WO2019189480A1 - ガラス基板の製造方法 - Google Patents

ガラス基板の製造方法 Download PDF

Info

Publication number
WO2019189480A1
WO2019189480A1 PCT/JP2019/013385 JP2019013385W WO2019189480A1 WO 2019189480 A1 WO2019189480 A1 WO 2019189480A1 JP 2019013385 W JP2019013385 W JP 2019013385W WO 2019189480 A1 WO2019189480 A1 WO 2019189480A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
plate
base plate
glass base
glass substrate
Prior art date
Application number
PCT/JP2019/013385
Other languages
English (en)
French (fr)
Inventor
将徳 玉置
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Publication of WO2019189480A1 publication Critical patent/WO2019189480A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock

Definitions

  • the present invention relates to a method for manufacturing a glass substrate including a process of cutting out a glass plate using laser light.
  • a personal computer a notebook personal computer, a DVD (Digital Versatile Disc) recording device, or a data center of cloud computing uses a hard disk device for data recording.
  • a hard disk device a magnetic disk in which a magnetic layer is provided on a disk-shaped glass substrate for a nonmagnetic magnetic disk is used.
  • the magnetic disk is incorporated in, for example, a DFH (Disk Flying Height) type magnetic head having a flying distance of about 5 nm.
  • DFH Disk Flying Height
  • end surface polishing is performed to reduce the surface roughness of the end surfaces (inner end surface and outer end surface) of the magnetic disk glass substrate and to increase the roundness.
  • the glass substrate for a magnetic disk is obtained by cutting a glass plate, chamfering the end surface, polishing the end surface, grinding and polishing the main surface, and cleaning the glass plate.
  • a technique of cutting the glass plate into a desired shape using laser light instead of scribing and cleaving with a cutter has been proposed (Patent Document 1).
  • the laser beam focal line of the pulse laser beam is directed into the glass plate at a predetermined incident angle, and a defect line (perforation) is generated along the laser beam focal line in the glass plate.
  • a plurality of defect lines (perforations) are formed by repeatedly performing parallel movement of the plate and the laser beam. At that time, since the crack propagates between adjacent defect lines (perforations), the glass plate can be cut into a desired shape.
  • a disk-shaped glass plate can be produced using the above technique.
  • the glass plate that is the base of the glass substrate is formed, for example, by forming a molten glass into a sheet glass using a float method or a down draw method, and collecting a glass base plate from the sheet glass, or forming a lump of molten glass. It can be obtained by making a glass base plate by pressing from above and below with a mold.
  • the thickness of the glass base plate produced by the float method or the downdraw method is distributed with a variation of about several tens of micrometers among the plurality of glass base plates.
  • cracks are not formed in the same manner, and the accuracy of the shape of the cut glass base plate varies between the glass base plates.
  • the shape of the glass base plate to be cut out is set in advance in consideration of the variation in the shape between the glass base plates, the polishing allowance in the end face polishing increases, and the productivity of the glass substrate decreases.
  • the thickness of the glass base plate produced by the float method or the downdraw method may vary greatly within a single glass base plate.
  • the cracks are not formed in the same way in the thick part and the thin part, and the accuracy of the shape of the cut glass base plate May become non-uniform along the contour of the shape.
  • the polishing allowance in the end face polishing increases, and the productivity of the glass substrate descend.
  • the average plate thickness varies between the glass base plates, and there is a large thickness distribution within one glass base plate, and the plate thickness varies within one glass base plate. From the viewpoint of productivity when producing a glass plate having the shape of
  • the present invention can omit the end surface polishing treatment of the cut glass base plate when cutting the glass base plate into a desired shape using laser light, or can reduce the time required for the end surface polishing processing.
  • An object of the present invention is to provide a method for producing a glass substrate, which can improve the accuracy of the shape of the cut glass base plate.
  • One embodiment of the present invention is a method for producing a glass substrate, A molding process for molding an intermediate glass plate from a glass base plate, Cutting the intermediate glass plate into a predetermined shape, and
  • the molding process is Heat treatment for heating the main surfaces on both sides of the glass base plate using the heating source in a non-contacting manner with a heat source while supporting the glass base plate, A pressure treatment for sandwiching the main surfaces on both sides of the heat-treated glass base plate with a pair of molds and pressurizing the glass base plate to form the intermediate glass plate,
  • the irradiation position of the laser light is moved relative to the intermediate glass plate along a predetermined contour shape in the pressurization processing portion of the intermediate glass plate, and along the contour shape.
  • the intermediate glass plate is cleaved.
  • Each of the molds has a substantially circular pressing surface that presses the glass base plate, In the pressurizing process, the pressing surface is pressed against the main surface to press a part of the glass base plate, In the cutting process, it is preferable that the irradiation position of the laser beam is moved along a concentric shape with the main surface of the pressure treatment portion, and the intermediate glass plate is cut along the concentric shape.
  • the pressure treatment portion has a substantially circular pressure surface pressurized in the pressure treatment,
  • the irradiation position is preferably located at a distance of 70 to 98% of the diameter of the pressure surface from the outer periphery of the pressure surface.
  • the retardation value of the pressure-treated portion is preferably less than 10 nm.
  • the difference between the maximum plate thickness and the minimum plate thickness is 2 ⁇ m or less after the pressurizing process and before the post-processing performed first after the pressurizing process.
  • a temperature difference is generated between the region of the intermediate glass plate to be cleaved and a region outside the region. It is preferable to provide it.
  • the intermediate glass plate In the cutting process, after moving the irradiation position of the laser beam, before cleaving the intermediate glass plate, between the region of the intermediate glass plate to be cleaved and the region outside the region, the intermediate It is preferable to apply a shearing force to the body glass plate in the thickness direction.
  • the intermediate glass plate Prior to the cutting process, the intermediate glass plate is cooled to reduce the cooling rate difference between the pressure-treated portion and the intermediate glass plate portion outside the pressure-treated portion. Preferably it is done.
  • laser light is irradiated at a plurality of positions spaced along the contour shape, and a plurality of holes are formed in the pressure treatment portion.
  • the interval between adjacent holes is preferably 0.2 to 10 ⁇ m.
  • laser light is irradiated at a plurality of positions spaced along the contour shape, and a plurality of holes are formed in the pressure treatment portion.
  • the diameter of the hole is preferably 0.05 to 5 ⁇ m.
  • the laser beam it is preferable to move the laser beam so that the locus of the irradiation position continuously draws the contour shape.
  • the glass base plate is preferably heated by radiant heat from a heating source provided on both sides of the glass base plate.
  • the heating rate of the main surface in the heat treatment is preferably 30 to 95 ° C./second.
  • the irradiation position is located inside the thickness direction of the intermediate glass plate, and from the crack start portion formed inside by the laser light irradiation to the main surface of the intermediate glass plate It is preferable to cause the cracks to progress.
  • the laser beam is preferably a pulsed laser beam having a pulse width of 10 ⁇ 12 seconds or less.
  • the end face polishing treatment of the cut glass base plate can be omitted, or the time required for the end face polishing treatment can be reduced.
  • the accuracy of the shape of the cut glass base plate can be improved.
  • (A) is a perspective view of an example of the glass substrate produced by this embodiment
  • (b) is a figure which shows an example of the cross section of the outer side end surface of the glass substrate shown to (a).
  • (A), (b) is a figure which shows an example of the intermediate body glass plate which is one Embodiment. It is an external appearance perspective view of an example of the glass base plate which is one Embodiment. It is a figure explaining an example of the method of supporting the glass base plate which is one Embodiment. It is a figure explaining an example of the heat processing which is one Embodiment. It is a figure explaining an example of the pressurization process which is one Embodiment.
  • (A), (b) is a figure explaining an example of the method of cutting out the glass plate of a predetermined shape of this embodiment. It is a figure explaining an example of the method of cutting out the glass plate of a predetermined shape of this embodiment. It is a figure explaining an example of the chamfering process performed in this embodiment.
  • FIG.1 (a) is a perspective view of an example of the glass substrate produced by this embodiment.
  • FIG.1 (b) is a figure which shows an example of the cross section of the outer side end surface of the glass substrate shown to Fig.1 (a).
  • a glass substrate 1 shown in FIG. 1A is an annular thin glass substrate.
  • the glass substrate 1 can be used as a glass substrate for a magnetic disk.
  • the size of the glass substrate for a magnetic disk is not limited, but the glass substrate for a magnetic disk is, for example, the size of a glass substrate for a magnetic disk having a nominal diameter of 2.5 inches or 3.5 inches.
  • the outer diameter is 65 to 68 mm
  • the diameter of the center hole is 20 mm
  • the plate thickness is 0.3 to 0.8 mm
  • the nominal diameter is 3.5 inches.
  • the outer diameter is 95 to 98 mm
  • the diameter of the center hole is 25 mm
  • the plate thickness is 0.3 to 0.8 mm.
  • a magnetic layer is formed on the main surface of the glass substrate 1 to produce a magnetic disk.
  • the glass substrate 1 has a pair of main surfaces 11p and 12p, a side wall surface 11w formed on the outer end surface, chamfered surfaces 11c and 12c interposed between the side wall surface 11w and the main surfaces 11p and 12p, and an inner end surface.
  • a side wall surface (not shown) formed in the same manner as the end surface, and a chamfered surface (not shown) interposed between the side wall surface and the main surfaces 11p, 12p are provided.
  • the glass substrate 1 has a circular hole in the center.
  • the side wall surface 11w includes the center position of the glass substrate G in the thickness direction.
  • the inclination angle of the chamfered surfaces 11c and 12c with respect to the main surfaces 11p and 12p is not particularly limited, and is 45 °, for example.
  • the boundary between the side wall surface 11w and the chamfered surfaces 11c and 12c is not limited to the shape having an edge as shown in the figure, and may be a curved surface that is smoothly continuous.
  • such a glass substrate 1 is cut into a circular shape from a glass base plate as shown in FIG. 3, and by performing a shape processing that opens a circular hole concentric with a circular shape, A disk-shaped glass plate similar to the glass substrate 1 is produced. Further, end face polishing is performed on the inner end face and the outer end face of the disk-shaped glass plate. Thereafter, the main surface is ground and further polished on the end-polished glass plate. At this time, for example, one grinding and two polishings (rough polishing and fine polishing) are performed. Thereby, it is possible to achieve the target plate thickness required for the glass substrate for a magnetic disk and the surface quality of the glass plate.
  • the thickness of the glass sheet produced by the conventional float method and downdraw method varies depending on the location, and the variation in the average thickness between the glass base plates cut out from the glass sheet into a predetermined shape
  • the glass plate produced by pressing a molten glass lump also has a large variation in the average plate thickness between the glass plates. For this reason, the deviation of the average plate thickness with respect to the target plate thickness is also large.
  • the accuracy of the shape of the cut glass base plate is cut out when the glass base plate is cut out using laser light. However, it may vary between glass base plates.
  • the accuracy of the shape of the cut glass base plate is reduced when the glass base plate is cut out using laser light. , It may become non-uniform along the contour of the shape.
  • the contour shape cut out from the glass base plate is increased in advance. If set, the amount of machining allowance by end surface polishing increases, so that the productivity of the glass substrate may be reduced.
  • a glass substrate is produced by a method for producing a glass substrate, which includes a forming process for forming an intermediate glass sheet from a glass base plate and a process for cutting the intermediate glass sheet into a predetermined shape, which will be described below. Is made.
  • FIGS. 2A and 2B are views showing an example of an intermediate glass plate produced by a forming process.
  • the intermediate glass plate 10 shown in the figure has a rectangular outer shape.
  • the outer shape may be circular or elliptical, and the outer shape is not particularly limited.
  • the depth of the depression in the central region 14 is shown in an emphasized manner for easy understanding.
  • the intermediate glass plate 10 is a plate-like glass plate, and each of the main surfaces on both sides of the intermediate glass plate 10 includes a peripheral region 12 and a central region 14 that is recessed with respect to the peripheral region 12. Except for the inner edge of the peripheral region 12 in contact with the central region 14, the intermediate glass plate 10 has a substantially constant plate thickness.
  • the substantially constant plate thickness in the peripheral region 12 means that the difference between the maximum plate thickness and the minimum plate thickness in the plate thickness distribution is within an allowable range. “Within an allowable range” means, for example, within 100 ⁇ m.
  • an annular portion raised with respect to the peripheral region 12 having a substantially constant plate thickness so as to surround the central region 14 (a portion surrounded by a broken circle in FIG.
  • the central region 14 is provided surrounded by the peripheral region 12.
  • the plate thickness between the main surfaces in the central region 14 is thinner than the plate thickness between the main surfaces in the peripheral region 12.
  • the surface of the central region 14 is recessed at a certain depth with respect to the surface of the peripheral region 12.
  • the constant depth means that it is depressed in the range of, for example, 10 ⁇ m to 30 ⁇ m from the average depth position (center line of surface irregularities) of the main surface of the peripheral region 12 excluding the inner edge. That is, the recess depth of the central region 14 is, for example, 10 ⁇ m to 30 ⁇ m.
  • the central region 14 is circular, but may be rectangular or elliptical.
  • region 14 is provided in the main surface of the both sides of the intermediate body glass plate 10, and a fixed hollow depth is mutually the same in the main surface of both sides.
  • the depths of the recesses are the same means that it is within an allowable range, and the allowable range is, for example, 6 ⁇ m or less.
  • region 14 in the main surface of both sides is provided so that it may mutually oppose.
  • the variation in the plate thickness distribution in the central region 14 is preferably 10 ⁇ m or less, preferably 2 ⁇ m or less, and preferably 1 ⁇ m or less. preferable.
  • a glass plate is cut out circularly from such a central region 14 to form a glass plate. This glass plate has little variation in thickness between glass plates, and the average plate thickness of any glass plate is close to the target plate thickness. There are few glass plates.
  • the arithmetic average roughness Ra JIS B0601: 2001
  • the arithmetic average roughness Ra which is an index of the surface roughness in the central region 14, is preferably 300 nm or less, and more preferably 200 nm or less. More preferably, it is 100 nm or less.
  • region 14 turns into a press surface and the peripheral region 12 turns into a non-pressing surface by producing the intermediate body glass plate 10 using the shaping
  • Such an intermediate glass plate 10 is produced from the glass base plate 20 shown in FIG.
  • FIG. 3 is an external perspective view of an example of the glass base plate 20 according to the embodiment.
