WO2019190105A1 - 수지 조성물 - Google Patents

수지 조성물 Download PDF

Info

Publication number
WO2019190105A1
WO2019190105A1 PCT/KR2019/003149 KR2019003149W WO2019190105A1 WO 2019190105 A1 WO2019190105 A1 WO 2019190105A1 KR 2019003149 W KR2019003149 W KR 2019003149W WO 2019190105 A1 WO2019190105 A1 WO 2019190105A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
less
acid
composition
polyol
Prior art date
Application number
PCT/KR2019/003149
Other languages
English (en)
French (fr)
Inventor
조윤경
이지영
양세우
강양구
박은숙
박상민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190029276A external-priority patent/KR102162493B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP19775745.3A priority Critical patent/EP3670558B1/en
Priority to US16/646,262 priority patent/US11634533B2/en
Priority to CN201980004702.8A priority patent/CN111148775B/zh
Priority to JP2020515118A priority patent/JP6945916B2/ja
Publication of WO2019190105A1 publication Critical patent/WO2019190105A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • C08G18/246Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • C08G18/725Combination of polyisocyanates of C08G18/78 with other polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to a resin composition. Specifically, the present application relates to a battery module, a battery pack, and an automobile including a resin composition and a cured product of the resin composition.
  • the secondary battery includes a nickel cadmium battery, a nickel hydrogen battery, a nickel zinc battery or a lithium secondary battery, and a lithium secondary battery is typical.
  • Lithium secondary batteries mainly use lithium oxide and carbon materials as positive and negative electrode active materials, respectively.
  • the lithium secondary battery includes an electrode assembly in which a positive electrode active material and a negative electrode active material are respectively coated, and an electrode assembly in which a negative electrode plate is disposed with a separator interposed therebetween, and an exterior material for sealingly accommodating the electrode assembly together with an electrolyte solution.
  • pouch type secondary batteries This single secondary battery may be referred to as a battery cell.
  • a battery module in which a large number of battery cells are electrically connected to each other or a battery pack in which a plurality of such battery modules are connected may be used to increase capacity and output power.
  • One object of the present application is to provide a resin composition that can solve the above problems.
  • Another object of the present application is to provide a resin composition having excellent processability as well as heat dissipation, adhesive strength, and adhesion reliability when used in a battery module or a battery pack.
  • Another object of the present application is to provide a battery module and a battery pack.
  • the present application relates to a composition used in a battery module or battery pack.
  • the composition of the present application may be a composition that is injected into the case of the battery module and used to secure the battery cell in the module case by contacting one or more battery cells present in the battery module, as described below. .
  • a urethane-based composition may be used as the composition.
  • the two-component urethane composition may be used in the present application.
  • Two-component urethane means a polyurethane formed by mixing an isocyanate compound and a polyol compound, and is distinguished from a one-component polyurethane having a urethane group in a single composition.
  • a main agent including a polyol and a curing agent including an isocyanate may be reacted at room temperature to cure. That is, the composition of the present application may be a room temperature curing type.
  • the term "room temperature” is a state that is not particularly warmed or reduced, and any temperature within the range of about 10 ° C to 30 ° C, for example, about 15 ° C or more, about 18 ° C or more, about 20 ° C or more, Or about 23 ° C. or higher and about 27 ° C. or lower.
  • the curing reaction may be aided by a catalyst, for example dibutyltin dilaurate (DBTDL).
  • DBTDL dibutyltin dilaurate
  • the two-component urethane-based composition may include a physical mixture of the main component (polyol) and the hardener component (isocyanate), and / or may include a reactant (cured product) of the main component and the hardener component.
  • the two-component urethane composition of the present application may include a main composition part (or main part) including at least a polyol resin, and a hardener composition part (or hardener part) including at least polyisocyanate.
  • the cured product of the resin composition may include both the polyol-derived unit and the polyisocyanate-derived unit.
  • the polyol-derived unit may be a unit formed by a polyol reacting with a polyisocyanate and a urethane
  • the polyisocyanate-derived unit may be a unit formed by reacting a polyol with a urethane.
  • the composition may also include a filler.
  • a filler for example, to ensure thixotropy as needed in the process, and / or to ensure heat dissipation (thermal conductivity) in a battery module or battery pack, the composition of the present application may have excess fillers as described below. May be included. Specific details are described in detail in the following related description.
  • the polyol resin and the isocyanate component included in the urethane composition may have a glass transition temperature (Tg) of less than 0 ° C. after curing.
  • Tg glass transition temperature
  • the “glass transition temperature after curing” refers to the NCO peak reference conversion rate near 2250 cm ⁇ 1 , as confirmed by FT-IR analysis, based on a 24-hour curing state at room temperature and 30 to 70% relative humidity conditions. glass transition temperature measured for a cured product having a conversion of 80% or more.
  • the brittle characteristic can be secured within a relatively short time even at a low temperature at which the battery module or the battery pack can be used, and thus shock resistance and vibration resistance can be ensured. Can be.
  • the said range is not satisfied, there exists a possibility that the adhesiveness (tacky) of hardened
  • the lower limit of the glass transition temperature of the urethane-based composition after curing may be-70 °C or more,-60 °C or more,-50 °C or more,-40 °C or more or-30 °C or more, the upper limit is-5 C or less, -10 degrees C or less, -15 degrees C or less, or -20 degrees C or less.
  • an ester-based polyol resin may be used as the polyol resin included in the subject composition part.
  • an ester-based polyol it is advantageous to ensure excellent adhesion and adhesion reliability in the battery module after curing the resin composition.
  • ester polyol for example, a carboxylic acid polyol or a caprolactone polyol may be used.
  • the carboxylic acid-based polyol may be formed by reacting a component including a carboxylic acid and a polyol (ex. Diol or triol, etc.), and the caprolactone-based polyol may include caprolactone and a polyol (ex. Diol or triol). It can form by making a component react.
  • the carboxylic acid may be a dicarboxylic acid.
  • the polyol may be a polyol represented by the following Chemical Formula 1 or 2.
  • X is a unit derived from carboxylic acid
  • Y is a unit derived from polyol.
  • the unit derived from a polyol may be a triol unit or a diol unit, for example.
  • n and m can be any number.
  • the carboxylic acid-derived unit is a unit formed by reacting a carboxylic acid with a polyol
  • the polyol-derived unit is a unit formed by reacting a polyol with a carboxylic acid or caprolactone
  • X represents the carboxylic acid forming an ester bond by the condensation reaction. After that means a portion except the ester bond portion.
  • Y is a part except the ester bond after a polyol forms an ester bond by the said condensation reaction.
  • the ester bond is shown in the formula (1).
  • Y of the formula (2) also represents a portion excluding the ester bond after the polyol forms an ester bond with the caprolactone.
  • the ester bond is shown in the formula (2).
  • the polyol-derived unit of Y in the formula is a unit derived from a polyol including three or more hydroxy groups, such as a triol unit, a structure in which a branch is formed in the Y part in the formula structure may be implemented.
  • the type of the carboxylic acid-derived unit of X is not particularly limited, but in order to secure desired physical properties, phthalic acid units, isophthalic acid units, terephthalic acid units, trimellitic acid units, tetrahydrophthalic acid units, hexahydrophthalic acid units, Tetrachlorophthalic acid unit, oxalic acid unit, adipic acid unit, azelaic acid unit, sebacic acid unit, succinic acid unit, malic acid unit, glataric acid unit, malonic acid unit, pimelic acid unit, suberic acid unit, 2,2-dimethyl It may be any one unit selected from the group consisting of succinic acid unit, 3,3-dimethylglutaric acid unit, 2,2-dimethylglutaric acid unit, maleic acid unit, fumaric acid unit, itaconic acid unit and fatty acid unit. .
  • aliphatic carboxylic acid derived units may be any one unit selected from the group consisting of succinic acid unit,
  • the type of the polyol-derived unit of Y in the general formula (1) and (2) is not particularly limited, in order to ensure the desired physical properties, ethylene glycol units, diethylene glycol units, propylene glycol units, 1,2-butylene glycol units, 2,3-butylene glycol unit, 1,3-propanediol unit, 1,3-butanediol unit, 1,4-butanediol unit, 1,6-hexanediol unit, neopentyl glycol unit, 1,2-ethylhexyl Diol units, 1,5-pentanediol units, 1,9-nonanediol units, 1,10-decanediol units, 1,3-cyclohexanedimethanol units, 1,4-cyclohexanedimethanol units, glycerin units and It may be any one or more selected from the group consisting of trimethylolpropane units.
  • n in Formula 1 may be any number, and the range may be selected in consideration of the desired physical properties of the resin composition or the cured resin layer thereof.
  • n may be about 2-10 or 2-5.
  • n in the formula (2) is an arbitrary number, the range may be selected in consideration of the desired physical properties of the resin composition or the cured resin layer thereof, m is about 1 to 10 or 1 to 5 days Can be.
  • the crystalline expression of the polyol may become stronger and may adversely affect the injection processability of the composition.
  • the molecular weight of the polyol may be adjusted in consideration of the low viscosity characteristics, durability, or adhesiveness described below, for example, may be in the range of about 300 to 2,000. Unless otherwise specified, in the present specification, “molecular weight” may be a weight average molecular weight (Mw) measured using GPC (Gel Permeation Chromatograph). If it is out of the above range, the resin layer may not be reliable after curing, or problems related to volatile components may occur.
  • Mw weight average molecular weight
  • the polyisocyanate may mean a compound including two or more isocyanate groups.
  • the type of polyisocyanate included in the curing agent composition portion is not particularly limited, but a non-aromatic isocyanate compound containing no aromatic group may be used to secure desired physical properties. That is, it may be advantageous to use aliphatic or cycloaliphatic series.
  • a non-aromatic isocyanate compound containing no aromatic group may be used to secure desired physical properties. That is, it may be advantageous to use aliphatic or cycloaliphatic series.
  • an aromatic polyisocyanate since the reaction rate is too fast and the glass transition temperature of the cured product may be high, it may be difficult to secure processability and physical properties suitable for use of the present application composition.
  • aliphatic or alicyclic cyclic polyisocyanates or modified substances thereof can be used.
  • aliphatic polyisocyanate such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, norbornane diisocyanate methyl, ethylene diisocyanate, propylene diisocyanate or tetramethylene diisocyanate;
  • Aliphatic cyclic polyisocyanates such as transcyclohexane-1,4-diisocyanate, isophorone diisocyanate, bis (isocyanatemethyl) cyclohexane diisocyanate or dicyclohexylmethane diisocyanate;
  • at least one of the above carbodiimide-modified polyisocyanates and isocyanurate-modified polyisocyanates; And the like can be used.
  • mixtures of two or more of the compounds listed above may be used.
  • the ratio of the polyol-derived resin component and the polyisocyanate-derived resin component in the resin composition is not particularly limited and may be appropriately adjusted to enable the urethane reaction therebetween.
  • an excess filler may be included in the composition.
  • the processability when injecting the composition into the case may be worse. Therefore, there is a need for a low viscosity characteristic sufficient to include an excess of filler but not to interfere with fairness.
  • simply showing a low viscosity it is also difficult to ensure the fairness, and therefore appropriate thixotropy is required, exhibits excellent adhesion as cured, the curing itself may need to proceed at room temperature.
  • the ester-based polyol is advantageous for securing adhesiveness after curing, but is highly likely to be in a wax state at room temperature because of its strong crystallinity, and has an unfavorable aspect of securing proper injection processability due to an increase in viscosity. Even if the viscosity is lowered through melting, the crystallinity naturally occurring during the storage process causes a viscosity increase due to crystallization in the injection or application process of the composition which may follow after mixing with the filler. As a result, fairness may be reduced.
  • the ester polyol used in the present application may satisfy the following characteristics.
  • the ester-based polyol may be amorphous or polyol having a low enough crystallinity.
  • “Amorphous” means the case where no crystallization temperature (Tc) and melting temperature (Tm) are observed in DSC (Differential Scanning calorimetry) analysis.
  • the DSC analysis can be carried out in the range of -80 to 60 °C at a rate of 10 °C / min, for example, after the temperature is raised from 25 °C to 50 °C at the rate-to 70 °C, and again It may be made by heating up to 50 °C.
  • the above-mentioned "low enough crystallinity” means that the melting point or melting temperature (Tm) observed in the DSC analysis is less than 15 ° C, about 10 ° C or less, 5 ° C or less, 0 ° C or less, -5 ° C or less, It means the case of -10 degrees C or less, or -20 degrees C or less.
  • the lower limit of the melting point is not particularly limited, but for example, the melting point may be about ⁇ 80 ° C. or more, about ⁇ 75 ° C. or more, or about ⁇ 70 ° C. or more.
  • the viscosity difference with temperature tends to be large, so that the filler dispersion and the viscosity of the final mixture in the process of mixing the filler and the resin It may adversely affect, lower the processability, and as a result it may be difficult to meet the cold resistance, heat resistance and water resistance required in the adhesive composition for the battery module.
  • FIG. 1 is a graph showing the results of DSC analysis on several polyols as an example of determining the amorphous properties or low enough crystallinity of the ester polyol.
  • Sample # 1 may be determined to be amorphous, and Samples # 2 and # 3 may be judged to be sufficiently low in crystallinity.
  • Sample # 4 having a melting temperature (Tm) of 33.52 ° C., it can be said that the crystallinity is high.
  • the resin composition may include a predetermined filler in consideration of thermal conductivity, insulation, heat resistance (TGA analysis), and the like of the resin layer.
  • TGA analysis heat resistance
  • the form or method in which a filler is contained in a resin composition is not specifically limited.
  • the filler may be used to form the urethane-based composition in a state previously contained in the main composition portion and / or the curing agent composition portion.
  • it may also be used in a manner that the fillers prepared separately are mixed together.
  • the filler included in the composition may be a thermally conductive filler.
  • the term thermally conductive filler may refer to a material having a thermal conductivity of about 1 W / mK or more, about 5 W / mK or more, about 10 W / mK or more, or about 15 W / mK or more.
  • the thermal conductivity of the thermally conductive filler may be about 400 W / mK or less, about 350 W / mK or less or about 300 W / mK or less.
  • the type of thermally conductive filler that can be used is not particularly limited, but may be a ceramic filler in consideration of insulation and the like.
  • ceramic particles such as alumina, aluminum nitride (AlN), boron nitride (BN), silicon nitride, SiC, or BeO may be used.
  • the form or ratio of the filler is not particularly limited, and is appropriately adjusted in consideration of the viscosity of the urethane-based composition, the possibility of sedimentation in the cured resin layer, the desired thermal resistance or thermal conductivity, insulation, filling effect or dispersibility, and the like. Can be.
  • the larger the size of the filler the higher the viscosity of the composition including the same, and the higher the possibility that the filler precipitates in the resin layer.
  • the smaller the size the higher the heat resistance tends to be.
  • a filler of an appropriate type and size may be selected, and two or more fillers may be used together if necessary.
  • the thermal conductivity of the filler can be measured according to known methods, wherein the thermal conductivity of the filler can be measured by melting the filler and making a specimen.
  • the composition may include a thermally conductive filler having an average particle diameter in the range of 0.001 ⁇ m to 80 ⁇ m.
  • the average particle diameter of the filler may be at least 0.01 ⁇ m, at least 0.1 ⁇ m, at least 0.5 ⁇ m, at least 1 ⁇ m, at least 2 ⁇ m, at least 3 ⁇ m, at least 4 ⁇ m, at least 5 ⁇ m, or at least about 6 ⁇ m.
  • the average particle diameter of the filler is, in another example, about 75 ⁇ m or less, about 70 ⁇ m or less, about 65 ⁇ m or less, about 60 ⁇ m or less, about 55 ⁇ m or less, about 50 ⁇ m or less, about 45 ⁇ m or less, about 40 ⁇ m or less, about 35 ⁇ m or less, about 30 ⁇ m or less, about 25 ⁇ m or less, about 20 ⁇ m or less, about 15 ⁇ m or less, about 10 ⁇ m or less, or about 5 ⁇ m or less.
  • the average particle diameter may be measured using a particle size analysis (PSA) instrument.
  • the average particle diameter may mean D (50), which is the particle size of the 50th rank, when ranking the particles from size 1 to 100 by size.
  • the filler may be used in the range of about 50 to 2,000 parts by weight, based on 100 parts by weight of the total resin component, that is, the total content of the ester-based polyol resin and the polyisocyanate. In another example, the filler content may be used in excess of the total resin component.
  • about 100 parts by weight or more, about 150 parts by weight or more, about 200 parts by weight or more, about 250 parts by weight or more, about 300 parts by weight, At least about 350 parts by weight, at least about 400 parts by weight, at least about 500 parts by weight, at least about 550 parts by weight, at least about 600 parts by weight or at least about 650 parts by weight of fillers may be used. When used as such, it may be dispensed in equal amounts to the subject composition portion and the hardener composition portion.
  • the viscosity of the main composition portion, the hardener composition portion, or the composition including the filler may be increased.
  • the injection processability is not good when the viscosity of the resin composition is too high, and thus the physical properties required for the resin layer may not be sufficiently implemented throughout the resin layer.
  • each of the ester-based polyol resin and the polyisocyanate component may have a viscosity of 10,000 cP or less.
  • the resin component may have a viscosity of 8,000 cP or less, 6,000 cP or less, 4,000 cP or less, 2,000 cP or 1,000 CP or less.
  • the upper limit of the viscosity may be 900 cP or less, 800 cP or less, 700 cP or less, 600 cP or less, 500 cP or less, or 400 cP or less.
  • the lower limit of the viscosity of each resin component may be 50 cP or more or 100 cP or more.
  • the viscosity can be measured at room temperature, for example using a Brookfield LV type viscometer.
  • fillers may be used.
  • a carbon (based) filler such as graphite
  • fillers such as fumed silica, clay or calcium carbonate may be used.
  • the form or content ratio of the filler is not particularly limited and may be selected in consideration of the viscosity of the resin composition, the possibility of sedimentation in the resin layer, thixotropy, insulation, filling effect or dispersibility.
