一距离的步骤包括以下步骤:
用与所述透镜单元固定连接的距离传感器检测所述透镜单元在预定方向上与所述显示单元之间的第二距离;以及
根据所述预定方向和所述第二距离计算出所述第一距离。
在一个实施例中,所述根据所述预定方向和所述第二距离计算出所述第一距离的步骤包括以下步骤:
通过以下公式计算所述第一距离:d=(S+S 0)*cosθ,其中,d为所述第一距离,S为所述第二距离,S 0为在所述预定方向上所述距离传感器的测距起点与所述透镜单元的中心面间的距离,θ为所述预定方向与所述第一距离所在方向之间的夹角。
在一个实施例中,所述修正图像由原始图像根据所述第一距离进行修正得出的步骤包括以下步骤:
根据所述第一距离查找预存的、与所述第一距离对应的修正信息;以及
根据该修正信息对所述原始图像进行修正,以得到修正图像。
本公开的一些实施例提供了一种显示装置,包括:
透镜单元,其用于将显示单元发出的光汇聚到用户的眼睛中;
调整单元,其用于调整所述透镜单元与所述显示单元之间的第一距离;
测距单元,其用于检测所述第一距离;以及
修正单元,其用于根据所述第一距离计算修正信息并将所述修正信息发送给所述显示单元,以控制所述显示单元根据所述修正信息显示修正图像,其中,所述修正图像由原始图像根据所述第一距离进行修正得出。
在一个实施例中,所述显示装置为虚拟现实显示装置,所述显示单元包括第一子显示单元和第二子显示单元;并且
所述透镜单元包括:
第一子透镜单元,其用于将所述第一子显示单元发出的光汇 聚到所述用户的左眼;以及
第二子透镜单元,其用于将所述第二子显示单元发出的光汇聚到所述用户的右眼。
在一个实施例中,所述调整单元用于调整所述第一子透镜单元与所述第一子显示单元之间的第一子距离,以及调整所述第二子透镜单元与所述第二子显示单元之间的第二子距离,第一子距离与第二子距离的调整相互独立;以及
所述修正单元用于根据所述第一子距离计算第一修正信息并将该第一修正信息发送给所述第一子显示单元,以控制所述第一子显示单元根据所述第一修正信息显示第一修正图像,其中,所述第一修正图像由第一原始图像根据所述第一子距离进行修正得出;所述修正单元还用于根据所述第二子距离计算第二修正信息并将该第二修正信息发送给所述第二子显示单元,以控制所述第二子显示单元根据所述第二修正信息显示第二修正图像,其中,所述第二修正图像由第二原始图像根据所述第二子距离进行修正得出。
在一个实施例中,所述调整单元包括具有导轨的第一调整单元和具有导轨的第二调整单元;
所述第一子显示单元和所述第一子透镜单元中的至少一个通过紧固件安装在所述第一调整单元上;以及
所述第二子显示单元和所述第二子透镜单元中的至少一个通过紧固件安装在所述第二调整单元上。
在一个实施例中,所述修正信息包括修正指令;
所述修正单元还用于判断所述第一距离相对于之前的第一距离是否改变;
在所述第一距离相对于之前的第一距离改变的情况下,所述修正单元根据改变后的第一距离对所述修正信息进行更新并将更新后的修正信息发送给所述显示单元;以及
在所述第一距离相对于之前的第一距离未改变的情况下,所述修正单元根据之前的第一距离获得修正信息并将该修正信息发 送给所述显示单元。
在一个实施例中,所述修正信息包括修正指令;
所述显示单元还用于判断接收的修正指令相对于之前的修正指令是否更新;
在接收到的修正指令相对于之前的修正指令有更新的情况下,所述显示单元根据更新后的修正指令对原始图像进行修正而得到修正图像;以及
在接收到的修正指令相对于之前的修正指令没有更新的情况下,所述显示单元根据之前的修正指令对原始图像进行修正而得到修正图像。
在一个实施例中,所述显示装置还包括:
所述显示单元,其与所述修正单元电连接。
在一个实施例中,所述显示装置还包括:
用于可拆卸地安装显示单元的安装单元。
在一个实施例中,所述修正单元用于以无线方式将所述修正信息发送给所述显示单元。
在一个实施例中,所述测距单元包括:
距离传感器,其与所述透镜单元固定连接,并用于检测在预定方向上所述透镜单元与所述显示单元之间的第二距离;以及
计算单元,其用于根据所述预定方向和所述第二距离计算所述第一距离。
在一个实施例中,所述距离传感器为红外距离传感器。
在一个实施例中,所述显示装置还包括:
存储单元,其中预存有多个第一距离、多个修正指令以及所述多个第一距离与所述多个修正指令之间的对应关系;
其中,所述修正单元根据当前的第一距离在所述存储单元中查找预存的、与当前的第一距离对应的修正指令,并根据查找到的修正指令对原始图像进行修正,以得到修正图像。
附图说明
图1为根据本公开的实施例的一种虚拟现实显示装置的结构示意图;
图2为根据本公开的实施例的实际显示的图像与用户的眼睛看到的图像的对应关系示意图;
图3为根据本公开的实施例的物距变化时显示效果变化的原理示意图;
图4为根据本公开的实施例的一种显示装置的结构示意图;
图5为根据本公开的实施例的一种显示装置测量第一距离的原理示意图;
图6为根据本公开的实施例的一种显示方法的流程示意图;
图7为根据本公开的实施例的一种显示装置的组成框图;
图8为根据本公开的实施例的另一种显示装置的组成框图;以及
图9为根据本公开的实施例的测距单元的组成框图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