  • the glass base plate 20 is a plate-like glass plate, and the outer shape of the glass base plate 20 shown in the figure is a rectangular shape, but it may be circular or elliptical, and the outer shape is not particularly limited.
  • the difference between the maximum plate thickness and the minimum plate thickness in the plate thickness distribution of the glass base plate 20 is preferably 0.5 to 20 ⁇ m. More preferably, the thickness is 0.5 ⁇ m to 10 ⁇ m.
  • the glass base plate 20 is preferably a readily available glass plate.
  • the surface quality of the easily available glass base plate 20 may be inferior to some extent to the surface quality of the main surface of the central region 14.
  • a glass plate produced by a float method, a down draw method, or a press method is used.
  • the arithmetic average roughness Ra of the glass base plate 20 by the float method or the downdraw method is 10 to 20 nm
  • the arithmetic average roughness Ra of the glass base plate 20 by the press method is 0.1 to 1.0 ⁇ m.
  • the glass transition temperature Tg of the glass base plate 20, the intermediate glass plate 10, or the glass substrate 1 is 450 to 800 ° C., which is achieved by efficiently heating the glass base plate 20 by a heat treatment described later. It is preferable from the viewpoint of obtaining surface quality, and more preferably 480 to 750 ° C.
  • aluminosilicate glass soda lime glass, borosilicate glass, or the like can be used.
  • an aluminosilicate glass that can be chemically strengthened and that can provide a glass substrate for a magnetic disk that is excellent in the flatness of the main surface and the strength of the substrate. it can. More preferably, it is an amorphous aluminosilicate glass.
  • the glass composition of the glass base plate 20, the intermediate glass plate 10, and the glass substrate 1 is not limited.
  • the SiO 2 is expressed in terms of mol% in terms of oxide standards. 50 to 75%, Al 2 O 3 1 to 15%, at least one component selected from Li 2 O, Na 2 O and K 2 O in total 5 to 35%, MgO, CaO, SrO, BaO And at least one component selected from ZnO and 0 to 20% in total, and selected from ZrO 2 , TiO 2 , La 2 O 3 , Y 2 O 3 , Ta 2 O 5 , Nb 2 O 5 and HfO 2 An amorphous aluminosilicate glass having a composition having a total of 0 to 10% of at least one component.
  • SiO 2 is 57 to 75% and Al 2 O 3 is 5 to 20% (however, the total amount of SiO 2 and Al 2 O 3 is 74% or more) , ZrO 2 , HfO 2 , Nb 2 O 5 , Ta 2 O 5 , La 2 O 3 , Y 2 O 3 and TiO 2 in total, more than 0%, 6% or less, Li 2 O 1% 9% or less, Na 2 O 5 to 28% (where the mass ratio Li 2 O / Na 2 O is 0.5 or less), K 2 O 0 to 6%, MgO 0 to 4%, CaO Over 0% and 5% or less (however, the total amount of MgO and CaO is 5% or less and the content of CaO is larger than the content of MgO), and the composition has SrO + BaO of 0 to 3%.
  • SiO 2 , Li 2 O, Na 2 O, and one or more alkaline earth metal oxides selected from the group consisting of MgO, CaO, SrO, and BaO are included.
  • the molar ratio of CaO content to the total content of MgO, CaO, SrO and BaO (CaO / (MgO + CaO + SrO + BaO)) may be 0.20 or less and the glass transition temperature may be 650 ° C. or more.
  • the glass having such a composition is suitable for a glass substrate for a magnetic disk used for a magnetic disk for energy-assisted magnetic recording.
  • the molding process is (1) A heat treatment in which the main surfaces on both sides of the glass base plate 20 are heated using a heat source in a non-contacting manner with the heat source while supporting the glass base plate 20; (2) A pressure treatment for sandwiching the main surfaces on both sides of the heat-treated glass base plate 20 with a pair of molds and pressurizing the glass base plate 20 to form the intermediate glass plate 10; including.
  • FIG. 4 is a diagram illustrating an example of a method for supporting the glass base plate 20 before performing the heat treatment.
  • FIG. 4 is a view of the main surface of the rectangular glass base plate 20 as viewed from the front.
  • the glass base plate 20 is fixed to the carrier 30 by fixing the edge of the glass base plate 20 by the carrier 30 so that the glass base plate 20 is not displaced during the heat treatment and further during the pressure treatment.
  • the carrier 30 is composed of a pair of carrier plates 30a and 30b, and the glass base plate 20 is sandwiched from both sides of the glass base plate 20 by the carrier plates 30a and 30b.
  • Each of the carrier plates 30a and 30b is provided with a through-hole 32 that is larger than the outer shape of the glass base plate 20 at a location facing each other when the glass base plate 20 is sandwiched between the carrier plates 30a and 30b. .
  • Each of the carrier plates 30a and 30b protrudes from the inner edge of the hole 32 and has a pressing portion 34 for holding the glass base plate 20 at a location facing each other when the glass base plate 20 is sandwiched between the carrier plates 30a and 30b. Is provided. Therefore, by sandwiching the glass base plate 20 by the carrier plates 30a and 30b, the glass base plate 20 is sandwiched from both sides of the main surface of the glass base plate 20 by the pressing portions 34, and the edges of the glass base plate 20 are fixed.
  • the Each of the main surfaces of the glass base plate 20 sandwiched between the carrier plates 30a and 30b is exposed from the holes 32.
  • the glass base plate 20 supported by the carrier 30 is subjected to heat treatment and pressure treatment.
  • a part of the glass base plate 20 becomes viscous due to heat and contracts due to the surface tension of the glass, and the glass base plate 20 is displaced accordingly. Can be suppressed. Further, it is possible to prevent the glass base plate 20 from being displaced by being pressed by the mold during the pressure treatment.
  • the edges of the glass base plate 20 are fixed by a total of twelve pressing portions 34. Supported by the carrier 30.
  • the number of the pressing portions 34 is not particularly limited, and may be 16 or 8, for example.
  • the shape of the pressing portion 34 is not limited to that having a circular arc shape as illustrated. If the edge part (fixed part) of the glass base plate 20 fixed by the holding
  • the size of the hole 32 is preferably determined according to the size of the glass base plate 20 so that the clearance distance between the edge of the glass base plate 20 and the edge of the hole 32 is in a predetermined range.
  • the clearance distance is equal to or less than the predetermined distance, the temperature difference between the edge of the glass base plate 20 and the central portion of the glass base plate 20 becomes large due to cooling by heat conduction from the carrier 30 to the outside during the heat treatment.
  • the plate 20 is easily broken.
  • the clearance distance is preferably at least 2 mm.
  • the support of the glass base plate 20 by the carrier 30 is not limited to a method of pressing and fixing the edges of the glass base plate 20 at discrete positions in the form of the pressing portion 34, but pressing the glass base plate 20 continuously in a linear shape.
  • edge of the glass base plate 20 is a chamfered surface when a chamfered surface is provided on the outer end surface of the glass base plate 20 at a location that is a certain distance from the outer peripheral edge of the main surface to the main surface side. including.
  • the carrier 30 supporting the glass base plate 20 is set in a moving device (not shown) and moves to a heating device that performs heat treatment.
  • FIG. 5 is a diagram for explaining an example of the heat treatment.
  • the carrier 30 sandwiching the glass base plate 20 moves downward from the top in the drawing. During this movement, the glass base plate 20 is heated by passing through a position between the pair of heating sources 40a and 40b that is a fixed distance away from the heating sources 40a and 40b.
  • the heating sources 40a and 40b are constituted by heaters, for example.
  • the heat sources 40a and 40b are arranged so as to heat the glass base plate 20 in a non-contact manner at a position equidistant from the moving path of the glass base plate 20. 40b is provided.
  • the glass base plate 20 uniformly heating the glass base plate 20
  • variations in thickness between the intermediate glass plates 10 can be suppressed.
  • heating the glass base plate 20 uniformly does not increase the maximum temperature of the glass base plate 20 more than necessary in order to secure the minimum temperature of the glass base plate 20 suitable for the pressure treatment, It is also preferable in that energy consumption for heat generation of the sources 40a and 40b can be suppressed.
  • the heating sources 40a and 40b are composed of heating elements, the heating elements are arranged so that the temperature of the main surface of the glass base plate 20 generates heat uniformly and uniform radiant heat. It has been adjusted to emit.
  • the heating sources 40a and 40b generate a large amount of heat in order to rapidly raise the temperature of the main surface of the moving glass base plate 20, and the distance between the heating sources 40a and 40b and the main surface of the glass base plate 20 is as follows. narrow.
  • the temperature of the main surface of the glass base plate 20 is preferably increased at a temperature increase rate of 30 to 95 ° C./second. In this range, the temperature rising rate is preferably 55 ° C./second or more, and more preferably 70 ° C./second or more. Since the temperature of the main surface of the glass base plate 20 is raised so as to be in a viscous state, the glass on the surface layer including the main surface tends to flow and tends to flow vertically downward according to gravity.
  • the main surface of the glass base plate 20 is heated in a short time.
  • the main surface is heated.
  • the heating time at each position of the glass base plate 20 is preferably within 15 seconds, and more preferably within 10 seconds.
  • the temperature increase rate of the glass base plate 20 is extremely high, so that there is a temperature difference between the surface layer including the main surface of the glass base plate 20 and the central portion of the glass base plate 20 in the thickness direction.
  • the glass in the surface layer of the heated glass base plate 20 is in a viscous state, but the glass in the center is in an elastic state or a viscoelastic state. In this way, by differentiating the state of the surface layer and the central glass, at least a part of the glass in the viscous state is forced to flow by the mold in the pressurizing process so that the plate thickness approaches the target plate thickness.
  • the surface quality can be improved by eliminating cracks and scratches on the surface layer of the glass base plate 20 before the heat treatment.
  • the forming process according to the present embodiment is a float method in which only the surface layer including the main surface of the glass base plate 20 is pressed in a viscous state. This is different from the glass plate forming by the downdraw method or the press method.
  • the forming process of the present embodiment is a flattening process (or smoothing) in that the intermediate glass plate 10 is formed so that only the surface layer including the main surface of the glass base plate 20 is flattened (or smoothed). Processing).
  • the surface layer including the main surface means, for example, a layer ranging from 1 to 45% of the plate thickness of the glass base plate 20 from each main surface of the glass base plate 20.
  • the peripheral region 12 of the intermediate glass plate 10 has a larger plate thickness distribution and lower flatness than the central region 14.
  • the glass base plate 20 passes through the gap between the heating source 40a and the heating source 40b, the glass base plate 20 is separated from the heating sources 40a and 40b by the same distance in order to receive heat evenly from the heating sources 40a and 40b. And let it pass. Thereby, the temperature of the main surface of the both sides of the glass base plate 20 can be made substantially the same. If there is a difference in temperature between the main surfaces on both sides of the glass base plate 20, the pressure treatment cannot be performed evenly on the surface layers on both sides, and variations in the plate thickness are likely to be induced.
  • the temperature difference between the maximum temperature and the minimum temperature in the temperature distribution of the temperature of the main surface of the glass base plate 20 to be heated is preferably 50 ° C. or less, more preferably 20 ° C. or less, and more preferably 10 ° C. or less. Is even more preferable.
  • the temperature of the main surface of the heated glass base plate 20 is preferably at least the glass transition temperature Tg (° C.) + 330 ° C. and the glass transition temperature Tg (° C.) + 430 ° C. at the lowest temperature, and the glass transition temperature Tg (° C. ) + 360 ° C. or higher, and glass transition temperature Tg (° C.) + 400 ° C. or lower is more preferable. Further, in the heat treatment, as shown in FIG.
  • the heat treatment shown in FIG. 5 is a mode in which the glass base plate 20 is moved downward from above and passed between the heat sources 40a and 40b, but the movement direction of the glass base plate 20 is downward.
  • the movement is not limited to the upper direction, and may be a horizontal direction or a direction inclined with respect to the horizontal direction.
  • the heat treatment of the glass base plate 20 is not limited to a method of heating the glass base plate 20 while moving, but may be a method of heating the stationary glass base plate 20.
  • the heat-treated glass base plate 20 is subjected to pressure treatment.
  • the main surfaces on both sides of the glass base plate 20 are sandwiched between a pair of molds, and the glass base plate 20 is pressed to form the intermediate glass plate 10.
  • the pair of molds simultaneously contact the main surfaces on both sides of the glass base plate 20.
  • FIG. 5 in the case of a system in which the glass base plate 20 is heated while moving the carrier 30 sandwiching the glass base plate 20, the movement of the carrier 30 that has come to the place of the pressurizing device is stopped and pressurized. It is preferable to start the process.
  • the glass base plate 20 moves from a heating device that performs heat treatment to a pressure device that performs pressure treatment, but the pressure treatment is preferably performed when the glass base plate 20 stops moving. Thereby, the dispersion
  • pressure treatment is performed during the movement of the glass base plate 20
  • the main surface of the glass base plate 20 comes into contact with the molds 50a and 50b, a part of the glass on the surface layer is displaced by the inertia due to the movement, and the plate The variation in the plate thickness along the moving direction is likely to increase.
  • FIG. 6 is a diagram for explaining an example of the pressurizing process.
  • the molds 50a and 50b on both sides of the main surface of the glass base plate 20 that has stopped moving are brought into contact with the main surface until a predetermined pressure is reached, or the molds 50a and 50b
  • the glass base plate 20 is pressurized by bringing the molds 50a and 50b closer to each other until the distance reaches a predetermined distance.
  • the pressing surfaces (pressing surfaces) of the molds 50a and 50b are flat surfaces, the flatness is 3 ⁇ m or less, and the arithmetic average roughness Ra of the surface irregularities is 300 nm or less, preferably 200 nm or less, more preferably 100 nm or less. It is a flat surface.
  • the press surfaces of the molds 50a and 50b are preferably formed of a cemented carbide such as WC (tungsten carbide) or a material such as SiC.
  • the molds 50 a and 50 b preferably have a substantially circular press surface that presses the glass base plate 20.
  • the substantially circular shape includes a perfect circular shape and an elliptical shape, and the outer peripheral shape may be composed of only an arc having a single curvature radius, or may be composed of a plurality of arcs having different curvature radii. May be.
  • the temperature of the glass base plate 20 immediately before the start of the pressure treatment is a temperature at which the glass on the surface layer including the main surface is maintained in a viscous state by the heat treatment. Therefore, it is preferable to quickly move from the position of the heating sources 40a, 40b to the position of the molds 50a, 50b.