  • the composition may contain a viscosity modifier such as a thixotropic agent, a diluent, a dispersant, a surface treatment agent or a coupling agent to adjust the required viscosity, for example to increase or decrease the viscosity or to adjust the viscosity according to shear force. It may be additionally included.
  • a viscosity modifier such as a thixotropic agent, a diluent, a dispersant, a surface treatment agent or a coupling agent to adjust the required viscosity, for example to increase or decrease the viscosity or to adjust the viscosity according to shear force. It may be additionally included.
  • the thixotropic agent may adjust the viscosity according to the shear force of the resin composition so that the manufacturing process of the battery module is effectively performed.
  • examples of the thixotropic agent that can be used include fumed silica and the like.
  • Diluents or dispersants are usually used to lower the viscosity of the resin composition, so long as they can exhibit the same action can be used without limitation various kinds known in the art.
  • the surface treating agent is for surface treatment of the filler introduced into the resin layer, and various kinds known in the art can be used without limitation as long as it can exhibit the above-described action.
  • the coupling agent for example, it can be used to improve the dispersibility of a thermally conductive filler such as alumina, and various kinds known in the art can be used without limitation as long as it can exhibit the above action.
  • the resin composition may further include a flame retardant or a flame retardant aid.
  • a known flame retardant may be used without particular limitation, and for example, a solid filler-type flame retardant or a liquid flame retardant may be applied.
  • Flame retardants include, for example, organic flame retardants such as melamine cyanurate and inorganic flame retardants such as magnesium hydroxide.
  • a liquid type flame retardant material TEP, Triethyl phosphate or TCPP, tris (1,3-chloro-2-propyl) phosphate, etc.
  • a silane coupling agent may be added that can act as a flame retardant synergist.
  • the composition may include a composition as described above, and may also be a solvent-type composition, an aqueous composition, or a solvent-free composition, but considering the convenience of the manufacturing process described below, a solvent-free type may be appropriate.
  • composition of the present application may have physical properties suitable for the uses described below after curing. If the measurement temperature affects the physical properties among the physical properties mentioned in the present specification, the physical properties may be physical properties measured at room temperature unless otherwise stated.
  • the expression "after curing" in relation to physical properties may be used in the same meaning as described above in connection with the glass transition temperature.
  • the resin composition may have a predetermined adhesive strength (S 1 ) at room temperature after curing.
  • the resin layer may have an adhesive strength of about 150 gf / 10mm or more, 200 gf / 10mm or more, 250 gf / 10mm or more, 300 gf / 10mm or more, 350 gf / 10mm or more or 400 gf / 10mm or more.
  • the upper limit of the adhesive strength of the resin layer is not particularly limited, and for example, about 1,000 gf / 10 mm or less, 900 gf / 10 mm or less, 800 gf / 10 mm or less, 700 gf / 10 mm or less, 600 gf / 10 mm or less, or 500 gf / It may be about 10 mm or less. If the adhesion is too high, there is a risk of tearing of the cured composition and the portion of the pouch to which it is attached.
  • the impact of the shape of the battery module deforms, if the battery cell is adhered too hard through the hardened resin layer, the pouch is torn and the dangerous substance inside the battery is exposed or exploded. can do.
  • the adhesion may be measured on an aluminum pouch according to the method disclosed in the Examples described below.
  • the adhesive force after curing of the resin composition may be maintained at a significant level even under high temperature / high humidity as described in the following examples.
  • the percentage of adhesive force (S 2 ) measured by the same method after the high temperature / high humidity acceleration test performed under a predetermined condition may be at least 70%, or at least 80%.
  • the high temperature / high humidity acceleration test may be measured after storing the same specimen as the one used to measure the room temperature adhesion force for 10 days at 40-100 ° C. temperature and 75% RH or higher humidity condition.
  • the resin composition may have excellent heat resistance after curing.
  • the composition of the present application does not include a filler, the temperature of 5% weight loss during thermogravimetric analysis (TGA) measured on the cured product of only the resin component is 120 °C It may be abnormal.
  • the composition of the present application in the state including a filler, in the thermogravimetric analysis (TGA) measured for the cured product of the resin composition, the residual amount of 800 °C may be 70% by weight or more.
  • the balance of 800 ° C. may be, in another example, about 75 wt% or more, about 80 wt% or more, about 85 wt% or more, or about 90 wt% or more.
  • the residual amount of 800 ° C may be about 99% by weight or less in another example.
  • the thermogravimetric analysis (TGA) may be measured in a range of 25 to 800 ° C. at a temperature rising rate of 20 ° C./min in an atmosphere of nitrogen (N 2 ) of 60 cm 3 / min. Heat resistance characteristics associated with the thermogravimetric analysis (TGA) can be secured by adjusting the type of resin and / or filler or their content.
  • the resin composition may have excellent electrical insulation after curing.
  • the cured product of the resin composition may have an insulation breakdown voltage measured based on ASTM D149 of about 10 kV / mm or more, 15 kV / mm or more, or 20 kV / mm or more.
  • the higher the numerical value of the dielectric breakdown voltage, the resin layer is not particularly limited to exhibit excellent insulating properties, but considering the composition of the resin layer, it is about 50 kV / mm or less, 45 kV / mm or less, 40 kV / mm or less. , 35 kV / mm or less, or 30 kV / mm or less.
  • the dielectric breakdown voltage in the above range can be ensured, for example, by adjusting the contents of the filler and the resin component described above.
  • the present application relates to a battery module.
  • the module includes a module case and a battery cell.
  • the battery cell may be stored in the module case.
  • One or more battery cells may be present in the module case, and a plurality of battery cells may be stored in the module case.
  • the number of battery cells housed in the module case is not particularly limited to be adjusted according to the use.
  • the battery cells stored in the module case may be electrically connected to each other.
  • the module case may include at least a side wall and a bottom plate forming an inner space in which the battery cells can be stored.
  • the module case may further include a top plate for sealing the inner space.
  • the side wall, the lower plate and the upper plate may be integrally formed with each other, or separate sidewalls, the lower plate and / or the upper plate may be assembled to form the module case.
  • the shape and size of such a module case are not particularly limited, and may be appropriately selected according to the use or the shape and number of battery cells accommodated in the internal space.
  • the upper plate and the lower plate are terms of a relative concept used to distinguish them because at least two plates constituting the module case exist. That is, it does not mean that the upper plate must be present at the top, and the lower plate must be present at the bottom in the actual use state.
  • FIG. 2 shows an exemplary module case 10 and is an illustration of a case 10 in the form of a box comprising one bottom plate 10a and four side walls 10b.
  • the module case 10 may further include a top plate 10c that seals the internal space.
  • FIG. 3 is a schematic view of the module case 10 of FIG. 2 in which the battery cells 20 are housed.
  • Holes may be formed in the lower plate, the side wall, and / or the upper plate of the module case.
  • the hole may be an injection hole used to inject a material for forming the resin layer, that is, a resin composition, when the resin layer is formed by an injection process, as described below.
  • the shape, number and position of the holes can be adjusted in consideration of the injection efficiency of the resin layer forming material.
  • the hole may be formed in at least the lower plate and / or the upper plate.
  • the hole may be formed at about 1/4 to 3/4 or about 3/8 to 7/8 of the entire length of the side wall, the bottom plate or the top plate, or about the middle portion.
  • the 1/4, 3/4, 3/8 or 7/8 point is the total length (L) measured based on any one end surface E of the lower plate or the like, for example, as shown in FIG. ) Is the ratio of the distance A to the formation position of the hole.
  • the terminal (E) in which the length (L) and the distance (A) are formed in the above may be any terminal (E) as long as the length (L) and the distance (A) are measured from the same terminal (E). have.
  • the injection hole 50a is positioned at an approximately middle portion of the lower plate 10a.
  • the size and shape of the injection hole is not particularly limited and may be adjusted in consideration of the injection efficiency of the resin layer material described later.
  • the hole may be polygonal or amorphous, such as a circle, an oval, a triangle or a rectangle.
  • the number and spacing of the injection holes is not particularly limited, and as described above, the resin layer may be adjusted to have a wide contact area with the lower plate.
  • Observation holes may be formed at ends of the upper plate and the lower plate on which the injection holes are formed.
  • the observation hole may be formed to observe whether the injected material is well injected to the end of the side wall, the lower plate or the upper plate when the resin layer material is injected through the injection hole.
  • the position, shape, size, and number of the observation holes are not particularly limited as long as they are formed to confirm whether the injected material is properly injected.
  • the module case may be a thermally conductive case.
  • thermally conductive case means a case including a portion having a thermal conductivity of 10 W / mk or more or at least having the above-described thermal conductivity of the entire case.
  • at least one of the above-described sidewalls, bottom plate and top plate may have the thermal conductivity described above.
  • at least one of the sidewall, the bottom plate, and the top plate may include a portion having the thermal conductivity.
  • the battery module of the present application may include a first filler-containing cured resin layer in contact with an upper plate and a battery cell, and a second filler-containing cured resin layer in contact with a lower plate and a battery cell, as described below.
  • At least the second filler-containing cured resin layer may be a thermally conductive resin layer, and thus, at least the lower plate may have a thermal conductivity or may include a thermally conductive portion.
  • the thermal conductivity of the top plate, bottom plate, side wall, or thermally conductive portion, which is thermally conductive above, is, in another example, 20 W / mk or more, 30 W / mk or more, 40 W / mk or more, 50 W / mk or more, 60 W /.
  • the thermal conductivity is about 1,000 W / mK or less, 900 W / mk or less, 800 W / mk or less, 700 W / mk or less, 600 W / mk or less, 500 W / mk or less, 400 W / mk or less, It may be 300 W / mk or 250 W / mK or less, but is not limited thereto.
  • the kind of the material which exhibits the above thermal conductivity is not particularly limited, and examples thereof include metal materials such as aluminum, gold, pure silver, tungsten, copper, nickel or platinum.
  • the module case may be entirely made of such a thermally conductive material, or at least a part of the module case may be a portion of the thermally conductive material. Accordingly, the module case may have a thermal conductivity in the above-mentioned range, or may include at least one region having the above-mentioned thermal conductivity.
  • a portion having thermal conductivity in the above range may be a portion in contact with a resin layer and / or an insulating layer, which will be described later.
  • the portion having the thermal conductivity may be a portion in contact with a cooling medium such as cooling water.
  • the type of battery cell accommodated in the module case is also not particularly limited, and various known battery cells may be applied.
  • the battery cell may be a pouch type.
  • the pouch-type battery cell 100 may typically include an electrode assembly, an electrolyte, and a pouch sheath.
  • FIG. 5 is an exploded perspective view schematically showing the configuration of an exemplary pouch-type cell
  • FIG. 6 is a combined perspective view of the configuration of FIG. 5.
  • the electrode assembly 110 included in the pouch-type cell 100 may have a form in which one or more positive electrode plates and one or more negative electrode plates are disposed with a separator therebetween.
  • the electrode assembly 110 may be a winding type in which one positive electrode plate and one negative electrode plate are wound together with a separator, or a stack type in which a plurality of positive electrode plates and a plurality of negative electrode plates are alternately stacked with a separator interposed therebetween.
  • the pouch packaging material 120 may be configured to include, for example, an outer insulating layer, a metal layer, and an inner adhesive layer.
  • the exterior member 120 may include a metal thin film such as aluminum in order to protect internal elements such as the electrode assembly 110 and the electrolyte, and to compensate for the electrochemical properties of the electrode assembly 110 and the electrolyte and to provide heat dissipation. Can be.
  • the metal thin film may be interposed between an insulating layer formed of an insulating material in order to ensure electrical insulation between the electrode assembly 110 and other elements such as an electrolyte or other elements outside the battery 100.
  • the pouch may further include a polymer resin layer (base material) such as PET.
  • the exterior member 120 may include an upper pouch 121 and a lower pouch 122, and at least one of the upper pouch 121 and the lower pouch 122 may have a concave inner space I. This can be formed.
  • the electrode assembly 110 may be accommodated in the internal space I of the pouch. Sealing portions S may be provided on the outer circumferential surfaces of the upper pouch 121 and the lower pouch 122, and the sealing portions S may be adhered to each other to seal an inner space in which the electrode assembly 110 is accommodated.
  • Each electrode plate of the electrode assembly 110 includes an electrode tab, and one or more electrode tabs may be connected to the electrode lead.
  • the electrode lead is interposed between the sealing portion S of the upper pouch 121 and the lower pouch 122 to be exposed to the outside of the exterior member 120, thereby functioning as an electrode terminal of the secondary battery 100.
  • the shape of the pouch-type cell described above is just one example, and the battery cell to which the present application is applied is not limited to the above kind. In the present application, various well-known pouch-type cells or other types of batteries may be applied as battery cells.
  • the battery module of the present application may further include a resin layer.
  • the battery module of the present application may include a cured resin layer in which the filler-containing composition is cured.
  • the cured resin layer may be formed from the urethane-based composition described above.
  • the battery module may include, as the resin layer, a first filler-containing cured resin layer in contact with the upper plate and the battery cell, and a second filler-containing cured resin layer in contact with the lower plate and the battery cell.
  • At least one of the first and second filler-containing cured resin layers may comprise a cured product of the urethane-based composition described above, and thus may have the predetermined adhesion, cold resistance, heat resistance, and insulation as described above.
  • the 1st and 2nd filler containing cured resin layer can have the following characteristics.
  • the resin layer may be a thermally conductive resin layer.
  • the thermal conductivity of the thermally conductive resin layer may be about 1.5 W / mK or more, about 2 W / mK or more, 2.5 W / mK or more, 3 W / mK or more, 3.5 W / mK or more, or 4 W / mK or more.
  • the thermal conductivity is 50 W / mK or less, 45 W / mk or less, 40 W / mk or less, 35 W / mk or less, 30 W / mk or less, 25 W / mk or less, 20 W / mk or less, 15 W / mk Or less, 10 W / mK or less, 5 W / mK or less, 4.5 W / mK or less, or about 4.0 W / mK or less.
  • the lower plate, the upper plate, and / or the sidewall on which the resin layer is attached may be a portion having the above-described thermal conductivity of 10 W / mK or more.
  • the portion of the module case showing the thermal conductivity may be a portion in contact with a cooling medium, for example, cooling water.
  • the thermal conductivity of the resin layer is measured using a known hot disk device, for example, a numerical value measured according to ASTM D5470 standard or ISO 22007-2 standard.
  • the thermal conductivity of the resin layer as described above can be ensured, for example, by appropriately adjusting the filler contained in the resin layer and its content ratio as described above.
  • the thermal resistance of the resin layer or the battery module to which the resin layer is applied in the battery module is 5 K / W or less, 4.5 K / W or less, 4 K / W or less, 3.5 K / W or less, 3 K Or less than or about 2.8 K / W.
  • the measurement of the thermal resistance can be calculated based on the temperature measured from the sensor, attaching a temperature sensor according to the cell position on the module while driving the battery module.
  • the method of measuring the thermal resistance is not particularly limited, and for example, the thermal resistance may be measured according to ASTM D5470 standard or ISO 22007-2 standard.
  • the resin layer may be a resin layer formed to maintain durability even in a predetermined thermal shock test.
  • Thermal shock testing can be performed in a manner known in the art. For example, when the temperature is maintained at a low temperature of about -40 ° C for 30 minutes and then the temperature is raised to 80 ° C for 30 minutes as a cycle, the module case of the battery module or The resin layer may be peeled off from the battery cell or cracks may not occur.
  • the above level of performance may be required to secure durability.
  • the resin layer may be a flame retardant resin layer.
  • flame retardant resin layer may refer to a resin layer having a V-0 rating in a UL 94 V Test (Vertical Burning Test). This ensures stability against fire and other accidents that may occur in the battery module.
  • the resin layer may have a specific gravity of 5 or less. In another example, the specific gravity may be 4.5 or less, 4 or less, 3.5 or less, or 3 or less.
  • the resin layer exhibiting specific gravity in this range is advantageous for the production of a lighter battery module. The lower the specific gravity is, the more advantageous the weight of the module is. Therefore, the lower limit thereof is not particularly limited.
  • the specific gravity may be about 1.5 or more or 2 or more.
  • components added to the resin layer may be adjusted. For example, when the filler is added, a filler capable of securing a desired thermal conductivity even at a low specific gravity as much as possible, that is, a filler having a low specific gravity or a surface-treated filler may be used.
  • the resin layer preferably does not contain a volatile material.
  • the resin layer may have a ratio of nonvolatile content of 90 wt% or more, 95 wt% or more, or 98 wt% or more.
  • the nonvolatile component and its ratio may be defined in the following manner. That is, the part which remains after maintaining a resin layer at 100 degreeC for about 1 hour can be defined as a nonvolatile component. Therefore, the ratio of the nonvolatile component can be measured based on the initial weight of the resin layer and the ratio after maintaining for 1 hour at 100 ° C.
  • the resin layer has a low shrinkage after curing or after curing. Through this, it is possible to prevent peeling or the generation of voids that may occur during the manufacture or use of the module.