如图1所示,本公开的实施例提供了一种虚拟现实(VR,Virtual Reality)显示装置,该VR显示装置可为VR眼镜、VR头盔等。VR显示装置可以包括显示单元1和透镜单元2。显示单元1的不同区域(例如,左右区域)上显示的不同图像经过透镜单元2后分别进入用户的左右眼,从而使双眼看到不同图像,让用户感觉看到了立体图像(虚像)。在一个实施例中,透镜单元2可以包括一个或多个透镜。透镜单元2的不同位置会对透过这些位置的光线的传播方向进行不同改变,即,透镜单元2的不同位置具有不同的畸变系数。为了使图像经过透镜后可在用户的眼睛中形成正确的图像,则要进行反畸变,即显示单元1上显示的图像相对于待显示的图像(或称为原始图像)而言是变形的。显示单元1上显示的图像中的变形与显示的图像穿过透镜单元2所产生的变形 相互抵消,使得用户最终看到的是正确的原始图像。例如,如图2所示,若要让用户看到方形网格的图像(即,原始图像),则显示单元1实际显示的网格图像是变形的。
在一个实施例中,所述VR显示装置还可以包括存储单元,该存储单元中预先存储有在各个物距(下文中可称为“第一距离”)的情况下,原始图像(如图2的右侧部分所示)与显示单元1上实际显示的图像(如图2的左侧部分所示)之间的相应的映射关系(下文中可称为“修正指令”)。换言之,修正指令可以是原始图像(或待显示的图像)的数据和屏幕坐标的映射关系。这样,在不同的物距下,显示单元1上显示的图像中的变形也不同,使得显示的图像穿过透镜单元2所产生的变形相互抵消,从而使得用户在不同的物距下都能看到的正确的原始图像。在一个实施例中,所述存储单元可以是显示单元1中的存储单元(例如,非易失性存储器、闪速存储器等)。在一个实施例中,每个所述映射关系(或每个所述修正指令)可以预先通过试验来获得,并预先存储在所述存储单元中。
在一个实施例中,所述VR显示装置还可以包括调整单元4。调整单元4可以是具有导轨(guide rail)的支撑件。显示单元1可以通过紧固件(例如,夹具、螺栓等)安装在调整单元4上,并且可以通过调整紧固件而使显示单元1沿着调整单元4的导轨而靠近透镜单元2或远离透镜单元2移动,从而调整显示单元1与透镜单元2之间的距离(即,物距)。这样,所述VR显示装置可以适用于不同用户(如,近视者),用户可利用调整单元4对显示单元1与透镜单元(例如,透镜)2之间的距离(即,物距)进行调整。
如图3所示,在物距改变后,显示单元1中同一点发出的同角度的光射到透镜上的位置会随之改变,即其对应的畸变系数会变化。此外,该光经过透镜后的角度(视场角)也会变化,并且该点所成虚像的位置会变化。由此,当物距改变时,用户实际看到的虚像上的各点都会发生位移。在根据本实施例的VR显示装置中, 由于在不同的物距下,显示单元1上显示的图像中的变形也不同,使得显示的图像穿过透镜单元2所产生的变形相互抵消,从而防止景深、视差等发生改变,改善了显示效果。而且,用户的眼睛不需要对物距的变化进行任何调整,减少或防止了视觉疲劳,提高了用户的观看体验。
如图6所示,本公开的实施例提供了一种显示方法,用于在正常显示时具有透镜单元2和显示单元1的显示装置(例如,VR显示装置)。参照图4至图8,所述显示方法可以包括以下步骤S61、步骤S62A和步骤S63A。
步骤S61包括:检测透镜单元2与显示单元1之间的第一距离(如,当前的第一距离)。如上所述,第一距离可以为物距。
步骤S62A包括:根据第一距离计算修正信息并将该修正信息发送给显示单元1。在一个实施例中,所述修正信息可以为所述修正指令(即,原始图像(或待显示的图像)与显示单元1上实际显示的图像之间的映射关系)。可替换地,所述修正信息可以是修正后的图像(即,显示单元1上实际显示的图像,下文可称为“修正图像”)的数据。应当理解,在步骤S61中,在当前的第一距离与之前的第一距离相同的情况下,修正信息不需要更新,因此所述方法可直接执行图6中的步骤S63A。
步骤S63A包括:显示单元1根据修正信息显示修正图像,使得修正图像经透镜单元2后汇聚到用户的眼睛中,其中,修正图像由原始图像根据第一距离进行修正得出。
本实施例的显示方法适用的显示装置中,显示单元1显示的图像是被透镜单元2(其包括一个或多个透镜)汇聚到用户的眼睛中的。
在该方法中,可以实时检测透镜单元2与显示单元1之间的第一距离(即,物距),再根据第一距离得出修正信息,而显示单元1则根据修正信息显示修正图像,而该修正图像实质上是由原始图像根据第一距离进行修正得出。即,通过上述修正,消除了由于第一距离变化而产生的用户的眼睛中的图像畸变。换言之,对相 同的原始图像,在不同第一距离下分别得出的修正图像通过透镜单元2后所成的虚像相同(例如,虚像的形状相同),或者说在用户的眼睛中的成像相同。例如,第一距离(即,物距)可以为透镜单元2的主平面与显示单元1的出光面之间的距离。透镜单元2的主平面是通过透镜单元2的光心且与透镜单元2的光轴垂直的平面。
在本实施例的显示方法中,可以实时地检测显示单元1和透镜单元2之间的第一距离(即,物距),并根据第一距离得出修正信息,以使显示单元1根据修正信息显示修正图像。由于该修正图像本质上是由原始图像根据第一距离修正后得出的,故其与第一距离(即,物距)的特定值相关。从而在物距改变时,修正图像也可相应的变化,保证修正图像在不同的第一距离下经过透镜单元2后都可形成正确的图像,使用户看到的图像不发生变化(或少变化),以避免视觉疲劳,改善观看体验。
可选地,作为本实施例的一种方式,根据第一距离计算修正信息(即,步骤S62A)包括:根据第一距离和原始图像(例如,利用预先存储的映射关系)计算出修正图像,将修正图像作为修正信息。显示单元1根据修正信息显示修正图像包括:显示单元1显示修正信息中的修正图像。
也就是说,在计算修正信息时,可根据第一距离算出应如何对原始图像进行修正,并按照该方式修正原始图像以得出修正图像(即改变原始图像中各点的位置),并将该修正图像直接作为修正信息供给显示单元1显示。例如,可以在存储单元中查找预存的与该第一距离相对应的映射关系,并利用该映射关系修正原始图像以得出修正图像。