  • the temperature of the main surface of the glass base plate 20 is at least the glass transition temperature Tg (° C.) + 220 ° C., and the glass transition temperature. Tg (° C.) + 270 ° C. to glass transition temperature Tg (° C.) + 370 ° C. is preferable.
  • the central portion of the glass base plate 20 maintains the temperature from the elastic state to the viscoelastic state from the time of the heat treatment.
  • the time interval from the end of heating by the heating sources 40a and 40b to the start of the pressurizing process may be 1.6 seconds or less. Preferably, it is 0.5 seconds or less.
  • the pressing of the glass base plate 20 may press the entire glass base plate 20, but according to one embodiment, the molds 50 a and 50 b preferably press a part of the glass base plate 20. For this reason, each type
  • the glass in the central portion is in an elastic state to a viscoelastic state, the flow of the glass due to the pressurization of the molds 50a and 50b is less or hardly compared to the glass on the main surface. That is, in the pressure treatment, at least a part of the glass on the surface layer flows to adjust the plate thickness of the glass base plate 20, whereby the flatness is high, the plate thickness distribution approaches a constant value, and is the target. It approaches the plate thickness. For this reason, it is preferable that the temperature distribution on the main surface at the time of starting the pressurization process is nearly uniform, and the temperatures on the main surfaces on both sides are preferably the same. The same temperature means within +/ ⁇ 5 ° C.
  • the temperature of the press surface in contact with the glass base plate 20 of the molds 50a and 50b is preferably the glass transition point Tg +/ ⁇ 20 ° C., more preferably the glass transition point Tg +/ ⁇ 10 ° C. Therefore, the molds 50a and 50b are configured to cool while flowing at least part of the viscous glass on the surface layer of the glass base plate 20. Further, the molds 50a and 50b are cooled by taking heat from the main surface of the glass base plate 20, but it is preferable that the cooling process at this time is substantially the same on both sides (it is preferable to cool substantially uniformly). Therefore, it is preferable that the heat conduction of the molds 50a and 50b be configured to be substantially the same. That is, it is preferable that the amounts of heat flowing from the glass base plate 20 to the mold 50a and the mold 50b are substantially equal to each other from the viewpoint of increasing flatness and reducing variation in plate thickness between the plates.
  • the glass base plate 20 is disposed so that the molds 50a and 50b are in contact with the glass base plate 20 at the same time, and the moving operation of the molds 50a and 50b is controlled.
  • the time from when the molds 50a and 50b abut on the glass base plate 20 until the molds 50a and 50b come closest to each other, that is, until the pushing operation of the molds 50a and 50b into the glass base plate 20 is completed is 50 m It is preferably 2 seconds or less, and more preferably 10 milliseconds or less.
  • the time for which the glass base plate 20 is in contact with the press surfaces of the molds 50a and 50b (the time from the time when the molds 50a and 50b are in contact with the glass base plate 20 to the time when the molds 50a and 50b are separated from the glass base plate 20) is 50 m. It is preferably from 2 to 10 seconds.
  • the glass on the surface layer of the glass base plate 20 is in an elastic state.
  • the molds 50a and 50b are formed by gradually reducing the distance between the molds 50a and 50b until the pressure received by the molds 50a and 50b from the glass base plate 20 reaches a predetermined upper limit. It is preferable to pressurize the glass base plate 20 by a so-called pressure control method because it can be realized by simple control of the molds 50a and 50b. Further, according to one embodiment, the glass base plate 20 is pressurized by gradually reducing the distance between the molds 50a and 50b until the distance between the molds 50a and 50b reaches a preset distance. It is preferable to apply pressure by a so-called position control method from the viewpoint that the average plate thickness can be a target plate thickness.
  • the temperature drop in the main surface of the glass base plate 20 to be pressurized is lower than the temperature in the heat treatment (temperature drop in the same place) is 100 ° C. or lower. More preferably, it is 60 degrees C or less.
  • Such a temperature decrease has a small decrease from the temperature of the glass base plate 20 heated higher than the glass transition temperature Tg, and while maintaining the viscosity state of the glass in the surface layer including the main surface of the glass base plate 20, The pressure treatment of the glass base plate 20 can be performed effectively.
  • the operation of the molds 50a and 50b can be controlled by controlling the rotational torque of the servo motor that is the drive source of the molds 50a and 50b. Since the rotational torque of the servo motor is proportional to the current flowing through the servo motor, the operation of the molds 50a and 50b can be controlled by controlling this current.
  • the position control method can be performed, for example, by controlling the current of the servo motor while monitoring the distance between the molds 50a and 50b. Further, the position control method is provided with a guide pin protruding from one of the molds 50a and 50b with respect to the other mold, and when approaching a predetermined distance, the guide pin comes into contact with the other mold and the mold 50a. , 50b can be prevented from physically approaching, so that the position control method can be performed.
  • the main surface of the glass base plate 20 may be arranged so as to face the vertical direction, and the mold may sandwich the glass base plate 20 from both sides in the vertical direction.
  • the glass base plate 20 can be pressurized by placing the glass base plate 20 so that the main surface of the base plate 20 faces in the horizontal direction and sandwiching the glass base plate 20 from both sides of the molds 50a and 50b in the horizontal direction. preferable.
  • the glass base plate 20 thus pressure-treated can be removed from the carrier 30 to obtain the intermediate glass plate 10 shown in FIG.
  • the intermediate glass plate 10 is produced from the glass base plate 20 as described above.
  • the irradiation position of the laser light is moved relative to the intermediate glass plate 10 along the predetermined contour shape in the central region 14 (pressurization processing portion) of the intermediate glass plate 10 to obtain the contour shape.
  • the intermediate glass plate 10 is cleaved along.
  • a crack start portion serving as a nucleus of crack generation is formed in the central region 14 by the irradiation of the laser beam.
  • the crack starting portion is a portion where scratches, melting, deterioration, or alteration has occurred due to laser light irradiation.
  • the irradiation position of the laser beam specifically means the extending direction (in-plane direction) position of the main surface of the central region 14 where the focal position of the laser beam is located.
  • the irradiation position of the laser beam is located inside the central region 14, that is, the above-described annular portion that rises with respect to the peripheral region 12 having a substantially constant plate thickness.
  • variation in the plate thickness in the central region 14 of the intermediate glass plate 10 is small, and the central region 14 is between the plurality of intermediate glass plates 10. Variation in the thickness of the sheet is reduced.
  • the manner of crack propagation becomes substantially uniform, and the accuracy of the shape of the cut glass plate may become uneven along the contour of the shape.
  • the accuracy of the shape of the cut glass plate can be suppressed from varying between the intermediate glass plates 10.
  • the accuracy of the shape mainly means the roundness of the glass plate, but may also mean the surface roughness of the end surface of the glass plate. When the roundness of the cut glass plate is high, the end surface polishing treatment of the glass plate can be omitted, or the time required for the end surface polishing treatment can be reduced.
  • the focal position of the laser beam is located inside the glass plate in the thickness direction, and the focal position is drawn in a circle as viewed from the surface of the central region 14 (irradiation position).
  • the circular crack shape is continuously drawn to form a circular crack start portion in the central region 14 by moving the laser beam relative to the glass plate. It is preferable that the cracks progress from each position of the crack starting portion toward the main surface of the glass substrate.
  • the optical system of the laser light source is adjusted so that the focal position of the laser light is located inside the plate thickness direction of the glass plate. To form a crack start portion inside the glass. After that, for example, by heating the glass plate, the crack is advanced from the crack starting portion toward the main surface.
  • the fractured surface formed by the cracks has a small surface roughness.
  • the circle serving as the locus of the focal position can achieve high roundness by a moving mechanism or the like that can accurately move the laser beam to the glass plate.
  • the accuracy of the roundness of the cut glass plate depends on the straightness of the crack extending from the focal position toward the main surface, but the crack extends from the inside of the glass plate thickness direction.
  • the propagation distance is shorter than the crack that propagates from the main surface toward the main surface on the other side. For this reason, deterioration of roundness can be suppressed.
  • roundness can be made into 15 micrometers or less.
  • the roundness may be 0.1 to 15 ⁇ m according to one embodiment.
  • the roundness is preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less, and even more preferably 5 ⁇ m or less. Further, the surface roughness of the split surface can be less than 0.01 ⁇ m in terms of arithmetic average roughness Ra.
  • the roundness is measured, for example, by arranging a plate-like probe thicker than the glass plate thickness in a direction perpendicular to the main surface of the glass plate so as to face the outer peripheral end surface, and the glass plate in the circumferential direction.
  • the contour line is acquired by rotating the lens and the difference between the inscribed circle and the circumscribed circle of the contour line is calculated as the roundness of the glass plate.
  • a roundness / cylindrical shape measuring device can be used for measuring the roundness.
  • the arithmetic average roughness Ra is a value based on JIS B0601: 2001.
  • the measurement of the surface shape of the end face of the glass plate performed for obtaining the arithmetic average roughness Ra is performed under the following conditions in a 50 ⁇ m square evaluation region using a laser microscope.
  • Observation magnification 3000 times Measuring pitch in the height direction (Z axis): 0.01 ⁇ m, Cut-off value ⁇ s: 0.25 ⁇ m, Cut-off value ⁇ c: 80 ⁇ m.
  • the resolution in the height direction is preferably 1 nm or less. In this embodiment, the observation magnification is 3000 times, but the observation magnification is appropriately selected in the range of about 1000 to 3000 times depending on the size of the measurement surface.
  • FIGS. 7A, 7 ⁇ / b> B, and 8 are diagrams illustrating an example of a method of cutting out a disk-shaped glass plate from the intermediate glass plate 10.
  • the laser light source 60 is a device that emits laser light L1, and for example, a solid-state laser such as a YAG laser or an ND: YAG laser is used. Therefore, the wavelength of the laser light is in the range of 1030 nm to 1070 nm, for example.
  • the laser beam L1 is a pulse laser, and in this embodiment, the pulse width of the laser beam L1 is 10 ⁇ 12 seconds or less (1 picosecond or less). It is preferable from the viewpoint that alteration can be suppressed. Further, the optical energy of the laser beam L1 can be appropriately adjusted according to the pulse width and the repetition frequency of the pulse width. If excessive light energy is provided with respect to the pulse width and the repetition frequency, the glass tends to be excessively deteriorated, and a residue is likely to exist at the focal position F.
  • the optical system of the laser light source 60 is adjusted so that the focal position F of the laser light L1 is located inside the thickness of the central region 14 of the intermediate glass plate 10 in the thickness direction. Therefore, light energy concentrates at the focal position F and is locally heated to form a crack start portion (crack generation nucleus) due to scratches, melting, deterioration, or alteration. Since the focal position F moves relative to the intermediate glass plate 10 so as to draw a circle when viewed from the surface of the intermediate glass plate 10, the crack start portion has a circular shape. By heating the intermediate glass plate 10 or the like, as shown in FIG. 8, cracks C are generated inside the glass from each position of the crack starting portion, and the cracks C are advanced toward the main surface.
  • the disk-shaped glass plate can be easily separated from the intermediate glass plate 10 without applying a large force for cleaving. In this way, it is possible to obtain a disk-shaped glass plate whose surface roughness is less than 0.01 ⁇ m in arithmetic mean roughness Ra and whose roundness is 15 ⁇ m or less.
  • the roundness is preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the disk-shaped glass plate end surface produced is an end surface that satisfies the requirements of the end surface of the magnetic disk glass substrate. For this reason, it is not necessary to grind an end surface.
  • the focal position F is preferably in the range of one third to two thirds of the plate thickness of the central region 14 from the main surface of the central region 14.
  • the focal position F in this range, the fractured surface that satisfies the requirements for roundness and surface roughness can be used as it is as the side wall surface 11w shown in FIG. It is not necessary to carry out a special process and the production efficiency can be improved.
  • the focal position F is within a range of less than one third of the plate thickness of the central region 14 from the main surface of the central region 14.
  • the vicinity of the focal position F where the surface roughness is likely to be reduced as compared with the fractured surface formed by the cracks is a portion removed by a chamfering process described later.
  • the focal position F is preferably in the range of less than one third of the plate thickness of the central region 14 from the main surface of the central region 14.
  • the laser beam L1 is preferably a pulsed laser beam having a pulse width of 10 ⁇ 12 seconds or less.
  • the pulse width exceeds 10 ⁇ 12 seconds, the light energy is concentrated at the focal position F, the glass near the focal position F is altered, and the surface roughness is liable to be reduced. If the pulse width exceeds 10 ⁇ 12 seconds, the energy is too strong and cracks may occur in unexpected directions such as inside the crack start portion. This is because the crack may occur at the time when the laser beam is irradiated in addition to the progress from the crack start portion by heating.
  • a chamfering process is performed for chamfering the corner 70 formed by the main surface and the end surface of the split surface of the disk-shaped glass plate separated from the intermediate glass plate 10 in this manner.
  • the corner portion 70 is chamfered with a laser beam L2 of a type different from the laser beam L1.
  • FIG. 9 is a diagram for explaining an example of the chamfering process.
  • the laser beam L2 irradiates the corner portion 70 from a direction inclined at an inclination angle of 30 to 60 degrees with respect to the main surface, and heats the corner portion 70 to be softened and evaporated to chamfer the corner portion 70.
  • a CO 2 laser can be preferably used.
  • the laser beam L2 is a pulse laser, preferably has a repetition frequency of 5 KHz or more and a power density per pulse per unit area of 100 W / cm 2 or less.
  • a chamfered surface with low surface roughness and high roundness can be formed.
  • the corner portion 70 formed by the lower main surface and the side wall surface shown in FIG. 8 can also be chamfered using the same laser beam L2. Since the corner portion 70 is chamfered with the laser beam L2, the production efficiency is higher than when chamfering is performed with a grindstone or the like. As described above, since it is not necessary to polish the end face from the cutting of the disk-shaped glass plate 80 to the chamfering process, the production efficiency is improved.
  • the molds 50a and 50b have a substantially circular press surface that presses the glass base plate 20, and in the pressing process, the pressing surfaces of the molds 50a and 50b are made of glass. This is performed when pressing a part of the glass base plate 20 against the main surface of the base plate 20.
  • the irradiation position of the laser beam is located at a distance of 70 to 98% of the diameter of the pressing surface from the outer periphery of the pressing surface of the central region 14.
  • the peripheral region 12 it is preferable to cool the peripheral region 12 so that the cooling rate difference between the peripheral region 12 and the central region 14 becomes small before the cutting process.
