WO2019189970A1 - 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치 및 방법 - Google Patents

압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치 및 방법 Download PDF

Info

Publication number
WO2019189970A1
WO2019189970A1 PCT/KR2018/003802 KR2018003802W WO2019189970A1 WO 2019189970 A1 WO2019189970 A1 WO 2019189970A1 KR 2018003802 W KR2018003802 W KR 2018003802W WO 2019189970 A1 WO2019189970 A1 WO 2019189970A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
light
correction function
value
blood flow
Prior art date
Application number
PCT/KR2018/003802
Other languages
English (en)
French (fr)
Inventor
김법민
하태호
백승호
Original Assignee
주식회사 씨엠랩
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 씨엠랩, 고려대학교 산학협력단 filed Critical 주식회사 씨엠랩
Priority to PCT/KR2018/003802 priority Critical patent/WO2019189970A1/ko
Priority to US17/043,533 priority patent/US20210145297A1/en
Publication of WO2019189970A1 publication Critical patent/WO2019189970A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4866Evaluating metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6843Monitoring or controlling sensor contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors

Definitions

  • the present invention relates to a blood flow measuring apparatus and method including a noise correction function by pressure, and more particularly, blood flow measurement having a function of correcting noise due to pressure when detecting blood flow change by a non-invasive method using light.
  • An apparatus and method are provided.
  • NIRS near-infrared spectroscopy
  • a light source module configured to contact tissue and irradiate light
  • a detection module that detects light passing through at least one of scattering, absorption, and reflection while moving along the tissue, and measuring pressure on the tissue.
  • a pressure measuring module configured to include a pressure measuring module and a signal processing unit which applies a correction function to process a signal received from the detecting module so as to correct noise generated when pressure is applied when detecting light.
  • a blood flow measuring apparatus may be provided.
  • the signal processor may be configured to correct the signal received from the detection module by using a correction function according to the pressure.
  • the signal processing unit may be configured to include a noise correction function, characterized in that for correcting by using a correction value matching the pressure from the correction value table.
  • the correction function may be obtained by interpolating detection light data obtained when the pressure is changed in a state in which light is irradiated onto the tissue by the light source module.
  • the correction function may be obtained by interpolating detection light data obtained by varying the pressure when at least two lights having different wavelengths are irradiated onto the tissue.
  • the signal processor may convert the light intensity data into Oxy hemoglobin concentration and Deoxy hemoglobin concentration to identify the metabolism of the tissue based on the detected light data.
  • the signal processor may interpolate through at least one conversion of the change amount or the log scale of the initial measured value so that the change trend according to the pressure change may be synchronized with respect to the values of detecting light of different wavelengths.
  • the correction function derives -log (Pressure / Po) value from the pressure data, -log (Intensity / Io) value from the detected light data, -log (Pressure / Po) value and -log (Intensity / Io) can be determined by interpolation according to the distribution of values.
  • the correction function may obtain a -log (Pressure / Po) value and a -log (Intensity / Io) value by first interpolation or second interpolation.
  • the correction function may be calculated based on the detection data obtained by irradiating light to the phantom and according to the pressure.
  • the light source module, the detection module, and the pressure measuring module constitute one probe, and a plurality of probes may be connected and configured to cover the head.
  • the light source module, the detection module and the pressure measuring module is provided on one surface of the probe, each of the blood flow measuring apparatus comprising a noise correction function by the pressure, characterized in that configured to contact with the tissue.
  • the signal processor may classify the value obtained from the detection module as an error value when the value measured by the pressure measuring module is equal to or less than the reference value.
  • a blood flow measurement method may include a noise correction function by a pressure, including a step of correcting a correction function according to pressure in the detection light data so as to remove noise caused by the pressure of the detection light data.
  • the correction function is calculated by performing a correction function generating step, the correction function generating step, the test light irradiation step of irradiating light to the tissue, the step of changing the pressure applied to the tissue, the test detection light according to the pressure change It can be obtained by performing the step of acquiring data and the interpolation step of interpolating from the detected light data and the pressure data.
  • -log (Pressure / Po) value is derived from the pressure data
  • -log (Intensity / Io) value is derived from the detection light data
  • -log (Intensity) / Io) may be interpolated according to the distribution of the values.
  • the interpolation step may determine the -log (Pressure / Po) value and the -log (Intensity / Io) value as a correction function obtained by first interpolation or second interpolation.
  • the step of irradiating light uses the light in the near infrared region, and after the correction step, a signal processing step of converting the light intensity data into Oxy hemoglobin concentration and Deoxy hemoglobin concentration so that the metabolism of the tissue can be identified based on the detected light data. It may further include.
  • the correction function is calculated by performing a correction function generating step, the test light irradiation step of irradiating light to the phantom, the step of changing the pressure applied to the phantom, the step of acquiring the test detection optical data according to the pressure change and It can be calculated by performing an interpolation step of interpolating from the detected light data and the pressure data.
  • the method may further include an error value classification step of determining the detection light data as an error value when the measured pressure value is less than the reference value.
  • Blood flow measurement apparatus and method including a noise correction function according to the present invention can remove the effect of noise generated by the change in pressure in the detected data has the effect of improving the accuracy and reliability.
  • FIG. 1 is a block diagram of a configuration of a blood flow measuring apparatus according to a first embodiment of the present invention.
  • FIG. 3 is a perspective view showing an installation part of the blood flow measurement apparatus.
  • 4A is a sectional view of a probe of the blood flow measuring apparatus.
  • 4B is a bottom view of the probe of the blood flow measuring apparatus.
  • FIG. 5 is a cross-sectional view illustrating a concept of applying a probe to a phantom.
  • FIG. 6 is a diagram illustrating detection data according to a pressure change.
  • FIG. 7 is a graph obtained by converting the value of FIG. 6 to LOG SCALE.
  • FIG. 8 is a diagram illustrating a scaled value of FIG. 7.
  • FIG. 9 is a graph illustrating results obtained by linear interpolation in FIG. 8.
  • FIG. 10 is a graph showing the results of the correction when using a light source having a wavelength of 760 nm.
  • FIG. 11 is a graph showing results of correction when a light source having a wavelength of 830 nm is used.
  • FIG. 13 is a diagram illustrating a graph of detection values before and after correction when interpolation is a second order interpolation polynomial.
  • FIG. 14 is a flowchart of a blood flow measuring method according to another embodiment of the present invention.
  • 15 is a detailed flowchart of a correction function generation step.
  • 16 is a flow chart of a blood flow measurement method according to another embodiment of the present invention.
  • the blood flow measuring apparatus 100 includes a plurality of probes for measuring blood flow at a plurality of points, and includes a light source module 11, a detection module 12, and a pressure measuring module 13 included in each probe. Can be.
  • the signal processor 40 controls the light source module 11 and may be configured to perform signal processing based on signals received from the pressure measuring module 13 and the detection module 12.
  • the blood flow measurement device is configured to be worn on the body to be in close contact with skin tissue and to measure blood flow in a non-invasive manner.
  • the shape of the measuring device is configured in the form of a helmet so that it can be worn on a human head to measure cerebral blood flow using near infrared spectroscopy (NIRS).
  • NIRS near infrared spectroscopy
  • Near-infrared spectroscopy is a non-invasive method for measuring the concentration change and optical coefficient of absorbing substances such as oxidized hemoglobin, reduced hemoglobin, myoglobin, etc. in human tissues.
  • the installation unit 1 of the blood flow measurement device may be configured to be coupled to the connection module 20 and the receiving module 30.
  • the connection module 20 is configured to extend in a predetermined length in the longitudinal direction, and is provided with a fastening portion composed of grooves or protrusions so that both ends can be coupled to the adjacent receiving module 30.
  • the receiving module 30 may be provided with a protrusion or a groove to be mechanically fastened corresponding to the coupling portion of the connection module 20.
  • the receiving module 30 may be fastened to a probe 10 capable of measuring blood flow, which will be described later.
  • the installation unit 1 may be provided with a module configured to measure blood flow at each node, which is configured in the form of a mesh to measure cerebral blood flow at a plurality of points.
  • the blood flow measuring device is changed in shape so as to be in close contact with various body parts. The user may selectively configure the blood flow measurement device by combining the module according to the worn body part.
  • the blood flow measurement apparatus 100 using near infrared spectroscopy may include a light source module 11, a detection module 12, a pressure measurement module 13, a probe 10 including the same, and a signal processor 40. It is configured to include.
  • the light source module 11, the detection module 12, and the pressure measuring module 13 are provided on one surface of the probe 10 so that the light source module 11, the detection module 12, and the pressure measuring module 13 may be disposed in contact with a test site of a test target.
  • the probe 10 functions as a unit module for measuring blood flow.
  • the probe 10 may include a light source module 11, a pressure measuring module 13, and a detection module 12, and may be configured to be in close contact with a human body, and the installation unit 1 described above. It is configured to be connected to and supported).
  • the light source module 11 irradiates light to the site under test, and the light irradiated to the site to be detected reaches the detection module 12 through a process of being scattered, absorbed, and reflected while moving along the body. Therefore, the light reaching the detection module 12 includes various biometric information including body blood flow information, and it is possible to measure blood flow in the body based on this.
  • the light source module 11 may be configured as an LED and may be configured to generate light having a unique wavelength.
  • the inherent wavelength may be light having a near infrared wavelength as described above.
  • the light source module 11 may include a plurality of light sources for generating light having wavelengths.
  • the detection module 12 is configured to enable near-infrared light to detect light that has undergone at least one of scattering, absorption and reflection in the tissue.
  • the detection module 12 may be provided at an appropriate distance from the light source module 11, and may widen the distance between the light source module 11 and the detection module 12 in order to obtain information about a deep part of the tissue.
  • the detection module 12 may be configured to detect near infrared rays generated by the light source module 11, and may be configured as a photodiode as an example.
  • the pressure measuring module 13 is configured to measure the pressure acting on the test tissue. The value measured in the pressure measuring module 13 measures the pressure to correct noise caused by the pressure, and is also used to determine whether the probe 10 is properly attached to the site under test.
  • the shape of the probe 10 described above may be modified and applied in various forms that can be used in contact with the site to be inspected.
  • the signal processor 40 controls the light source module 11 and is configured to receive signals from the detection module 12 and the pressure measuring module 13.
  • the signal processor 40 may perform a function of removing noise from the detection data obtained from the detection module 12 by setting a correction function in advance.
  • the correction function may be set in a predetermined range, and configured to allow the user to select according to the condition or environment of the patient.
  • the signal processor 40 may be configured to include an image display algorithm for displaying in a form that the user can easily recognize according to the value measured by the detection module 12.
  • the noise correction function by the pressure of the signal processing unit 40 will be described in detail later.
  • Phantom 5 is a cross-sectional view illustrating the concept of applying the probe 10 to the phantom.
  • the amount of light is measured in an environment in which pressure is artificially applied to compensate for noise caused by pressure, and a correction function is calculated by interpolation.