  • the shrinkage rate may be appropriately adjusted in a range capable of exhibiting the above-described effects, for example, may be less than 5%, less than 3% or less than about 1%. Since the said shrinkage rate is so advantageous that the numerical value is low, the minimum in particular is not restrict
  • the resin layer may have a low coefficient of thermal expansion (CTE) in order to prevent peeling or the generation of voids that may occur during the manufacture or use of the module.
  • CTE coefficient of thermal expansion
  • the thermal expansion coefficient can be, for example, less than 300 ppm / K, less than 250 ppm / K, less than 200 ppm / K, less than 150 ppm / K or less than about 100 ppm / K. Since the said coefficient of thermal expansion is so advantageous that the numerical value is low, the minimum in particular is not restrict
  • the method for measuring the thermal expansion coefficient is not particularly limited.
  • the length strain rate within a specified temperature range based on the modified length can be measured in such a way as to confirm.
  • the resin layer may have an appropriate level of tensile strength.
  • the resin layer may be configured to have a young's modulus of about 1.0 MPa or more. Young's modulus is measured in tensile mode at low temperature (about -40 ° C, room temperature (about 25 ° C), and high temperature (about 80 ° C) for each point, for example, within the range of -40 to 80 ° C. The Young's modulus is measured to be lower as the temperature is higher, for example, the resin layer of the present application has a Young's modulus in the range of 1.0 Mpa or more, more specifically, 10 to 500 Mpa within the above range.
  • the Young's modulus is less than the above range, the function of fixing a large weight cell is not good, and if the Young's modulus is too large, a brittle characteristic is strong, so that a crack may occur in an impact situation such as a vehicle crash.
  • the resin layer exhibits an appropriate hardness.
  • the hardness of the resin layer when the hardness of the resin layer is too high, since the resin layer has brittle characteristics, it may adversely affect reliability. In view of such a point, by controlling the hardness of the resin layer, it is possible to secure impact resistance and vibration resistance and to secure durability of the product.
  • the resin layer may, for example, have a hardness in Shore A type of less than 100, 99 or less, 98 or less, 95 or less, or 93 or less, or hardness in Shore D type of less than about 80, about 70 or less, or about 65 or less or about 60 or less.
  • the lower limit of the hardness is not particularly limited.
  • the hardness may be about 60 or more in Shore A type, or about 5 or about 10 or more in Shore 00 type. Hardness of the above range can be secured by adjusting the content of the filler. Shore hardness can be measured according to known methods using a hardness meter for each type, such as, for example, shore A hardness meter. Known methods include ASTM D2240 and the like.
  • a battery module having excellent durability against external shock or vibration can be provided.
  • At least one of the sidewalls, the bottom plate, and the top plate contacting the resin layer may be the above-described thermally conductive sidewall, the bottom plate, or the top plate.
  • the term contact in the present specification is, for example, the resin layer and the top plate, bottom plate and / or side wall or battery cells are in direct contact, or other elements, for example, an insulating layer or the like therebetween. It may mean a case.
  • the resin layer in contact with the thermally conductive sidewall, the bottom plate or the top plate may be in thermal contact with the object.
  • the thermal contact is such that the resin layer is in direct contact with the lower plate or the like, or there is another element between the resin layer and the lower plate, for example, an insulating layer to be described later. It may mean a state that does not interfere with the transfer of heat from the battery cell to the resin layer and the resin layer to the lower plate. In the above, not impeding the transfer of heat, even if there is another element (eg an insulating layer or a guiding part described later) between the resin layer and the lower plate, the overall thermal conductivity of the other element and the resin layer.
  • another element eg an insulating layer or a guiding part described later
  • the thermal conductivity of the thermal contact is 50 W / mK or less, 45 W / mk or less, 40 W / mk or less, 35 W / mk or less, 30 W / mk or less, 25 W / mk or less, 20 W / mk or less, 15 W / mk or less, 10 W / mK or less, 5 W / mK or less, 4.5 W / mK or less, or about 4.0 W / mK or less.
  • Such thermal contact can be achieved by controlling the thermal conductivity and / or thickness of the other element, if such other element is present.
  • the thermally conductive resin layer may be in thermal contact with the lower plate and the like, and may also be in thermal contact with the battery cell.
  • the module includes a case 10 including a side wall 10b and a bottom plate 10a; It may have a form including a plurality of battery cells 20 stored in the case and the resin layer 30 in contact with both the battery cell 20 and the case 10.
  • FIG. 7 is a view of the resin layer 30 existing on the lower plate 10a side
  • the battery module of the present application may include a resin layer positioned in the same shape as FIG. 7 on the upper plate side.
  • the lower plate and the like contacting with the resin layer 30 may be a thermally conductive lower plate and the like as described above.
  • the contact area of the resin layer and the lower plate may be about 70% or more, about 75% or more, about 80% or more, about 85% or more, about 90% or more or about 95% or more relative to the total area of the lower plate or the like.
  • the upper limit of the contact area is not particularly limited, and may be, for example, 100% or less or less than about 100%.
  • the thermally conductive portion or the thermally conductive lower plate may be a portion in contact with a cooling medium such as cooling water. That is, as shown schematically in FIG. 7, heat (H) can be easily discharged to the lower plate and the like by the above structure, and by contacting the lower plate and the like with the cooling medium (CW), even in a more simplified structure The heat can be released easily.
  • a cooling medium such as cooling water
  • Each of the first and second cured resin layers may have a thickness, for example, in the range of about 100 ⁇ m to 5 mm or in the range of about 200 ⁇ m to 5 mm.
  • the thickness of the said resin layer can be set to an appropriate thickness in consideration of target heat dissipation characteristic and durability.
  • the thickness may be the thickness of the thinnest portion, the thickness of the thickest portion, or the average thickness of the resin layer.
  • At least one surface of the inside of the module case 10, for example, a surface 10a in contact with the resin layer 30, may include a guiding part configured to guide the battery cell 20 to be accommodated. 10d) may be present.
  • the shape of the guiding part 10d is not particularly limited, and an appropriate shape may be adopted in consideration of the shape of the battery cell to be applied.
  • the guiding part 10d may be formed integrally with the lower plate or the like, or may be separately attached.
  • the guiding part 10d may be formed using a thermally conductive material, for example, a metal material such as aluminum, gold, pure silver, tungsten, copper, nickel or platinum in consideration of the thermal contact described above.
  • a gap sheet or an adhesive layer may exist between the battery cells 20 to be accommodated.
  • the interleaver may serve as a buffer when charging and discharging the battery cell.
  • the battery module may further include an insulating layer between the module case and the battery cell or between the resin layer and the module case.
  • FIG. 8 exemplarily shows a case where the insulating layer 40 is formed between the guiding portion 10d and the resin layer 30 formed on the lower plate 10a of the case.
  • the insulating layer may be formed using an insulating sheet having high insulation and thermal conductivity, or may be formed by coating or injecting a material exhibiting insulation. For example, in the method of manufacturing a battery module described below, a process of forming an insulating layer may be performed before the injection of the resin composition.
  • the insulating layer may be formed of an adhesive material, and for example, the insulating layer may be formed using a resin layer having little or no filler such as a thermally conductive filler.
  • the resin component that can be used to form the insulating layer include acrylic resins, olefin resins such as PVC (poly (vinyl chloride)) and PE (polyethylene), epoxy resin, silicone, and EPDM rubber (ethylene propylene diene monomer rubber). Rubber components, such as, but not limited to, etc.
  • the insulating layer has an insulation breakdown voltage measured in accordance with ASTM D149 of about 5 kV / mm or more, about 10 kV / mm or more, about 15 kV / kmm or more, 20 kV / mm or more, 25 kV / mm or more or 30 kV / mm or more
  • the breakdown voltage is not particularly limited as the value shows higher insulation.
  • the dielectric breakdown voltage of the insulating layer may be about 100 kV / mm or less, 90 kV / mm or less, 80 kV / mm or less, 70 kV / mm or less, or 60 kV / mm or less. In consideration of insulation and thermal conductivity, it can be set in an appropriate range.
  • Cotton about 5 ⁇ m or more, about 10 ⁇ m or more, 20 ⁇ m or more, 30 ⁇ m or more, 40 ⁇ m or more, 50 ⁇ m or more, 60 ⁇ m or more, 70 ⁇ m or more, 80 ⁇ m or more, or about 90 ⁇ m or more.
  • the upper limit of is not particularly limited, and may be, for example, about 1 mm or less, about 200 ⁇ m or less, 190 ⁇ m or less, 180 ⁇ m or less, 170 ⁇ m or less, 160 ⁇ m or less, or 150 ⁇ m or less.
  • the present application relates to a battery module, for example a method of manufacturing the aforementioned battery module.
  • Manufacturing method of the present application the step of injecting the resin composition in the above-described module case; And storing the battery cell in the module case and curing the resin composition to form the resin layer.
  • the order of injecting the resin composition into the module case and storing the battery cells in the module case are not particularly limited.
  • the resin composition may be first injected into the module case, and the battery cell may be stored in that state, or the resin composition may be injected after the battery cell is first stored inside the module case.
  • the resin composition described above can be used.
  • the method of injecting the resin composition into the module case is not particularly limited, and a known method may be applied.
  • the resin composition is poured into the opening of the module case to inject the resin composition, or the resin composition is injected through the above-described injection holes formed in the module case, the resin composition in both the battery cell and the battery module.
  • the method of applying this may be applied.
  • the implantation process may be performed while constantly vibrating the battery module or battery cell for proper fixation.
  • the manner in which the battery cells are housed in the module case in which the resin composition is injected or in the module case before the composition is injected is not particularly limited.
  • the storage of the battery cells can be performed by arranging the battery cells at suitable positions in the module case in consideration of the desired arrangement and the like.
  • the above steps may be performed by positioning the battery cell at an appropriate position of the cartridge structure, or inserting the cartridge structure in which the battery cell is located in the module case.
  • adhesion between the battery cells or adhesion between the battery cells and the module case may be formed by curing the injected resin composition.
  • the manner of curing the resin composition is not particularly limited.
  • the resin composition may be cured by a method of maintaining the resin composition at room temperature for a predetermined time. At a level that will not impair the thermal stability of the cell, heat may be applied for a certain time to promote curing.
  • a temperature of less than 60 ° C., more specifically about 30 ° C. to 50 ° C. is applied to reduce tack time and to provide fairness. Can be improved.
  • a cured product that can achieve adhesion between battery cells or adhesion between a battery cell and a module case may have a conversion rate of at least 80% or more as described above.
  • the present application relates to a battery pack, for example, a battery pack including two or more battery modules described above.
  • the battery modules may be electrically connected to each other.
  • a method of configuring a battery pack by electrically connecting two or more battery modules is not particularly limited, and all known methods may be applied.
  • the present application also relates to a device including the battery module or the battery pack.
  • the device include, but are not limited to, an automobile such as an electric vehicle, and may be any device for which a secondary battery is required as an output.
  • the method of configuring the vehicle using the battery module or the battery pack is not particularly limited, and a general method known in the art may be applied.
  • the present application has the effect of the invention to provide a composition that can effectively fix the battery cell in the module case, and improve the heat dissipation and manufacturing processability of the battery module. Further, according to the present application, a battery module and a battery pack having a resin layer excellent in cold resistance, heat resistance, insulation and adhesion reliability are provided. Accordingly, a battery module and a battery pack having excellent output to volume as well as improved heat dissipation characteristics and durability may be provided.
  • FIG 2 illustrates an example module case that may be applied in the present application.
  • FIG. 3 schematically illustrates a form in which a battery cell is accommodated in a module case.
  • FIG 4 schematically illustrates an example bottom plate in which injection holes and observation holes are formed.
  • FIG. 5 and 6 schematically illustrate an example battery pouch that can be used as a battery cell.
  • FIG. 7 and 8 schematically show the structure of an exemplary battery module.
  • Tm for the polyol resin used in the Examples and Comparative Examples was changed to Q2000 (at a temperature rising rate of 10 ° C / min (min) in the order of 25 ° C-> 50 ° C-> -70 ° C-> 50 ° C. It was measured by DSC analysis using TA instruments.
  • Adhesive force (S1) (unit: gf / 10mm)
  • the aluminum pouches used to make the battery cells were cut to a width of about 10 mm. After loading the resin composition used in each of Examples and Comparative Examples onto a glass plate, and loading the cut aluminum pouch thereon such that the resin composition was brought into contact with the poly (ethylene terephthalate) surface of the pouch. The resin composition was cured at 24 ° C. and 50% RH conditions for 24 hours. Subsequently, the aluminum pouch was measured at a peel angle at a 180 ° peel rate and a peel rate at 300 mm / min using a tensile analyzer to measure the adhesive force.
  • the resin composition was cured specimens were prepared and stored for 10 days at 85 °C and 85% RH conditions. Then, the adhesive force (S 2 ) was measured in the same manner as in item 2 .
  • Tg of the cured product was cured at room temperature for 24 hours, and the mixture of the same resin as used in the Examples and Comparative Examples was changed at a temperature rising rate of 10 ° C / min from -75 ° C to 50 ° C. was measured by DSC analysis.
  • the main composition has a caprolactone-based polyol represented by Formula 2, wherein the number of repeating units (m in Formula 2) is about 1 to 3, and the polyol-derived unit (Y in Formula 2) is 1,4- A predetermined amount of a resin comprising a polyol comprising butanediol (having a viscosity of about 280 cP as measured by a Brookfield LV type viscometer) was used.
  • Isocyanate A mixture of Hexamethylene diisocyanate (HDI) and an HDI trimer (having a viscosity of 170 cP as measured by a Brookfield LV type viscometer) was used for the isocyanate composition. At this time, the amount of isocyanate compound was adjusted so that the NCO index was about 100.
  • HDI Hexamethylene diisocyanate
  • HDI trimer having a viscosity of 170 cP as measured by a Brookfield LV type viscometer
  • Alumina was used. The content was set to a ratio of 1,000 parts by weight to 100 parts by weight of the total content of the polyol and isocyanate, and the alumina was divided and blended in the same amount in the main composition part and the hardener composition part.
  • DBTDL dibutyltin dilaurate
  • the glass transition temperature (Tg) measured in the manner described above for the prepared composition was less than 0 ° C.
  • Tm melting point measured in the above-described manner
  • the adhesive force (S 1 ) was 449 gf / 10mm
  • the ratio between the adhesive force (S 2 / S 1 ) was 70% or more. From this, it can be seen that the composition of Example 1 can provide adequate processability upon injection into the battery module even when it contains an excess of filler, and after curing has excellent adhesion and adhesion reliability.
  • Example 1 Except for changing the use of neopentyl glycol (neopentyl glycol) when forming the Y unit of the polyol Formula 2 (the viscosity of the prepared polyol has a viscosity of about 300 cP as measured by Brookfield LV type viscometer), as in Example 1
  • the composition was prepared.
  • the glass transition temperature (Tg) measured in the above-described manner for the prepared composition was less than 0 ° C., and the polyol used was weakly crystalline (amorphous), so that the crystallization temperature (Tc) and melting temperature (Tm) on DSC were determined.
  • Tg crystallization temperature
  • Tm melting temperature
  • the adhesive force (S1) was 467 gf / 10mm, the ratio between the adhesive force (S2 / S1) was 70% or more. From this, it can be seen that the composition of Example 2 can provide adequate processability upon injection into the battery module even when it contains an excess of filler, and has excellent adhesion and adhesion reliability after curing.
  • a composition was prepared in the same manner as in Example 1, except that PPG (the hydroxyl value of 360 mg KOH / g), which is an ether polyol, was used.
  • the glass transition temperature measured in the manner described above for the prepared composition was below 0 ° C., and the melting point was observed below 15 ° C. And, the adhesive force (S 1 ) was 116 gf / 10mm, the ratio between the adhesive forces (S2 / S1) was 70% or more. From this, it can be seen that the composition of Comparative Example 1, which does not have an ester-based polyol in the configuration of the present application, cannot provide sufficient adhesion necessary to adhere the battery cells to the case in the battery module.
  • a composition was prepared in the same manner as in Example 1, except for using an aromatic diisocyanate, methylene diphenyl diisocyanate (MDI).
  • MDI methylene diphenyl diisocyanate
  • the glass transition temperature (Tg) measured in the above-described manner for the prepared composition was above 0 ° C., and the melting point (Tm) was 15 ° C. or less.
  • the adhesion (S 1 ) was 666 gf / 10mm, the ratio between the adhesion (S 2 / S 1 ) was 70% or more. From this, the composition of Comparative Example 2 using an aromatic isocyanate as a curing component has a high curing rate, poor injection processability and storage stability, and the cured product has a high glass transition temperature, so the impact resistance and vibration resistance at low temperatures are low. It can be seen that the material is not suitable as a material for a battery module which is required.
  • a composition was prepared in the same manner as in Example 1, except that the repeating unit m of Chemical Formula 2 was 11 in the main composition part.
  • the glass transition temperature (Tg) measured in the above-described manner for the prepared composition was below 0 ° C, and the melting point (Tm) exceeded 20 ° C.
  • the adhesive force (S 1 ) was 467 gf / 10mm, the ratio between the adhesive force (S 2 / S 1 ) was 70% or more. From this, the composition of Comparative Example 4 using a polyol that does not have a sufficiently low crystallinity required herein, due to the crystallinity at room temperature, poor injection processability for the composition used as an adhesive in the battery module Able to know.