  • the strain generated in the peripheral region 12 can be reduced, and the crack can be prevented from progressing in an unexpected direction at a portion where the strain is large.
  • Such cooling can be performed by bringing a low-temperature medium into contact with the peripheral region 12 directly or indirectly, for example, by blowing air around the peripheral region 12.
  • the difference in cooling rate is preferably 1 to 70 ° C./second, and more preferably 1 to 20 ° C./second.
  • the retardation value of the central region 14 is preferably less than 10 nm, and more preferably less than 5 nm.
  • the central region 14 having the retardation value in the above range has a small internal strain, and can suppress the progress of cracks in an unexpected direction. For this reason, the roundness of the cut-out glass plate becomes favorable.
  • it is preferable that the difference between the maximum plate thickness and the minimum plate thickness in the central region 14 after the pressure treatment and before the post-treatment first performed after the pressure treatment is 1 ⁇ m or less.
  • the post-processing performed first after the pressurizing process is, for example, the above-described cooling performed before the cutting process or the cutting process.
  • the crack extends between the main surfaces of the central region 14 and is formed over the entire circumference of the contour shape. This is because if cracks are not formed in this way, cracks may develop in an unexpected direction when cleaving. Therefore, according to one embodiment, in the cutting process, after moving the irradiation position of the laser light, before cleaving the intermediate glass plate 10, the region (inner region) of the intermediate glass plate 10 to be cleaved, It is preferable to provide a temperature difference between the outer region and the region.
  • the temperature difference between the inner region and the outer region can be performed by, for example, cooling and shrinking the inner region while heating and expanding the outer region.
  • the cooling can be performed by changing the cooling temperature or the cooling rate of the inner region and the outer region so that the shrinkage amount of the inner region is larger than that of the outer region.
  • the cooling can be performed, for example, by taking heat from the central region 14 directly or indirectly using a low temperature medium such as liquid nitrogen.
  • Heating can be performed, for example, by transferring heat to the peripheral region 12 using a high-temperature heat source such as a heated metal member.
  • the temperature difference between the inner region and the outer region is preferably 50 to 250 ° C. from the viewpoint of causing the crack to progress.
  • the intermediate glass plate 10 is plated between the inner region and the outer region.
  • a shearing force applies, for example, a load from the other side in the plate thickness direction to the other of the inner region and the outer region while supporting one of the inner region and the outer region from one side in the plate thickness direction. It can be made to act.
  • the load can be applied using, for example, a member formed in an annular shape along the contour shape, or a plurality of members such as steel balls arranged at a plurality of positions along the contour shape.
  • the shearing force may cause these members to vibrate in the out-of-plane direction and may act intermittently or may act continuously.
  • the cutting process it is also preferable to cleave the inner region without bringing the intermediate glass plate 10 into contact with another object.
  • Such non-contact cleaving can be performed by, for example, applying a vibration from the outside to the peripheral region 12 after irradiating the central region 14 with laser light, and further cracking the crack.
  • Such vibration is preferably vibration in a direction along the in-plane direction of the central region 14.
  • the cutting process the case where the cutting is performed in such a manner that the locus of the irradiation position of the laser beam continuously draws the contour shape has been described as an example, but the cutting process is not limited to such an example.
  • the intermediate glass plate 10 is irradiated with laser light at a plurality of positions spaced along the contour shape to form a plurality of holes in the central region 14 and along the cracks developed between adjacent holes. It is also preferable to cleave.
  • the variation in the plate thickness in the central region 14 is small, and the variation in the plate thickness in the central region 14 among the plurality of intermediate glass plates 10.
  • the interval between adjacent holes is preferably 0.2 to 10 ⁇ m. If the holes are formed discretely, the shape of each hole varies, and the manner of crack growth may differ between the holes. At this time, if the interval between adjacent holes is too short, the difference in the manner of crack growth between the holes may be emphasized. In order to reduce the difference in how cracks progress and to avoid adversely affecting the roundness of the cut glass plate, it is preferable that the distance between adjacent holes is 0.2 ⁇ m or more.
  • the diameter of the hole is preferably 0.05 to 5 ⁇ m. If the diameter of the holes is less than 0.05 ⁇ m, it is too small as a nucleus for generating cracks, and it becomes difficult for cracks to propagate between the holes.
  • the diameter of the hole means a diameter along the in-plane direction of the central region 14. On the other hand, if the diameter of the hole exceeds 5 ⁇ m, the shape of the hole remains on the end face of the cut glass plate, and the arithmetic average roughness Ra of the cut section may increase.
  • the crack start portion can also be formed using a filament (laser filament) formed by laser light irradiation.
  • the filament can be formed using, for example, a burst that is a pulse group having a pulse interval shorter than the repetition period of the laser.
  • a hole serving as a nucleus of crack generation is formed.
  • the energy of the incident beam is, for example, between 10 ⁇ J and 2000 ⁇ J.
  • filaments holes are formed at a plurality of positions at intervals along the contour shape, cracks are advanced so as to connect adjacent holes, and intermediate glass plate 10 is cleaved along the formed cracks. Accordingly, it is possible to efficiently perform the cutting process with low energy.
  • a circular inner hole is opened, for example, and a disk-shaped glass plate is formed.
  • the shape processing process further includes a chamfering process for forming a chamfered surface on the end surface of the disk-shaped glass plate.
  • the polishing treatment includes first polishing and second polishing of the glass plate.
  • first polishing the main surface on both sides of the glass plate is polished while holding the outer end face of the glass plate in a holding hole provided in a polishing carrier of a known double-side polishing apparatus.
  • the purpose of the first polishing is to adjust minute surface irregularities (microwaveness, roughness).
  • the main surface of the glass plate is polished using a double-side polishing apparatus equipped with a planetary gear mechanism. Specifically, the main surface on both sides of the glass plate is polished while holding the outer end face of the glass plate in the holding hole provided in the holding member of the double-side polishing apparatus.
  • the double-side polishing apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and an annular plate-shaped polishing pad (for example, as a whole on the upper surface of the lower surface plate and the bottom surface of the upper surface plate) Resin polisher) is attached. A glass plate is sandwiched between the upper surface plate and the lower surface plate.
  • the glass plate and each surface plate are relatively moved while supplying a polishing slurry containing free abrasive grains. Both main surfaces of the plate can be polished.