  • Phantoms are models used in place of humans for biological research, such as the investigation and analysis of the distribution of electromagnetic waves within a human body and the specific absorption rate (SAR) of human tissues. Phantoms have an appearance that is similar in size to human tissue and are configured to have a similar dielectric constant, conductivity, and density.
  • the pressure sensor is configured to contact the phantom between the light source module 11 and the detection module 12, and is configured to measure the pressure generated by the force acting between the phantom and the probe 10.
  • the pressure measuring module 13 may be provided at various positions as a position for measuring pressure by external force.
  • FIG. 6 is a diagram illustrating detection data according to a pressure change
  • FIG. 7 is a graph obtained by converting a value of FIG. 5 to a LOG SCALE
  • FIG. 8 is a diagram illustrating a value of FIG. 7
  • FIG. 9 is a diagram of FIG. 8. It is a graph showing the results obtained by linear interpolation.
  • the probe In order to obtain the correction function using the phantom, the probe is first brought into close contact with the phantom as in real tissue.
  • the light source module is then operated to continuously radiate light having a specific wavelength onto the phantom.
  • the pressure is changed by changing the force applied to the probe while maintaining the operation of the light source module.
  • the light source module 11 used a light source module 11 having a first wavelength and a light source having a second wavelength so as to obtain a result according to the wavelength.
  • the detection module 12 measures the intensity of light that varies with pressure.
  • the first wavelength is set to 760 nm
  • the second wavelength is set to 830 nm
  • the probe 10 is independently configured for two types of light having different wavelengths, respectively, to obtain and process data. have.
  • FIG. 6 shows the values of the pressure applied to the phantom and the intensity of the obtained light as analog (Analog to Digical converter) values.
  • the pressure application sequence is performed using the profile of the pressure acting on the probe 10 according to the time sequence included in the pressure data.
  • 6 shows the first detection light data obtained from the detection module 12 when the light of the first wavelength is irradiated and the light obtained from the detection module 12 when the light of the second wavelength is irradiated according to the same pressure application profile. 2 detection optical data are shown.
  • the obtained intensity value of light can be confirmed that the overall wavelength of the light is 830nm higher than the case of 760nm.
  • the phantom does not change the physical properties that can represent information related to metabolism included in the blood flow even if the working pressure is changed, it is preferable that the intensity of light be obtained regardless of the pressure.
  • the trend of the ADC value change with the pressure change is similar, which means that the noise caused by the pressure is inaccurate.
  • FIG. 7 there is shown a graph in which the intensity of light according to the pressure change is represented by the ADC value using the obtained detection light data.
  • the light having a wavelength of 760nm and 830nm was irradiated, respectively, it was confirmed that the detected ADC value generally increased similarly as the pressure increased.
  • a step of modifying and applying the scale is necessary to confirm whether the detection light data can appear in the same trend.
  • the x-axis is the ratio of the initial pressure values Po and P
  • the y-axis is the ratio of the initial ADC values Io and ADC. Converted to.
  • the scales for each axis were converted to log scales and compared, and expressed as-to recognize the trend as an intuitive increase.
  • the x-axis converted to -log (Pressure / Po) value and the y-axis to -log (Intensity / Io) value. Since it is confirmed that the pressure is changed in the same pattern, it is possible to derive a correction function applicable to light having two wavelengths by linear interpolation in the state of scale conversion.
  • FIG. 9 illustrates a result of obtaining a slope value fitting to a change in the y-axis value with respect to the x-axis by performing linear interpolation in the graph of FIG. 8 which is a scale-changed graph.
  • the scale change graph shows a linear distribution as a whole.
  • the slope of the straight line is 0.76.
  • the 0.76 value obtained by the interpolation may be determined as a correction function through an inverse conversion of the SCALE of the interpolation from the SCALE of the ADC value obtained from the detection module.
  • correction may be performed by deriving a correction function for each wavelength.
  • the signal processor 40 may be provided with an algorithm for loading and applying the correction value from the correction value table generated according to the pressure and wavelength applied based on the correction function.
  • the signal processor 40 may be configured to immediately perform correction using a specific value matched without a separate function calculation process.
  • FIG. 10 is a graph showing the results of the correction when using a light source having a wavelength of 760 nm.
  • the applied pressure is experimental data when differently applied according to the sequence, and it is shown that the deviation is large in the obtained ADC value.
  • the value of the ADC can be confirmed to be maintained within a certain range.
  • FIG. 11 is a graph showing results of correction when a light source having a wavelength of 830 nm is used.
  • the correction function in the same manner as in FIG. 10, it is possible to reduce the fluctuation range from the data before correction, and it can be confirmed that the obtained ADC value is maintained in a predetermined range.
  • Oxy hemoglobin concentration (Oxy) and Deoxy hemoglobin concentration (Deoxy) are calculated using Modified Beer-Lambert Law based on the detection light data shown in FIG. 6.
  • Oxy and Deoxy values represent relative changes of the initial values, and the y-axis is shown in Arbitary Units.
  • the result of the pressure change compared to the initial value decreases significantly.
  • the data obtained according to the pressure change may be interpreted as if there is a change in blood flow because of noise. However, the value of removing the noise by correcting it is maintained at a constant level. This can be accepted as a reliable measurement for conditions where there is no change in blood flow in the phantom.
  • the signal processor 40 may include an algorithm for determining data obtained as an error value when the pressure is measured below a predetermined pressure.
  • the data can be obtained from the detection module 12 but determined as an error value to increase the accuracy.
  • whether or not an error value may be determined by determining pressure for each module.
  • FIG. 13 is a diagram illustrating a graph of detection values before and after correction when interpolation is a second order interpolation polynomial.
  • FIG. 13 (a) and 13 (b) are results of different experiments, respectively, and the upper graph of each drawing shows detection optical data for light having a wavelength of 760 nm, and the lower graph of each drawing shows a wavelength of 830 nm.
  • correction may be performed by deriving a correction function for each wavelength.
  • the phantom is used to obtain the correction function, but may be configured to acquire data according to the pressure change and to obtain the correction function according to the patient by performing a test for correcting the patient directly. . In this case, however, it is preferable to perform in an environment or condition in which the blood flow of the patient is maintained.
  • FIG. 14 is a flowchart of a blood flow measuring method according to another embodiment of the present invention
  • FIG. 15 is a detailed flowchart of the generation of the correction function of FIG. 14.
  • the blood flow measurement method having a noise correction function by the pressure having a noise correction function by the pressure according to the present invention
  • the correction function generating step (S100) the step of irradiating light (S200), the step of obtaining the detection light data (S300), pressure It may be configured to include a measurement step (S400), an error value classification step (S500), a correction step (S600) and a signal processing step (S700).
  • the step of wearing or bringing the blood flow measurement device into the tissue to be measured should be preceded.
  • the light source module 11, the detection module 12, and the pressure measuring module 13 may be in close contact with the skin in order to measure blood flow non-invasively.
  • a blood flow measurement device can be worn on the head to measure blood flow in the brain.
  • the correction function generating step S100 is a step of generating a correction function for correcting a value recognized as noise when a change in pressure occurs during measurement of blood flow.
  • the correction function generating step S100 may be selectively performed after the examiner wears the blood flow measuring apparatus.
  • the correction function generation step S100 may include a test light irradiation step S110, a pressure application step S120, a test detection light data acquisition step S130, and an interpolation step S140.
  • the test light irradiation step (S110) is a step of irradiating tissue with light of near infrared rays used for blood flow measurement to calculate a correction function.
  • the test light light of the wavelength used for blood flow measurement may be used, and the same light source may be used.
  • Pressure application step (S120) is a process of artificially generating pressure in the test tissue.
  • the user applies an appropriate pressure to either one of the probes or a plurality of probes 10. For example, in a state in which a blood flow measuring device is worn, a user may generate pressure by pressing a finger to generate an appropriate external force.
  • the test detection optical data acquiring step (S130) is a step of acquiring data in a state where a pressure is applied.
  • values such as ADC value and intensity may be measured in the same manner as when measuring blood flow data.
  • the interpolation step S140 corresponds to a step of calculating a correction function required for correction using the obtained data.
  • a correction function is obtained through scale conversion and interpolation of the detected optical data on the assumption that the obtained ADC value has no change in blood flow.
  • steps S200 to S600 of measuring actual blood flow are performed.
  • the step of irradiating light, measuring pressure, and detecting light may be performed for a predetermined time.
  • Irradiating light (S200) is a step of irradiating the tissue with near-infrared light through the light source module.
  • one or more lights may be selected and irradiated with light having different wavelengths, and when different lights are irradiated, they may have different wavelengths so as to represent different characteristics of physical properties of the tissue. Can be.
  • Detection light data corresponds to the step of receiving light returned to the outside of the tissue through scattering, reflection, etc., the light irradiated to the tissue.
  • Detection light data may be performed using an electrical element such as a photodiode.
  • Pressure measurement step (S400) is a step of generating pressure measurement data by continuously measuring the pressure during the irradiation and detection of light. The pressure measures the pressure acting between the probe 10 and the tissue surface.
  • Error value classification step (S500) is configured to exclude the corresponding data from the blood flow determination when the error value in the pressure measurement step (S400). Specifically, when the pressure is greater than or equal to the predetermined range, an excessively strong external force acts from the outside, and an impact occurs. On the contrary, when the pressure is less than or equal to the predetermined range, the substrate of the blood flow measuring apparatus is spaced apart from the skin surface. In this case, it is desirable to exclude the measurement result because it is not reflected accurately. Therefore, when the acquired data is determined as an error value and finally displayed, the data except for this is displayed.
  • the correction step S600 corresponds to a step of removing the influence of noise due to pressure by applying the correction function obtained above to the detection light data.
  • the pressure measurement data is used for each inspection part of the tissue, and the correction function according to the pressure is reflected in the detection light data, thereby making it possible to correct the result due to noise.
  • the signal processing step S700 corresponds to a step of converting the corrected detection light data into meaningful results.
  • Detected light data can be processed to signal metabolites into understandable values such as the Modified Beer-Lambert Law, for example, to convert Oxy hemoglobin concentration (Oxy) and Deoxy hemoglobin concentration (Deoxy) values. have.
  • 16 is a flow chart of a blood flow measurement method according to another embodiment of the present invention.
  • This embodiment may also include the same components as the above-described embodiment, and the description thereof will be omitted for the sake of brevity and will be described only in order to avoid redundant descriptions.
  • a correction function can be derived and used before measurement of blood flow.
  • the preset correction function may be derived using the phantom.
  • the blood flow measuring apparatus and method including the noise correction function by the pressure according to the present invention may calculate the correction function in consideration of the influence of the pressure and correct the blood flow measured by reflecting it. Therefore, the present invention has the effect of increasing the accuracy and reliability of non-invasive blood flow test.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Obesity (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