可选地,作为本实施例的另一种方式,根据第一距离计算修正信息(即,步骤S62A)包括:根据第一距离计算修正指令,将修正指令作为修正信息。例如,该修正指令包括预存的与该第一距离相对应的映射关系。显示单元1根据修正信息显示修正图像(即,步骤S63A)包括:判断所述修正信息是否为修正指令的步 骤(即,步骤S65)。若判断结果为是,则所述方法进行至步骤S66。若判断结果为否,则表明所述修正信息是修改图像,在这种情况下,所述方法进行至步骤S69。显示单元1根据修正信息显示修正图像(即,步骤S63A)包括:显示单元1根据修正信息中的修正指令对原始图像进行修正而得到修正图像,并显示修正图像(即,步骤S66至步骤S69)。
也就是说,修正信息也可以是根据第一距离计算出的相应的修正方式(即修正指令),而该修正指令被发送给显示单元1后,由显示单元1(例如,由显示单元1的中央处理单元CPU和/或图形处理器GPU)根据该修正指令对原始图像进行修正。
可选地,根据第一距离计算修正信息并将其发送给显示单元1(即,步骤S62A)包括:判断第一距离是否改变,即,判断当前的第一距离相对于之前的第一距离是否改变(即,步骤S62),若判断结果为是,则根据改变后的第一距离对修正信息进行更新并将更新后的修正信息发送给显示单元1(即,步骤S63)。例如,之前的第一距离可以存储在存储单元中。若判断结果为否,则根据之前的第一距离获得修正信息并将该修正信息发送给显示单元1(即,步骤S64)。
也就是说,在所述方法中,可以不断判断第一距离是否发生改变,只有在第一距离改变时才重新计算修正信息并将更新后的修正信息发送给显示单元1。而若第一距离未改变,则不更新修正信息,后续可以发送存储在存储单元中的之前的修正信息给显示单元1。所述方法的优势在于,一方面,所述方法可降低运算量,提高处理速度。另一方面,所述方法一定程度上使计算修正信息的进程独立于测试第一距离的进程(即计算修正信息的进程为一个单独的线程),从而以上测距因意外无法完成时,只是不更新修正指令(修正信息)而已,而不会产生错误而无法工作。
可选地,显示单元1根据修正信息中的修正指令对原始图像进行修正而得到修正图像(即,步骤S66至步骤S68)包括:显示单元1判断接收到的修正指令是否有更新(即,步骤S66),若 判断结果为是,则根据更新后的修正指令对原始图像进行修正而得到修正图像(即,步骤S67)。若判断结果为否,则根据之前的修正指令对原始图像进行修正而得到修正图像(即,步骤S68)。在得到修正图像(即,步骤S67或步骤S68)后,可以显示修正图像(即,步骤S69)。
也就是说,当修正信息为以上修正指令时,显示单元1也可将之前的修正信息(修正指令)存储在存储单元中,若当前的修正信息相对于之前的修正信息未改变(未接到修正信息或接收到的修正信息与之前的修正信息相同),则继续按照存储的之前的修正信息对原始图像进行修正,直到接到改变(或更新)后的修正信息才利用改变(或更新)后的修正信息来对原始图像进行修正。以上方式一定程度上使显示的进程独立于计算修正信息的进程(即显示的进程为一个单独的线程),当因意外无法及时计算出新的修正信息时,显示单元1仍可按照之前的修正信息工作,不影响基本显示功能的实现。
可选地,检测透镜单元2与显示单元1之间的第一距离(即,步骤S61)包括:用与透镜单元2固定连接的距离传感器31检测透镜单元2在预定方向上与显示单元1之间的第二距离S;根据预定方向和第二距离S计算第一距离d(如图5所示)。
可选地,根据预定方向和第二距离S计算第一距离d包括:通过以下公式计算第一距离d:d=(S+S 0)*cosθ;其中,d为第一距离,S为第二距离,S 0为在预定方向上距离传感器31的测距起点与透镜单元2的中心面之间的距离,θ为预定方向与第一距离d所在方向之间的夹角,如图5所示。
如图5所示,一般地,距离传感器31可用于检测垂直方向(如,第一距离d所在方向)上的距离。但为了不阻挡从显示单元1射向透镜单元2的光而使得显示单元1各处发出的光都能进入透镜单元2,故距离传感器31可以不垂直地指向显示单元1。因此,可将距离传感器31与透镜单元2固定连接(如设于透镜单元2的边缘),并按一定的倾斜角度(即预定方向)指向显示单元1,以实时 地测定在该预定方向上其与显示单元1之间的第二距离S。之后再根据该第二距离S和预定方向(即,角度θ)计算透镜单元2与显示单元1之间的当前的第一距离d。在一个实施例中,角度θ可以如此设置,使得在第一距离d为最小值时,距离传感器31例如朝向透镜单元2的一条直径的一端,在第一距离d为最大值时,距离传感器31例如朝向透镜单元2的所述一条直径的与所述一端相对的另一端。
如图5所示,若距离传感器31实时地测出的第二距离为S,而在该预定方向上,距离传感器31的测距起始点(如,红外光的发射镜头)与透镜单元2的中心面之间存在距离S 0,而距离传感器31与垂直于透镜单元2的方向(即第一距离d所在的方向)间的夹角为θ,则可通过以下公式计算S 0和θ:
Figure PCTCN2019070091-appb-000001
其中,d 1、d 2为在安装距离传感器31后通过常规方式测量得到的第一距离的两个不同值,而S 1、S 2为第一距离的以上两个不同值下距离传感器31测出的第二距离的两个值。进而,可利用以下公式计算出第一距离d:d=(S+S 0)*cosθ。
可选地,修正图像由原始图像根据第一距离进行修正得出的步骤包括:根据第一距离查找预存的、与该第一距离对应的修正信息,并根据修正信息对原始图像进行修正,得到修正图像。例如,可以预先在存储单元中存储多个第一距离与多个映射关系(即,修正指令)之间的对应关系。
由于光线通过透镜后一般存在畸变,故图像在经过透镜后会发生变形。而若要使图像经过透镜单元2后能形成正常图像,则要进行反畸变,即显示单元1实际显示的图像(即,经过透镜单元2前的图像)本身实际是变形的。只要第一距离的值确定,则显示单元1显示的图像与其经过透镜单元2后所成图像的关系是可以通过试验来确定的,即显示单元1实际显示的图像应如何变形是 可以预先确定的。因此,可预先将与不同的第一距离对应的反畸变方式(或者说变形方式)作为修正指令存储在存储单元中。在检测出当前的第一距离后,查找与当前的第一距离对应的修正指令,并用该修正指令对原始图像进行修正,以得到修正图像。