  • abrasive grains such as cerium oxide or zirconia are used.
  • the size of the abrasive grains is preferably in the range of 0.5 to 3 ⁇ m in terms of average particle diameter (D50).
  • the glass plate may be chemically strengthened after the first polishing.
  • a mixed melt of potassium nitrate and sodium sulfate or the like is used as the chemical strengthening liquid, and the glass plate is immersed in the chemical strengthening liquid.
  • a compressive-stress layer can be formed on the surface of a glass plate by ion exchange.
  • the second polishing is performed on the glass plate.
  • the second polishing treatment aims at mirror polishing of the main surface.
  • a double-side polishing apparatus having the same configuration as the double-side polishing apparatus used for the first polishing is used. Specifically, the main surface on both sides of the glass plate is polished while the outer end surface of the glass plate is held in the holding hole provided in the polishing carrier of the double-side polishing apparatus.
  • the type and particle size of loose abrasive grains are different from those in the first polishing process, and the hardness of the resin polisher is different.
  • the hardness of the resin polisher is preferably smaller than that during the first polishing process.
  • a polishing liquid containing colloidal silica as free abrasive grains is supplied between the polishing pad of the double-side polishing apparatus and the main surface of the glass plate, and the main surface of the glass plate is polished.
  • the size of the abrasive grains used for the second polishing is preferably in the range of 5 to 50 nm in terms of average particle diameter (D50).
  • D50 average particle diameter
  • whether or not the chemical strengthening treatment is necessary may be appropriately selected in consideration of the glass composition and necessity.
  • another polishing may be added, and the two main surfaces may be polished by one polishing process.
  • the final surface of the glass substrate 1 satisfying the conditions required for the magnetic disk glass substrate and the like can be obtained by polishing the main surface of the glass plate.
  • the disk-shaped glass plate obtained by performing the shape processing treatment may be subjected to a grinding treatment before the first polishing.
  • the variation in the plate thickness is small, and the difference between the average plate thickness and the target plate thickness can be reduced, so the machining allowance by grinding is less than the machining allowance in conventional grinding, and the grinding time must be shortened.
  • the main surface is polished.
  • the difference between the maximum plate thickness and the minimum plate thickness in the plate thickness distribution in the pressure-treated portion before the polishing treatment can be 2 ⁇ m or less. For this reason, grinding is not performed, or even if it is performed, the machining allowance is small.
  • the difference in plate thickness between the pressure-treated portion processed into a disk shape and the polished glass plate at the same place should be 40 ⁇ m or less. it can. Further, the machining allowance can be reduced to 20 ⁇ m or less by polishing one side of the main surface.
  • the machining allowance by grinding can be reduced, so the difference in plate thickness at the same place between the pressure-processed portion processed into a disk shape and the glass plate after polishing treatment can be reduced to 40 ⁇ m. It can be: The average plate thickness in the central region 14 of the intermediate glass plate 10 can be brought close to the target plate thickness to the extent that it is not necessary to grind the main surface of the glass plate. Since the variation can be reduced, it is not necessary to perform grinding, and the productivity when manufacturing the glass substrate 1 that satisfies the target plate thickness and the required quality becomes higher.
  • the variation in the plate thickness in the central region 14 of the intermediate glass plate 10 is small, and the variation in the plate thickness in the central region 14 among the plurality of intermediate glass plates 10. Since the process of cutting out using a laser beam is performed on the small central region 14, the manner of crack propagation becomes substantially uniform, and the accuracy of the shape of the cut glass plate is along the contour of the shape. It is possible to suppress non-uniformity, and to prevent the accuracy of the shape of the cut glass plate from varying between the intermediate glass plates 10. Since the accuracy of the shape of the cut glass plate is high, the end surface polishing treatment of the glass plate can be omitted, or the time required for the end surface polishing treatment can be reduced.
  • the glass plate is cut out using laser light, the surface quality of the cut end face (outer end face, inner end face) can be improved. In this respect, there is no need for end face polishing or the end face polishing time is greatly increased. Can be shortened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

ガラス基板の製造方法は、ガラス素板から中間体ガラス板を成形する成形処理と、中間体ガラス板を所定の形状に切り出す処理と、を備える。成形処理は、ガラス素板の主表面の両側を、ガラス素板を支持しながら加熱源と非接触にして加熱源を用いて加熱する加熱処理と、加熱処理されたガラス素板の両側の主表面を一対の型で挟み込み、ガラス素板を加圧して中間体ガラス板を成形する加圧処理と、を含む。切り出す処理では、中間体ガラス板の加圧処理部分において所定の輪郭形状に沿ってレーザ光の照射位置を、中間体ガラス板に対して移動させ、輪郭形状に沿って割断する。

Description

ガラス基板の製造方法
 本発明は、レーザ光を用いてガラス板を切り出す処理を含むガラス基板の製造方法に関する。
 今日、パーソナルコンピュータ、ノート型パーソナルコンピュータ、あるいはDVD(Digital Versatile Disc)記録装置、あるいは、クラウドコンピューティングのデータセンター等には、データ記録のためにハードディスク装置が用いられる。ハードディスク装置では、円盤状の非磁性体の磁気ディスク用ガラス基板に磁性層が設けられた磁気ディスクが用いられる。磁気ディスクは、例えば、浮上距離が5nm程度であるDFH(Disk Flying Height)タイプの磁気ヘッドに組み込まれる。
 このようなDFHタイプの磁気ヘッドでは、上記浮上距離が短いため、磁気ディスクの主表面に微小粒子等が付着することは避けなければならない。この微小粒子の付着を抑制するために、ガラス基板の主表面のみならず端面においても精度よく研磨して、表面粗さが小さいことが望ましい。また、磁気ディスクが安定して高速回転するように、円盤形状の磁気ディスクは真円度が高いことが望ましい。
 このような磁気ディスクの要求を満足するために、磁気ディスク用ガラス基板の端面(内側端面及び外側端面)の表面粗さを小さくし、真円度を高める端面研磨が行われる。
 磁気ディスク用ガラス基板は、ガラス板の切り出し、端面の面取り加工、端面研磨、主表面の研削及び研磨、及びガラス板の洗浄を経て得られる。
 上記ガラス板の切り出しにおいて、カッターによるスクライブ及び割断に代えて、レーザ光を用いてガラス板を所望の形状に切り出す技術が提案されている(特許文献1)。
 上記技術では、パルスレーザビームのレーザビーム焦線をガラス板内へ、所定の入射角度で方向付けて、ガラス板内でレーザビーム焦線に沿って欠陥ライン(穿孔)を生じさせることを、ガラス板およびレーザビームを相対的に平行移動して繰り返し行って、複数の欠陥ライン(穿孔)を形成する。そのとき、隣り合う欠陥ライン(穿孔)間にクラックが伝播するので、ガラス板を所望の形状に切り出すことができる。上記技術を利用して、円盤形状のガラス板を作製することはできる。
特表2017-511777号公報
 ところで、ガラス基板の素となるガラス板は、例えば、熔融ガラスをフロート法あるいはダウンドロー法を用いてシートガラスに成形し、このシートガラスからガラス素板を採板し、あるいは熔融ガラスの塊を型で、上下方向からプレスを行ってガラス素板を作製することにより、得ることができる。
 しかし、フロート法やダウンドロー法によって作製されるガラス素板の板厚は、複数のガラス素板間で、数10μm程度のばらつきを持って分布する。このように板厚のばらつきを持った複数のガラス素板に対して、レーザ光を用いてガラス板の切り出しを行うと、板厚の厚いガラス素板と、板厚の薄いガラス素板とで、クラックが同じように形成されず、切り出されたガラス素板の形状の精度が、ガラス素板間でばらつく場合がある。このとき、ガラス素板間の形状のばらつきを考慮して、切り出すガラス素板の形状を予め大きく設定すると、端面研磨での研磨代が多くなり、ガラス基板の生産性が低下する。
 また、フロート法やダウンドロー法によって作製されるガラス素板の板厚は、一枚のガラス素板内で板厚が大きくばらつく場合もある。この場合に、レーザ光を用いてガラス板の切り出しを行うと、板厚の厚い部分と、板厚の薄い部分とでクラックが同じように形成されず、切り出されたガラス素板の形状の精度が、形状の輪郭に沿って不均一になる場合がある。このとき、切り出されたガラス素板の形状の精度の不均一さを考慮して、切り出すガラス素板の形状を予め大きく設定すると、端面研磨での研磨代が多くなり、ガラス基板の生産性が低下する。
 このように、平均板厚がガラス素板間でばらつくこと、及び、一枚のガラス素板内で大きな板厚分布があって、板厚が一枚のガラス素板内でばらつくことは、目標とする形状のガラス板を作製する際の生産性の点で好ましくない。
 そこで、本発明は、ガラス素板をレーザ光を用いて所望の形状に切り出す際、切り出されたガラス素板の端面研磨処理を省略することができ、あるいは端面研磨処理にかける時間を低減できるよう、切り出されたガラス素板の形状の精度を良好にすることができるガラス基板の製造方法を提供することを目的とする。
 本発明の一態様は、ガラス基板の製造方法であり、
 ガラス素板から中間体ガラス板を成形する成形処理と、
 前記中間体ガラス板を所定の形状に切り出す処理と、を備え、
 前記成形処理は、
 前記ガラス素板の両側の主表面を、前記ガラス素板を支持しながら加熱源と非接触にして前記加熱源を用いて加熱する加熱処理と、
 前記加熱処理された前記ガラス素板の両側の前記主表面を一対の型で挟み込み、前記ガラス素板を加圧して前記中間体ガラス板を成形する加圧処理と、を含み、
 前記切り出す処理では、前記中間体ガラス板の加圧処理部分において所定の輪郭形状に沿ってレーザ光の照射位置を、前記中間体ガラス板に対して相対的に移動させ、前記輪郭形状に沿って前記中間体ガラス板を割断する、ことを特徴とする。
 前記型のそれぞれは、前記ガラス素板を押圧する略円形状の押圧面を有し、
 前記加圧処理では、前記押圧面を前記主表面に押し付けて、前記ガラス素板の一部を加圧し、
 前記切り出す処理では、前記加圧処理部分の主表面と同心円形状に沿ってレーザ光の照射位置を移動させ、当該同心円形状に沿って前記中間体ガラス板を割断することが好ましい。
 前記加圧処理部分は、前記加圧処理において加圧された略円形状の加圧面を有し、
 前記照射位置は、前記加圧面の外周から、前記加圧面の直径の70~98%の距離に位置することが好ましい。
 前記加圧処理部分のリタデーション値は10nm未満であることが好ましい。
 前記加圧処理後であって、前記加圧処理後に最初に行う後処理前の前記加圧処理部分における最大板厚と最小板厚の差は2μm以下であることが好ましい。