본 발명은, 조직에 접촉하여 광을 조사하도록 구성된 광원 모듈, 조직에 조사된 광을 검출하는 검출 모듈, 조직에 작용하는 압력을 측정하도록 구성되는 압력 측정 모듈 및 광의 검출시 압력이 작용함에 따라 발생되는 노이즈를 보정할 수 있도록 보정함수를 적용하여 검출 모듈로부터 수신된 신호를 처리하는 신호처리부를 포함하는 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치 및 방법에 관한 것이다. 본 발명에 따른 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치 및 방법은 검출된 데이터에서 압력의 변화에 따라 발생되는 노이즈의 영향을 제거할 수 있으므로 정확도와 신뢰도를 향상시킬 수 있는 효과가 있다.

Description

압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치 및 방법
본 특허와 관련된 연구는 한국과학기술정보통신부 주관 하에 뇌과학원천기술개발사업(과제명:뇌발달 상에서의 구조 및 기능 장애 분석을 위한 연구 및 진단장비 개발, 과제고유번호:1711057527 )의 지원에 의해 이루어진 것이다.
본 발명은 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치 및 방법에 관한 것이며, 보다 상세하게는 혈류변화를 광을 이용한 비침습적 방법으로 검지할 때 압력에 의한 노이즈를 보정하는 기능을 갖는 혈류 측정 장치 및 방법에 관한 것이다.
근래에 생체 정보 취득 방식으로서, 근적외선 분광법(NIRS, near-infrared spectroscopy)에 대한 연구가 활발히 진행되고 있다. 근적외선 분광법은 인체에 무해한 빛을 이용하여 인체 조직을 영상화할 수 있는 방법으로, 여타 방식과는 달리 비용 부담을 최소화시킬 수 있다. 이와같은 종래기술로서 대한민국 등록특허 제1,008,041 호가 개시되어 있다.
그러나, 종래 기술에 따른 근적외선 분광법을 이용한 혈류 변화를 측정하는 연구에 있어, 피검체의 안정적 상태를 벗어난 경우, 예를 들어 외력에 의해 압력이 증가된 경우에 정확한 데이터 확보가 어렵다는 문제점이 있었다.
본 발명은 조직에 압력이 변화될 때 획득되는 데이터에서 압력의 적용에 따른 노이즈를 제거하여 정확도를 향상시킬 수 있는 혈류 측정 장치 및 혈류 측정 방법을 제공하는 것에 그 목적이 있다.
상기 과제의 해결 수단으로서, 조직에 접촉하여 광을 조사하도록 구성된 광원 모듈, 조직을 따라 이동하면서 산란, 흡수 및 반사 중 적어도 하나의 과정을 거친 광을 검출하는 검출 모듈, 조직에 작용하는 압력을 측정하도록 구성되는 압력 측정 모듈 및 광의 검출시 압력이 작용함에 따라 발생되는 노이즈를 보정할 수 있도록 보정함수를 적용하여 검출 모듈로부터 수신된 신호를 처리하는 신호처리부를 포함하는 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치가 제공될 수 있다.
여기서, 신호처리부는 압력에 따른 보정함수를 이용하여 검출 모듈로부터 수신된 신호를 보정하도록 구성될 수 있다.
또한 신호처리부는 보정값 테이블로부터 압력에 매칭되는 보정값을 이용하여 보정하는 것을 특징으로 하는 노이즈 보정기능을 포함하여 구성될 수 있다.
여기서, 보정함수는 광원 모듈로 조직에 광을 조사한 상태에서 압력을 변화시킬 때 획득되는 검출 광 데이터를 보간하여 획득될 수 있다.
또한, 보정함수는 서로 파장이 다른 적어도 두 가지 광이 조직에 조사되었을 때 압력을 변화시켜 획득한 검출 광 데이터를 보간하여 획득될 수 있다.
한편, 광은 근적외선 영역에서 선택되며, 신호처리부는 검출 광 데이터를 근거로 조직의 신진대사를 파악할 수 있도록 광 intensity 데이터를 Oxy hemoglobin concentration 과 Deoxy hemoglobin concentration로 변환할 수 있다.
그리고, 신호처리부는 서로 다른 파장의 광을 검출한 값에 대하여 압력 변화에 따른 변화경향이 동기화 될 수 있도록 초기 측정값에 대한 변화량 또는 log scale 중 적어도 하나의 변환을 통하여 보간할 수 있다.
또한, 보정함수는 압력 데이터로부터 -log(Pressure/Po) 값을 도출하며, 검출 광 데이터로부터 -log(Intensity/Io) 값을 도출하며, -log(Pressure/Po) 값과 -log(Intensity/Io) 값의 분포에 따른 보간으로 결정될 수 있다.
그리고, 보정함수는 -log(Pressure/Po) 값과 -log(Intensity/Io) 값을 1차 보간 또는 2차 보간으로 획득될 수 있다.
한편, 보정함수는 팬텀(phantom)에 광을 조사하고, 압력에 따라 획득된 검출 데이터를 근거로 산출될 수 있다.
한편, 광원 모듈, 검출 모듈 및 압력 측정 모듈은 하나의 프로브를 구성하며, 머리를 감쌀 수 있도록 복수의 프로브가 연결되어 구성될 수 있다.
한편, 광원 모듈, 검출 모듈 및 압력 측정 모듈은 프로브의 일면에 구비되며, 각각 조직과 접촉하도록 구성된 것을 특징으로 하는 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치.
그리고, 신호처리부는 압력 측정 모듈에서 측정되는 값이 기준값 이하인 경우 검출 모듈로부터 획득되는 값은 오류값으로 분류할 수 있다.
추가로, 조직에 접촉하여 광을 조사하는 단계, 조직을 따라 이동하면서 산란, 흡수 및 반사 중 적어도 하나의 과정을 거친 광을 검출하여 검출 광 데이터를 획득하는 단계, 조직에 작용하는 압력을 측정하는 단계, 및 검출 광 데이터의 압력에 의한 노이즈를 제거할 수 있도록 검출 광 데이터에 압력에 따른 보정함수를 반영하는 보정단계를 포함하는 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 방법이 제공될 수 있다.
여기서, 보정함수는 보정함수 생성단계를 수행하여 산출되며, 보정함수 생성단계는, 조직에 광을 조사하는 테스트 광 조사 단계, 조직에 인가되는 압력을 변화시키는 단계, 압력의 변화에 따른 테스트 검출 광 데이터를 획득하는 단계 및 검출 광 데이터 및 압력 데이터로부터 보간하는 보간단계를 수행하여 획득될 수 있다.
또한, 보간단계는, 압력 데이터로부터 -log(Pressure/Po) 값을 도출하며, 검출 광 데이터로부터 -log(Intensity/Io) 값을 도출하며, -log(Pressure/Po) 값과 -log(Intensity/Io) 값의 분포에 따른 보간이 수행될 수 있다.
또한, 보간단계는 -log(Pressure/Po) 값과 -log(Intensity/Io) 값을 1차 보간 또는 2차 보간으로 획득된 보정함수로 결정할 수 있다.
여기서, 광을 조사하는 단계는 근적외선 영역의 광을 사용하며, 보정단계이후 검출 광 데이터를 근거로 조직의 신진대사를 파악할 수 있도록 광 intensity 데이터를 Oxy hemoglobin concentration 과 Deoxy hemoglobin concentration로 변환하는 신호처리단계를 더 포함할 수 있다.
한편, 보정함수는 보정함수 생성단계를 수행하여 산출되며, 팬텀에 광을 조사하는 테스트 광 조사 단계, 팬텀에 인가되는 압력을 변화시키는 단계, 압력의 변화에 따른 테스트 검출 광 데이터를 획득하는 단계 및 검출 광 데이터 및 압력 데이터로부터 보간하는 보간단계를 수행하여 산출될 수 있다.
그리고, 측정된 압력값이 기준값 미만인 경우 검출 광 데이터를 오류값으로 결정하는 오류값 분류단계를 더 포함할 수 있다.
본 발명에 따른 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치 및 방법은 검출된 데이터에서 압력의 변화에 따라 발생되는 노이즈의 영향을 제거할 수 있으므로 정확도와 신뢰도를 향상시킬 수 있는 효과가 있다.
도 1은 본 발명에 따른 제1 실시예인 혈류 측정장치의 구성에 대한 블록도이다.
도 2는 제1 실시예의 사용상태도이다.
도 3은 혈류 측정 장치의 설치부를 나타낸 사시도이다.