Abstract

본 출원은 조성물, 배터리 모듈 및 배터리 팩에 관한 것이다. 본 출원의 일례에 따르면 부피 대비 출력이 우수할 뿐 아니라 방열 특성, 접착력, 접착신뢰성, 및 공정성이 개선된 배터리 모듈 및 배터리 팩이 제공될 수 있다.

Description

수지 조성물
관련출원과의 상호인용
본 출원은 2018년 3월 28일 자 한국 특허 출원 제10-2018-0035750호 및 2019년 3월 14일 자 한국 특허출원 제10-2019-0029276호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 출원은 수지 조성물에 관한 것이다. 구체적으로, 본 출원은 수지 조성물과, 상기 수지 조성물의 경화물을 포함하는 배터리 모듈, 배터리 팩, 및 자동차에 관한 것이다.
이차 전지에는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 또는 리튬 이차 전지 등이 있고, 대표적인 것은 리튬 이차 전지이다.
리튬 이차 전지는 주로 리튬 산화물과 탄소 소재를 각각 양극 및 음극 활물질로 사용한다. 리튬 이차 전지는, 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판이 세퍼레이터를 사이에 두고 배치된 전극 조립체 및 전극 조립체를 전해액과 함께 밀봉 수납하는 외장재를 포함하는데, 외장재의 형상에 따라 캔형 이차 전지와 파우치형 이차 전지로 분류될 수 있다. 이러한 단일의 이차 전지는 배터리 셀로 호칭될 수 있다.
자동차나 전력저장장치와 같은 중대형 장치의 경우에는, 용량 및 출력을 높이기 위해 많은 수의 배터리 셀이 서로 전기적으로 연결된 배터리 모듈이 사용되거나 그러한 배터리 모듈이 복수 개 연결된 배터리 팩이 사용될 수 있다.
배터리 모듈이나 배터리 팩을 구성하기 위해서는, 다양한 체결 부품이나 냉각 장비 등이 요구되는데, 이러한 체결 부품 또는 냉각 장비 등은 배터리 모듈 또는 배터리 팩의 제조 비용 상승을 유발하고, 부피 및 무게를 증가시킨다. 그로 인해 증가된 부피 및 무게 대비 배터리 모듈이나 배터리 팩의 출력도 떨어지는 문제가 있다.
또한, 배터리 팩이 자동차 등에 사용되는 경우에는 진동 등 외부 충격에 많이 노출되기 때문에 우수한 내구성이 확보될 필요가 있다.
본 출원의 일 목적은, 전술한 문제점을 해결할 수 있는 수지 조성물을 제공하는 것이다.
본 출원의 다른 목적은, 배터리 모듈이나 배터리 팩에 사용되는 경우에 있어서, 방열성, 접착력, 및 접착 신뢰성뿐 아니라 공정성이 우수한 수지 조성물을 제공하는 것이다.
본 출원의 다른 목적은 배터리 모듈 및 배터리 팩을 제공하는 것이다.
본 출원의 상기 목적 및 기타 그 밖의 목적은 하기 상세히 설명되는 본 출원에 의해 모두 해결될 수 있다.
본 출원에 관한 일례에서, 본 출원은 배터리 모듈 또는 배터리 팩에 사용되는 조성물에 관한 것이다. 구체적으로, 본 출원의 조성물은 하기 설명되는 바와 같이, 배터리 모듈의 케이스 내부로 주입되고, 배터리 모듈 내에 존재하는 하나 이상의 배터리 셀과 접촉하여 배터리 셀을 모듈 케이스 내에서 고정시키는데 사용되는 조성물일 수 있다.
본 출원에서, 상기 조성물로는 우레탄계 조성물이 사용될 수 있다. 구체적으로, 본 출원에서는 이액형 우레탄계 조성물이 사용될 수 있다. 이액형 우레탄은 이소시아네이트계 화합물 및 폴리올계 화합물을 혼합하여 형성되는 폴리우레탄을 의미하는 것으로, 단일 조성 내에 우레탄기를 갖는 일액형 폴리우레탄과는 구별된다.
상기 이액형 폴리우레탄의 경우, 폴리올 등을 포함하는 주제와 이소시아네이트 등을 포함하는 경화제가 상온에서 반응하여 경화될 수 있다. 즉, 본 출원의 조성물은 상온 경화형일 수 있다. 본 출원에서, 용어 「상온」은 특별히 가온 또는 감온되지 않은 상태로서, 약 10℃ 내지 30℃의 범위 내의 어느 한 온도, 예를 들면, 약 15℃ 이상, 약 18℃ 이상, 약 20℃ 이상, 또는 약 23℃ 이상이고, 약 27℃ 이하의 온도를 의미할 수 있다. 상기 경화 반응은, 예를 들어 디부틸틴 디라우레이트(DBTDL: dibutyltin dilaurate)와 같은 촉매의 도움을 받을 수 있다. 그에 따라 상기 이액형 우레탄계 조성물은 주제 성분(폴리올)과 경화제 성분(이소시아네이트)의 물리적인 혼합물을 포함할 수 있고, 그리고/또는 주제 성분과 경화제 성분의 반응물(경화물)을 포함할 수 있다.
본 출원의 이액형 우레탄계 조성물은, 적어도 폴리올 수지를 포함하는 주제 조성물부(또는 주제부), 및 적어도 폴리이소시아네이트를 포함하는 경화제 조성물부(또는 경화제부)를 포함할 수 있다. 그에 따라, 상기 수지 조성물의 경화물은 상기 폴리올 유래 단위와 상기 폴리이소시아네이트 유래 단위를 모두 포함할 수 있다. 이때, 상기 폴리올 유래 단위는 폴리올이 폴리이소시아네이트와 우레탄 반응하여 형성되는 단위이고, 폴리이소시아네이트 유래 단위는 폴리이소시아네이트가 폴리올과 우레탄 반응하여 형성되는 단위일 수 있다.
상기 조성물은 또한, 필러를 포함할 수 있다. 예를 들어, 공정상 필요에 따라 요변성을 확보하기 위해, 그리고/또는 배터리 모듈이나 배터리 팩 내에서 방열성(열전도성)을 확보하기 위해, 하기 설명되는 바와 같이 본 출원의 조성물에는 과량의 필러가 포함될 수 있다. 구체적인 내용은 하기 관련된 설명에서 상세히 기술한다.
상기 우레탄계 조성물에 포함되는 폴리올 수지와 이소시아네이트 성분은, 경화 후 0℃ 미만의 유리전이온도(Tg)를 가질 수 있다. 본 출원에서 「경화 후 유리전이온도」란, 상온 및 30 내지 70% 상대습도 조건에서 24시간 경화 상태를 기준으로, FT-IR 분석에 의해 확인되는 2250 cm-1 부근에서의 NCO 피크 기준 전환율(conversion)이 80% 이상인 경화물에 대하여 측정된 유리전이온도일 수 있다.
상기 유리전이온도 범위를 만족하는 경우, 배터리 모듈이나 배터리 팩이 사용될 수 있는 낮은 온도에서도 브리틀(brittle)한 특성을 비교적 단 시간내에 확보할 수 있고, 그에 따라 내충격성이나 내진동 특성이 보장될 수 있다. 반면 상기 범위를 만족하지 못할 경우에는, 경화물의 점착 특성(tacky)이 지나치게 높거나 열안정성이 저하될 가능성이 있다. 하나의 예시에서, 상기 경화 후 우레탄계 조성물이 갖는 유리전이온도의 하한은 - 70℃ 이상, - 60℃ 이상, - 50℃ 이상, - 40℃ 이상 또는 - 30℃ 이상일 수 있고, 그 상한은 - 5℃ 이하, - 10℃ 이하, - 15℃ 이하, 또는 - 20℃ 이하일 수 있다.
하나의 예시에서, 상기 주제 조성물부에 포함되는 폴리올 수지로는 에스테르계 폴리올 수지가 사용될 수 있다. 에스테르계 폴리올을 사용할 경우, 수지 조성물 경화 후에 배터리 모듈 내에서 우수한 접착성과 접착 신뢰성을 확보하는데 유리하다.
하나의 예시에서, 상기 에스테르계 폴리올로는, 예를 들어, 카복실산계 폴리올이나 카프로락톤계 폴리올이 사용될 수 있다.
상기 카복실산계 폴리올은 카복실산과 폴리올(ex. 디올 또는 트리올 등)을 포함하는 성분을 반응시켜서 형성할 수 있고, 카프로락톤계 폴리올은 카프로락톤과 폴리올(ex. 디올 또는 트리올 등)을 포함하는 성분을 반응시켜서 형성할 수 있다. 이때, 상기 카르복실산은 디카복실산일 수 있다.
일 예에서, 상기 폴리올은 하기 화학식 1 또는 2로 표시되는 폴리올일 수 있다.
[화학식 1]
Figure PCTKR2019003149-appb-I000001
[화학식 2]
Figure PCTKR2019003149-appb-I000002
화학식 1 및 2에서, X는 카복실산 유래의 단위이고, Y는 폴리올 유래의 단위이다. 폴리올 유래의 단위는, 예를 들면, 트리올 단위 또는 디올 단위일 수 있다. 또한, n 및 m은 임의의 수일 수 있다.
상기 화학식에서 카복실산 유래 단위는 카복실산이 폴리올과 반응하여 형성된 단위이고, 폴리올 유래 단위는 폴리올이 카복실산 또는 카프로락톤과 반응하여 형성된 단위이다.
즉, 폴리올의 히드록시기와 카복실산의 카복실기가 반응하면, 축합 반응에 의해 물(HO2) 분자가 탈리되면서 에스테르 결합이 형성되는데, 상기 화학식 1의 X는 상기 카복실산이 상기 축합 반응에 의해 에스테르 결합을 형성한 후에 상기 에스테르 결합 부분을 제외한 부분을 의미한다. 또한, Y는 상기 축합 반응에 의해 폴리올이 에스테르 결합을 형성한 후에 그 에스테르 결합을 제외한 부분이다. 상기 에스테르 결합은 화학식 1에 표시되어 있다.
또한, 화학식 2의 Y 역시 폴리올이 카프로락톤과 에스테르 결합을 형성한 후에 그 에스테르 결합을 제외한 부분을 나타낸다. 상기 에스테르 결합은 화학식 2에 표시되어 있다.
한편, 상기 화학식에서 Y의 폴리올 유래 단위가 트리올 단위와 같이 3개 이상의 히드록시기를 포함하는 폴리올로부터 유래된 단위인 경우, 상기 화학식 구조에서 Y 부분에는, 분지가 형성된 구조가 구현될 수 있다.
상기 화학식 1에서, X의 카복실산 유래 단위의 종류는 특별히 제한되지 않지만, 목적하는 물성의 확보를 위해서 프탈산 단위, 이소프탈산 단위, 테레프탈산 단위, 트리멜리트산 단위, 테트라히드로프탈산 단위, 헥사히드로프탈산 단위, 테트라클로로프탈산 단위, 옥살산 단위, 아디프산 단위, 아젤라산 단위, 세박산 단위, 숙신산 단위, 말산 단위, 글라타르산 단위, 말론산 단위, 피멜산 단위, 수베르산 단위, 2,2-디메틸숙신산 단위, 3,3-디메틸글루타르산 단위, 2,2-디메틸글루타르산 단위, 말레산 단위, 푸마루산 단위, 이타콘산 단위 및 지방산 단위로 이루어진 군에서 선택된 어느 하나의 단위일 수 있다. 상기 설명된 범위의 낮은 유리전이 온도를 고려하면, 방향족 카복실산 유래 단위보다는 지방족 카복실산 유래 단위가 바람직할 수 있다.
한편, 화학식 1 및 2에서 Y의 폴리올 유래 단위의 종류는 특별히 제한되지 않지만, 목적하는 물성의 확보를 위해서, 에틸렌글리콜 단위, 디엘틸렌글리콜 단위, 프로필렌글리콜 단위, 1,2-부틸렌글리콜 단위, 2,3-부틸렌글리콜 단위, 1,3-프로판디올 단위, 1,3-부탄디올 단위, 1,4-부탄디올 단위, 1,6-헥산디올 단위, 네오펜틸글리콜 단위, 1,2-에틸헥실디올 단위, 1,5-펜탄디올 단위, 1,9-노난디올 단위, 1,10-데칸디올 단위, 1,3-시클로헥산디메탄올 단위, 1,4-시클로헥산디메탄올 단위, 글리세린 단위 및 트리메틸롤프로판 단위로 이루어진 군에서 선택되는 어느 하나 이상일 수 있다.
한편, 상기 화학식 1에서 n은 임의의 수이며, 그 범위는 수지 조성물 또는 그 경화물인 수지층이 목적하는 물성을 고려하여 선택될 수 있다. 예를 들면, n은 약 2 내지 10 또는 2 내지 5일 수 있다.
또한, 상기 화학식 2에서 m은 임의의 수이며, 그 범위는 수지 조성물 또는 그 경화물인 수지층이 목적하는 물성을 고려하여 선택될 수 있다 예를 들면, m은 약 1 내지 10 또는 1 내지 5일 수 있다.
화학식 1 및 2에서 n과 m이 상기 범위를 벗어나면, 폴리올의 결정성 발현이 강해지면서 조성물의 주입 공정성에 악영향을 끼칠 수 있다.
상기 폴리올의 분자량은 하기 설명되는 저점도 특성이나, 내구성 또는 접착성 등을 고려하여 조절될 수 있으며, 예를 들면, 약 300 내지 2,000의 범위 내일 수 있다. 특별히 달리 규정하지 않는 한, 본 명세서에서 「분자량」은 GPC(Gel Permeation Chromatograph)를 사용하여 측정한 중량평균분자량(Mw)일 수 있다. 상기 범위를 벗어나는 경우, 경화 후 수지층의 신뢰성이 좋지 못하거나 휘발 성분과 관련된 문제가 발생할 수 있다.
본 출원에서 폴리이소시아네이트란, 이소시아네이트기를 2 이상 포함하는 화합물을 의미할 수 있다.
본 출원에서, 경화제 조성물부에 포함되는 폴리이소시아네이트의 종류는 특별히 제한되지 않으나, 목적하는 물성의 확보를 위해 방향족기를 포함하지 않는 비방향족 이소시아네이트 화합물을 사용할 수 있다. 즉, 지방족 또는 지환족 계열을 사용하는 것이 유리할 수 있다. 방향족 폴리이소시아네이트를 사용할 경우, 반응속도가 지나치게 빠르고, 경화물의 유리전이온도가 높아질 수 있기 때문에, 본 출원 조성물의 사용 용도에 적합한 공정성과 물성을 확보하기 어려울 수 있다.
예를 들어, 지방족 또는 지방족 고리식 폴리이소시아네이트나 그 변성물이 사용될 수 있다. 구체적으로, 헥사메틸렌 디이소시아네이트, 트리메틸헥사메틸렌 디이소시아네이트, 리신 디이소시아네이트, 노르보르난 디이소시아네이트 메틸, 에틸렌 디이소시아네이트, 프로필렌 디이소시아네이트 또는 테트라메틸렌 디이소시아네이트 등의 지방족 폴리이소시아네이트; 트랜스사이클로헥산-1,4-디이소시아네이트, 이소포론 디이소시아네이트, 비스(이소시아네이트메틸)사이클로헥산 디이소시아네이트 또는 디사이클로헥실메탄 디이소시아네이트 등의 지방족 고리식 폴리이소시아네이트; 또는 상기 중 어느 하나 이상의 카르보디이미드 변성 폴리이소시아네이트나 이소시아누레이트 변성 폴리이소시아네이트; 등이 사용될 수 있다. 또한, 상기 나열된 화합물 중 2 이상의 혼합물이 사용될 수 있다.
수지 조성물 내에서 상기 폴리올 유래 수지 성분과 폴리이소시아네이트 유래 수지 성분의 비율은 특별히 제한되지 않고, 이들 간 우레탄 반응이 가능하도록 적절하게 조절될 수 있다.
상기 설명한 바와 같이, 방열성(열전도성)을 확보하기 위해서 또는 공정상 필요에 따른 요변성 확보를 위해서, 과량의 필러가 조성물에 포함될 수 있는데, 과량의 필러가 사용될 경우 조성물의 점도가 높아지면서 배터리 모듈의 케이스 내로 상기 조성물을 주입할 때의 공정성이 나빠질 수 있다. 따라서, 과량의 필러를 포함하면서도, 공정성에 방해가 되지 않을 만큼의 충분한 저점도 특성이 필요하다. 또한, 단순히 저점도만 나타내면, 역시 공정성의 확보가 곤란하기 때문에 적절한 요변성이 요구되고, 경화되면서는 우수한 접착력을 나타내고, 경화 자체는 상온에서 진행되는 것이 필요할 수 있다. 그리고 에스테르계 폴리올은 경화 후 접착성 확보에는 유리하지만, 결정성이 강한 편이기 때문에 상온에서 왁스(wax)상태가 될 가능성이 높고, 점도 상승으로 인해 적절한 주입 공정성을 확보하기 불리한 측면이 있다. 설령 멜팅(melting)을 통해 점도를 낮추어 사용하는 경우라 하더라도 저장 과정에서 자연적으로 발생하는 결정성으로 인해, 필러와 혼합한 이후에 이어질 수 있는 조성물의 주입 또는 도포 공정에서 결정화에 의한 점도 상승이 발생하고, 결과적으로 공정성이 저하될 수 있다. 이러한 점을 고려하여, 본 출원에서 사용되는 에스테르계 폴리올은 하기 특성을 만족할 수 있다.
본 출원에서, 상기 에스테르계 폴리올은 비결정성이거나, 충분히 결정성이 낮은 폴리올일 수 있다. 상기에서 「비결정성」이란, DSC(Differential Scanning calorimetry) 분석에서 결정화 온도(Tc)와 용융 온도(Tm)가 관찰되지 않는 경우를 의미한다. 이때, 상기 DSC 분석은 10℃/분의 속도로 - 80 내지 60℃의 범위 내에서 수행할 수 있고, 예를 들면, 상기 속도로 25℃에서 50℃로 승온 후 - 70℃로 감온하고, 다시 50℃로 승온하는 방식으로 이루어질 수 있다. 또한, 상기에서 「충분히 결정성이 낮다」는 것은, DSC 분석에서 관찰되는 용융점 또는 용융 온도(Tm)가 15℃ 미만으로서, 약 10℃ 이하, 5℃ 이하, 0℃ 이하, - 5℃ 이하, - 10℃ 이하, 또는 - 20℃ 이하 정도인 경우를 의미한다. 이때, 용융점의 하한은 특별히 제한되지 않으나, 예를 들면, 상기 용융점은 약 - 80℃ 이상, 약 - 75℃ 이상 또는 약 - 70℃ 이상일 수 있다. 폴리올이 결정성이거나 상기 용융점 범위를 만족하지 않는 것과 같이 (상온) 결정성이 강한 경우에는, 온도에 따른 점도 차이가 커지기 쉽기 때문에, 필러와 수지를 혼합하는 공정에서 필러의 분산도와 최종 혼합물의 점도에 좋지 않은 영향을 줄 수 있고, 공정성을 저하하며, 그 결과 배터리 모듈용 접착 조성물에서 요구되는 내한성, 내열성 및 내수성을 만족하기 어려워질 수 있다.
도 1은 상기 에스테르계 폴리올의 비결정 특성 또는 충분히 결정성이 낮은 특성을 판단하는 예시로서, 몇 가지 폴리올에 대한 DSC 분석 결과를 도시한 그래프이다. 본 출원에 따를 때, 시료 #1은 비결정성으로 판단될 수 있고, 시료 #2 및 #3은 충분히 결정성이 낮다고 판단될 수 있다. 반면에 용융온도(Tm)가 33.52 ℃인 시료 #4의 경우에는 결정성이 높다고 할 수 있다.
또한 본 출원에서는, 상기 수지 조성물의 용도 및 그 용도에 따라 요구되는 기능을 확보하고자, 첨가제가 사용될 수 있다. 예를 들어, 상기 수지 조성물은, 수지층의 열전도성, 절연성, 및 내열성(TGA 분석) 등을 고려하여, 소정의 필러를 포함할 수 있다. 필러가 수지 조성물에 포함되는 형태나 방식은 특별히 제한되지 않는다. 예를 들어, 필러는, 주제 조성물부 및/또는 경화제 조성물부에 미리 포함된 상태로 우레탄계 조성물 형성에 사용될 수 있다. 또는, 주제 조성물부와 경화제 조성물부를 혼합하는 과정에서, 별도로 준비된 필러가 함께 혼합되는 방식으로도 사용될 수도 있다.