 前記切り出す処理では、レーザ光の照射位置の移動後、前記中間体ガラス板を割断する前に、割断される前記中間体ガラス板の領域と、当該領域の外側の領域との間に温度差を設けることが好ましい。
 前記切り出す処理では、レーザ光の照射位置の移動後、前記中間体ガラス板を割断する前に、割断される前記中間体ガラス板の領域と、当該領域の外側の領域との間で、前記中間体ガラス板に対し板厚方向に剪断力を作用させることが好ましい。
 前記切り出す処理の前に、前記加圧処理部分と、前記加圧処理部分の外側の前記中間体ガラス板の部分との冷却速度差が小さくなるよう、前記中間体ガラス板の当該部分の冷却を行うことが好ましい。
 前記切り出す処理では、前記輪郭形状に沿って間隔をあけた複数の位置でレーザ光を照射して、前記加圧処理部分に複数の孔を形成し、
 前記孔の隣り合う間隔は、0.2~10μmであることが好ましい。
 前記切り出す処理では、前記輪郭形状に沿って間隔をあけた複数の位置でレーザ光を照射して、前記加圧処理部分に複数の孔を形成し、
 前記孔の直径は0.05~5μmであることが好ましい。
 前記切り出す処理では、前記照射位置の軌跡が前記輪郭形状を連続的に描くように、レーザ光を移動させることが好ましい。
 前記加熱処理では、前記ガラス素板の両側に設けられる加熱源からの輻射熱により前記ガラス素板を加熱することが好ましい。
 前記加熱処理における前記主表面の昇温速度は、30~95℃/秒であることが好ましい。
 前記切り出す処理において、前記照射位置は、前記中間体ガラス板の板厚方向の内部に位置し、前記レーザ光の照射により前記内部に形成されたクラック開始部から前記中間体ガラス板の主表面に向かってクラックを進展させることが好ましい。
 前記レーザ光は、パルス幅が10-12秒以下のパルスレーザ光であることが好ましい。
 本発明によれば、ガラス素板をレーザ光を用いて所望の形状に切り出す際、切り出されたガラス素板の端面研磨処理を省略することができ、あるいは端面研磨処理にかける時間を低減できるよう、切り出されたガラス素板の形状の精度を良好にすることができる。
(a)は、本実施形態で作製されるガラス基板の一例の斜視図であり、(b)は、(a)に示すガラス基板の外側端面の断面の一例を示す図である。 (a),(b)は、一実施形態である中間体ガラス板の一例を示す図である。 一実施形態であるガラス素板の一例の外観斜視図である。 一実施形態であるガラス素板を支持する方法の一例を説明する図である。 一実施形態である加熱処理の一例を説明する図である。 一実施形態である加圧処理の一例を説明する図である。 (a),(b)は、本実施形態の、所定の形状のガラス板を切り出す方法の一例を説明する図である。 本実施形態の、所定の形状のガラス板を切り出す方法の一例を説明する図である。 本実施形態で行う、面取り処理の一例を説明する図である。
 以下、本実施形態のガラス基板の製造方法について、図面を参照しながら説明する。本実施形態には、後述する種々の実施形態が含まれる。図1(a)は、本実施形態で作製されるガラス基板の一例の斜視図である。図1(b)は、図1(a)に示すガラス基板の外側端面の断面の一例を示す図である。
 図1(a)に示すガラス基板1は、円環状の薄板のガラス基板である。ガラス基板1は磁気ディスク用ガラス基板として用いることができる。磁気ディスク用ガラス基板のサイズは問わないが、磁気ディスク用ガラス基板は、例えば、公称直径2.5インチや3.5インチの磁気ディスク用ガラス基板のサイズである。公称直径2.5インチの磁気ディスク用ガラス基板の場合、例えば、外径が65~68mm、中心穴の径が20mm、板厚が0.3~0.8mmであり、公称直径3.5インチの磁気ディスク用ガラス基板の場合、例えば、外径が95~98mm、中心穴の径が25mm、板厚が0.3~0.8mmである。このガラス基板1の主表面上に磁性層が形成されて磁気ディスクが作られる。
 ガラス基板1は、一対の主表面11p,12p、外側端面に形成された側壁面11w、側壁面11wと主表面11p,12pの間に介在する面取面11c,12c、内側端面にも、外側端面と同様に形成された、図示されない側壁面、及び、この側壁面と主表面11p,12pの間に介在する図示されない面取面とを備える。
 ガラス基板1は、中心部に円孔を有する。側壁面11wは、ガラス基板Gの板厚方向の中心位置を含む。面取面11c,12cの主表面11p,12pに対する傾斜角度は、特に制限されず、例えば45°である。また、側壁面11w及び面取面11c,12cの境界は、図示されるようなエッジを有する形状に限定されるものではなく、滑らかに連続する曲面状であってもよい。
 このようなガラス基板1は、従来のガラス板の製造方法によれば、図3に示すようなガラス素板から円形状に切り出し、円形状と同心円の円孔をあける形状加工を行うことにより、ガラス基板1と同様の円盤形状のガラス板が作製される。さらに、この円盤形状のガラス板の内側端面及び外側端面に端面研磨が行われる。この後、端面研磨したガラス板に対して、主表面の研削さらには研磨が行われる。このとき、例えば、1回の研削及び2回の研磨(粗研磨、及び精研磨)が行われる。これにより、磁気ディスク用ガラス基板等に要求される目標の板厚、さらには、ガラス板の表面品質を達成することができる。
 しかし、上述したように、従来のフロート法、ダウンドロー法で作製されるガラスシートの板厚は、場所によって異なり、ガラスシートから所定の形状に切り出されたガラス素板間の平均板厚のばらつきは大きく、また、熔融ガラスの塊をプレスして作製したガラス素板についてもガラス素板間の平均板厚のばらつきも大きい。このため、目標板厚に対する平均板厚の偏差も大きい。このように、複数のガラス素板間で、ガラス素板の板厚のばらつきがあると、レーザ光を用いてガラス素板の切り出しを行った場合に、切り出されたガラス素板の形状の精度が、ガラス素板間でばらつく場合がある。また、一枚のガラス素板内で、ガラス素板の板厚のばらつきがあると、レーザ光を用いてガラス素板の切り出しを行った場合に、切り出されたガラス素板の形状の精度が、形状の輪郭に沿って不均一になる場合がある。このような場合に、ガラス素板間の形状の精度のばらつき、あるいは、一枚のガラス素板内での形状の精度の不均一さを考慮して、ガラス素板から切り出す輪郭形状を予め大きく設定すると、端面研磨による取り代量が多くなるため、ガラス基板の生産性が低下するおそれがある。
 そこで、本実施形態では、以下説明する、ガラス素板から中間体ガラス板を成形する成形処理と、中間体ガラス板を所定の形状に切り出す処理と、を備えるガラス基板の製造方法により、ガラス基板を作製する。
(中間体ガラス板及びガラス素板)
 まず、成形処理により作製される中間体ガラス板、及び、中間体ガラス板の素となるガラス素板について説明する。
 図2(a),(b)は、成形処理で作製される中間体ガラス板の一例を示す図である。図示する中間体ガラス板10は、外形が矩形形状である。しかし、外形は、円形状や楕円形状であってもよく、外形は特に制限されない。また、図2(a),(b)では、わかり易くするために、中央領域14の窪み深さは強調して示している。
 中間体ガラス板10は、板状ガラス板であり、中間体ガラス板10の両側の主表面のそれぞれは、周辺領域12と周辺領域12に対して凹んだ中央領域14とを備える。中央領域14に接する周辺領域12の内縁を除き、中間体ガラス板10は略一定の板厚を有する。周辺領域12における略一定の板厚とは、板厚の分布における最大板厚と最小板厚の差が許容範囲内にあることをいう。許容範囲内とは、例えば100μm内であることをいう。周辺領域12の上記内縁には、中央領域14を囲むように、略一定の板厚の周辺領域12の部分に対して盛り上がった環状の部分(図2(b)において破線の円で囲んだ部分。肉溜まりともいう)が設けられている場合がある。中央領域14は、周辺領域12に囲まれて設けられる。中央領域14における主表面間の板厚は、周辺領域12における主表面間の板厚よりも薄い。具体的には、中央領域14は、周辺領域12の表面に対して一定の深さで表面が窪んでいる。一定の深さとは、上記内縁を除く周辺領域12の主表面の平均の深さ位置(表面凹凸の中心線)から、例えば10μm~30μmの範囲で窪んでいることをいう。すなわち、中央領域14の窪み深さは、例えば10μm~30μmである。
 中央領域14は円形状であるが、矩形形状あるいは楕円形状であってもよい。
 中央領域14は、中間体ガラス板10の両側の主表面に設けられ、両側の主表面において、一定の窪み深さは、互いに同じであることが好ましい。ここで、窪み深さが互いに同じとは、許容範囲内にあることをいい、許容範囲内は、例えば6μm以下である。
 また、両側の主表面にある中央領域14は、互いに対向するように設けられていることが好ましい。
 ここで、中央領域14の板厚分布における板厚のばらつき(最大板厚と最小板厚の差)は、10μm以下であることが好ましく、2μm以下であることが好ましく、1μm以下であることが好ましい。このような中央領域14から円形状にガラス板を切り出してガラス板を形成する。このガラス板は、ガラス板間の板厚のばらつきが小さく、いずれのガラス板の平均板厚も目標とする板厚に近いので、研削が不要であり、あるいは研削による取り代量が従来よりも少ないガラス板である。
 中央領域14における表面粗さの一指標である算術平均粗さRa(JIS B0601:2001)は、300nm以下であることが好ましく、200nm以下であることがより好ましい。さらに好ましくは100nm以下である。
 また、中央領域14のいずれの場所でも、深さが5μm以上の表面欠陥を有さないことが好ましい。
 また、後述する成形処理を用いて中間体ガラス板10を作製することにより、中央領域14はプレス面となり、周辺領域12は非プレス面となる。
 このような中間体ガラス板10は、図3に示すガラス素板20から作製される。図3は、一実施形態であるガラス素板20の一例の外観斜視図である。
 ガラス素板20は、板状ガラス板であり、図示するガラス素板20の外形は矩形形状であるが、円形状や楕円形状であってもよく、外形は特に制限されない。
 ガラス素板20の板厚分布における最大板厚と最小板厚の差は0.5~20μmであることが好ましい。より好ましくは、0.5μm~10μmである。成形処理によれば、平均板厚が所定の範囲にあり、さらには、主表面の表面品質が向上した中央領域14を、ガラス素板20から、以下説明するように作製するので、ガラス素板20は容易に入手できるガラス板であることが好ましい。このため、容易に入手できるガラス素板20の表面品質は、ある程度、中央領域14の主表面の表面品質よりも劣っていてもよい。ガラス素板20として、例えば、フロート法、ダウンドロー法、あるいはプレス法により作製したガラス板が用いられる。フロート法、ダウンドロー法によるガラス素板20の算術平均粗さRaは、10~20nmであり、プレス法によるガラス素板20の算術平均粗さRaは、0.1~1.0μmである。
 ガラス素板20、中間体ガラス板10、あるいはガラス基板1のガラス転移温度Tgは、450~800℃であることが、後述する加熱処理で効率よくガラス素板20を加熱して、目標とする表面品質を得る点で好ましく、480~750℃であることがより好ましい。
 ガラス素板20のガラスの材料、すなわち、中間体ガラス板10及びガラス基板1のガラスの材料として、アルミノシリケートガラス、ソーダライムガラス、ボロシリケートガラスなどを用いることができる。磁気ディスク用ガラス基板を作製する場合、化学強化を施すことができ、また主表面の平坦度及び基板の強度において優れた磁気ディスク用ガラス基板を得ることができるアルミノシリケートガラスを好適に用いることができる。アモルファスのアルミノシリケートガラスとするとさらに好ましい。
 ガラス素板20、中間体ガラス板10、及びガラス基板1のガラスの組成は、限定するものではないが、一実施形態によれば、酸化物基準に換算し、モル%表示で、SiO2を50~75%、Al23を1~15%、Li2O、Na2O及びK2Oから選択される少なくとも1種の成分を合計で5~35%、MgO、CaO、SrO、BaO及びZnOから選択される少なくとも1種の成分を合計で0~20%、ならびにZrO2、TiO2、La23、Y23、Ta25、Nb25及びHfO2から選択される少なくとも1種の成分を合計で0~10%、有する組成からなるアモルファスのアルミノシリケートガラスである。
 また、一実施形態によれば、質量%表示にて、SiO2を57~75%、Al23を5~20%(ただし、SiO2とAl23の合計量が74%以上)、ZrO2、HfO2、Nb25、Ta25、La23、Y23およびTiO2を、合計で0%を超え、6%以下、Li2Oを、1%を超え、9%以下、Na2Oを5~28%(ただし、質量比Li2O/Na2Oが0.5以下)、K2Oを0~6%、MgOを0~4%、CaOを0%を超え、5%以下(ただし、MgOとCaOの合計量は5%以下であり、かつCaOの含有量はMgOの含有量よりも多い)、SrO+BaOを0~3%、有する組成からなるアモルファスのアルミノシリケートガラスである。
 また、一実施形態によれば、必須成分として、SiO2、Li2O、Na2O、ならびに、MgO、CaO、SrOおよびBaOからなる群から選ばれる一種以上のアルカリ土類金属酸化物を含み、MgO、CaO、SrOおよびBaOの合計含有量に対するCaOの含有量のモル比(CaO/(MgO+CaO+SrO+BaO))が0.20以下であって、ガラス転移温度が650℃以上であってもよい。このような組成のガラスは、磁気ディスク用ガラス基板に用いる場合、エネルギーアシスト磁気記録用磁気ディスクに使用される磁気ディスク用ガラス基板に好適である。
(成形処理)
 以下、ガラス素板20から中間体ガラス板10を製造(作製)する成形処理を説明する。
 成形処理は、
(1)ガラス素板20の両側の主表面を、ガラス素板20を支持しながら加熱源と非接触にして加熱源を用いて加熱する加熱処理と、
(2)加熱処理されたガラス素板20の両側の主表面を一対の型で挟み込み、ガラス素板20を加圧して中間体ガラス板10を成形する加圧処理と、
を含む。
 図4は、加熱処理を行う前にガラス素板20を支持する方法の一例を説明する図である。図4は、矩形形状のガラス素板20の主表面を正面から見た図である。ガラス素板20は、加熱処理中、さらには、加圧処理中、ガラス素板20が変位しないようにキャリア30によってガラス素板20の縁が固定されることにより、ガラス素板20はキャリア30に支持される。具体的には、キャリア30は、一対のキャリア板30a,30bで構成され、キャリア板30a,30bでガラス素板20を、ガラス素板20の両側から挟む。キャリア板30a,30bのそれぞれには、キャリア板30a,30bでガラス素板20を挟んだ時、互いに対向する場所に、ガラス素板20の外形形状よりも大きな貫通した孔32が設けられている。キャリア板30a,30bそれぞれには、孔32の内縁から突出して、ガラス素板20を押さえるための押さえ部34が、キャリア板30a,30bでガラス素板20を挟んだ時にお互いに対向する場所に設けられている。したがって、キャリア板30a,30bによってガラス素板20を挟むことにより、ガラス素板20は、押さえ部34によってガラス素板20の主表面の両側から挟まれて、ガラス素板20の縁が固定される。キャリア板30a,30bによって挟まれたガラス素板20は、孔32から主表面それぞれが露出するようになっている。このようにキャリア30によって支持されたガラス素板20に、加熱処理及び加圧処理が施される。
 押さえ部34によってガラス素板20の縁を固定することにより、加熱処理時、ガラス素板20の一部は熱によって粘性状態となりガラスの表面張力によって収縮し、それに伴ってガラス素板20が変位することを抑制することができる。また、加圧処理時、型に押されてガラス素板20が変位しないようにすることができる。
 図4に示す例では、矩形形状の孔32の一辺のそれぞれに3つの押さえ部34が設けられ、合計12個の押さえ部34により、ガラス素板20の縁が固定されてガラス素板20はキャリア30に支持される。しかし、押さえ部34の数は、特に制限されず、例えば16本、あるいは8本であってもよい。また、押さえ部34の形状も図示するような先端が円弧形状のものに限定されない。
 押さえ部34によって固定されるガラス素板20の縁の部分(固定部分)は、後述する加圧処理において型が加圧する領域の外側に位置することができれば、上記固定部分の位置は特に制限されないが、例えば、上記固定部分の先端の位置は、ガラス素板20のエッジから0.5~4mmの範囲内にあることが好ましい。
 なお、孔32のサイズは、ガラス素板20のエッジと孔32の縁との間のクリアランス距離を所定の範囲にするために、ガラス素板20のサイズに応じて定めることが好ましい。クリアランス距離が所定距離以下である場合、加熱処理時、キャリア30から外部への熱伝導による冷却によって、ガラス素板20のエッジとガラス素板20の中心部分との温度差が大きくなってガラス素板20は割れ易くなる。クリアランス距離は、少なくとも2mm以上であることが好ましい。
 また、キャリア30によるガラス素板20の支持は、押さえ部34のような形態でガラス素板20の縁を離散的な位置で押さえて固定する方式に限られず、線状に連続的に押さえて固定する方式であってもよい。なお、ガラス素板20の縁は、主表面の外周のエッジから主表面の側に一定の距離入った場所、及び、ガラス素板20の外側端面に面取り面が設けられている場合、面取り面を含む。
 ガラス素板20を支持したキャリア30は、図示されない移動装置にセットされて、加熱処理を行う加熱装置に移動する。
 図5は、加熱処理の一例を説明する図である。図5に示す例では、ガラス素板20を挟んだキャリア30は、図中上から下方向に移動する。この移動中に、ガラス素板20は、一対の加熱源40a,40bの間の、加熱源40a,40bから一定の距離離れた位置を通過して加熱される。