应当理解,以上描述只表示修正图像最终应当如何由原始图像得出,而并不限定以上过程具体在哪个步骤进行。例如,可以是在计算修正信息的步骤中先得出修正指令,并根据修正指令修正原始图像以得到修正图像,再将修正图像作为修正信息发送给显示单元1。可替换地,修正指令也可以是修正信息,而由显示单元1根据修正指令计算得出修正图像。
应当理解,由原始图像根据第一距离进行修正而得出修正图像的具体方式并不限于以上方式(比如也可没有预存的修正指令,而是每次都根据测出的第一距离计算相应的修正指令),在此不再详细描述。
本公开的实施例还提供了一种显示装置(例如,VR显示装置),如图7所示。所述显示装置可以包括:显示单元1、透镜单元2、调整单元4、测距单元3和修正单元5。
显示单元1用于根据给定的待显示图像(或称为原始图像)、第一距离d和预先存储的映射关系,在所述显示单元1的出光面上显示变形后的图像(如图2的左部分所示),使得所显示的图像经过透镜单元2在用户的眼睛中形成正确的原始图像(如图2的右部分所示)。
透镜单元2用于将显示单元1发出的光汇聚到用户的眼睛中。
调整单元4用于调整透镜单元2与显示单元1之间的第一距离d。
测距单元3用于实时地检测第一距离d。
修正单元5用于根据第一距离d计算修正信息并将其发送给显示单元1,以控制显示单元1根据修正信息显示修正图像,其中,修正图像由原始图像根据第一距离d进行修正得出。修正单元5可以通过硬件、软件或两者的组合来实现。在一个实施例中,修 正单元5可以是微处理器、中央处理单元(CPU)、具有上述功能的集成电路(IC)等,并且在此情况下,修正单元5可以具有有线通信功能或无线通信功能。在一个实施例中,修正单元5可以通过在显示单元1的存储单元(例如,闪速存储器或其它合适的非易失性存储器)中存储计算机程序,该计算机程序在被显示单元1的中央处理单元(CPU)执行时,使得显示单元1的中央处理单元(CPU)同时用作修正单元5。
本实施例的显示装置包括调整单元4,其可具有导轨,用于调整透镜单元2和/或显示单元1的位置,以改变二者之间的第一距离d。此外,显示装置中还包括测距单元3、修正单元5等,故可实现以上的显示方法。
应当理解的是,在以上显示装置中,对相同的原始图像,在不同第一距离下分别得出的修正图像通过透镜单元2后所成的虚像相同,或者说在用户的眼睛中的成像相同。
可选地,所述显示装置为虚拟现实显示装置,并且显示单元1包括第一子显示单元11和第二子显示单元12,如图4所示。
透镜单元2可以包括第一子透镜单元(例如,透镜)21,其用于将第一子显示单元11发出的光汇聚到用户的左眼;第二子透镜单元(例如,透镜)22,其用于将第二子显示单元12发出的光汇聚到用户的右眼,如图4所示。
可选地,调整单元4用于调整第一子透镜单元21与第一子显示单元11之间的第一子距离,以及调整第二子透镜单元22与第二子显示单元12之间的第二子距离,第一子距离与第二子距离的调整可以相互独立。在一个实施例中,调整单元4可以包括具有导轨的第一调整单元41和具有导轨的第二调整单元42。第一子显示单元11和第一子透镜单元21中的至少一个可以按照与参照图1描述的方式相似的方式安装在第一调整单元41上,第二子显示单元12和第二子透镜单元22中的至少一个可以按照与参照图1描述的方式相似的方式安装在第二调整单元42上。第一调整单元41用于调整第一子透镜单元21与第一子显示单元11之间的第一子 距离,以及第二调整单元42用于调整第二子透镜单元22与第二子显示单元12之间的第二子距离。这样,第一子距离与第二子距离的调整可以相互独立。
修正单元5用于根据第一子距离计算第一修正信息并将其发送给第一子显示单元11,以控制第一子显示单元11根据第一修正信息显示第一修正图像,其中,第一修正图像由第一原始图像根据第一子距离进行修正得出。修正单元5还用于根据第二子距离计算第二修正信息并将其发送给第二子显示单元12,以控制第二子显示单元12根据第二修正信息显示第二修正图像,其中,第二修正图像由第二原始图像根据第二子距离进行修正得出。
也就是说,本实施例的显示装置可以为虚拟现实显示装置,例如VR眼镜、VR头盔等。在这类显示装置中,显示单元1和透镜单元2中的每一个可以包括两个子单元,两个子显示单元发出的光分别经两子透镜单元后传到用户的左右眼,从而使左右眼接收到不同图像,让用户感觉看到立体的图像。
在一个实施例中,第一子显示单元11和第二子显示单元12可以是两个独立的显示屏。可替换地,第一子显示单元11和第二子显示单元12也可以是一个显示屏(如手机显示屏)的两个不同部分。
也就是说,当显示装置在正常显示时具有以上子显示单元和子透镜单元时,则两子透镜单元与相应子显示单元之间的距离(第一距离)可分别单独地调整,从而可得到两个相互独立的子距离。然后,进一步计算出两个独立的修正信息,而这两个修正信息可用于分别对两个子显示单元各自显示的图像进行修正,以保证两个子显示单元各自显示的图像经过对应的子透镜单元后所成的虚像不变,或者说在用户的眼睛中的成像相同。
可选地,修正信息包括修正指令,修正单元5还用于判断第一距离d是否改变。若判断的结果为是,则根据改变后的第一距离d计算新的修正信息并将其发送给显示单元1。
可选地,修正信息包括修正指令,显示单元1还用于判断修 正信息是否更新。若判断的结果为是,则根据更新后的修正指令对原始图像进行修正而得到修正图像。若判断的结果为否,则根据此前最后接收到的修正指令对原始图像进行修正而得到修正图像。例如,显示单元1可以连接到其制造商的网站,以检测是否存在用于从原始图像到修正图像的新的映射关系。如果存在这样的新的映射关系,则将其下载下来并保存在显示单元1的存储单元中以作为更新后的修正指令。