도 4a는 혈류 측정 장치의 프로브의 단면도이다.
도 4b는 혈류 측정 장치의 프로브의 저면도이다.
도 5는 프로브를 팬텀에 적용하는 개념을 나타낸 단면도이다.
도 6은 압력변화에 따른 검출 데이터를 나타낸 도면이다.
도 7은 도 6의 값을 LOG SCALE로 변환한 그래프이다.
도 8은 도 7의 값을 스케일링하여 나타낸 도면이다.
도 9는 도 8에서 선형보간하여 얻은 결과를 도시한 그래프이다.
도 10은 760nm의 파장을 갖는 광원을 사용하였을 때 보정을 수행한 결과그래프이다.
도 11은 830nm의 파장을 갖는 광원을 사용하였을 때 보정을 수행한 결과그래프이다.
도 12는 Oxy 및 DeOxy 값의 보정 전후의 그래프이다.
도 13은 보간이 2차 보간 다항식으로 이루어진 경우 보정 전 후의 검출값의 그래프를 도시한 도면이다.
도 14는 본 발명에 따른 다른 실시예인 혈류 측정 방법의 순서도이다.
도 15는 보정함수 생성단계의 상세한 순서도이다.
도 16은 본 발명에 따른 다른 실시예인 혈류 측정 방법의 순서도이다.
이하, 본 발명의 실시 예에 따른 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치 및 방법에 대하여, 첨부된 도면을 참조하여 상세히 설명한다. 그리고 이하의 실시예의 설명에서 각각의 구성요소의 명칭은 당업계에서 다른 명칭으로 호칭될 수 있다. 그러나 이들의 기능적 유사성 및 동일성이 있다면 변형된 실시예를 채용하더라도 균등한 구성으로 볼 수 있다. 또한 각각의 구성요소에 부가된 부호는 설명의 편의를 위하여 기재된다. 그러나 이들 부호가 기재된 도면상의 도시 내용이 각각의 구성요소를 도면내의 범위로 한정하지 않는다. 마찬가지로 도면상의 구성을 일부 변형한 실시예가 채용되더라도 기능적 유사성 및 동일성이 있다면 균등한 구성으로 볼 수 있다. 또한 당해 기술분야의 일반적인 기술자 수준에 비추어 보아, 당연히 포함되어야 할 구성요소로 인정되는 경우, 이에 대하여는 설명을 생략한다.
이하에서는 도 1 내지 도 4를 참조하여 본 발명에 따른 제1 실시예인 혈류 측정 장치(100)의 구성에 대하여 상세히 설명하도록 한다.
혈류 측정 장치(100)는 복수의 지점에서 혈류를 측정할 수 있도록 복수의 프로브가 구비되며, 각각의 프로브에 구비된 광원 모듈(11), 검출 모듈(12) 및 압력 측정 모듈(13)이 구비될 수 있다. 신호처리부(40)는 광원모듈(11)을 제어하며, 압력 측정 모듈(13) 및 검출 모듈(12)로부터 수신된 신호를 근거로 신호처리를 수행하도록 구성될 수 있다.
도 2는 본 발명에 따른 제1 실시예인 혈류 측정 장치의 사용상태도이다. 혈류 측정 장치는 신체에 착용하여 피부조직에 밀착되어 비침습적으로 혈류를 측정할 수 있도록 구성된다. 일 예로 사람의 머리에 착용하여 근적외선 분광법(NIRS)을 이용하여 뇌혈류를 측정할 수 있도록 측정 장치의 형상이 헬멧형태로 구성이 되어 있다. 근적외선 분광법은 인체조직에 존재하는 산화 헤모글로빈, 환원 헤모글로빈, 미오글로빈 등과 같은 흡수물질의 농도변화 및 광학계수를 비침습적으로 측정할 수 있는 방법으로, 700~2800nm, 특히 700~900 nm 대역의 근적외선은 인체조직 내에서 산란 및 흡수가 다른 대역에 비해 상대적으로 작게 일어나기 때문에 빛이 깊이 도달할 수 있으며, 이를 이용하여 인체 내 수cm 깊이까지 정보를 얻어낼 수 있다는 점에서 특징을 갖는다. 인체 내 존재하는 흡수물질은 크게 산소에 의존적인 물질과 비 의존적인 물질로 나눌 수 있다. 특히 산소에 의존적인 물질의 농도변화는 인체 내 대사활동과 밀접하게 연관되어 있어 이를 정량, 정성적으로 분석하는 것이 매우 중요하다. 검출된 광 신호를 근거로 의미 있는 분석 결과로 도출하기 위한 알고리즘, 예를 들어 Modified Beer-Lambert Law를 이용하여 Oxy hemoglobin concentration(Oxy) 과 Deoxy hemoglobin concentration(Deoxy)를 산출하여 조직의 신진대사(metabolism)를 파악할 수 있게 된다.
도 3은 혈류 측정 장치(100)의 설치부(1)를 나타낸 사시도이다. 도시된 바와 같이, 혈류 측정 장치의 설치부(1)는 연결 모듈(20)과 수용 모듈(30)로 결합되어 구성될 수 있다. 연결 모듈(20)은 길이방향으로 소정길이 연장된 형태로 구성되며, 양단이 인접하는 수용 모듈(30)과 결합할 수 있도록 홈 또는 돌기로 구성되는 체결부가 구비된다. 수용 모듈(30)에는 연결 모듈(20)의 결합부에 대응하여 기구적으로 체결될 수 있도록 돌기 또는 홈이 형성될 수 있다. 수용 모듈(30)에는 후술할 혈류를 측정가능한 프로브(10)가 체결될 수 있다.
설치부(1)는 뇌혈류를 복수의 지점에서 측정할 수 있도록 메쉬의 형태로 구성되어 각각의 노드에 혈류를 측정할 수 있는 모듈이 구비될 수 있다. 한편, 혈류 측정 장치는 다양한 신체부위에 밀착될 수 있도록 형상이 변화된다. 사용자는 착용되는 신체부위에 따라 선택적으로 모듈을 결합하여 혈류 측정 장치를 구성할 수 있다.
도 4a는 혈류 측정 장치의 프로브(10)의 단면도 및 도 4b는 혈류 측정 장치(100)의 프로브(10)의 저면도이다. 도시된 바와 같이, 근적외선 분광법을 이용한 혈류 측정 장치(100)는 광원 모듈(11), 검출 모듈(12), 압력 측정 모듈(13)과 이를 포함하는 프로브(10), 그리고 신호처리부(40)를 포함하여 구성된다. 광원 모듈(11), 검출 모듈(12), 압력 측정 모듈(13)은 피검대상인 피검자의 피검 부위에 접촉된 상태로 배치될 수 있도록 프로브(10)의 일면에 구비된다.
프로브(10)는 혈류를 측정하기 위한 단위 모듈로서 기능한다. 프로브(10)는 전술한 바와 같이 광원 모듈(11), 압력 측정 모듈(13) 및 검출 모듈(12)을 포함하여 구성될 수 있으며, 인체에 밀착할 수 있도록 구성되며, 전술한 설치부(1)에 연결되어 지지될 수 있도록 구성된다.
광원 모듈(11)은 피검부위로 광을 조사하고, 피검부위로 조사된 광은 체내를 따라 이동하면서 산란, 흡수, 반사되는 과정을 거쳐 검출 모듈(12)에 도달한다. 따라서 검출 모듈(12)에 도달한 광은 체내 혈류 정보를 비롯한 각종 생체 정보를 포함하며, 이에 근거하여 체내 혈류를 측정하는 것이 가능하다. 광원 모듈(11)은 LED로 구성될 수 있으며, 고유의 파장을 갖는 광을 발생시키도록 구성될 수 있다. 고유의 파장은 전술한 바와 같이 근 적외선 파장을 갖는 광이 될 수 있다. 광원 모듈(11)은 서로 파장을 갖는 광을 발생시키는 광원을 복수로 포함하여 구성될 수 있다.
검출 모듈(12)은 근 적외선이 조직내에서 산란, 흡수 및 반사 중 적어도 하나의 과정을 거친 광을 검출할 수 있도록 구성된다. 검출 모듈(12)은 광원 모듈(11)과 적절한 거리를 두어 구비되며, 조직 내 깊은 부분에 대하여 정보를 얻고자 하는 경우 광원 모듈(11)과 검출 모듈(12)의 거리를 넓게 둘 수 있다. 검출 모듈(12)은 광원 모듈(11)에서 발생되는 근 적외선을 검출할 수 있도록 구성되며, 일 예로 포토 다이오드(Photodiode)로 구성될 수 있다.
압력 측정 모듈(13)은 피검조직에 작용하는 압력을 측정할 수 있도록 구성된다. 압력 측정 모듈(13)에서 측정된 값은 압력에 의한 노이즈를 보정하기 위해 압력을 측정하며, 또한 프로브(10)가 피검부위에 적절하게 부착되어 있는지 여부를 판단하기 위하여 사용된다.
다만, 전술한 프로브(10)의 형상은 피검부위에 접촉하여 사용될 수 있는 다양한 형태로 변형되어 적용될 수 있다.
신호처리부(40)는 광원 모듈(11)을 제어하며, 검출 모듈(12) 및 압력 측정 모듈(13)로부터 신호를 수신하도록 구성된다. 신호처리부(40)는 미리 보정함수가 설정되어 검출 모듈(12)로부터 획득되는 검출데이터에서 노이즈를 제거하는 기능을 수행할 수 있다. 보정함수는 소정범위로 설정될 수 있으며, 사용자가 환자의 상태나 환경에 맞게 선택할 수 있도록 구성될 수 있다. 또한 신호처리부(40)는 검출 모듈(12)에서 측정되는 값에 따라 사용자가 인지하기 쉬운 형태로 표시하기 위한 영상표시 알고리즘을 포함하여 구성될 수 있다. 한편 이와같은 신호처리부(40)의 압력에 의한 노이즈 보정 기능에 대하여 차후 상세히 설명하도록 한다.