 加熱源40a,40bは、例えばヒータで構成される。加熱源40a,40bは、ガラス素板20を均一に加熱するために、ガラス素板20の移動経路から等距離離れた位置に、ガラス素板20を非接触で加熱するように加熱源40a,40bは設けられている。ガラス素板20を均一に加熱することにより、中間体ガラス板10間の板厚のばらつきを抑制することができる。また、ガラス素板20を均一に加熱することは、加圧処理に適したガラス素板20の最低温度を確保するためにガラス素板20の最高温度を必要以上に高くすることがなくなり、加熱源40a,40bの発熱のための消費エネルギを抑えることができる点でも好ましい。このため、加熱源40a,40bが発熱素子で構成される場合、発熱素子の配置は、ガラス素板20の主表面の温度が、所望する温度分布となるように均一に発熱して均一な輻射熱を発するように調整されている。
 加熱源40a,40bは、移動中のガラス素板20の主表面を急激に昇温させるために、発熱量は大きく、加熱源40a,40bとガラス素板20の主表面との間の間隔は狭い。ガラス素板20の主表面の温度は、30~95℃/秒の昇温速度で上昇させることが好ましい。この範囲において、昇温速度は、55℃/秒以上であることが好ましく、70℃/秒以上であることがより好ましい。ガラス素板20の主表面の温度は、粘性状態になるように上昇させるので、主表面を含む表層にあるガラスは流動し易くなり、重力に従って鉛直下方に流れようとする。このような流動は、一定な板厚を得ようとする中間体ガラス板10にとって好ましくない。このため、短時間にガラス素板20の主表面は昇温される。また、主表面を含む表層にあるガラスを粘性状態にし、表層に挟まれた、ガラス素板20の厚さ方向の中央部のガラスを粘性状態にしないために、短時間にガラス素板20の主表面は昇温される。例えば、ガラス素板20の各位置における加熱を受ける時間は15秒以内であることが好ましく、10秒以内であることがより好ましい。
 加熱処理では、ガラス素板20の昇温速度は極めて高いので、ガラス素板20の主表面を含む表層とガラス素板20の厚さ方向の中央部との間では温度差がある。加熱されたガラス素板20の表層にあるガラスは、粘性状態にあるが、中央部のガラスは、弾性状態あるいは粘弾性状態にある。このように表層と中央部のガラスの状態を異ならせることで、加圧処理において、上記粘性状態のガラスの少なくとも一部を型によって強制的に流動させて板厚を目標とする板厚に近づけることができる他、加熱処理前のガラス素板20の表層にあるクラックや傷を消滅させて表面品質を向上させることができる。また、ガラス素板20の主表面を含む表層のみが流動性を有する状態に加熱されることで、加圧処理において、加圧されたガラス素板20の部分(加圧処理部分)の平坦度や表面粗さを調整することができる。このように、ガラス素板20の主表面を含む表層のみを粘性状態として加圧を行う点で、本実施形態の成形処理は、ガラス全体を粘性状態にした状態で成形を行う、フロート法、ダウンドロー法、あるいはプレス法によるガラス板の成形とは異なる。本実施形態の成形処理は、ガラス素板20の主表面を含む表層のみが平坦化(あるいは平滑化)されるように中間体ガラス板10の成形を行う点で、平坦化処理(あるいは平滑化処理)ともいうことができる。なお、主表面を含む表層とは、例えば、ガラス素板20の各主表面からガラス素板20の板厚の1~45%の範囲にわたる層を意味する。
 一実施形態によれば、中間体ガラス板10の周辺領域12は、中央領域14と比べ、板厚分布が大きく、平坦度が低い。
 ガラス素板20は、加熱源40aと加熱源40bとの間の隙間を通過するとき、加熱源40a,40bから均等に熱を受けるために、加熱源40a,40bのそれぞれから同じ距離、離間して通過させる。これにより、ガラス素板20の両側の主表面の温度を略同じにすることができる。ガラス素板20の両側の主表面の温度に差があると、加圧処理が両側の表層に対して均等に行えず、板厚のばらつきを誘発させ易い。
 加熱されるガラス素板20の主表面の温度の温度分布における最高温度と最低温度の温度差は50℃以下であることが好ましく、20℃以下であることがより好ましく、10℃以下であることがより一層好ましい。加熱されたガラス素板20の主表面の温度は、最低温度でもガラス転移温度Tg(℃)+330℃以上、ガラス転移温度Tg(℃)+430℃以下であることが好ましく、ガラス転移温度Tg(℃)+360℃以上、ガラス転移温度Tg(℃)+400℃以下であることがより好ましい。
 また、加熱処理において、図5に示すように、ガラス素板20を鉛直方向に沿って上から下方向に移動させるとき、上方にあるガラス素板20の部分の温度を下方にあるガラス素板20の部分の温度よりも低くなるように、許容範囲内でわずかに温度差をつけることも好ましい。これにより、粘性状態のガラスが下方向に流れることを抑制することができ、加熱されたガラス素板20内で板厚が大きくばらつかないようにすることができる。
 なお、図5に示す加熱処理は、ガラス素板20を上から下方向に移動させて、加熱源40a,40bの間を通過させる形態であるが、ガラス素板20の移動方向は下方向に限らず、下から上方向への移動であってもよいし、さらには、水平方向、あるいは、水平に対して傾斜した方向であってもよい。また、ガラス素板20の加熱処理は、ガラス素板20を移動しながら加熱する方式に限らず、静止したガラス素板20に対して加熱する方式であってもよい。しかし、加熱処理をした後、主表面の温度が許容範囲を超えて低下しないように短時間内に加圧処理を開始するためには、ガラス素板20を移動しながら加熱することが好ましい。
 次に、加熱処理されたガラス素板20は加圧処理される。加圧処理では、ガラス素板20の両側の主表面を一対の型で挟み込み、ガラス素板20を加圧して中間体ガラス板10を成形する。このとき、一対の型は、ガラス素板20の両側の主表面に同時に当接する。
 図5に示すように、ガラス素板20を挟んだキャリア30を移動しながらガラス素板20を加熱処理する方式の場合、加圧装置の場所に来たキャリア30の移動を停止して加圧処理を開始することが好ましい。すなわち、ガラス素板20は、加熱処理をする加熱装置から加圧処理を行う加圧装置に移動するが、加圧処理は、ガラス素板20が移動を停止したときに行うことが好ましい。これにより、板間の板厚のばらつきを抑制することができる。ガラス素板20の移動中に加圧処理を行うと、ガラス素板20の主表面が型50a,50bと当接するとき、表層にあるガラスの一部は、上記移動による慣性によって変位し、板内の移動方向に沿った板厚のばらつきが大きくなり易い。
 図6は、加圧処理の一例を説明する図である。図6に示すように、移動を停止したガラス素板20の主表面の両側にある型50a,50bを主表面と当接させて、所定の圧力になるまで、あるいは、型50aと型50bの距離が所定の距離になるまで、型50a,50bを近づけてガラス素板20を加圧する。
 型50a,50bのプレス面(押圧面)は、平坦な面であり、平坦度は3μm以下であり、表面凹凸の算術平均粗さRaは300nm以下、好ましくは、200nm以下、さらに好ましくは100nm以下の平面となっている。このような型50a,50bのプレス面は、WC(タングステン・カーバイド)等の超硬合金あるいはSiC等の材料で形成されていることが好ましい。
 型50a,50bは、ガラス素板20を押圧する略円形状のプレス面を有していることが好ましい。略円形状には、真円形状および楕円形状が含まれ、その外周形状は単一の曲率半径の円弧のみからなるものであってもよいし、異なる曲率半径の複数の円弧からなるものであってもよい。
 加圧処理開始直前のガラス素板20の温度は、加熱処理により主表面を含む表層にあるガラスを粘性状態に維持する温度である。したがって、加熱源40a,40bの位置から型50a,50bの位置に素早く移動することが好ましい。加圧処理開始時点(型がガラス素板20と初めて当接する時点)で、ガラス素板20の主表面の温度は最低温度でも、ガラス転移温度Tg(℃)+220℃以上であり、ガラス転移温度Tg(℃)+270℃~ガラス転移温度Tg(℃)+370℃であることが好ましい。
 一方、ガラス素板20の中央部は、加熱処理時から、弾性状態~粘弾性状態の温度を維持する。
 加圧処理開始時、このようなガラス素板20の温度を得るには、加熱源40a,40bによる加熱終了時点から加圧処理開始時点までの時間間隔は、1.6秒以下であることが好ましく、0.5秒以下であることがより好ましい。
 ガラス素板20の加圧は、ガラス素板20の全体を加圧してもよいが、一実施形態によれば、型50a,50bは、ガラス素板20の一部を加圧することが好ましい。このため、型50a,50bそれぞれは、ガラス素板20に同時に当接し、同じ圧力でガラス素板20を加圧することができるように構成されている。型50a,50bによる加圧では、主表面を含む表層にある粘性状態のガラスを加圧し、型50a,50bの外側に向かって押し出すように流動させる。一方、中央部にあるガラスは、弾性状態~粘弾性状態であるので、型50a,50bの加圧によるガラスの流動は、主表面のガラスに比べて少なく、あるいはほとんどない。すなわち、加圧処理では、表層にあるガラスの少なくとも一部が流動してガラス素板20の板厚を調整する、これにより、平坦度は高く、板厚分布は一定に近づき、かつ目標とする板厚に近づく。このため、加圧処理開始時点の主表面の温度分布は、均一に近いことが好ましく、両側の主表面における温度も同じであることが好ましい。温度が同じとは、+/-5℃以内であることをいう。
 一方、型50a,50bのガラス素板20と当接するプレス面の温度は、ガラス転移点Tg+/-20℃が好ましく、より好ましくは、ガラス転移点Tg+/-10℃である。したがって、型50a,50bは、ガラス素板20の表層にある粘性状態のガラスの少なくとも一部を流動させながら冷却する構成となっている。また、型50a,50bは、ガラス素板20の主表面から熱を奪って冷却するが、このときの冷却の過程も両側で略同じであることが好ましいので(略均等に冷却することが好ましいので)、型50a,50bの熱伝導も、略同じになるように構成されることが好ましい。すなわち、ガラス素板20から型50a及び型50bに流れる熱量がお互いに略等しいことが、平坦度を高め、板間の板厚のばらつきを小さくする点から好ましい。
 加圧装置は、型50a,50bがガラス素板20に同時に当接するように、ガラス素板20は配置され、型50a,50bの移動動作は制御されている。加圧処理では、型50a,50bがガラス素板20に当接する時点から型50a,50bが最も近づくまで、すなわち型50a,50bのガラス素板20への押し込み動作が終了するまでの時間は50m秒以下であることが好ましく、10m秒以下であることがより好ましい。
 ガラス素板20が型50a,50bのプレス面と接触する時間(型50a,50bがガラス素板20に当接する時点から型50a,50bがガラス素板20から離れる時点までの時間)は、50m秒~10秒であることが好ましい。型50a,50bがガラス素板20から離れた時点で、ガラス素板20の表層にあるガラスは弾性状態になっている。
 一実施形態によれば、型50a,50bは、ガラス素板20から型50a,50bが受ける圧力が、予め定めた上限に達するまで型50a,50bの間の距離を徐々に狭くすることにより、ガラス素板20を加圧する、いわゆる圧力制御方式で加圧することが、型50a,50bの簡易な制御で実現できる点から好ましい。
 また、一実施形態によれば、型50a,50bの間の距離が、予め設定された距離になるまで型50a,50bの間の距離を徐々に狭くすることにより、ガラス素板20を加圧する、いわゆる位置制御方式で加圧することが、平均板厚を目標の板厚にできる点から好ましい。
 加圧処理を行うガラス素板20の主表面における温度の、加熱処理における温度からの低下(同じ場所における温度低下)は、100℃以下であることが好ましい。より好ましくは、60℃以下である。このような温度低下は、ガラス転移温度Tgより高く加熱されたガラス素板20の温度からの低下量が小さく、ガラス素板20の主表面を含む表層にあるガラスの粘性状態を維持したまま、ガラス素板20の加圧処理を効果的に行うことができる。
 圧力制御方式では、例えば、型50a,50bの駆動源となるサーボモータの回転トルクを制御することで型50a,50bの動作を制御することができる。サーボモータの回転トルクはサーボモータに流れる電流に比例することからこの電流を制御することにより、型50a,50bの動作の制御を行うことができる。位置制御方式は、例えば、型50a,50bの間の距離を監視しながらサーボモータの電流を制御することにより、行うことができる。また、位置制御方式は、型50a,50bのいずれか一方から他方の型に対して突出したガイドピンを設け、予め定めた距離まで近づくと、ガイドピンが他方の型と当接して、型50a,50bが物理的に近づくことを阻止することにより、上記位置制御方式を行うこともできる。
 加圧処理では、ガラス素板20の主表面が上下方向を向くように配置して、上下方向の両側から型がガラス素板20を挟む構成としてもよいが、図5に示すように、ガラス素板20の主表面が水平方向を向くようにガラス素板20を配置して、型50a,50bを水平方向の両側からガラス素板20を挟むことにより、ガラス素板20を加圧することが好ましい。このようにガラス素板20を加圧することにより、加圧が開始されるまで両側の主表面を含む表層にある粘性状態のガラスは重力を同じ方向に受け、型50a,50bによる加圧処理の際に主表面の両側でガラスは左右対称の挙動をするので、主表面の表面品質が板間でばらつく要因を少なくすることができる。
 こうして加圧処理されたガラス素板20は、キャリア30から外されて、図2(a)に示す中間体ガラス板10を得ることができる。
 成形処理では、以上のように、ガラス素板20から中間体ガラス板10を作製する。
(切り出す処理)
 次に、中間体ガラス板を所定の形状に切り出す処理について説明する。
 切り出す処理では、中間体ガラス板10の中央領域14(加圧処理部分)において所定の輪郭形状に沿ってレーザ光の照射位置を中間体ガラス板10に対して相対的に移動させ、輪郭形状に沿って中間体ガラス板10を割断する。このようにレーザ光の照射位置を移動させると、中央領域14には、レーザ光の照射により、クラック生成の核となるクラック開始部が形成される。クラック開始部は、例えば、レーザ光の照射により傷、溶融、劣化、あるいは変質が生じた部分である。クラック開始部が形成された中間体ガラス板10を、例えば加熱することにより、クラック開始部からクラックが進展する。なお、本明細書において、レーザ光の照射位置とは、具体的には、レーザ光の焦点位置が位置する、中央領域14の主表面の延在方向(面内方向)位置を意味する。レーザ光の照射位置は、中央領域14、すなわち、上述した、略一定の板厚の周辺領域12の部分に対して盛り上がった環状の部分よりも内側に位置する。
 本実施形態では、上述したように、成形処理を行うことにより、中間体ガラス板10の中央領域14における板厚のばらつきが小さく、また、複数の中間体ガラス板10の間で、中央領域14の板厚のばらつきが小さくなる。このような中間体ガラス板10に対して、レーザ光を用いて切り出す処理を行うと、一枚の中間体ガラス板10内で、あるいは、複数の中間体ガラス板10の間で、クラックの進展の仕方が略一様なものとなる。その理由は、板厚の厚いガラス素板の部分では、クラックが板厚方向に進展する距離が長く、板厚が薄いガラス素板の部分と比べ、予期しない方向に形成される可能性が高いため、クラックの進展の仕方が一様でなくなるためである。本実施形態では、中間体ガラス板10の中央領域14における板厚のばらつきが小さく、また、複数の中間体ガラス板10の間で、中央領域14の板厚のばらつきが小さい中央領域14に対して、レーザ光を用いて切り出す処理を行うので、クラックの進展の仕方が略一様なものになり、切り出されたガラス板の形状の精度が、形状の輪郭に沿って不均一になることが抑えられ、また、切り出されたガラス板の形状の精度が、中間体ガラス板10間でばらつくことを抑えられる。形状の精度とは、主にはガラス板の真円度を意味するが、さらに、ガラス板の端面の表面粗さも意味する場合もある。切り出されたガラス板の真円度が高いと、当該ガラス板の端面研磨処理を省略することができ、あるいは端面研磨処理にかける時間を低減できる。
 一実施形態によれば、切り出す処理では、レーザ光の焦点位置がガラス板の板厚方向の内部に位置し、かつ焦点位置が、中央領域14の表面から見て円を描くように(照射位置の軌跡が円形の輪郭形状を連続的に描くように)、レーザ光をガラス板に対して相対移動させることにより、中央領域14の内部に円形状のクラック開始部を形成し、その後、円形状のクラック開始部の各位置からガラス基板の主表面に向けてクラックを進展させることが好ましい。
 この実施形態では、具体的に、レーザ光の焦点位置をガラス板の板厚方向の内部に位置するように、レーザ光源の光学系を調整するので、焦点位置に光エネルギが集中して局所的に加熱して、クラック開始部をガラス内部に形成させる。この後、例えばガラス板を加熱する等により、このクラック開始部から主表面に向かってクラックを進展させる。クラックによって形成される割断面は表面粗さが小さい。また、焦点位置の軌跡となる円は、レーザ光をガラス板に精度よく相体移動することが可能な移動機構等によって高い真円度を実現することができる。このため、切り出されたガラス板の真円度の精度は、焦点位置から主表面に向かって延びるクラックの真直度に依存するが、クラックは、ガラス板厚方向内部から延びるので、一方の側の主表面から他方の側の主表面に向かって進展するクラックより進展距離は短い。このため、真円度の悪化を抑えることができる。
 これにより、真円度を15μm以下とすることができる。真円度は、一実施形態によれば、0.1~15μmにすることができる。真円度は、好ましくは10μm以下であり、より好ましくは7μm以下、より一層好ましくは5μm以下である。また、割段面の表面粗さを算術平均粗さRaで0.01μm未満とすることができる。
 以降の説明では、切り出す処理に関して、ここで説明した実施形態のように切り出す処理を行う場合を例に説明する。
 真円度の測定は、例えば、ガラス板の板厚よりも厚い板状のプローブをガラス板の主表面に対して垂直方向に、外周端面と対向するように配置し、ガラス板を円周方向に回転させることで輪郭線を取得し、この輪郭線の内接円と外接円との半径の差をガラス板の真円度として算出する。なお、真円度の測定には、例えば、真円度・円筒形状測定装置を用いることができる。
 算術平均粗さRaは、JIS  B0601:2001に準拠した値である。算術平均粗さRaを求めるために行なうガラス板の端面の表面形状の計測は、レーザ顕微鏡を用いて、50μm四方の評価領域にて以下の条件で行なわれる。