也就是说,当修正信息包括修正指令时,则修正单元5和显示单元1可按照以上“单线程”的方式进行工作,以提高系统的可靠性。
可选地,作为本实施例的一种方式,显示装置还包括显示单元1,其与修正单元5电连接。例如,该显示装置可以是VR头盔。
也就是说,如图7所示,显示装置可内置有显示单元1,如显示装置为VR头盔。例如,显示单元1可以为装在该VR头盔中的两个微型显示屏,此时显示单元1可直接与修正单元5电连接。
可选地,作为本实施例的另一种方式,显示装置还包括用于可拆卸地安装显示单元(例如,手机)1的安装单元6。例如,该显示装置可以是VR眼镜。用户在观看视频之前将手机等显示单元安装在安装单元6中,并且在观看视频结束之后将手机从安装单元6中取出。
可选地,在修正单元5为硬件部件并且与显示单元1分离的情况下,修正单元5用于以无线方式将修正信息发送给显示单元1。可替换地,修正单元5可以为软件部件并且位于显示单元1中,在这种情况下,修正单元5可以通过显示单元1的总线将修正信息发送给显示单元1。
也就是说,如图8所示,显示装置本身也可不包括显示单元1(但此时也要求显示单元1能按照以上方式工作),而只有用于安装额外的显示单元1的安装单元6。如显示装置可为VR眼镜,其中具有用于安装显示单元1的安装单元(或支架)6等,而显示单元1则为可装在以上支架处的手机等。在一个实施例中,安装单 元6可以按照与参照图1描述的方式相似的方式安装在调整单元4上,从而可以通过调整单元4来调整安装单元6(即,显示单元1)与透镜单元2之间的第一距离(即,物距)d。由于此时显示单元1可从显示装置中取出,故若其与修正单元5有线连接可能不便,因此修正单元5与显示单元1之间可通过无线方式(如wifi、蓝牙等)连接并传递数据。
可选地,测距单元3包括:距离传感器31,其与透镜单元2固定连接,并用于检测在预定方向上其与显示单元1之间的第二距离S;计算单元(例如,微处理器)32,其用于根据预定方向和第二距离S并且利用上文描述的公式来计算第一距离d,如图9所示。
可选地,距离传感器31为红外距离传感器。
也就是说,测距单元3可包括以上距离传感器31。而由于以上第一距离d通常较小,故从适用性、成本等多方面考虑,距离传感器31可以采用红外距离传感器。
可选地,显示装置还可以包括:存储单元7,其中预存有与各第一距离d对应的修正指令(例如,映射关系)以及实现正常显示所需的其他程序和数据。存储单元7可以不同于显示单元1的存储单元并且与显示单元1分离。存储单元7可以是硬盘、闪速存储器等非易失性存储器。存储单元7可以连接至修正单元5和显示单元1。可替换地,存储单元7可以是显示单元1的存储单元。修正图像由原始图像根据第一距离d进行修正得出包括:由修正单元5根据第一距离d查找预存的、与其对应的修正指令,并根据修正指令对原始图像进行修正,得到修正图像。该修正图像可以直接发送至显示单元1,也可以先存储在存储单元7中,然后在发送至显示单元1。
也就是说,显示装置可包括存储有多个第一距离和多个修正指令以及他们之间的对应关系的存储单元7,从而从原始图像可按照以上方式得出修正图像。
根据本公开的实施例的显示装置能够在物距改变时会显示恒 定的景深,使用户看到相同的图像,避免引起用户视觉疲劳的问题。
应当理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术用户员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也属于本公开的保护范围。

Claims (20)

  1. 一种显示方法,用于在正常显示时具有透镜单元和显示单元的显示装置,所述显示方法包括以下步骤:
    检测所述透镜单元与所述显示单元之间的第一距离;
    根据所述第一距离计算修正信息并将所述修正信息发送给所述显示单元;以及
    所述显示单元根据所述修正信息显示修正图像,使得所述修正图像经所述透镜单元后汇聚到用户的眼睛中,其中,所述修正图像由原始图像根据所述第一距离进行修正得出。
  2. 根据权利要求1所述的显示方法,其中,
    所述根据所述第一距离计算修正信息的步骤包括以下步骤:根据所述第一距离和原始图像计算出修正图像,将所述修正图像作为所述修正信息;以及
    所述显示单元根据所述修正信息显示修正图像的步骤包括以下步骤:所述显示单元显示所述修正图像。
  3. 根据权利要求1所述的显示方法,其中,
    所述根据所述第一距离计算修正信息的步骤包括以下步骤:根据所述第一距离计算修正指令,将所述修正指令作为所述修正信息;以及
    所述显示单元根据所述修正信息显示修正图像的步骤包括以下步骤:所述显示单元根据所述修正指令对原始图像进行修正而得到修正图像,并显示所述修正图像。
  4. 根据权利要求3所述的显示方法,其中,所述根据所述第一距离计算修正信息并将所述修正信息发送给所述显示单元的步骤包括以下步骤:
    判断所述第一距离相对于之前的第一距离是否改变;
    在所述第一距离相对于之前的第一距离改变的情况下,根据改变后的第一距离对所述修正信息进行更新并将更新后的修正信息发送给显示单元;以及
    在所述第一距离相对于之前的第一距离未改变的情况下,根据之前的第一距离获得修正信息并将该修正信息发送给显示单元。
  5. 根据权利要求3所述的显示方法,其中,所述显示单元根据所述修正指令对原始图像进行修正而得到修正图像的步骤包括以下步骤:
    通过所述显示单元判断接收到的修正指令相对于之前的修正指令是否有更新;