하나의 예시에서 적어도, 상기 조성물에 포함되는 필러는 열전도성 필러일 수 있다. 본 출원에서 용어 열전도성 필러는, 열전도도가 약 1 W/mK 이상, 약 5 W/mK 이상, 약 10 W/mK 이상 또는 약 15 W/mK 이상인 재료를 의미할 수 있다. 구체적으로, 상기 열전도성 필러의 열전도도는 약 400 W/mK 이하, 약 350 W/mK 이하 또는 약 300 W/mK 이하일 수 있다. 사용될 수 있는 열전도성 필러의 종류는 특별히 제한되지 않지만, 절연성 등을 함께 고려할 때 세라믹 필러일 수 있다. 예를 들면, 알루미나, AlN(aluminum nitride), BN(boron nitride), 질화 규소(silicon nitride), SiC 또는 BeO 등과 같은 세라믹 입자가 사용될 수 있다. 상기 필러의 형태나 비율은 특별히 제한되지 않으며, 우레탄계 조성물의 점도, 조성물이 경화된 수지층 내에서의 침강 가능성, 목적하는 열저항 내지는 열전도도, 절연성, 충진 효과 또는 분산성 등을 고려하여 적절히 조절될 수 있다. 일반적으로 필러의 사이즈가 커질수록 이를 포함하는 조성물의 점도가 높아지고, 수지층 내에서 필러가 침강할 가능성이 높아진다. 또한 사이즈가 작아질수록 열저항이 높아지는 경향이 있다. 따라서 상기와 같은 점을 고려하여 적정 종류 및 크기의 필러가 선택될 수 있고, 필요하다면 2종 이상의 필러를 함께 사용할 수도 있다. 또한, 충진되는 양을 고려하면 구형의 필러를 사용하는 것이 유리하지만, 네트워크의 형성이나 전도성 등을 고려하여 침상이나 판상 등과 같은 형태의 필러도 사용될 수 있다. 상기 필러의 열 전도도는 공지된 방법에 따라 측정될 수 있고, 이때, 필러의 열 전도도는 필러를 용융시킨 후 시편을 만드는 방식으로 측정될 수 있다.
하나의 예시에서, 상기 조성물은, 평균 입경이 0.001 ㎛ 내지 80 ㎛의 범위 내에 있는 열전도성 필러를 포함할 수 있다. 상기 필러의 평균 입경은 다른 예시에서 0.01 ㎛ 이상, 0.1 ㎛ 이상, 0.5 ㎛ 이상, 1 ㎛ 이상, 2 ㎛ 이상, 3 ㎛ 이상, 4 ㎛ 이상, 5 ㎛ 이상 또는 약 6 ㎛ 이상일 수 있다. 상기 필러의 평균 입경은 다른 예시에서 약 75 ㎛ 이하, 약 70 ㎛ 이하, 약 65 ㎛ 이하, 약 60 ㎛ 이하, 약 55 ㎛ 이하, 약 50 ㎛ 이하, 약 45 ㎛ 이하, 약 40 ㎛ 이하, 약 35 ㎛ 이하, 약 30 ㎛ 이하, 약 25 ㎛ 이하, 약 20 ㎛ 이하, 약 15 ㎛ 이하, 약 10 ㎛ 이하 또는 약 5 ㎛ 이하일 수 있다. 상기 평균 입경은 PSA(particle size analysis) 장비를 이용하여 측정될 수 있다. 하나의 예시에서, 상기 평균 입경은 크기별로 입자에 대하여 1에서 100까지 순위를 부여하는 경우, 50번째 순위의 입도인 D(50)을 의미할 수 있다.
우수한 방열 성능을 얻기 위하여, 열전도성 필러가 고함량 사용되는 것이 고려될 수 있다. 예를 들어, 상기 필러는, 전체 수지 성분, 즉 상기 에스테르계 폴리올 수지 및 폴리이소시아네이트의 함량을 합한 100 중량부 대비, 약 50 내지 2,000 중량부의 범위 내에서 사용될 수 있다. 다른 예시에서, 상기 필러의 함량은 전체 수지 성분 보다 과량 사용될 수 있다. 구체적으로, 상기 에스테르계 폴리올 수지 및 폴리이소시아네이트의 함량을 합한 100 중량부 대비, 약 100 중량부 이상, 약 150 중량부 이상, 약 200 중량부 이상, 약 250 중량부 이상, 약 300 중량부 이상, 약 350 중량부 이상, 약 400 중량부 이상, 약 500 중량부 이상, 약 550 중량부 이상, 약 600 중량부 이상 또는 약 650 중량부 이상의 필러가 사용될 수 있다.하나의 예시에서, 필러가 상기 범위만큼 사용되는 경우, 주제 조성물부와 경화제 조성물부에 동일한 양으로 분배될 수 있다.
상기와 같이, 고함량으로 열전도성 필러가 사용되는 경우, 필러를 포함하는 주제 조성물부, 경화제 조성물부, 또는 이들을 포함하는 조성물의 점도가 증가할 수 있다. 설명된 바와 같이, 수지 조성물의 점도가 너무 높을 경우 주입 공정성이 좋지 못하며, 그에 따라 수지층에 요구되는 물성이 수지층 전체에서 충분히 구현되지 않을 수 있다. 이러한 점을 고려할 때, 수지 성분으로는 액상이거나 충분한 유동을 가질 수 있는 저점도 성분을 사용하는 것이 바람직하다.
하나의 예시에서, 에스테르계 폴리올 수지 및 폴리이소시아네이트 성분 각각은 10,000 cP 이하의 점도를 가질 수 있다. 구체적으로, 상기 수지 성분은 8,000 cP 이하, 6,000 cP 이하, 4,000 cP 이하, 2,000 cP 또는 1,000 CP 이하의 점도를 가질 수 있다. 바람직하게는 상기 점도의 상한이 900 cP 이하, 800 cP 이하, 700 cP 이하, 600 cP 이하, 500 cP 이하, 또는 400 cP 이하일 수 있다. 특별히 제한되지는 않으나, 각 수지 성분의 점도 하한은 50 cP 이상 또는 100 cP 이상일 수 있다. 점도가 너무 낮을 경우 공정성은 좋을지 모르나, 원재료의 분자량이 낮아지면서 휘발 가능성이 높아지고, 내열성/내한성, 난연성, 및 접착력이 열화될 수 있는데, 상기 하한 범위를 만족함으로써 이러한 단점을 예방할 수 있다. 상기 점도는, 예를 들어, Brookfield LV type 점도계를 사용하여, 상온에서 측정될 수 있다.
상기 외에도, 다양한 종류의 필러가 사용될 수 있다. 예를 들어, 수지 조성물이 경화된 수지층의 절연 특성을 확보하기 위하여, 그래파이트(graphite) 등과 같은 탄소(계) 필러의 사용이 고려될 수 있다. 또는, 예를 들어, 퓸드 실리카, 클레이 또는 탄산칼슘 등과 같은 필러가 사용될 수 있다. 이러한 필러의 형태나 함량 비율은 특별히 제한되지 않으며, 수지 조성물의 점도, 수지층 내에서의 침강 가능성, 요변성, 절연성, 충진 효과 또는 분산성 등을 고려하여 선택될 수 있다.
상기 조성물은 필요한 점도의 조절, 예를 들면 점도를 높이거나 혹은 낮추기 위해 또는 전단력에 따른 점도의 조절을 위하여 점도 조절제, 예를 들면, 요변성 부여제, 희석제, 분산제, 표면 처리제 또는 커플링제 등을 추가로 포함하고 있을 수 있다.
요변성 부여제는 수지 조성물의 전단력에 따른 점도를 조절하여 배터리 모듈의 제조 공정이 효과적으로 이루어지도록 할 수 있다. 사용할 수 있는 요변성 부여제로는, 퓸드 실리카 등이 예시될 수 있다.
희석제 또는 분산제는 통상 수지 조성물의 점도를 낮추기 위해 사용되는 것으로 상기와 같은 작용을 나타낼 수 있는 것이라면 업계에서 공지된 다양한 종류의 것을 제한 없이 사용할 수 있다.
표면 처리제는 수지층에 도입되어 있는 필러의 표면 처리를 위한 것이고, 상기와 같은 작용을 나타낼 수 있는 것이라면 업계에서 공지된 다양한 종류의 것을 제한 없이 사용할 수 있다.
커플링제의 경우는, 예를 들면, 알루미나와 같은 열전도성 필러의 분산성을 개선하기 위해 사용될 수 있고, 상기와 같은 작용을 나타낼 수 있는 것이라면 업계에서 공지된 다양한 종류의 것을 제한 없이 사용할 수 있다.
또한 상기 수지 조성물은 난연제 또는 난연 보조제 등을 추가로 포함할 수 있다. 이 경우 특별한 제한 없이 공지의 난연제가 사용될 수 있으며, 예를 들면, 고상의 필러 형태의 난연제나 액상 난연제 등이 적용될 수 있다. 난연제로는, 예를 들면, 멜라민 시아누레이트(melamine cyanurate) 등과 같은 유기계 난연제나 수산화 마그네슘 등과 같은 무기계 난연제 등이 있다. 수지층에 충전되는 필러의 양이 많은 경우 액상 타입의 난연 재료(TEP, Triethyl phosphate 또는 TCPP, tris(1,3-chloro-2-propyl)phosphate 등)를 사용할 수도 있다. 또한, 난연상승제의 작용을 할 수 있는 실란 커플링제가 추가될 수도 있다.
상기 조성물은, 전술한 바와 같은 구성을 포함할 수 있고, 또한 용제형 조성물, 수계 조성물 또는 무용제형 조성물일 수 있으나, 후술하는 제조 공정의 편의 등을 고려할 때, 무용제형이 적절할 수 있다.
본 출원의 조성물은, 경화 후에 하기 설명되는 용도에 적합한 물성을 가질 수 있다. 본 명세서에서 언급하는 물성 중에서 측정 온도가 그 물성에 영향을 미치는 경우, 특별히 달리 언급하지 않는 한 그 물성은 상온에서 측정한 물성일 수 있다. 또한, 물성과 관련하여 「경화 후」라는 표현은, 유리전이온도와 관련하여 앞서 설명된 것과 동일한 의미로 사용될 수 있다.
하나의 예시에서 상기 수지 조성물은, 경화 후 상온에서 소정의 접착력(S1)을 가질 수 있다. 구체적으로, 상기 수지층은 약 150 gf/10mm 이상, 200 gf/10mm 이상, 250 gf/10mm 이상, 300 gf/10mm 이상, 350 gf/10mm 이상 또는 400 gf/10mm 이상의 접착력을 가질 수 있다. 접착력이 상기 범위를 만족하는 경우, 적절한 내충격성과 내진동성을 확보할 수 있다. 상기 수지층 접착력의 상한은 특별히 제한되지 않으며, 예를 들면, 약 1,000 gf/10mm 이하, 900 gf/10mm 이하, 800 gf/10mm 이하, 700 gf/10mm 이하, 600 gf/10mm 이하 또는 500 gf/10mm 이하 정도일 수 있다. 접착력이 너무 높을 경우에는, 경화된 조성물과 부착되는 파우치 부분이 찢어질 위험이 있다. 구체적으로, 자동차 주행 중 사고로 인해 배터리 모듈의 형태가 변형될 정도의 충격이 발생할 경우, 배터리 셀이 경화된 수지층을 통해 너무 강하게 부착되어 있다면 파우치가 찢어지면서 배터리 내부의 위험물질이 노출되거나 폭발할 수 있다. 상기 접착력은, 후술하는 실시예에 개시된 방법에 따라서 알루미늄 파우치에 대해 측정될 수 있다.
또 하나의 예시에서, 상기 수지 조성물의 경화 후 접착력은, 하기 실시예에서 설명되는 바와 같이 고온/고습하에서도 상당 수준 유지될 수 있다. 구체적으로, 본 출원에서, 상기 상온에서 측정된 경화 후 접착력(S1)에 대하여, 소정의 조건에서 수행되는 고온/고습 가속화 테스트를 진행 한 후 동일한 방법으로 측정된 접착력(S2)이 갖는 %비율[(S2/S1) x 100]은 70 % 이상, 또는 80 % 이상일 수 있다. 하나의 예시에서, 상기 고온/고습 가속화 테스트는 상기 상온 접착력을 측정하는데 사용되는 시편과 동일한 시편을, 40 내지 100℃ 온도 및 75% RH 이상의 습도 조건에서 10일 동안 보관한 후에 측정될 수 있다. 상기 접착력 및 관계를 만족할 경우, 배터리 모듈의 사용 환경이 변화하더라도 우수한 접착 내구성을 유지할 수 있다.
하나의 예시에서, 상기 수지 조성물은, 경화 후 우수한 내열성을 가질 수 있다. 이와 관련하여, 본 출원의 조성물은 필러를 포함하지 않은 상태에서, 수지 성분만의 경화물에 대하여 측정된 열중량분석(TGA)시, 5 %중량 손실(5 % weight loss)의 온도가 120℃ 이상일 수 있다. 또한, 본 출원의 조성물은 필러를 포함한 상태에서, 수지 조성물의 경화물에 대하여 측정된 열중량분석(TGA)시, 800℃ 잔량이 70 중량% 이상일 수 있다. 상기 800 ℃ 잔량은 다른 예시에서 약 75 중량% 이상, 약 80 중량% 이상, 약 85 중량% 이상 또는 약 90 중량% 이상일 수 있다. 상기 800 ℃ 잔량은 다른 예시에서 약 99 중량% 이하일 수 있다. 이때, 열중량분석(TGA)은, 60 cm3/분의 질소(N2) 분위기 하에서 20℃/분의 승온 속도로 25 내지 800℃의 범위에서 측정될 수 있다. 상기 열중량분석(TGA)과 관련된 내열 특성은 수지 및/또는 필러의 종류나 이들의 함량을 조절함으로써 확보할 수 있다.
하나의 예시에서, 상기 수지 조성물은, 경화 후 우수한 전기 절연성을 가질 수 있다. 하기 설명되는 배터리 모듈 구조에서 수지층이 소정의 전기 절연성을 나타낼 경우, 배터리 모듈의 성능이 유지되고, 안정성이 확보될 수 있다. 예를 들어, 상기 수지 조성물의 경화물은, ASTM D149에 준거하여 측정한 절연파괴전압이 약 10 kV/mm 이상, 15 kV/mm 이상 또는 20 kV/mm 이상일 수 있다. 상기 절연파괴전압은 그 수치가 높을수록 수지층이 우수한 절연성을 보이는 것으로 특별히 제한되는 것은 아니나, 수지층의 조성 등을 고려하면 약 50 kV/mm 이하, 45 kV/mm 이하, 40 kV/mm 이하, 35 kV/mm 이하, 또는 30 kV/mm 이하일 수 있다. 상기 범위의 절연 파괴 전압은, 예를 들어 상기 설명된 필러 및 수지 성분의 함량을 조절함으로써 확보될 수 있다.
본 출원에 관한 다른 일례에서, 본 출원은 배터리 모듈에 관한 것이다. 상기 모듈은, 모듈 케이스 및 배터리 셀을 포함한다. 배터리 셀은 상기 모듈 케이스 내에 수납되어 있을 수 있다. 배터리 셀은 모듈 케이스 내에 하나 이상 존재할 수 있고, 그리고 복수의 배터리 셀이 모듈 케이스 내에 수납되어 있을 수 있다. 모듈 케이스 내에 수납되는 배터리 셀의 수는 용도 등에 따라 조절되는 것으로 특별히 제한되지 않는다. 모듈 케이스에 수납되어 있는 배터리 셀들은 서로 전기적으로 연결되어 있을 수 있다.
모듈 케이스는, 배터리 셀이 수납될 수 있는 내부 공간을 형성하는 측벽과 하부판을 적어도 포함할 수 있다. 또한, 모듈 케이스는, 상기 내부 공간을 밀폐하는 상부판을 추가로 포함할 수 있다. 상기 측벽, 하부판 및 상부판은 서로 일체형으로 형성되어 있을 수 있고, 또는 각각 분리된 측벽, 하부판 및/또는 상부판이 조립되어 상기 모듈 케이스가 형성되어 있을 수 있다. 이러한 모듈 케이스의 형태 및 크기는 특별히 제한되지 않으며, 용도나 상기 내부 공간에 수납되는 배터리 셀의 형태 및 개수 등에 따라 적절하게 선택될 수 있다.
상기에서 용어 상부판과 하부판은, 모듈 케이스를 구성하고 있는 판이 적어도 2개 존재하므로, 이를 구별하기 위해 사용되는 상대적 개념의 용어이다. 즉, 실제 사용 상태에서 상부판이 반드시 상부에 존재하고, 하부판이 반드시 하부에 존재하여야 한다는 것을 의미하는 것은 아니다.
도 2는, 예시적인 모듈 케이스(10)를 보여주는 도면이고, 하나의 하부판(10a)과 4개의 측벽(10b)을 포함하는 상자 형태의 케이스(10)의 예시이다. 모듈 케이스(10)는 내부 공간을 밀폐하는 상부판(10c)을 추가로 포함할 수 있다.
도 3은, 배터리 셀(20)이 수납되어 있는 도 2의 모듈 케이스(10)를 상부에서 관찰한 모식도이다.
모듈 케이스의 상기 하부판, 측벽 및/또는 상부판에는 홀이 형성되어 있을 수 있다. 상기 홀은, 후술하는 바와 같이, 주입 공정에 의해 수지층을 형성하는 경우에, 상기 수지층의 형성 재료 즉, 수지 조성물을 주입하는데 사용되는 주입홀일 수 있다. 상기 홀의 형태, 개수 및 위치는 상기 수지층 형성 재료의 주입 효율을 고려하여 조정될 수 있다. 하나의 예시에서 상기 홀은 적어도 상기 하부판 및/또는 상부판에 형성되어 있을 수 있다.
하나의 예시에서 상기 홀은 상기 측벽, 하부판 또는 상부판의 전체 길이의 약 1/4 내지 3/4 지점 또는 약 3/8 내지 7/8 지점 또는 대략 중간부에 형성되어 있을 수 있다. 이 지점에 형성된 주입홀을 통해 수지 조성물을 주입함으로써, 수지층이 넓은 접촉 면적을 가지도록 주입할 수 있다. 상기 1/4, 3/4, 3/8 또는 7/8 지점은, 예를 들면, 도 4에 나타난 바와 같이, 하부판 등의 어느 하나의 말단면(E)을 기준으로 측정한 전체 길이(L) 대비, 상기 홀의 형성 위치까지 간 거리(A)의 비율이다. 또한, 상기에서 길이(L) 및 거리(A)가 형성되는 말단(E)은, 상기 길이(L)와 거리(A)를 동일한 말단(E)으로부터 측정하는 한 임의의 말단(E)일 수 있다. 도 4에서 주입홀(50a)은 하부판(10a)의 대략 중간부에 위치하는 형태이다.
주입홀의 크기 및 형상은 특별히 제한되지 않고, 후술하는 수지층 재료의 주입 효율을 고려하여 조절될 수 있다. 예를 들면, 상기 홀은, 원형, 타원형, 삼각형이나 사각형 등의 다각형 또는 무정형일 수 있다. 주입홀의 개수 및 그 간격도 특별히 제한되는 것은 아니며, 전술한 바와 같이 수지층이 하부판 등과 넓은 접촉 면적을 가질 수 있도록 조절될 수 있다.
상기 주입홀이 형성되어 있는 상부판과 하부판 등의 말단에는 관찰홀(예를 들면, 도면 4의 (50b))이 형성될 수 있다. 이러한 관찰홀은, 예를 들어, 상기 주입홀을 통해 수지층 재료를 주입할 때에, 주입된 재료가 해당 측벽, 하부판 또는 상부판의 말단까지 잘 주입되는 것인지를 관찰하기 위해 형성된 것일 수 있다. 상기 관찰홀의 위치, 형태, 크기 및 개수는 상기 주입되는 재료가 적절하게 주입되었는지를 확인할 수 있도록 형성되는 한, 특별히 제한되지 않는다.