도 5는 프로브(10)를 팬텀에 적용하는 개념을 나타낸 단면도이다. 본 발명에서 압력에 의한 노이즈를 보정할 수 있도록 인위적으로 압력이 인가되는 환경에서 광량을 측정하고 보간에 의해 보정함수를 산출하게 된다. 팬텀(phantom)은 인체 내부의 전자파 분포와 인체 조직의 비흡수율(SAR:specific absorption rate) 조사나 분석 등 생체 연구에 인체 대신에 사용되는 모형을 뜻한다. 팬텀은 인체 조직과 유사한 크기의 외형을 가지며, 비유전율, 도전율, 밀도가 유사하도록 구성된다. 여기서 압력센서는 광원 모듈(11)과 검출 모듈(12) 사이에서 팬텀과 접촉하도록 구성되며, 팬텀과 프로브(10) 사이에 작용하는 힘에 의해 발생되는 압력을 측정하도록 구성된다. 다만, 압력 측정 모듈(13)은 팬텀에 직접 밀착되는 구성으로 도시되어 있으나, 외력에 의한 압력을 측정하기 위한 위치로 다양한 위치에 구비될 수 있다.
이하에서는 도 6 내지 도 9를 참조하여 팬텀을 대상으로 압력에 의한 노이즈 보정에 사용되는 보정함수 생성에 관하여 상세히 설명하도록 한다.
도 6은 압력변화에 따른 검출 데이터를 나타낸 도면이며, 도 7은 도 5의 값을 LOG SCALE로 변환한 그래프이고, 도 8은 도 7의 값을 스케일링하여 나타낸 도면이며, 도 9는 도 8에서 선형보간하여 얻은 결과를 도시한 그래프이다.
팬텀을 이용하여 보정함수를 얻기 위해서는 먼저 프로브를 실제 조직에서 사용할 때와 마찬가지로 팬텀에 밀착시키게 된다. 그 후 광원 모듈을 작동하여 특정 파장을 갖는 광을 지속적으로 팬텀에 조사한다. 광원 모듈의 동작을 유지하면서 프로브에 작용하는 힘을 변화시켜 압력을 변화시키게 된다. 광원 모듈(11)은 파장에 따른 결과 또한 획득할 수 있도록 제1 파장을 갖는 광원 모듈(11) 및 제2 파장을 갖는 광원을 사용하였다. 검출 모듈(12)은 압력의 변화에 따라 달라지는 광의 세기를 측정하게 된다.
도 6 내지 도 9에서는 제1 파장은 760nm, 제2 파장은 830nm로 선정되며, 각각 다른 파장을 갖는 두 가지 광에 대하여 독립적으로 프로브(10)를 구성하여 데이터를 획득하고 처리된 결과가 동시에 나타나 있다.
도 6는 팬텀에 시퀀스에 따라 인가되는 압력과 획득되는 광의 세기(intensity)를 측정한 값이 ADC(Analog to Digical converter) 값으로 나타나 있다. 압력 인가 시퀀스는 압력 데이터에 포함된 시간 순서에 따라 프로브(10)에 작용되는 압력의 프로파일을 이용하여 수행된다. 도 6에는 동일한 압력 인가 프로파일에 따라 제1 파장의 광이 조사될 때 검출 모듈(12)로부터 획득된 제1 검출 광 데이터와 제2 파장의 광이 조사될 때에 검출 모듈(12)로부터 획득된 제2 검출 광 데이터가 나타나 있다. 획득된 광의 세기(intensity) 값은 광의 파장이 830nm 인 경우가 760nm 인 경우보다 전체적으로 높게 나타난 결과를 확인할 수 있다. 팬텀은 작용하는 압력이 변화되더라도 혈류에 포함되는 신진대사와 관련된 정보를 대변할 수 있는 물성치가 달라지지 않으므로 압력과 무관하게 광의 세기(intensity) 값이 획득되는 것이 바람직하다. 그러나 압력 변화에 따른 ADC 값의 변화 경향은 유사하게 나타나고 있어 압력에 의한 노이즈가 포함되어 부정확한 값이 나타난 것을 의미하게 된다.
도 7을 살펴보면 획득된 검출 광 데이터를 이용하여 압력변화에 따른 광의 세기가 ADC 값으로 나타낸 그래프가 도시되어 있다. 도시된 바와 같이, 760nm의 파장과 830nm 의 파장을 갖는 광이 각각 조사된 경우 압력이 증가함에 따라 검출된 ADC 값이 대체로 유사하게 증가하는 경향을 확인하였다. 그러나, 검출 광 데이터가 동일한 경향으로 나타날 수 있는지 여부를 확인하기 위하여 스케일을 변형하여 적용하는 단계가 필요하다.
도 8을 살펴보면 광의 파장이 각각 760nm 및 830nm 일 때 증가경향을 동일하게 가정할 수 있는 스케일변환이 필요하여 x 축은 초기 압력값인 Po와 P의 비율, y축은 초기 ADC 값인 Io와 ADC 값의 비율로 변환하였다. 각 축에 대한 scale을 log scale로 변환하여 비교하였으며, 직관적으로 상승하면 증가되는 경향으로 인식할 수 있도록 - 로 표현되었다. 최종적으로 x 축은 -log(Pressure/Po) 값을, y 축은 -log(Intensity/Io) 값으로 변환한 결과 두 종류의 광에 대하여 동일한 패턴으로 변화됨을 파악되었다. 압력 변화에 동일한 패턴으로 변화됨을 확인하였으므로, 스케일을 변환한 상태에서 선형보간으로 두 가지 파장을 갖는 광에 대하여 모두 적용가능한 보정함수를 도출할 수 있게 된다.
도 9는 scale 변화된 그래프인 도 8의 그래프에서 선형보간을 수행하여 x 축에 대한 y 축 값의 변화에 맞는(fitting) 기울기 값이 획득된 결과가 나타나 있다. scale 변화된 그래프는 전체적으로 선형적인 분포를 보이며, 광의 파장에 관계없이 선형보간되었을 때 직선의 기울기는 0.76의 값을 얻게 된다. 보간으로 획득된 기울기인 0.76 값은 보간시의 SCALE 로부터 검출 모듈로부터 획득되는 ADC 값의 SCALE로 역변환하는 과정을 거쳐 보정함수로 결정될 수 있다.
전술한 실시예에서는 두 가지 파장을 갖는 광이 적용되었을 때 획득되는 검출데이터를 이용하여 동시에 보간을 수행하는 방법에 대하여 설명하였으나, 각 파장에 대하여 개별적으로 보정함수를 도출하여 보정이 수행될 수 있다.
한편, 신호처리부(40)는 보정함수를 근거로 적용되는 압력 및 파장에 따라 생성된 보정값 테이블로부터 보정값을 로딩하여 적용하는 알고리즘이 구비될 수 있다. 이 경우 신호처리부(40)는 별도의 함수의 연산과정 없이 매칭되는 특정 값을 이용하여 바로 보정을 수행하도록 구성될 수 있다.
이하에서는 검출 광 데이터에 보정함수를 적용한 결과에 대하여 도 10 내지 도 13를 참조하여 설명하도록 한다.
도 10은 760nm의 파장을 갖는 광원을 사용하였을 때 보정을 수행한 결과가 나타난 그래프이다. 도시된 바와 같이, 도시되지는 않았으나, 적용되는 압력은 시퀀스에 따라 다르게 적용되었을 때의 실험 데이터이며, 이때 획득된 ADC 값에 편차가 큰 것으로 나타나 있다. 반면, 보정함수를 이용하여 보정하는 경우에 압력이 지속적으로 변화하는 경우라도 ADC의 값은 일정범위 내로 유지되는 결과를 확인할 수 있다.
도 11은 830nm의 파장을 갖는 광원을 사용하였을 때 보정을 수행한 결과그래프이다. 도 10에서의 과정과 동일하게 보정함수를 적용한 경우, 보정 전 데이터보다 변동 폭을 줄일 수 있으며, 획득된 ADC 값이 소정 범위에 유지됨을 확인할 수 있다.
도 12는 Oxy 및 DeOxy 값의 보정 전후의 그래프이다. 본 도면은 도 6에 나타난 검출 광 데이터를 근거로 Modified Beer-Lambert Law를 이용하여 Oxy hemoglobin concentration(Oxy) 과 Deoxy hemoglobin concentration(Deoxy)를 산출한 결과가 도출되어 있다. Oxy와 Deoxy 값은 초기 값에 의한 상대값들의 변화를 나타내어 y 축은 무차원 단위(Arbitary Unit)로 나타나 있다. 보정함수를 적용한 후의 그래프에서 초기 값 대비 압력변화에 따른 변화량이 큰 폭으로 줄어는 결과를 확인할 수 있다.
압력의 변화에 따라 획득되는 데이터는 노이즈가 포함되어 혈류에 변화가 있는 것처럼 해석될 여지가 있으나, 이를 보정하여 노이즈를 제거한 값은 일정한 수준을 유지한다. 이는 팬텀에 혈류의 변화가 없는 조건에 대하여 신뢰도 있는 측정결과로 받아들여질 수 있다.