    在接收到的修正指令相对于之前的修正指令有更新的情况下,根据更新后的修正指令对原始图像进行修正而得到修正图像;以及
    在接收到的修正指令相对于之前的修正指令没有更新的情况下,根据之前的修正指令对原始图像进行修正而得到修正图像。
  6. 根据权利要求1所述的显示方法,其中,所述检测所述透镜单元与所述显示单元之间的第一距离的步骤包括以下步骤:
    用与所述透镜单元固定连接的距离传感器检测所述透镜单元在预定方向上与所述显示单元之间的第二距离;以及
    根据所述预定方向和所述第二距离计算出所述第一距离。
  7. 根据权利要求6所述的显示方法,其中,所述根据所述预定方向和所述第二距离计算出所述第一距离的步骤包括以下步骤:
    通过以下公式计算所述第一距离:d=(S+S 0)*cosθ,其中,d为所述第一距离,S为所述第二距离,S 0为在所述预定方向上所述距离传感器的测距起点与所述透镜单元的中心面间的距离,θ 为所述预定方向与所述第一距离所在方向之间的夹角。
  8. 根据权利要求1所述的显示方法,其中,所述修正图像由原始图像根据所述第一距离进行修正得出的步骤包括以下步骤:
    根据所述第一距离查找预存的、与所述第一距离对应的修正信息;以及
    根据该修正信息对所述原始图像进行修正,以得到修正图像。
  9. 一种显示装置,包括:
    透镜单元,其用于将显示单元发出的光汇聚到用户的眼睛中;
    调整单元,其用于调整所述透镜单元与所述显示单元之间的第一距离;
    测距单元,其用于检测所述第一距离;以及
    修正单元,其用于根据所述第一距离计算修正信息并将所述修正信息发送给所述显示单元,以控制所述显示单元根据所述修正信息显示修正图像,其中,所述修正图像由原始图像根据所述第一距离进行修正得出。
  10. 根据权利要求9所述的显示装置,其中,
    所述显示装置为虚拟现实显示装置,所述显示单元包括第一子显示单元和第二子显示单元;并且
    所述透镜单元包括:
    第一子透镜单元,其用于将所述第一子显示单元发出的光汇聚到所述用户的左眼;以及
    第二子透镜单元,其用于将所述第二子显示单元发出的光汇聚到所述用户的右眼。
  11. 根据权利要求10所述的显示装置,其中,
    所述调整单元用于调整所述第一子透镜单元与所述第一子显示单元之间的第一子距离,以及调整所述第二子透镜单元与所述 第二子显示单元之间的第二子距离,第一子距离与第二子距离的调整相互独立;以及
    所述修正单元用于根据所述第一子距离计算第一修正信息并将该第一修正信息发送给所述第一子显示单元,以控制所述第一子显示单元根据所述第一修正信息显示第一修正图像,其中,所述第一修正图像由第一原始图像根据所述第一子距离进行修正得出;所述修正单元还用于根据所述第二子距离计算第二修正信息并将该第二修正信息发送给所述第二子显示单元,以控制所述第二子显示单元根据所述第二修正信息显示第二修正图像,其中,所述第二修正图像由第二原始图像根据所述第二子距离进行修正得出。
  12. 根据权利要求11所述的显示装置,其中,
    所述调整单元包括具有导轨的第一调整单元和具有导轨的第二调整单元;
    所述第一子显示单元和所述第一子透镜单元中的至少一个通过紧固件安装在所述第一调整单元上;以及
    所述第二子显示单元和所述第二子透镜单元中的至少一个通过紧固件安装在所述第二调整单元上。
  13. 根据权利要求9所述的显示装置,其中,
    所述修正信息包括修正指令;
    所述修正单元还用于判断所述第一距离相对于之前的第一距离是否改变;
    在所述第一距离相对于之前的第一距离改变的情况下,所述修正单元根据改变后的第一距离对所述修正信息进行更新并将更新后的修正信息发送给所述显示单元;以及
    在所述第一距离相对于之前的第一距离未改变的情况下,所述修正单元根据之前的第一距离获得修正信息并将该修正信息发送给所述显示单元。
  14. 根据权利要求9所述的显示装置,其中,
    所述修正信息包括修正指令;
    所述显示单元还用于判断接收的修正指令相对于之前的修正指令是否更新;
    在接收到的修正指令相对于之前的修正指令有更新的情况下,所述显示单元根据更新后的修正指令对原始图像进行修正而得到修正图像;以及
    在接收到的修正指令相对于之前的修正指令没有更新的情况下,所述显示单元根据之前的修正指令对原始图像进行修正而得到修正图像。
  15. 根据权利要求9至14中任一项所述的显示装置,还包括:
    所述显示单元,其与所述修正单元电连接。
  16. 根据权利要求9至14中任一项所述的显示装置,还包括:
    用于可拆卸地安装显示单元的安装单元。
  17. 根据权利要求16所述的显示装置,其中,
    所述修正单元用于以无线方式将所述修正信息发送给所述显示单元。
  18. 根据权利要求9至17中任一项所述的显示装置,其中,所述测距单元包括:
    距离传感器,其与所述透镜单元固定连接,并用于检测在预定方向上所述透镜单元与所述显示单元之间的第二距离;以及
    计算单元,其用于根据所述预定方向和所述第二距离计算所述第一距离。
  19. 根据权利要求18所述的显示装置,其中,
    所述距离传感器为红外距离传感器。
  20. 根据权利要求9至19中任一项所述的显示装置,还包括:
    存储单元,其中预存有多个第一距离、多个修正指令以及所述多个第一距离与所述多个修正指令之间的对应关系;
    其中,所述修正单元根据当前的第一距离在所述存储单元中查找预存的、与当前的第一距离对应的修正指令,并根据查找到的修正指令对原始图像进行修正,以得到修正图像。