상기 모듈 케이스는 열전도성 케이스일 수 있다. 용어 열전도성 케이스는, 케이스 전체의 열전도도가 10 W/mk 이상이거나, 혹은 적어도 상기와 같은 열전도도를 가지는 부위를 포함하는 케이스를 의미한다. 예를 들면, 전술한 측벽, 하부판 및 상부판 중 적어도 하나는 상기 기술한 열전도도를 가질 수 있다. 또 다른 예시에서 상기 측벽, 하부판 및 상부판 중 적어도 하나가 상기 열전도도를 가지는 부위를 포함할 수 있다. 예를 들어, 본 출원의 배터리 모듈은, 후술하는 바와 같이, 상부판 및 배터리 셀과 접촉하는 제 1 필러 함유 경화 수지층과 하부판 및 배터리 셀과 접촉하는 제 2 필러 함유 경화 수지층을 포함할 수 있는데, 적어도 상기 제 2 필러 함유 경화 수지층은 열전도성 수지층일 수 있고, 이에 따라 적어도 상기 하부판은 열전도성을 갖거나 열전도성 부위를 포함할 수 있다고 할 수 있다.
상기에서 열전도성인 상부판, 하부판, 측벽, 또는 열전도성 부위의 열전도도는, 다른 예시에서 20 W/mk 이상, 30 W/mk 이상, 40 W/mk 이상, 50 W/mk 이상, 60 W/mk 이상, 70 W/mk 이상, 80 W/mk 이상, 90 W/mk 이상, 100 W/mk 이상, 110 W/mk 이상, 120 W/mk 이상, 130 W/mk 이상, 140 W/mk 이상, 150 W/mk 이상, 160 W/mk 이상, 170 W/mk 이상, 180 W/mk 이상, 190 W/mk 이상 또는 195 W/mk 이상일 수 있다. 상기 열전도도는 그 수치가 높을수록 모듈의 방열 특성 등의 측면에서 유리하므로, 그 상한은 특별히 제한되지 않는다. 일 예시에서 상기 열전도도는 약 1,000 W/mK 이하, 900 W/mk 이하, 800 W/mk 이하, 700 W/mk 이하, 600 W/mk 이하, 500 W/mk 이하, 400 W/mk 이하, 300 W/mk 또는 250 W/mK 이하일 수 있지만 이에 제한되는 것은 아니다. 상기와 같은 열전도도를 나타내는 재료의 종류는 특별히 제한되지 않으며, 예를 들면, 알루미늄, 금, 순은, 텅스텐, 구리, 니켈 또는 백금 등의 금속 소재 등이 있다. 모듈 케이스는 전체가 상기와 같은 열전도성 재료로 이루어지거나, 적어도 일부의 부위가 상기 열전도성 재료로 이루어진 부위일 수 있다. 이에 따라 상기 모듈 케이스는 상기 언급된 범위의 열전도도를 가지거나, 혹은 상기 언급된 열전도도를 가지는 부위를 적어도 한 부위 포함할 수 있다.
모듈 케이스에서 상기 범위의 열전도도를 가지는 부위는 후술하는 수지층 및/또는 절연층과 접촉하는 부위일 수 있다. 또한, 상기 열전도도를 가지는 부위는, 냉각수와 같은 냉각 매체와 접하는 부위일 수 있다. 이러한 구조를 가질 경우, 배터리 셀로부터 발생한 열을 효과적으로 외부로 방출할 수 있다.
모듈 케이스 내에 수납되는 배터리 셀의 종류 역시 특별히 제한되지 않으며, 공지의 다양한 배터리 셀이 모두 적용될 수 있다. 하나의 예시에서 상기 배터리 셀은 파우치형일 수 있다. 도 5를 참조하여 설명하면, 파우치형 배터리 셀(100)은 통상적으로 전극 조립체, 전해질 및 파우치 외장재를 포함할 수 있다.
도 5는, 예시적인 파우치형 셀의 구성을 개략적으로 나타내는 분리 사시도이고, 도 6은 도 5 구성의 결합 사시도이다.
파우치형 셀(100)에 포함되는 전극 조립체(110)는, 하나 이상의 양극판 및 하나 이상의 음극판이 세퍼레이터를 사이에 두고 배치된 형태일 수 있다. 전극 조립체(110)는, 하나의 양극판과 하나의 음극판이 세퍼레이터와 함께 권취된 권취형이거나, 다수의 양극판과 다수의 음극판이 세퍼레이터를 사이에 두고 교대로 적층된 스택형일 수 있다.
파우치 외장재(120)는, 예를 들면, 외부 절연층, 금속층 및 내부 접착층을 구비하는 형태로 구성될 수 있다. 이러한 외장재(120)는, 전극 조립체(110)와 전해액 등 내부 요소를 보호하고, 전극 조립체(110)와 전해액에 의한 전기 화학적 성질에 대한 보완 및 방열성 등을 감안하여 알루미늄 등의 금속 박막을 포함할 수 있다. 이러한 금속 박막은, 전극 조립체(110) 및 전해액 등의 요소나 전지(100) 외부의 다른 요소와의 전기적 절연성을 확보하기 위해, 절연 물질로 형성된 절연층 사이에 개재될 수 있다. 또한, 상기 파우치에는, 예를 들어 PET와 같은 고분자 수지층(기재)이 추가로 포함할 수 있다.
하나의 예시에서 외장재(120)는, 상부 파우치(121)와 하부 파우치(122)를 포함할 수 있고, 상부 파우치(121)와 하부 파우치(122) 중 적어도 하나에는 오목한 형태의 내부 공간(I)이 형성될 수 있다. 이러한 파우치의 내부 공간(I)에는 전극 조립체(110)가 수납될 수 있다. 상부 파우치(121)와 하부 파우치(122)의 외주면에는 실링부(S)가 구비되고, 이러한 실링부(S)가 서로 접착되어, 전극 조립체(110)가 수용된 내부 공간이 밀폐될 수 있다.
전극 조립체(110)의 각 전극판에는 전극 탭이 구비되며, 하나 이상의 전극 탭이 전극 리드와 연결될 수 있다. 전극 리드는 상부 파우치(121)와 하부 파우치(122)의 실링부(S) 사이에 개재되어 외장재(120)의 외부로 노출됨으로써, 이차 전지(100)의 전극 단자로서 기능할 수 있다.
상기 설명된 파우치형 셀의 형태는 하나의 예시일 뿐이며, 본 출원에서 적용되는 배터리 셀이 상기와 같은 종류에 제한되는 것은 아니다. 본 출원에서는 공지된 다양한 형태의 파우치형셀 또는 기타 다른 형태의 전지가 모두 배터리 셀로서 적용될 수 있다.
본 출원의 배터리 모듈은, 수지층을 추가로 포함할 수 있다. 구체적으로 본 출원의 배터리 모듈은 필러 함유 조성물이 경화된 경화 수지층을 포함할 수 있다. 상기 경화 수지층은 상기 설명된 우레탄계 조성물로부터 형성될 수 있다.
배터리 모듈은, 상기 수지층으로서, 상기 상부판 및 배터리 셀과 접촉하고 있는 제 1 필러 함유 경화 수지층과 상기 하부판과 배터리 셀과 접촉하고 있는 제 2 필러 함유 경화 수지층을 포함할 수 있다. 상기 제 1 및 제 2 필러 함유 경화 수지층 중 하나 이상은 상기 설명된 우레탄계 조성물의 경화물을 포함할 수 있고, 그에 따라 상기 설명한 소정의 접착력, 내한성, 내열성, 및 절연성을 가질 수 있다. 그 외에, 제 1 및 제 2 필러 함유 경화 수지층은, 하기와 같은 특성을 가질 수 있다.
하나의 예시에서 상기 수지층은 열전도성 수지층일 수 있다. 이러한 경우에 열전도성 수지층의 열전도도는 약 1.5 W/mK 이상, 약 2 W/mK 이상, 2.5 W/mK 이상, 3 W/mK 이상, 3.5 W/mK 이상 또는 4 W/mK 이상일 수 있다. 상기 열전도도는 50 W/mK 이하, 45 W/mk 이하, 40 W/mk 이하, 35 W/mk 이하, 30 W/mk 이하, 25 W/mk 이하, 20 W/mk 이하, 15 W/mk 이하, 10W/mK 이하, 5 W/mK 이하, 4.5 W/mK 이하 또는 약 4.0 W/mK 이하일 수 있다. 상기와 같이 수지층이 열전도성 수지층인 경우에, 상기 수지층이 부착되어 있는 하부판, 상부판 및/또는 측벽 등은 전술한 열전도도가 10 W/mK 이상인 부위일 수 있다. 이때 상기 열전도도를 나타내는 모듈 케이스의 부위는 냉각 매체, 예를 들면, 냉각수 등과 접하는 부위일 수 있다. 수지층의 열전도도는, 공지된 핫 디스크(hot disk) 장비를 이용하여 측정되는 것으로, 예를 들면, ASTM D5470 규격 또는 ISO 22007-2 규격에 따라 측정된 수치이다. 상기와 같은 수지층의 열전도도는, 예를 들어, 상기 설명된 바와 같이 수지층에 포함되는 필러 및 그 함량 비율을 적절히 조절함으로써 확보될 수 있다.
하나의 예시에서, 상기 배터리 모듈에서 상기 수지층 또는 그 수지층이 적용된 배터리 모듈의 열저항은 5 K/W 이하, 4.5 K/W 이하, 4 K/W 이하, 3.5 K/W 이하, 3 K/W 이하 또는 약 2.8 K/W 이하일 수 있다. 상기 범위의 열저항이 나타나도록 수지층 또는 그 수지층이 적용된 배터리 모듈을 조절할 경우에 우수한 냉각 효율 내지는 방열 효율이 확보될 수 있다. 열 저항의 측정은 배터리 모듈을 구동하면서, 모듈상의 셀 위치에 따라 온도 센서를 부착하고, 센서로부터 측정된 온도에 근거하여 계산될 수 있다. 상기 열저항의 측정 방식은 특별히 제한되지 않으며, 예를 들어, ASTM D5470 규격 또는 ISO 22007-2 규격에 따라 상기 열저항이 측정될 수 있다.
하나의 예시에서, 상기 수지층은 소정의 열충격 시험에서도 내구성이 유지되도록 형성된 수지층일 수 있다. 열충격 시험은 업계에 공지된 방식으로 수행될 수 있다. 예를 들면, 약 - 40 ℃의 저온에서 30분 유지한 후 다시 온도를 80 ℃로 올려서 30분 유지하는 것을 하나의 사이클로 할 때, 상기 사이클을 100회 반복한 열충격 시험 후에 배터리 모듈의 모듈 케이스 또는 배터리 셀로부터 박리되거나 혹은 크랙이 발생하지 않을 수 있는 수지층일 수 있다. 예를 들어, 배터리 모듈이 자동차 등과 같이 오랜 보증 기간(자동차의 경우, 약 15년 이상)이 요구되는 제품에 적용되는 경우에, 내구성 확보를 위해서는 상기와 같은 수준의 성능이 요구될 수 있다.
하나의 예시에서, 상기 수지층은 난연성 수지층일 수 있다. 본 출원에서 용어 난연성 수지층은 UL 94 V Test (Vertical Burning Test)에서 V-0 등급을 보이는 수지층을 의미할 수 있다. 이를 통해 배터리 모듈에서 발생할 수 있는 화재 및 기타 사고에 대한 안정성을 확보할 수 있다.
하나의 예시에서, 상기 수지층은 비중이 5 이하일 수 있다. 상기 비중은 다른 예시에서 4.5 이하, 4 이하, 3.5 이하 또는 3 이하일 수 있다. 이러한 범위의 비중을 나타내는 수지층은 보다 경량화된 배터리 모듈의 제조에 유리하다. 상기 비중은 그 수치가 낮을수록 모듈의 경량화에 유리하므로, 그 하한은 특별히 제한되지 않는다. 예를 들면, 상기 비중은 약 1.5 이상 또는 2 이상일 수 있다. 수지층이 상기와 같은 범위의 비중을 나타내기 위하여 수지층에 첨가되는 성분이 조절될 수 있다. 예를 들어, 필러의 첨가 시에 가급적 낮은 비중에서도 목적하는 열전도성이 확보될 수 있는 필러, 즉 자체적으로 비중이 낮은 필러를 적용하거나, 표면 처리가 이루어진 필러를 적용하는 방식 등이 사용될 수 있다.
하나의 예시에서, 상기 수지층은 가급적 휘발성 물질을 포함하지 않는 것이 바람직하다. 예를 들면, 상기 수지층은 비휘발성분의 비율이 90 중량% 이상, 95 중량% 이상 또는 98 중량% 이상일 수 있다. 상기에서 비휘발성분과 그 비율은 다음의 방식으로 규정될 수 있다. 즉, 수지층을 100 ℃에서 1 시간 정도 유지한 후에 잔존하는 부분을 비휘발성분으로 정의할 수 있다. 따라서 상기 비휘발성분의 비율은 상기 수지층의 초기 중량과 상기 100 ℃에서 1 시간 정도 유지한 후의 비율을 기준으로 측정할 수 있다.
하나의 예시에서, 상기 수지층은 경화 과정 또는 경화된 후에 낮은 수축률을 가지는 것이 유리할 수 있다. 이를 통해 모듈의 제조 내지는 사용 과정에서 발생할 수 있는 박리나 공극의 발생 등을 방지할 수 있다. 상기 수축률은 전술한 효과를 나타낼 수 있는 범위에서 적절하게 조절될 수 있고, 예를 들면, 5% 미만, 3% 미만 또는 약 1% 미만일 수 있다. 상기 수축률은 그 수치가 낮을수록 유리하므로, 그 하한은 특별히 제한되지 않는다.
하나의 예시에서, 상기 수지층은, 모듈의 제조 내지는 사용 과정에서 발생할 수 있는 박리나 공극의 발생 등을 방지하고자, 낮은 열팽창 계수(CTE)를 가질 수 있다. 상기 열팽창 계수는, 예를 들면, 300 ppm/K 미만, 250 ppm/K 미만, 200 ppm/K 미만, 150 ppm/K 미만 또는 약 100 ppm/K 미만일 수 있다. 상기 열팽창계수는 그 수치가 낮을수록 유리하므로, 그 하한은 특별히 제한되지 않는다. 상기 열팽창 계수의 측정 방법은 특별히 제한되는 것은 아니다. 예를 들어, TMA(Thermo Mechanical Analyze)를 이용하여 expansion mode, 0.05 N load 하에서 -40 내지 125 ℃ 범위에서 5 ℃/min 조건으로 측정하는 것으로, 변형된 길이를 근거로 지정된 온도 구간 내에서 길이 변형율을 확인하는 방식으로 열팽창 계수가 측정될 수 있다.
하나의 예시에서, 배터리 모듈에 우수한 내구성 또는 내충격성을 부여하고자, 상기 수지층은 적절 수준의 인장 강도를 가질 수 있다. 예를 들어, 상기 수지층은 약 1.0 MPa 이상의 영스모듈러스(young's modulus)를 갖도록 구성될 수 있다. 영스모듈러스는, 예를 들어, -40 내지 80 ℃ 범위 내에서 각 포인트별로 저온(약 -40 ℃, 상온(약 25 ℃), 및 고온(약 80 ℃)에서 텐사일모드(tensile mode)로 측정하는 경우의 기울기 값일 수 있다. 영스모듈러스는 온도가 높을수록 낮게 측정된다. 예를 들어, 본 출원의 수지층은 영스모듈러스가 상기 구간 내에서 1.0 Mpa 이상, 보다 구체적으로는 10~500 Mpa 범위일 수 있다. 영스모듈러스가 상기 범위 미만인 경우에는 큰 중량의 셀을 고정하는 기능이 좋지 못하고, 너무 큰 경우에는 브리틀(brittle)한 특성이 강하기 때문에 차량 충돌과 같은 충격상황에서 크랙이 발생할 수 있다.
하나의 예시에서, 상기 수지층은 적절한 경도를 나타내는 것이 유리할 수 있다. 예를 들어, 수지층의 경도가 지나치게 높으면, 수지층이 브리틀(brittle)한 특성을 갖기 때문에 신뢰성에 나쁜 영향을 줄 수 있다. 이러한 점을 고려할 때, 수지층 경도를 조절함으로써 내충격성, 내진동성을 확보하고, 제품의 내구성을 확보할 수 있다. 수지층은, 예를 들면, 쇼어(shore) A 타입에서의 경도가 100 미만, 99 이하, 98 이하, 95 이하 또는 93 이하이거나, 쇼어 D 타입에서의 경도가 약 80 미만, 약 70 이하 또는 약 65 이하 또는 약 60 이하일 수 있다. 상기 경도의 하한은 특별히 제한되지 않는다. 예를 들면, 경도는 쇼어(shore) A 타입에서 경도가 60 이상이거나, 쇼어(shore) 00 타입에서의 경도가 5 이상 또는 약 10 이상 정도일 수 있다. 상기 범위의 경도는 필러의 함량 등을 조절함으로써 확보될 수 있다. 쇼어 경도는, 예를 들어 shore A 경도계와 같이, 각 타입에 맞는 경도계를 사용하여 공지된 방법에 따라 측정될 수 있다. 공지된 방법으로는 ASTM D2240 등이 있다.
상기와 같이 배터리 모듈 내에 상기 특성을 만족하는 경화 수지층을 형성함으로써, 외부의 충격이나 진동에 대한 내구성이 우수한 배터리 모듈이 제공될 수 있다.
본 출원의 배터리 모듈에서 상기 수지층과 접촉하고 있는 측벽, 하부판 및 상부판 중 적어도 하나는, 전술한 열전도성의 측벽, 하부판 또는 상부판일 수 있다. 한편, 본 명세서에서 용어 접촉은, 예를 들면, 수지층과 상기 상부판, 하부판 및/또는 측벽 또는 배터리 셀이 직접 접촉하고 있거나, 그 사이에 다른 요소, 예를 들면, 절연층 등이 존재하는 경우를 의미할 수도 있다. 또한, 열전도성의 측벽, 하부판 또는 상부판과 접촉하는 수지층은, 해당 대상과 열적으로 접촉하고 있을 수 있다. 이 때 열적 접촉은, 상기 수지층이 상기 하부판 등과 직접 접촉하고 있거나, 혹은 상기 수지층과 상기 하부판 등의 사이에 다른 요소, 예를 들면, 후술하는 절연층 등이 존재하지만, 그 다른 요소가 상기 배터리 셀로부터 수지층, 그리고 상기 수지층으로부터 상기 하부판 등으로의 열의 전달을 방해하고 있지 않은 상태를 의미할 수 있다. 상기에서 열의 전달을 방해하지 않는다는 것은, 상기 수지층과 상기 하부판 등의 사이에 다른 요소(ex. 절연층 또는 후술하는 가이딩부)가 존재하는 경우에도, 그 다른 요소와 상기 수지층의 전체 열전도도가 약 1.5 W/mK 이상, 약 2 W/mK 이상, 2.5 W/mK 이상, 3 W/mK 이상, 3.5 W/mK 이상 또는 4 W/mK 이상이 되거나, 혹은 상기 수지층 및 그와 접촉하고 있는 하부판 등의 전체 열전도도가 상기 다른 요소가 있는 경우에도 상기 범위 내에 포함되는 경우를 의미한다. 상기 열적 접촉의 열전도도는 50 W/mK 이하, 45 W/mk 이하, 40 W/mk 이하, 35 W/mk 이하, 30 W/mk 이하, 25 W/mk 이하, 20 W/mk 이하, 15 W/mk 이하, 10W/mK 이하, 5 W/mK 이하, 4.5 W/mK 이하 또는 약 4.0 W/mK 이하일 수 있다. 이러한 열적 접촉은, 상기 다른 요소가 존재하는 경우에, 그 다른 요소의 열전도도 및/또는 두께를 제어하여 달성할 수 있다.
상기 열전도성 수지층은, 상기 하부판 등과 열적으로 접촉하고 있고, 또한 상기 배터리 셀과도 열적으로 접촉하고 있을 수 있다. 상기와 같은 구조의 채용을 통해 일반적인 배터리 모듈 또는 그러한 모듈의 집합체인 배터리 팩의 구성 시에 기존에 요구되던 다양한 체결 부품이나 모듈의 냉각 장비 등을 대폭적으로 감소시키면서도, 방열 특성을 확보하고, 단위 부피 당 보다 많은 배터리 셀이 수납되는 모듈을 구현할 수 있다. 이에 따라서, 본 출원에서는 보다 소형이고, 가벼우면서도 고출력의 배터리 모듈을 제공할 수 있다.