한편, 도시되지는 않았으나 신호처리부(40)는 압력이 소정 압력 이하로 측정되는 경우 획득 되는 데이터를 오류 값으로 결정하는 알고리즘을 포함하여 구성될 수 있다. 여기서 소정 압력 이하로 측정되는 경우에는 프로브(10)가 조직으로부터 떨어지게 되어 데이터가 측정되더라도 무의미해지는 경우를 뜻한다. 이러한 경우 검출 모듈(12)로부터 데이터는 획득하되 오류값으로 결정하여 정확도를 높일 수 있게 된다. 한편 프로브(10)가 복수로 구비되는 경우 각 모듈별로 압력을 판단하여 오류값 여부가 판단될 수 있다.
도 13은 보간이 2차 보간 다항식으로 이루어진 경우 보정 전 후의 검출값의 그래프를 도시한 도면이다. 도 13 (a) 및 도 13 (b)는 각각 다른 실험을 수행한 결과이며, 각 도면의 상측의 그래프는 760nm의 파장을 갖는 광에 대한 검출 광 데이터, 각 도면의 하측의 그래프는 830nm의 파장을 갖는 광에 대한 검출 광 데이터이다. 2차 보간으로 보정함수를 획득하는 경우에는 1차인 경우보다 정확도가 다소 높은 보정이 수행될 수 있으며, 압력조건을 달리하는 경우 및 파장이 다른 경우에도 압력에 의한 노이즈가 큰 폭으로 감소됨을 확인할 수 있다.
전술한 실시예에서는 두 가지 파장을 갖는 광이 적용되었을 때 획득되는 검출데이터를 이용하여 동시에 보간을 수행하는 방법에 대하여 설명하였으나, 각 파장에 대하여 개별적으로 보정함수를 도출하여 보정이 수행될 수 있다.
또한, 전술한 실시예에서는 보정함수를 획득하기 위하여 팬텀을 이용하였으나, 환자에 직접 보정을 위한 테스트를 수행하여 압력변화에 따른 데이터를 획득하고 환자에 따른 보정함수를 획득할 수 있도록 구성될 수 있다. 다만 이와같은 경우에는 환자의 혈류량이 유지되는 환경 또는 조건에서 수행하는 것이 바람직하다.
도 14는 본 발명에 따른 다른 실시예인 혈류 측정 방법의 순서도이며, 도 15는 도 14의 보정함수 생성단계의 상세한 순서도이다.
도시된 바와 같이, 본 발명에 따른 압력에 의한 노이즈 보정기능을 갖는 혈류 측정 방법은 보정함수 생성단계(S100), 광을 조사하는 단계(S200), 검출 광 데이터를 획득하는 단계(S300), 압력측정단계(S400), 오류값 분류단계(S500), 보정단계(S600) 및 신호처리단계(S700)를 포함하여 구성될 수 있다.
본 발명을 수행함에 앞서 측정 대상조직에 혈류 측정 장치를 착용 또는 밀착시키는 단계가 선행되어야 한다. 비침습적으로 혈류량을 측정하기 위해 광원 모듈(11), 검출 모듈(12) 및 압력 측정 모듈(13)이 피부에 밀착될 수 있다. 예를들어 두뇌의 혈류 측정을 위해서 혈류 측정 장치를 머리에 착용할 수 있다.
보정함수 생성단계(S100)는 혈류량의 측정 중 압력의 변화가 발생하는 경우 노이즈로 인식되는 값을 보정하는 보정함수를 생성하는 단계이다. 보정함수 생성단계(S100)는 검사자가 혈류 측정 장치를 착용한 뒤 선택적으로 수행될 수 있다. 보정함수 생성단계(S100)는 테스트 광 조사 단계(S110), 압력 적용 단계(S120), 테스트 검출 광 데이터 획득단계(S130) 및 보간단계(S140)를 포함하여 구성될 수 있다.
테스트 광 조사 단계(S110)는 보정함수를 산출하기 위하여 혈류 측정을 위해 사용되는 근적외선의 광을 조직에 조사하는 단계이다. 테스트 광은 혈류 측정시에 사용되는 파장의 광이 사용될 수 있고, 동일한 광원을 사용할 수 있다.
압력 적용단계(S120)는 검사조직에 압력을 인위적으로 발생시키는 과정이다. 사용자는 프로브 중 어느 하나 또는 복수의 프로브(10)에 적절한 압력을 적용한다. 일 예로 혈류 측정 장치를 착용한 상태에서 사용자가 손가락으로 눌러 적절한 외력을 발생시켜 압력을 발생시킬 수 있다.
테스트 검출 광 데이터 획득단계(S130)는 압력이 적용된 상태에서 데이터를 획득하는 단계이다. 테스트 검출 광 데이터 획득단계(S130)는 혈류 데이터를 측정할 때와 동일하게 ADC value, intensity 등의 값이 측정될 수 있다.
보간단계(S140)는 획득된 데이터를 이용하여 보정에 필요한 보정함수를 산출하는 단계에 해당한다. 보간단계(S140)는 획득된 ADC value를 혈류에 변화가 없는 상태를 가정하여 측정된 검출 광 데이터의 스케일변환 및 보간을 통하여 보정함수를 획득한다.
이와같이 환자 개별적으로 보정함수를 획득하면 개인차에 의한 오차를 극복하고 정밀한 결과값을 얻을 수 있다.
보정함수를 획득한 이후 실제 혈류량을 측정하는 단계(S200 내지 S600)가 수행된다.
혈류량의 측정시에는 광을 조사하고, 압력을 측정하며, 광을 검출하는 단계가 소정시간동안 이루어질 수 있다.
광을 조사하는 단계(S200)는 광원 모듈을 통하여 근적외선 광을 조직에 조사하는 단계이다. 광을 조사하는 단계(S200)에서는 각각 파장이 다른 광 중에서 하나 이상의 광이 선택되어 조사될 수 있으며, 서로 다른 광이 조사되는 경우 조직의 물성치 중 서로 다른 특성을 대변할 수 있도록 서로 다른 파장을 가질 수 있다.
검출 광 데이터를 획득하는 단계(S300)는 조직에 조사된 광이 산란, 반사 등을 통하여 조직외부로 되돌아오는 광을 수광하는 단계에 해당한다. 검출 광 데이터는 포토다이오드와 같은 전기적 소자를 이용하여 수행될 수 있다.
압력측정단계(S400)는 광의 조사 및 검출이 진행되는 동안 지속적으로 압력을 측정하여 압력측정데이터를 생성하는 단계이다. 압력은 프로브(10)와 조직 표면사이에 작용하는 압력을 측정하게 된다.
오류값 분류단계(S500)는 압력측정단계(S400)에서 오류값에 해당하는 경우 해당 데이터를 혈류 판단에서 배제할 수 있도록 구성된다. 구체적으로 압력이 소정범위 이상이 되는 경우는 외부로부터 지나치게 강한 외력이 작용하여 충격이 발생했을 때이며, 반대로 소정범위 이하가 되는 경우에는 혈류 측정 장치의 기판이 피부표면과 이격된 것을 뜻한다. 이 경우에는 측정결과 자체가 정확하게 반영되지 못하여 이를 제외하는 것이 바람직하다. 따라서 획득된 데이터을 오류값으로 결정하여 최종적으로 표시할 때에는 이를 제외한 데이터를 표시하도록 구성된다.
보정단계(S600)는 앞서 획득된 보정함수를 검출 광 데이터에 적용하여 압력에 따른 노이즈에 의한 영향을 제거하는 단계에 해당한다. 조직의 검사부분별로 압력측정데이터를 이용하며, 압력에 따른 보정함수를 검출 광 데이터에 반영하여 노이즈에 의한 결과를 보정할 수 있게 된다.
신호처리단계(S700)는 보정된 검출 광 데이터를 근거로 의미있는 결과로 변환하는 단계에 해당한다. 검출 광 데이터는 신진대사를 파악할 수 있는 값으로 변환하기 위한 알고리즘, 예를 들어 Modified Beer-Lambert Law를 이용하여 Oxy hemoglobin concentration(Oxy) 과 Deoxy hemoglobin concentration(Deoxy) 값으로 변환되도록 신호를 처리할 수 있다.
도 16은 본 발명에 따른 다른 실시예인 혈류 측정 방법의 순서도이다.
본 실시예에서도 전술한 실시예와 동일한 구성요소를 포함할 수 있으며, 이에 대하여는 중복기재를 피하기 위해 설명을 생략하고 차이가 있는 구성에 대하여만 설명하기로 한다.
도시된 바와 같이, 본 실시예에서는 혈류량의 측정 이전에 보정함수를 미리 도출하여 사용할 수 있다. 기 설정된 보정함수는 팬텀을 이용하여 도출될 수 있다.
팬텀을 이용하여 도출시에는 전술한 실시예의 보정함수 도출단계에서 대상을 팬텀을 이용하는 것에 차이가 있으며, 절차는 동일하게 수행될 수 있다. 본 실시예에서는 기 설정된 보정함수의 범위 내에서 선택되어 즉각 적용이 가능하므로 별도의 테스트 시간이 필요하지 않아 리소스의 낭비를 최소화 할 수 있는 효과가 있다.
이상에서 설명한 바와 같이, 본 발명에 따른 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치 및 방법은 압력의 영향을 고려하여 보정함수를 산출하고 이를 반영하여 측정되는 혈류를 보정할 수 있다. 따라서 본 발명은 비침습적 혈류 검사의 정확도 및 신뢰도를 높일 수 있는 효과가 있다.