PCT/CN2019/070091 2018-04-02 2019-01-02 显示方法和显示装置 WO2019192229A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/621,941 US11113799B2 (en) 2018-04-02 2019-01-02 Display method and display device
EP19781161.5A EP3779562B1 (en) 2018-04-02 2019-01-02 Display method and display device
JP2020528399A JP7334155B2 (ja) 2018-04-02 2019-01-02 表示方法および表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810283223.1 2018-04-02
CN201810283223.1A CN110346932B (zh) 2018-04-02 2018-04-02 显示方法、显示装置

Publications (1)

Publication Number Publication Date
WO2019192229A1 true WO2019192229A1 (zh) 2019-10-10

Family

ID=68100079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070091 WO2019192229A1 (zh) 2018-04-02 2019-01-02 显示方法和显示装置

Country Status (5)

Country Link
US (1) US11113799B2 (zh)
EP (1) EP3779562B1 (zh)
JP (1) JP7334155B2 (zh)
CN (1) CN110346932B (zh)
WO (1) WO2019192229A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111554223B (zh) * 2020-04-22 2023-08-08 歌尔科技有限公司 显示设备的画面调节方法、显示设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104704818A (zh) * 2013-06-19 2015-06-10 松下知识产权经营株式会社 图像显示装置和图像显示方法
CN105911694A (zh) * 2016-03-30 2016-08-31 努比亚技术有限公司 一种虚拟现实设备及其移动终端
CN105979243A (zh) * 2015-12-01 2016-09-28 乐视致新电子科技(天津)有限公司 一种显示立体图像的处理方法和装置
US20170160518A1 (en) * 2015-12-08 2017-06-08 Oculus Vr, Llc Focus adjusting virtual reality headset
US20180048882A1 (en) * 2016-08-12 2018-02-15 Avegant Corp. Binocular Display with Digital Light Path Length Modulation
CN107942514A (zh) * 2017-11-15 2018-04-20 青岛海信电器股份有限公司 一种虚拟现实设备的图像畸变校正方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4747575B2 (ja) * 2003-12-26 2011-08-17 株式会社ニコン 情報表示装置
JP5389493B2 (ja) * 2009-03-25 2014-01-15 オリンパス株式会社 眼鏡装着型画像表示装置
JP2014109717A (ja) * 2012-12-03 2014-06-12 Samsung R&D Institute Japan Co Ltd 導光ユニットおよび映像表示装置
CN103353663B (zh) * 2013-06-28 2016-08-10 北京智谷睿拓技术服务有限公司 成像调整装置及方法
US10534172B2 (en) * 2013-07-16 2020-01-14 Sony Corporation Display apparatus
WO2015051660A1 (zh) * 2013-10-13 2015-04-16 北京蚁视科技有限公司 头戴式立体显示器
TWI531817B (zh) * 2014-01-16 2016-05-01 中強光電股份有限公司 虛像顯示模組與光學鏡頭
US10951882B2 (en) * 2015-06-19 2021-03-16 Maxell, Ltd. Head mounted display device and method for providing visual aid using same
CN105192982B (zh) 2015-09-07 2018-03-23 北京小鸟看看科技有限公司 可调节式虚拟现实头盔的图像矫正方法和系统
CN105455285B (zh) 2015-12-31 2019-02-12 北京小鸟看看科技有限公司 一种虚拟现实头盔适配方法