도 7은, 상기 배터리 모듈의 예시적인 단면도이다. 도 6에서, 상기 모듈은, 측벽(10b)과 하부판(10a)을 포함하는 케이스(10); 상기 케이스의 내부에 수납되어 있는 복수의 배터리 셀(20) 및 상기 배터리 셀(20)과 케이스(10) 모두와 접촉하고 있는 수지층(30)을 포함하는 형태일 수 있다. 도 7은 하부판(10a)측에 존재하는 수지층(30)에 대한 도면이지만, 본 출원의 배터리 모듈은 상부판 측에도 도 7과 같은 형태로 위치하는 수지층을 포함할 수 있다.
상기 구조에서 상기 수지층(30)과 접촉하고 있는 하부판 등은 전술한 것과 같이 열전도성의 하부판 등일 수 있다.
상기 수지층과 하부판 등의 접촉 면적은, 상기 하부판 등의 전체 면적 대비 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85% 이상, 약 90% 이상 또는 약 95% 이상일 수 있다. 상기 접촉 면적의 상한은 특별히 제한되지 않으며, 예를 들면, 100% 이하 또는 약 100% 미만일 수 있다.
상부판 또는 하부판이 열전도성이고, 그와 접촉하고 있는 경화 수지층도 열전도성인 경우에, 상기 열전도성 부위 또는 열전도성 하부판 등은 냉각수와 같은 냉각 매체와 접하는 부위일 수 있다. 즉, 도 7에 모식적으로 나타난 바와 같이, 상기와 같은 구조에 의해 열(H)이 하부판 등으로 쉽게 배출될 수 있고, 이러한 하부판 등을 냉각 매체(CW)와 접촉시킴으로서, 보다 간소화된 구조에서도 열의 방출이 쉽게 이루어지도록 할 수 있다.
제 1 및 제 2 경화 수지층은 각각 두께가 예를 들면, 약 100 ㎛ 내지 5 mm의 범위 내 또는 약 200㎛ 내지 5 mm의 범위 내일 수 있다. 본 출원의 구조에서는 상기 수지층의 두께는 목적하는 방열 특성이나, 내구성을 고려하여 적정 두께로 설정할 수 있다. 상기 두께는, 수지층의 가장 얇은 부위의 두께, 가장 두꺼운 부위의 두께 또는 평균 두께일 수 있다.
도 7에 나타난 바와 같이, 상기 모듈 케이스(10) 내부의 적어도 일면, 예를 들면, 수지층(30)과 접촉하는 면(10a)에는 수납되는 배터리 셀(20)을 가이드할 수 있는 가이딩부(10d)가 존재할 수도 있다. 이 때 가이딩부(10d)의 형상은 특별히 제한되지 않고, 적용되는 배터리 셀의 형태 등을 고려하여 적정한 형상이 채용될 수 있다. 상기 가이딩부(10d)는, 상기 하부판 등과 일체로 형성되어 있는 것이거나, 혹은 별도로 부착된 것일 수 있다. 상기 가이딩부(10d)는 전술한 열적 접촉을 고려하여 열전도성 소재, 예를 들면, 알루미늄, 금, 순은, 텅스텐, 구리, 니켈 또는 백금 등의 금속 소재를 사용하여 형성할 수 있다. 또한, 도면에는 도시되지 않았으나, 수납되는 배터리 셀(20)의 사이에는 간지 또는 접착제층이 존재할 수도 있다. 상기에서 간지는 배터리 셀의 충방전 시에 버퍼 역할을 할 수 있다.
하나의 예시에서 상기 배터리 모듈은 상기 모듈 케이스와 상기 배터리 셀의 사이 또는 상기 수지층과 상기 모듈 케이스의 사이에 절연층을 추가로 포함할 수 있다. 도 8은, 케이스의 하부판(10a)상에 형성된 가이딩부(10d)와 수지층(30) 사이에 절연층(40)이 형성되어 있는 경우를 예시적으로 도시한 것이다. 절연층을 추가함으로써 사용 과정에서 발생할 수 있는 충격에 의한 셀과 케이스의 접촉에 따른 전기적 단락 현상이나 화재 발생 등의 문제를 방지할 수 있다. 상기 절연층은 높은 절연성과 열전도성을 가지는 절연 시트를 사용하여 형성하거나, 혹은 절연성을 나타내는 물질의 도포 내지는 주입에 의해 형성할 수 있다. 예를 들면, 후술하는 배터리 모듈의 제조 방법에서 수지 조성물의 주입 전에 절연층을 형성하는 과정이 수행될 수 있다. 절연층의 형성에는 소위 TIM(Thermal Interface Material) 등이 적용될 수도 있다. 다른 방식에서 절연층은 접착성 물질로 형성할 수 있으며, 예를 들면, 열전도성 필러와 같은 필러의 함량이 적거나 없는 수지층을 사용하여 절연층을 형성할 수도 있다. 절연층의 형성에 사용될 수 있는 수지 성분으로는, 아크릴 수지, PVC(poly(vinyl chloride)), PE(polyethylene) 등의 올레핀 수지, 에폭시 수지, 실리콘이나, EPDM 러버((ethylene propylene diene monomer rubber) 등의 러버 성분 등이 예시될 수 있지만, 이에 제한되는 것은 아니다. 상기 절연층은, ASTM D149에 준거하여 측정한 절연파괴전압이 약 5 kV/mm 이상, 약 10 kV/mm 이상, 약 15 kV/mm 이상, 20 kV/mm 이상, 25 kV/mm 이상 또는 30 kV/mm 이상일 수 있다. 상기 절연파괴전압은 그 수치가 높을수록 우수한 절연성을 보이는 것으로 특별히 제한되는 것은 아니다. 예를 들면, 상기 절연층의 절연파괴전압은 약 100 kV/mm 이하, 90 kV/mm 이하, 80 kV/mm 이하, 70 kV/mm 이하 또는 60 kV/mm 이하일 수 있다. 상기 절연층의 두께는 그 절연층의 절연성이나 열전도성 등을 고려하여 적정 범위로 설정할 수 있으며, 예를 들면, 약 5㎛ 이상, 약 10㎛ 이상, 20㎛ 이상, 30㎛ 이상, 40㎛ 이상, 50㎛ 이상, 60㎛ 이상, 70㎛ 이상, 80㎛ 이상 또는 90㎛ 이상 정도일 수 있다. 또한, 두께의 상한도 특별히 제한되지 않으며, 예를 들면, 약 1 mm 이하, 약 200㎛ 이하, 190㎛ 이하, 180㎛ 이하, 170㎛ 이하, 160㎛ 이하 또는 150㎛ 이하일 수 있다.
본 출원에 관한 다른 일례에서, 본 출원은 배터리 모듈, 예를 들면, 상기 언급된 배터리 모듈의 제조 방법에 관한 것이다.
본 출원의 제조 방법은, 전술한 모듈 케이스 내 수지 조성물을 주입하는 단계; 상기 모듈 케이스 내에 배터리 셀을 수납하는 단계 및 상기 수지 조성물을 경화시켜 상기 수지층을 형성하는 단계를 포함할 수 있다.
모듈 케이스 내부에 수지 조성물을 주입하는 단계와 모듈 케이스 내에 배터리 셀을 수납하는 단계의 순서는 특별히 제한되지 않는다. 예를 들면, 모듈 케이스 내에 수지 조성물을 먼저 주입하고, 그 상태에서 배터리 셀을 수납하거나, 혹은 배터리 셀을 먼저 모듈 케이스 내부에 수납한 후에 수지 조성물을 주입할 수 있다.
수지 조성물로는, 전술한 수지 조성물을 사용할 수 있다.
모듈 케이스 내에 수지 조성물을 주입하는 방식은 특별히 제한되지 않으며, 공지의 방식이 적용될 수 있다. 예를 들면, 모듈 케이스의 개구부에 수지 조성물을 부어서 수지 조성물을 주입하거나, 모듈 케이스에 형성되어 있는 전술한 주입홀에 의해 수지 조성물을 주사(injection)하는 방식, 배터리 셀과 배터리 모듈 양자에 수지 조성물을 도포하는 방식 등이 적용될 수 있다. 적절한 고정을 위해 상기 주입 공정은 배터리 모듈 또는 배터리 셀을 일정하게 진동시키면서 수행될 수도 있다.
수지 조성물이 주입된 모듈 케이스 또는 상기 조성물이 주입되기 전의 모듈 케이스에 배터리 셀을 수납하는 방식은 특별히 제한되지 않는다.
배터리 셀의 수납은 목적하는 배치 등을 감안하여 배터리 셀을 모듈 케이스 내의 적합한 위치에 배치함으로써 수행될 수 있다. 또한, 카트리지 구조체가 존재하는 경우, 상기 카트리지 구조체의 적정 위치에 배터리 셀을 위치시키거나, 배터리 셀이 위치된 카트리지 구조체를 모듈 케이스 내에 삽입하여 상기 단계를 수행할 수 있다.
배터리 셀을 수납한 후에 배터리 셀 간의 접착 또는 배터리 셀과 모듈 케이스간의 접착은 주입된 수지 조성물을 경화시켜서 형성할 수 있다. 수지 조성물을 경화시키는 방식은 특별히 제한되지 않는다. 하나의 예시에서, 상기 조성물을 사용하는 경우, 상온에서 수지 조성물을 소정 시간 유지하는 방식에 의해 수지 조성물을 경화할 수 있다. 셀의 열 안정성을 저해시키지 않을 수준에서, 열을 일정시간 인가하여 경화를 촉진시킬 수 도 있다. 예를 들어, 경화 전 또는 경화 과정이나 배터리 셀의 수납 전 또는 수납 과정 등에 있어서, 60℃ 미만의 온도, 보다 구체적으로는 약 30 ℃ 내지 50 ℃ 범위의 열을 인가시켜, 택타임을 감소시키고 공정성을 개선할 수 있다. 배터리 셀 간 접착을 이루거나 배터리 셀과 모듈 케이스간의 접착을 이룰 수 있는 경화물은, 상기 설명한 바와 같이 최소 80% 이상의 전환율을 가질 수 있다.
본 출원에 관한 또 다른 일례에 있어서, 본 출원은 배터리 팩, 예를 들면, 전술한 배터리 모듈을 2개 이상 포함하는 배터리 팩에 대한 것이다. 배터리 팩에서 상기 배터리 모듈들은 서로 전기적으로 연결되어 있을 수 있다. 2개 이상의 배터리 모듈을 전기적으로 연결하여 배터리 팩을 구성하는 방식은 특별히 제한되지 않고, 공지의 방식이 모두 적용될 수 있다.
본 출원은 또한 상기 배터리 모듈 또는 상기 배터리 팩을 포함하는 장치에 대한 것이다. 상기 장치의 예로는 전기 자동차와 같은 자동차를 들 수 있으나 이에 제한되지 않으며, 2차 전지를 출력으로 요구하는 모든 용도의 장치일 수 있다. 또한, 상기 배터리 모듈 또는 배터리 팩을 사용하여 상기 자동차를 구성하는 방식은 특별히 제한되지 않고, 관련 기술분야에서 알려진 일반적인 방식이 적용될 수 있다.
본 출원은, 배터리 셀을 모듈 케이스 내에서 효과적으로 고정하고, 배터리 모듈의 방열성과 제조 공정성을 개선할 수 있는 조성물을 제공하는 발명의 효과를 갖는다. 또한, 본 출원에 따르면, 내한성, 내열성, 절연성 및 접착 신뢰성이 우수한 수지층을 갖는 배터리 모듈 및 배터리 팩이 제공된다. 그에 따라, 부피 대비 출력이 우수할 뿐 아니라 방열 특성 및 내구성이 개선된 배터리 모듈 및 배터리 팩이 제공될 수 있다.
도 1은, 본 출원의 일례에 따라, 에스테르계 폴리올의 비결정 특성 또는 충분히 결정성이 낮은 특성을 판단하는 예시를 도시한다.
도 2는, 본 출원에서 적용될 수 있는 예시적인 모듈 케이스를 도시한다.
도 3은, 모듈 케이스 내에 배터리 셀이 수납되어 있는 형태를 개략적으로 도시한다.
도 4는, 주입홀과 관찰홀이 형성된 예시적인 하부판을 개략적으로 도시한다.
도 5 및 6은, 배터리 셀로 사용될 수 있는 예시적인 배터리 파우치를 개략적으로 도시한다.
도 7 및 8은, 예시적인 배터리 모듈의 구조를 개략적으로 도시한다.
도면과 관련하여 기재된 각 부호는 아래와 같다.
10: 모듈 케이스
10a: 하부판
10b: 측벽
10c: 상부판
10d: 가이딩부
20: 배터리 셀
30: 수지층
50a: 주입홀
50b: 관찰홀
40: 절연층
100: 파우치형셀
110: 전극 조립체
120: 외장재
121: 상부 파부치
122: 하부 파우치
S: 실링부
이하, 실시예 및 비교예를 통해 본 출원의 배터리 모듈을 설명한다. 그러나, 본 출원의 범위가 하기 제시된 범위에 의해 제한되는 것은 아니다.
평가방법
1. Tm (용융점)에 근거한 비결정성
10℃/분(min)의 승온 속도로, 25℃ -> 50℃ -> -70℃ -> 50℃ 순서로 온도를 변화시키면서, 실시예 및 비교예에서 사용된 폴리올 수지에 대한 Tm을 Q2000(TA instruments 社)을 이용한 DSC 분석을 통해 측정하였다.
2. 접착력(S1)(단위: gf /10mm)
배터리 셀의 제작에 사용되는 알루미늄 파우치를 약 10 mm의 폭으로 절단하였다. 유리판상에 실시예 및 비교예 각각에서 사용된 수지 조성물을 로딩하고, 그 위에 상기 절단한 알루미늄 파우치를 그 파우치의 PET(poly(ethylene terephthalate))면과 상기 수지 조성물이 접촉하도록 로딩한 후에, 25℃ 및 50 %RH 조건에서 24 시간 동안 수지 조성물을 경화시켰다. 이어서, 상기 알루미늄 파우치를 인장 시험기(Texture analyzer)로 180°의 박리 각도와 300 mm/min의 박리 속도로 박리하면서 접착력을 측정하였다.
3. 접착 신뢰성
상기 접착력 측정에서와 동일하게 수지 조성물이 경화된 시편을 제작하고, 85℃ 및 85 %RH 조건에서 10일 동안 보관하였다. 이후, 상기 2번 항목에서와 동일한 방법으로 접착력(S2)을 측정하였다.
4. Tg (유리전이온도)
실시예 및 비교예에서 사용된 것과 동일한 수지의 혼합물(필러 미포함)을 24 시간 동안 상온에서 경화하고, 10℃/분의 승온 속도로 - 75℃ 에서 50℃ 범위로 온도를 변화하면서 상기 경화물의 Tg를 DSC 분석으로 측정하였다.
실시예 비교예
실시예 1
이액형 우레탄계 조성물의 제조
폴리올: 주제 조성물에는 상기 화학식 2로 표시되는 카프로락톤계 폴리올로서, 반복 단위의 수(화학식 2의 m)가 약 1 내지 3 정도 수준이고, 폴리올 유래 단위(화학식 2의 Y)로는 1,4-부탄디올을 포함하는 폴리올을 포함하는 수지(Brookfield LV type 점도계로 측정시 약 280 cP의 점도를 가짐)를 소정 함량 사용하였다.
이소시아네이트: 경화제 조성물에는 HDI(Hexamethylene diisocyanate)와 HDI trimer의 혼합물(Brookfield LV type 점도계로 측정시 170 cP의 점도를 가짐)을 사용하였다. 이때, NCO index가 약 100이 되도록 이소시아네이트 화합물의 사용량을 조절하였다.
필러: 알루미나를 사용하였다. 그 함량은, 상기 폴리올과 이소시아네이트의 함량을 합한 100 중량부 대비 1,000 중량부의 비율이 되도록 하였으며, 주제 조성물부 및 경화제 조성물부에 상기 알루미나를 동량으로 분할 배합하였다.
촉매: 디부틸틴 디라우레이트(DBTDL: dibutyltin dilaurate)를 소정함량 사용하였다.
물성 측정 결과
상기 제조된 조성물에 대하여 전술한 방식으로 측정한 유리전이온도(Tg)는 0℃ 미만이었다. 그리고 전술한 방식으로 측정된 용융점(Tm)은 11℃ 이었다. 또한, 접착력(S1)은 449 gf/10mm이었고, 접착력간 비율(S2/S1)은 70% 이상이었다. 이로부터, 실시예 1의 조성물은 과량의 필러를 포함하는 경우에도 배터리 모듈에 대한 주입시 적절한 공정성을 제공할 수 있고, 경화 후에는 우수한 접착성 및 접착 신뢰성을 갖는 다는 것을 알 수 있다.
실시예 2
이액형 우레탄계 조성물의 제조
폴리올 화학식 2의 Y 단위 형성시 네오펜틸 글리콜(neopentyl glycol)을 변경 사용한 것을 제외하고(제조된 폴리올의 점도는 Brookfield LV type 점도계로 측정시 약 300 cP의 점도를 가짐), 실시예 1과 동일하게 조성물을 제조하였다.
물성 측정 결과
상기 제조된 조성물에 대하여 전술한 방식으로 측정한 유리전이온도(Tg)는 0℃ 미만이었고, 상기 사용된 폴리올은 결정성이 약하여(비결정성) DSC 상에서 결정화온도(Tc) 및 용융온도(Tm)가 측정되지 않았다. 또한, 접착력(S1)은 467 gf/10mm이었고, 접착력간 비율(S2/S1)은 70% 이상이었다. 이로부터, 실시예 2의 조성물은 과량의 필러를 포함하는 경우에도 배터리 모듈에 대한 주입시 적절한 공정성을 제공할 수 있고, 경화 후에는 우수한 접착성 및 접착 신뢰성을 갖는다는 것을 알 수 있다.
비교예 1
이액형 우레탄계 조성물의 제조
주제 조성물부에 사용되는 수지로서, 에테르계 폴리올인 PPG(수산기가 360 mg KOH/g)를 사용한 것을 제외하고, 실시예 1과 동일하게 조성물을 제조하였다.
물성 측정 결과
상기 제조된 조성물에 대하여 전술한 방식으로 측정한 유리전이온도는 0 ℃ 미만이었고, 용융점은 15℃ 미만으로 관찰되었다. 그리고, 접착력(S1)은 116 gf/10mm이었고, 접착력간 비율(S2/S1)은 70% 이상이었다. 이로부터, 본원의 구성 중 에스테르계 폴리올을 갖지 못하는 비교예 1의 조성물은 배터리 모듈에서 배터리 셀을 케이스에 접착시키는데 필요한 충분한 접착력을 제공할 수 없다는 점을 알 수 있다.
비교예 2
이액형 우레탄계 조성물의 제조
경화제 조성물부에 방향족 디이소시아네이트인 메틸렌 디페닐 디이소시아네이트(MDI, Methylene Diphenyl Diisocyanate)를 사용한 것을 제외하고, 실시예 1과 동일하게 조성물을 제조하였다.
물성 측정 결과
상기 제조된 조성물에 대하여 전술한 방식으로 측정한 유리전이온도(Tg)는 0℃를 초과하였고, 용융점(Tm)은 15℃ 이하였다. 또한, 접착력(S1)은 666 gf/10mm이었고, 접착력간 비율(S2/S1)은 70% 이상이었다. 이로부터, 방향족 이소시아네이트를 경화성분으로 사용하는 비교예 2의 조성물은 경화 속도가 빨라 주입 공정성과 저장 안정성이 좋지 못하고, 그 경화물이 높은 유리전이온도를 갖기 때문에 저온에서의 내충격 특성이나 내진동 특성 등이 요구되는 배터리 모듈용 소재로서 부적합하다는 것을 알 수 있다.
비교예 3
이액형 우레탄계 조성물의 제조
주제 조성물부에서 화학식 2의 반복단위 m이 11인 것을 제외하고, 실시예 1과 동일하게 조성물을 제조하였다.
물성 측정 결과
상기 제조된 조성물에 대하여 전술한 방식으로 측정한 유리전이온도(Tg)는 0℃ 이하였고, 용융점(Tm)은 20℃를 초과하였다. 또한, 접착력(S1)은 467 gf/10mm이었고, 접착력간 비율(S2/S1)은 70% 이상이었다. 이로부터, 본원에서 요구되는 충분히 낮은 결정성을 갖지 못하는 폴리올을 사용한 비교예 4의 조성물은, 상온에서의 결정성으로 인해, 배터리 모듈 내에서 접착제로 사용되는 조성물에 대한 주입 공정성이 좋지 못하다는 것을 알 수 있다.