Claims (20)

  1. 조직에 접촉하여 광을 조사하도록 구성된 광원 모듈;
    상기 조직을 따라 이동하면서 산란, 흡수 및 반사 중 적어도 하나의 과정을 거친 광을 검출하는 검출 모듈;
    상기 조직에 작용하는 압력을 측정하도록 구성되는 압력 측정 모듈; 및
    상기 광의 검출시 상기 압력이 작용함에 따라 발생되는 노이즈를 보정하여 상기 검출 모듈로부터 수신된 신호를 처리하는 신호처리부를 포함하는 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치.
  2. 제1 항에 있어서,
    상기 신호처리부는,
    상기 압력에 따른 보정함수를 이용하여 상기 검출 모듈로부터 수신된 신호를 보정하는 것을 특징으로 하는 노이즈 보정기능을 포함하는 혈류 측정 장치.
  3. 제1 항에 있어서,
    상기 신호처리부는,
    보정값 테이블로부터 상기 압력에 매칭되는 보정값을 이용하여 보정하는 것을 특징으로 하는 노이즈 보정기능을 포함하는 혈류 측정 장치.
  4. 제2 항에 있어서,
    상기 보정함수는,
    상기 광원 모듈로 조직에 광을 조사한 상태에서 상기 압력을 변화시킬 때 획득되는 검출 광 데이터를 보간하여 획득되는 것을 특징으로 하는 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치.
  5. 제4 항에 있어서,
    상기 보정함수는,
    서로 파장이 다른 적어도 두 가지 광이 상기 조직에 조사되었을 때 압력을 변화시켜 획득한 검출 광 데이터를 보간하여 획득되는 것을 특징으로 하는 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치.
  6. 제5 항에 있어서,
    상기 광은 근적외선 영역에서 선택되며,
    상기 신호처리부는 상기 검출 광 데이터를 근거로 상기 조직의 신진대사를 파악할 수 있도록 광 intensity 데이터를 Oxy hemoglobin concentration 과 Deoxy hemoglobin concentration로 변환하는 것을 특징으로 하는 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치.
  7. 제5 항에 있어서,
    상기 신호처리부는,
    서로 다른 파장의 광을 검출한 값에 대하여 압력 변화에 따른 변화경향이 동기화 될 수 있도록 초기 측정값에 대한 변화량 또는 log scale 중 적어도 하나의 변환을 통하여 보간하는 것을 특징으로 하는 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치.
  8. 제2 항에 있어서,
    상기 보정함수는,
    상기 압력 데이터로부터 -log(Pressure/Po) 값을 도출하며,
    상기 검출 광 데이터로부터 -log(Intensity/Io) 값을 도출하며,
    상기 -log(Pressure/Po) 값과 상기 -log(Intensity/Io) 값의 분포에 따른 보간으로 결정되는 것을 특징으로 하는 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치.
  9. 제8 항에 있어서,
    상기 보정함수는 상기 -log(Pressure/Po) 값과 상기 -log(Intensity/Io) 값을 1차 보간 또는 2차 보간으로 획득되는 것을 특징으로 하는 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치.
  10. 제2 항에 있어서,
    상기 보정함수는 팬텀(phantom)에 상기 광을 조사하고, 압력에 따라 획득된 검출 데이터를 근거로 산출되는 것을 특징으로 하는 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치.
  11. 제2 항에 있어서,
    상기 광원 모듈, 상기 검출 모듈 및 상기 압력 측정 모듈은 하나의 프로브를 구성하며,
    머리를 감쌀 수 있도록 복수의 프로브가 연결되어 구성되는 것을 특징으로 하는 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치.
  12. 제1 항에 있어서,
    상기 광원 모듈, 상기 검출 모듈 및 상기 압력 측정 모듈은 프로브의 일면에 구비되며, 각각 조직과 접촉하도록 구성된 것을 특징으로 하는 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치.
  13. 제2 항에 있어서,
    상기 신호처리부는,
    상기 압력 측정 모듈에서 측정되는 값이 기준값 이하인 경우 상기 검출 모듈로부터 획득되는 값은 오류값으로 분류하는 것을 특징으로 하는 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치.
  14. 조직에 접촉하여 광을 조사하는 단계;
    상기 조직을 따라 이동하면서 산란, 흡수 및 반사 중 적어도 하나의 과정을 거친 상기 광을 검출하여 검출 광 데이터를 획득하는 단계;
    상기 조직에 작용하는 압력을 측정하는 단계; 및
    상기 검출 광 데이터의 상기 압력에 의한 노이즈를 제거할 수 있도록 상기 검출 광 데이터에 상기 압력에 따른 보정함수를 반영하는 보정단계를 포함하는 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 방법.
  15. 제14 항에 있어서,
    상기 보정함수는 보정함수 생성단계를 수행하여 산출되며,
    상기 보정함수 생성단계는,
    상기 조직에 광을 조사하는 테스트 광 조사 단계;
    상기 조직에 인가되는 압력을 변화시키는 단계;
    상기 압력의 변화에 따른 테스트 검출 광 데이터를 획득하는 단계; 및
    상기 검출 광 데이터 및 상기 압력 데이터로부터 보간하는 보간단계를 수행하여 획득되는 것을 특징으로 하는 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 방법.
  16. 제15 항에 있어서,
    상기 보간단계는,
    상기 압력 데이터로부터 -log(Pressure/Po) 값을 도출하며,
    상기 검출 광 데이터로부터 -log(Intensity/Io) 값을 도출하며,
    상기 -log(Pressure/Po) 값과 상기 -log(Intensity/Io) 값의 분포에 따른 보간을 수행하는 것을 특징으로 하는 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 방법.
  17. 제16 항에 있어서,
    상기 보간단계는 상기 -log(Pressure/Po) 값과 상기 -log(Intensity/Io) 값을 1차 보간 또는 2차 보간으로 획득된 보정함수로 결정하는 것을 특징으로 하는 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 방법.
  18. 제14 항에 있어서,
    상기 광을 조사하는 단계는 근적외선 영역의 광을 사용하며,
    상기 보정단계 이후 상기 검출 광 데이터를 근거로 상기 조직의 신진대사를 파악할 수 있도록 광 intensity 데이터를 Oxy hemoglobin concentration 과 Deoxy hemoglobin concentration로 변환하는 신호처리단계를 더 포함하는 노이즈 보정기능을 포함하는 혈류 측정 방법.
  19. 제14 항에 있어서,
    상기 보정함수는 보정함수 생성단계를 수행하여 산출되며,
    팬텀에 광을 조사하는 테스트 광 조사 단계;
    상기 팬텀에 인가되는 압력을 변화시키는 단계;
    상기 압력의 변화에 따른 테스트 검출 광 데이터를 획득하는 단계; 및
    상기 검출 광 데이터 및 상기 압력 데이터로부터 보간하는 보간단계를 수행하여 산출되는 것을 특징으로 하는 혈류 측정 방법.
  20. 제14 항에 있어서,
    측정된 압력값이 기준값 미만인 경우 상기 검출 광 데이터를 오류값으로 결정하는 오류값 분류단계를 더 포함하는 것을 특징으로 하는 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 방법.
PCT/KR2018/003802 2018-03-30 2018-03-30 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치 및 방법 WO2019189970A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2018/003802 WO2019189970A1 (ko) 2018-03-30 2018-03-30 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치 및 방법
US17/043,533 US20210145297A1 (en) 2018-03-30 2018-03-30 Blood flow measuring apparatus and method having function of correcting noise due to pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/003802 WO2019189970A1 (ko) 2018-03-30 2018-03-30 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2019189970A1 true WO2019189970A1 (ko) 2019-10-03