US11073701B2 (en) * 2016-07-06 2021-07-27 Panasonic Intellectual Property Management Co., Ltd. Head-mounted display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104704818A (zh) * 2013-06-19 2015-06-10 松下知识产权经营株式会社 图像显示装置和图像显示方法
CN105979243A (zh) * 2015-12-01 2016-09-28 乐视致新电子科技(天津)有限公司 一种显示立体图像的处理方法和装置
US20170160518A1 (en) * 2015-12-08 2017-06-08 Oculus Vr, Llc Focus adjusting virtual reality headset
CN105911694A (zh) * 2016-03-30 2016-08-31 努比亚技术有限公司 一种虚拟现实设备及其移动终端
US20180048882A1 (en) * 2016-08-12 2018-02-15 Avegant Corp. Binocular Display with Digital Light Path Length Modulation
CN107942514A (zh) * 2017-11-15 2018-04-20 青岛海信电器股份有限公司 一种虚拟现实设备的图像畸变校正方法及装置

Also Published As

Publication number Publication date
US11113799B2 (en) 2021-09-07
JP7334155B2 (ja) 2023-08-28
CN110346932A (zh) 2019-10-18
EP3779562A4 (en) 2021-12-29
EP3779562B1 (en) 2024-03-06
EP3779562A1 (en) 2021-02-17
JP2021517654A (ja) 2021-07-26
US20200118256A1 (en) 2020-04-16
CN110346932B (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
US10242504B2 (en) Head-mounted display device and computer program
US10269139B2 (en) Computer program, head-mounted display device, and calibration method
US10467770B2 (en) Computer program for calibration of a head-mounted display device and head-mounted display device using the computer program for calibration of a head-mounted display device
US10416758B2 (en) Information processing apparatus, information processing system, and information processing method
US10347048B2 (en) Controlling a display of a head-mounted display device
JP5353596B2 (ja) 投写型表示装置、キーストン補正方法
US10304253B2 (en) Computer program, object tracking method, and display device
US20170295360A1 (en) Head-mounted display device and computer program
US11960661B2 (en) Unfused pose-based drift correction of a fused pose of a totem in a user interaction system
WO2016008265A1 (zh) 一种定位位置的方法及装置
US10671173B2 (en) Gesture position correctiing method and augmented reality display device
JP2009110275A (ja) 表示入力装置及びその視差補正方法
WO2019192229A1 (zh) 显示方法和显示装置
US20170308242A1 (en) Projection alignment
JP6446465B2 (ja) 入出力装置、入出力プログラム、および入出力方法
US20170230644A1 (en) Image generation apparatus, image generation method, and calibration method
US11002999B2 (en) Automatic display adjustment based on viewing angle
WO2018223403A1 (zh) 一种显示设备的参数调节方法及头戴式显示设备
JP2022007024A (ja) ステレオカメラの光軸調整装置及び光軸調整方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020528399

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019781161

Country of ref document: EP

Effective date: 20201102