Claims (17)

  1. 에스테르계 폴리올 수지 함유 주제 조성물부; 폴리이소시아네이트 함유 경화제 조성물부; 및 필러를 포함하는 이액형 우레탄계 조성물이고,
    상기 에스테르계 폴리올은, DSC(Differential Scanning calorimetry) 분석에서 결정화 온도(Tc)와 용융 온도(Tm)가 관찰되지 않는 비결정성 폴리올이거나 용융 온도(Tm)가 15℃ 미만인 이액형 우레탄계 조성물.
  2. 제1항에 있어서, 상기 수지 성분은 경화 후 0℃ 미만의 유리전이온도(Tg)를 갖는 이액형 우레탄계 조성물.
  3. 제1항에 있어서, 상기 에스테르계 폴리올 수지 및 폴리이소시아네이트 각각은 10,000 cP 미만의 점도를 갖는 이액형 우레탄계 조성물.
  4. 제2항에 있어서, 상기 에스테르계 폴리올 수지 및 폴리이소시아네이트 각각은 2,000 cP 이하의 점도를 갖는 이액형 우레탄계 조성물.
  5. 제1항에 있어서, 상기 에스테르계 폴리올은 하기 화학식 1 또는 2로 표시되는 이액형 우레탄계 조성물:
    [화학식 1]
    Figure PCTKR2019003149-appb-I000003
    [화학식 2]
    Figure PCTKR2019003149-appb-I000004
    단, 상기 화학식 1 및 2에서 X는 카복실산 유래 단위이며, Y는 폴리올 유래 단위이고, n은 2 내지 10 의 범위 내의 수이며, m은 1 내지 10의 범위 내의 수이다.
  6. 제5항에 있어서, 카르복실산 유래 단위 X는, 프탈산 단위, 이소프탈산 단위, 테레프탈산 단위, 트리멜리트산 단위, 테트라히드로프탈산 단위, 헥사히드로프탈산 단위, 테트라클로로프탈산 단위, 옥살산 단위, 아디프산 단위, 아젤라산 단위, 세박산 단위, 숙신산 단위, 말산 단위, 글라타르산 단위, 말론산 단위, 피멜산 단위, 수베르산 단위, 2, 2-디메틸숙신산 단위, 3,3-디메틸글루타르산 단위, 2,2-디메틸글루타르산 단위, 말레산 단위, 푸마루산 단위, 이타콘산 단위 및 지방산 단위로 이루어진 군에서 선택된 하나 이상의 단위인 이액형 우레탄계 조성물.
  7. 제5항에 있어서, 상기 폴리올 유래 단위 Y는, 에틸렌글리콜 단위, 프로필렌글리콜 단위, 1,2-부틸렌글리콜 단위, 2,3-부틸렌글리콜 단위, 1,3-프로판디올 단위, 1,3-부탄디올 단위, 1,4-부탄디올 단위, 1,6-헥산디올 단위, 네오펜틸글리콜 단위, 1,2-에틸헥실디올 단위, 1,5-펜탄디올 단위, 1,9-노난디올 단위, 1,10-데칸디올 단위, 1,3-시클로헥산디메탄올 단위, 1,4-시클로헥산디메탄올 단위, 글리세린 단위 및 트리메틸롤프로판 단위로 이루어진 군에서 선택되는 어느 하나 또는 2개 이상의 단위인 이액형 우레탄계 조성물.
  8. 제1항에 있어서, 상기 폴리이소시아네이트는 비방향족 폴리이소시아네이트인 이액형 우레탄계 조성물.
  9. 제7항에 있어서, 비방향족 폴리이소시아네이트는 지환족 폴리이소시아네이트, 지환족 폴리이소시아네이트의 카르보디이미드 변성 폴리이소시아네이트, 또는 지환족 폴리이소시아네이트의 이소시아누레이트 변성 폴리이소시아네이트인 이액형 우레탄계 조성물.
  10. 제1항에 있어서, 상기 필러는, 알루미나, AlN(aluminum nitride), BN(boron nitride), 질화 규소(silicon nitride), SiC, 또는 BeO 를 포함하는 이액형 우레탄계 조성물.
  11. 제1항에 있어서, 상기 에스테르계 폴리올 수지 및 폴리이소시아네이트의 함량을 합한 100 중량부 대비, 50 내지 2,000 중량부의 필러를 포함하는 이액형 우레탄계 조성물.
  12. 제10항에 있어서, 상기 에스테르계 폴리올 수지 및 폴리이소시아네이트 의 함량을 합한 100 중량부 대비, 100 내지 2,000 중량부의 필러를 포함하는 이액형 우레탄계 조성물.
  13. 제1항에 있어서, 경화 후 상온에서 측정된 접착력(S1)이 150 gf/10mm 이상인 이액형 우레탄계 조성물.
  14. 제13항에 있어서, 경화 후 40 내지 100℃ 및 75% 상대습도 조건에서 10일 동안 보관된 후 측정된 접착력(S2)의 상기 접착력(S1)에 대한 비율이 70% 이상인 우레탄계 조성물.
  15. 상부판, 하부판, 및 측벽을 가지고, 상기 상부판, 하부판 및 측벽에 의해 내부 공간이 형성되어 있는 모듈 케이스;
    상기 모듈 케이스의 내부 공간에 존재하는 복수의 배터리 셀; 및
    제 1 항에 따른 조성물이 경화되어 형성되고, 상기 복수의 배터리 셀과 접촉하는 수지층을 포함하는 배터리 모듈.
  16. 제15항에 다른 베터리 모듈을 하나 이상 포함하는 배터리 팩.
  17. 제15항에 따른 배터리 모듈 또는 제16항에 따른 배터리 팩을 포함하는 자동차.
PCT/KR2019/003149 2018-03-28 2019-03-19 수지 조성물 WO2019190105A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19775745.3A EP3670558B1 (en) 2018-03-28 2019-03-19 Resin composition
US16/646,262 US11634533B2 (en) 2018-03-28 2019-03-19 Resin composition
CN201980004702.8A CN111148775B (zh) 2018-03-28 2019-03-19 树脂组合物
JP2020515118A JP6945916B2 (ja) 2018-03-28 2019-03-19 樹脂組成物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0035750 2018-03-28
KR20180035750 2018-03-28
KR10-2019-0029276 2019-03-14
KR1020190029276A KR102162493B1 (ko) 2018-03-28 2019-03-14 수지 조성물

Publications (1)

Publication Number Publication Date
WO2019190105A1 true WO2019190105A1 (ko) 2019-10-03

Family

ID=68062036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003149 WO2019190105A1 (ko) 2018-03-28 2019-03-19 수지 조성물

Country Status (1)

Country Link
WO (1) WO2019190105A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733477B2 (ja) * 1987-06-29 1995-04-12 日立電線株式会社 電線・ケーブルの貫通部注入充填用難燃性ポリウレタン組成物
KR101093528B1 (ko) * 2008-12-31 2011-12-13 조광페인트주식회사 폴리우레탄 접착제 조성물 및 그의 제조방법
KR20140039111A (ko) * 2012-09-21 2014-04-01 주식회사 엔비스타 태양전지 모듈용 이액형 열경화성 폴리우레탄 수지 조성물 및 그것을 사용하여 얻어진 태양전지 모듈
KR20160105358A (ko) * 2015-02-27 2016-09-06 주식회사 엘지화학 배터리 모듈
KR20180035750A (ko) 2018-03-22 2018-04-06 한국과학기술원 인시츄 강화 고엔트로피 합금 분말, 합금 및 이의 제조방법
KR20190029276A (ko) 2017-09-12 2019-03-20 한화에어로스페이스 주식회사 이동식 협업 로봇

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733477B2 (ja) * 1987-06-29 1995-04-12 日立電線株式会社 電線・ケーブルの貫通部注入充填用難燃性ポリウレタン組成物
KR101093528B1 (ko) * 2008-12-31 2011-12-13 조광페인트주식회사 폴리우레탄 접착제 조성물 및 그의 제조방법
KR20140039111A (ko) * 2012-09-21 2014-04-01 주식회사 엔비스타 태양전지 모듈용 이액형 열경화성 폴리우레탄 수지 조성물 및 그것을 사용하여 얻어진 태양전지 모듈
KR20160105358A (ko) * 2015-02-27 2016-09-06 주식회사 엘지화학 배터리 모듈
KR20190029276A (ko) 2017-09-12 2019-03-20 한화에어로스페이스 주식회사 이동식 협업 로봇
KR20180035750A (ko) 2018-03-22 2018-04-06 한국과학기술원 인시츄 강화 고엔트로피 합금 분말, 합금 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BEUHLER A.: "Novel Polyurethanes from Biorenewable C18 Polyols", 4 April 2016 (2016-04-04), pages 1 - 9, XP055638835, Retrieved from the Internet <URL:https://www.pcimag.com/articles/101862-novel-polyurethanes-from-biorenewable-cl8-polyols> [retrieved on 20190621] *

Similar Documents

Publication Publication Date Title
WO2019054817A1 (ko) 배터리 모듈
KR102267539B1 (ko) 수지 조성물
KR102162494B1 (ko) 수지 조성물
WO2019117462A1 (ko) 배터리 모듈의 제조 방법
KR102267538B1 (ko) 수지 조성물
WO2019054798A1 (ko) 배터리 팩 제조방법
KR102248922B1 (ko) 수지 조성물
KR102146541B1 (ko) 수지 조성물
WO2020197309A1 (ko) 수지 조성물
WO2019190106A1 (ko) 수지 조성물
KR102271844B1 (ko) 수지 조성물
WO2019190105A1 (ko) 수지 조성물
WO2019203431A1 (ko) 수지 조성물 및 이를 포함하는 배터리 모듈
WO2019190107A1 (ko) 수지 조성물
WO2019190108A1 (ko) 수지 조성물
KR20210071563A (ko) 이액형 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775745

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515118

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019775745

Country of ref document: EP

Effective date: 20200318

NENP Non-entry into the national phase

Ref country code: DE