Family

ID=68059108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003802 WO2019189970A1 (ko) 2018-03-30 2018-03-30 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치 및 방법

Country Status (2)

Country Link
US (1) US20210145297A1 (ko)
WO (1) WO2019189970A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970010977B1 (en) * 1993-09-23 1997-07-05 Korea Measurement System Co Concentration measuring method using photo absorption
KR20010071501A (ko) * 1998-06-16 2001-07-28 에브제니 미하일로비취 디아노브 광섬유 압력 센서 및 그 변형, 및 가요성 반사막을제조하는 방법
US20090241957A1 (en) * 2008-03-27 2009-10-01 Nellcor Puritan Bennett Llc Breathing assistance systems with lung recruitment maneuvers
JP2014012057A (ja) * 2012-07-04 2014-01-23 Hitachi Ltd 生体光計測装置
KR101838813B1 (ko) * 2016-10-28 2018-03-14 한국 한의학 연구원 생체 정보 측정 장치 및 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017027551A1 (en) * 2015-08-12 2017-02-16 Valencell, Inc. Methods and apparatus for detecting motion via optomechanics
KR20210022319A (ko) * 2019-08-20 2021-03-03 삼성전자주식회사 생체정보 추정 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970010977B1 (en) * 1993-09-23 1997-07-05 Korea Measurement System Co Concentration measuring method using photo absorption
KR20010071501A (ko) * 1998-06-16 2001-07-28 에브제니 미하일로비취 디아노브 광섬유 압력 센서 및 그 변형, 및 가요성 반사막을제조하는 방법
US20090241957A1 (en) * 2008-03-27 2009-10-01 Nellcor Puritan Bennett Llc Breathing assistance systems with lung recruitment maneuvers
JP2014012057A (ja) * 2012-07-04 2014-01-23 Hitachi Ltd 生体光計測装置
KR101838813B1 (ko) * 2016-10-28 2018-03-14 한국 한의학 연구원 생체 정보 측정 장치 및 방법

Also Published As

Publication number Publication date
US20210145297A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
Nabeel et al. Arterial blood pressure estimation from local pulse wave velocity using dual-element photoplethysmograph probe
Baker et al. Pressure modulation algorithm to separate cerebral hemodynamic signals from extracerebral artifacts
US5360004A (en) Non-invasive determination of analyte concentration using non-continuous radiation
US8873035B2 (en) Systems and methods for correcting optical reflectance measurements
JP2006126219A (ja) 非侵襲性赤外分光法における多重スペクトル分析のための方法および装置
JPS6340530A (ja) 光応答式診断装置用検査装置
US20240065584A1 (en) Dual-Mode Biosensor
JPH11244266A (ja) 生体表層組織の分析方法及び生体表層組織の分析装置
CN112914564B (zh) 一种婴幼儿血氧饱和度监测方法及智能监测装置
CN201719230U (zh) 一种全自动舌苔分析仪
CN105596011A (zh) 一种无创血糖检测装置
EP0623307A1 (en) Non-invasive determination of constituent concentration using non-continuous radiation
WO2019189970A1 (ko) 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치 및 방법
US6801316B2 (en) Measurement of an analyte concentration in a scattering medium
US20210228086A1 (en) Non invasive screening system for neonatal hyperbilirubinemia
KR102279194B1 (ko) 압력에 의한 노이즈 보정기능을 포함하는 혈류 측정 장치 및 방법
WO2019208561A1 (ja) 血液成分の血中濃度測定方法、血中濃度測定装置およびプログラム
JPH08103434A (ja) 生体光計測装置及び計測方法
KR20120077652A (ko) 근적외선 분광 검출 유니트, 근적외선 분광 검출 장치 및 이의 제어 방법
JP2019198547A (ja) 血液成分測定方法、血液成分測定装置、および血液成分測定プログラム
Perpetuini et al. Integrated multi-channel PPG and ECG system for cardiovascular risk assessment
KR20190093941A (ko) 뇌혈류의 산소포화도 농도 측정을 위한 생체정보 측정 장치
JP2005013464A (ja) 生体光計測装置
KR20210125693A (ko) 근육 활성도 측정 장치
WO2021132799A1 (ko) 자가기준점 설정형 혈액성분 측정 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911569

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18911569

Country of ref document: EP

Kind code of ref document: A1