 観察倍率:3000倍、
 高さ方向(Z軸)の測定ピッチ:0.01μm、
 カットオフ値λs:0.25μm、
 カットオフ値λc:80μm。
 なお、高さ方向の分解能は1nm以下であることが好ましい。また、本実施形態では観察倍率3000倍であるが、観察倍率は測定面の大きさに応じて、1000~3000倍程度の範囲で適宜選択される。
 以下、切り出す処理について、図面を参照しながら説明する。
 図7(a),(b)及び図8は、中間体ガラス板10から円盤形状のガラス板を切り出す方法の一例を説明する図である。
 レーザ光源60は、レーザ光L1を出射する装置であり、例えば、YAGレーザ、あるいは、ND:YAGレーザ等の固体レーザが用いられる。したがって、レーザ光の波長は、例えば、1030nm~1070nmの範囲にある。
 レーザ光L1は、パルスレーザであり、本実施形態では、レーザ光L1によるパルス幅を10-12秒以下(1ピコ秒以下)であることが、レーザ光L1の焦点位置Fにおけるガラスの過度な変質を抑制することができる点から好ましい。
 また、レーザ光L1の光エネルギは、パルス幅及びパルス幅の繰り返し周波数に応じて適宜調整することができる。パルス幅及び繰り返し周波数に対して過度な光エネルギを提供すると、ガラスが過度に変質し易くなり、焦点位置Fに残渣が存在し易い。
 図7(b)に示すように、レーザ光L1の焦点位置Fを中間体ガラス板10の中央領域14の板厚方向の板厚の内部に位置するように、レーザ光源60の光学系を調整するので、焦点位置Fに光エネルギが集中して局所的に加熱され、傷、溶融、劣化あるいは変質によるクラック開始部(クラック生成の核)が形成される。焦点位置Fは、中間体ガラス板10の表面から見て円を描くように、中間体ガラス板10に対して相対移動するので、クラック開始部は、円形状となる。この中間体ガラス板10を加熱する等により、図8に示すように、クラック開始部の各位置からクラックCをガラス内部に発生させ、主表面に向かってクラックCを進展させる。これにより、円盤形状のガラス板は、中間体ガラス板10から、割断のために大きな力を加えることなく容易に分離することができる。
 こうして、割段面の表面粗さが算術平均粗さRaで0.01μm未満であり、真円度が15μm以下である円盤形状のガラス板を得ることができる。真円度は、好ましくは10μm以下であり、より好ましくは7μm以下、より一層好ましくは5μm以下である。この割断面は、作製された円盤形状のガラス板端面は、磁気ディスク用ガラス基板の端面の要求を満足する端面である。このため、端面を研磨する必要はない。
 なお、一実施形態によれば、焦点位置Fは、中央領域14の主表面から中央領域14の板厚の3分の1~3分の2の範囲内にある、ことが好ましい。この範囲に焦点位置Fを設けることにより、真円度及び表面粗さの要求を満足する割断面をそのまま、図1(b)に示す側壁面11wとすることができるので、端面研磨等の余分な処理をしなくてよく、生産効率を向上させることができる。
 また、一実施形態によれば、焦点位置Fは、中央領域14の主表面から中央領域14の板厚の3分の1未満の範囲内にあることも好ましい。この場合、クラックによって形成される割断面に比べて残渣が形成されやすく表面粗さが低下する焦点位置F近傍は、後述する面取り処理により除去される部分となる。このため、表面粗さをよりいっそう高くする場合、焦点位置Fは、中央領域14の主表面から中央領域14の板厚の3分の1未満の範囲内にあることが好ましい。
 一実施形態によれば、レーザ光L1は、パルス幅が10-12秒以下のパルスレーザ光である、ことが好ましい。パルス幅が10-12秒超の場合、焦点位置Fに光エネルギが集中し焦点位置F近傍のガラスが変質し、表面粗さを低下させ易い。パルス幅が10-12秒を超えると、エネルギが強すぎて、クラック開始部の内側など、予期しない方向にクラックが発生するおそれがある。クラックは、加熱によりクラック開始部から進展する以外に、レーザ光が照射された時点で発生する場合があるためである。
 こうして中間体ガラス板10から分離した円盤形状のガラス板の、主表面と割断面である端面とで形成される角部70の面取り加工を行うための面取り処理が行われる。具体的には、角部70を、レーザ光L1と異なる種類のレーザ光L2で面取り加工する。図9は、面取り処理の一例を説明する図である。レーザ光L2は、角部70を、主表面に対して30~60度の傾斜角度傾斜した方向から照射し、角部70を加熱して軟化させて蒸発させることにより、角部70を面取りすることができる。例えば、CO2レーザが好適に用いることができる。この場合、レーザ光L2は、パルスレーザであり、繰り返し周波数が5KHz以上であって、単位面積当たりの1パルスあたりのパワー密度が100W/cm2以下であることが好ましい。このような面取りによって、表面粗さの低い、真円度の高い面取り面を形成することができる。
 こうして、図8に示す下側の主表面と側壁面とで形成される角部70も、同様のレーザ光L2を用いて面取り加工を行うことができる。角部70を、レーザ光L2で面取り加工するので、砥石等により面取り加工を行う場合に比べて生産効率は高い。
 このように、円盤形状のガラス板80の切り出しから、面取り処理まで、端面研磨をしなくて済むので、生産効率が向上する。
 一実施形態によれば、切り出す処理では、中央領域14と同心円形状にレーザ光の照射位置を移動させ、当該同心円形状に沿って中間体ガラス板10を割断することが好ましい。このような切り出す処理は、上述したように、型50a,50bが、ガラス素板20を押圧する略円形状のプレス面を有し、加圧処理において、型50a、50bの押圧面を、ガラス素板20の主表面に押し付けて、ガラス素板20の一部を加圧する場合に行われる。
 加圧処理では、周辺領域12となるガラス素板20の部分には、型50a,50bが当接しないため、型50a,50bが当接する中央領域14と、周辺領域12との間で冷却速度が異なる。このことに起因して、周辺領域12には大きな歪が生じ、周辺領域12と中央領域14との境界付近に歪が生じやすい。このため、周辺領域12に近い中央領域14の部分にレーザ光を照射すると、クラックを進展させたときに、予期せぬ方向にクラックが進展し、クラック開始部の内側において割れが発生する場合がある。このようなガラス板は、磁気ディスク用ガラス基板として不適となり、ガラス基板の歩留まりを低下させる。このため、中央領域14と同心円形状にレーザ光の照射位置を移動させ、当該同心円形状に沿って中間体ガラス板10を割断することで、歪の大きいガラスの部分を避けて切り出しを行うことができる。これにより、切り出されたガラス板の真円度も高くなる。このような観点から、レーザ光の照射位置は、中央領域14の加圧面の外周から、加圧面の直径の70~98%の距離に位置することが好ましい。
 また、一実施形態によれば、切り出す処理の前において、周辺領域12を、中央領域14との冷却速度差が小さくなるよう、周辺領域12の冷却を行うことが好ましい。このような冷却を行うことで、周辺領域12に発生する歪を小さくすることができ、歪の大きい部分でクラックが予期せぬ方向に進展することを抑制できる。このような冷却は、例えば、周辺領域12に風を吹き付けることなど、低温の媒体を周辺領域12に直接あるいは間接的に接触させることで行うことができる。周辺領域12に発生する歪を小さくする観点から、冷却速度の差は、1~70℃/秒であることが好ましく、1~20℃/秒であることがより好ましい。
 一実施形態によれば、中央領域14のリタデーション値は10nm未満であることが好ましく、5nm未満であることがより好ましい。リタデーション値が上記範囲にある中央領域14は、内部歪が小さく、予期せぬ方向にクラックが進展することを抑制できる。このため、切り出されたガラス板の真円度が良好になる。
 また、一実施形態によれば、加圧処理後であって、加圧処理後に最初に行う後処理前の中央領域14における最大板厚と最小板厚の差は1μm以下であることが好ましい。加圧処理後に最初に行う後処理とは、例えば、切り出す処理、あるいは、切り出す処理の前に行われる上述した冷却である。一枚の中間体ガラス板10内における中央領域14の板厚のばらつきが、このように小さいと、クラックが輪郭形状に沿って進展し易く、切り出されたガラス板の真円度が良好になる。
 切り出されたガラス板の真円度を高くする点では、クラックは、中央領域14の主表面間を延び、かつ、輪郭形状の全周にわたって形成されることが望ましい。このようにクラックが形成されていないと、割断を行ったときに、予期せぬ方向にクラックが進展する場合があるためである。
 そこで、一実施形態によれば、切り出す処理では、レーザ光の照射位置の移動後、中間体ガラス板10を割断する前に、割断される中間体ガラス板10の領域(内側領域)と、当該領域の外側領域との間に温度差を設けることが好ましい。内側領域と外側領域と間に温度差を設けると、これらの領域の面内方向に沿った収縮量あるいは膨張量に差が生じるため、これをきっかけとして、クラックが進展しやすくなる。内側領域と外側領域の温度差は、例えば、内側領域を冷却して収縮させる一方で、外側領域を加熱して膨張させることで行うことができる。あるいは、内側領域が外側領域よりも収縮量が大きくなるよう、内側領域及び外側領域の冷却温度あるいは冷却速度を異ならせることで行うことができる。冷却は、例えば、液体窒素などの低温の媒体を用いて、直接あるいは間接的に中央領域14から熱を奪うことで行うことができる。加熱は、例えば、加熱した金属部材などの高温の熱源を用いて周辺領域12に熱を伝達することで行うことができる。クラックを進展させるきっかけとする点から、内側領域及び外側領域の温度差は、50~250℃であることが好ましい。
 また、一実施形態によれば、切り出す処理では、レーザ光の照射位置の移動後、中間体ガラス板10を割断する前に、内側領域と外側領域との間で中間体ガラス板10に対し板厚方向に剪断力を作用させることが好ましい。このような剪断力は、例えば、内側領域及び外側領域の一方を、板厚方向の一方の側から支持しつつ、内側領域及び外側領域の他方を、板厚方向の他方の側から荷重をかけることで作用させることができる。荷重は、例えば、輪郭形状に沿って環状に形成された部材、あるいは、輪郭形状に沿った複数の位置に配置した、鋼球などの複数の部材を用いてかけることができる。剪断力は、これらの部材を面外方向振動させて、断続的に作用させてもよく、連続的に作用させてもよい。
 一方で、一実施形態によれば、切り出す処理において、内側領域に対して、中間体ガラス板10と別の物体を接触させることなく割断を行うことも好ましい。このような割断を行うことで、内側領域の板厚のばらつきに悪影響が及ぶことや、主表面に傷等が発生することを抑制できる。このような非接触の割断は、中央領域14にレーザ光を照射した後、例えば、周辺領域12に外部から振動を与えることで、クラックを進展させ、さらに割断することで行うことができる。このような振動は、中央領域14の面内方向に沿った方向の振動であることが好ましい。
 以上、切り出す処理において、レーザ光の照射位置の軌跡が輪郭形状を連続的に描くようにして、切り出しを行う場合を例に説明したが、切り出す処理は、このような例に制限されず、例えば、輪郭形状に沿って間隔をあけた複数の位置でレーザ光を照射して、中央領域14に複数の孔を形成し、隣り合う孔の間に進展させたクラックに沿って中間体ガラス板10を割断することも好ましい。本実施形態では、上述したように、成形処理を行うことにより、中央領域14における板厚のばらつきが小さく、また、複数の中間体ガラス板10の間で、中央領域14の板厚のばらつきが小さいため、レーザ光を用いて切り出す処理を行ったときに、クラックの進展の仕方が略一様なものとなり、切り出されたガラス板の真円度が高くなるためである。
 この実施形態において、孔の隣り合う間隔は、0.2~10μmであることが好ましい。孔を離散的に形成すると、各孔の形態がばらつき、孔の間ごとにクラックの進展の仕方が異なる場合がある。このとき、孔の隣り合う間隔が短すぎると、孔の間ごとのクラックの進展の仕方の異なりが却って強調される場合がある。クラックの進展の仕方の異なりを少なくし、切り出されるガラス板の真円度に悪影響が及ぶのを避けるために、孔の隣り合う間隔は、0.2μm以上であることが好ましい。一方、孔の間隔が10μmを超えると、孔の間に進展するクラックの距離が長くなるため、切り出されるガラス板の形状の真円度が低下するおそれがある。
 また、この実施形態において、孔の直径は0.05~5μmであることが好ましい。孔の直径が0.05μm未満であると、クラック生成の核として小さすぎ、孔の間にクラックを進展させ難くなる。孔の直径は、中央領域14の面内方向に沿った直径を意味する。また、孔の直径が5μmを超えると、切り出されたガラス板の端面に孔の形状が残って割断面の算術平均粗さRaが大きくなるおそれがある。
 クラック開始部は、レーザ光の照射によって形成したフィラメント(レーザフィラメント)を用いて形成することもできる。フィラメントは、例えば、レーザの繰り返し周期よりも短いパルス間隔を有するパルス群であるバーストを用いて形成することができる。バーストを中央領域14の内部で集束させ、中央領域14の板厚方向に延びるようにフィラメントを形成することで、クラック生成の核となる孔が形成される。入射ビームのエネルギは、例えば、10μJ~2000μJの間である。フィラメントを用いて、輪郭形状に沿って間隔をあけて複数の位置に孔を形成し、隣り合う孔を接続するようにクラックを進展させ、形成したクラックに沿って中間体ガラス板10を割断することによって、低いエネルギで効率よく切り出す処理を行うことができる。
 ガラス基板1の製造方法では、以上の成形処理及び切り出す処理を行った後、さらに、切り出されたガラス板の形状に合わせて、例えば円形の内孔をあけて、円盤形状のガラス板を形成する形状加工処理を行う。形状加工処理は、さらに、円盤形状のガラス板の端面に面取り面を形成する面取り処理も含む。
 次に、得られた円盤形状のガラス板は、主表面の研磨処理が行われる。
 研磨処理は、ガラス板の第1研磨及び第2研磨を含む。
 第1研磨では、ガラス板の外側端面を、公知の両面研磨装置の研磨用キャリアに設けられた保持孔内に保持しながらガラス板の両側の主表面の研磨が行われる。第1研磨は、微小な表面凹凸(マイクロウェービネス、粗さ)の調整を目的とする。
 第1研磨処理では、遊星歯車機構を備えた両面研磨装置を用いて、ガラス板の主表面に対して研磨を行う。具体的には、ガラス板の外側端面を、両面研磨装置の保持部材に設けられた保持孔内に保持しながらガラス板の両側の主表面の研磨を行う。両面研磨装置は、上下一対の定盤(上定盤および下定盤)を有しており、下定盤の上面及び上定盤の底面には、全体として円環形状の平板の研磨パッド(例えば、樹脂ポリッシャ)が取り付けられている。この上定盤および下定盤の間にガラス板が狭持される。そして、上定盤または下定盤のいずれか一方、または、双方を移動操作させ、遊離砥粒を含んだ研磨スラリを供給しながらガラス板と各定盤とを相対的に移動させることにより、ガラス板の両主表面を研磨することができる。第1研磨に用いる遊離砥粒として、例えば、酸化セリウム、あるいはジルコニア等の砥粒が用いられる。研磨砥粒の大きさは、平均粒径(D50)で0.5~3μmの範囲内であることが好ましい。
 第1研磨後、ガラス板を化学強化してもよい。この場合、化学強化液として、例えば硝酸カリウムと硫酸ナトリウムの混合熔融液等を用い、ガラス板を化学強化液中に浸漬する。これにより、イオン交換によってガラス板の表面に圧縮応力層を形成することができる。
 次に、ガラス板に第2研磨が施される。第2研磨処理は、主表面の鏡面研磨を目的とする。第2研磨においても、第1研磨に用いる両面研磨装置と同様の構成を有する両面研磨装置が用いられる。具体的には、ガラス板の外側端面を、両面研磨装置の研磨用キャリアに設けられた保持孔内に保持させながら、ガラス板の両側の主表面の研磨が行われる。第2研磨処理では、第1研磨処理に対して、遊離砥粒の種類及び粒子サイズが異なり、樹脂ポリッシャの硬度が異なる。樹脂ポリッシャの硬度は第1研磨処理時よりも小さいことが好ましい。例えばコロイダルシリカを遊離砥粒として含む研磨液が両面研磨装置の研磨パッドとガラス板の主表面との間に供給され、ガラス板の主表面が研磨される。第2研磨に用いる研磨砥粒の大きさは、平均粒径(D50)で5~50nmの範囲内であることが好ましい。
 本実施形態では、化学強化処理の要否については、ガラス組成や必要性を考慮して適宜選択すればよい。第1研磨及び第2研磨の他にさらに別の研磨を加えてもよく、2つの主表面の研磨処理を1つの研磨処理で済ませてもよい。
 こうして、ガラス板の主表面を研磨して、磁気ディスク用ガラス基板等に要求される条件を満足した最終製品のガラス基板1を得ることができる。
 なお、形状加工処理が施されて得られた円盤形状のガラス板は、第1研磨を行う前に、研削処理を行ってもよいが、研削処理を行う場合でも、従来に比べて板間の板厚のばらつきが小さく、しかも、平均板厚が目標とする板厚との差を小さくできるので、研削による取り代量は、従来の研削における取り代量よりも少なく、研削時間を短くすることができる。また、第1研磨を行う前に、円盤形状のガラス板の内側端面及び外側端面に対して端面研磨を行ってもよい。
 このように、図2(a)に示す中間体ガラス板10から、切り出し及び面取り面の形成を含む形状加工処理を行って円盤形状のガラス板を得た後、主表面の研磨処理が行われる。研磨処理前の加圧処理部分における板厚分布における最大板厚と最小板厚の差は2μm以下にすることができる。このため、研削は行われないか、行われても研削の取り代量は少ない。主表面の研削をすることなく、主表面の研磨を行う場合、円盤形状に加工した加圧処理部分と研磨処理後のガラス板の、同じ場所における板厚の差を、40μm以下にすることができる。また、主表面の研磨における片側の研磨により取り代量は、20μm以下にすることができる。さらに、主表面を研削する場合でも、研削による取り代量を少なくすることができるので、円盤形状に加工した加圧処理部分と研磨処理後のガラス板の同じ場所における板厚の差を、40μm以下にすることができる。
 なお、中間体ガラス板10の中央領域14における平均板厚は、ガラス板の主表面の研削を行わなくても済む程度に目標の板厚に近づけることができ、しかも、板内の板厚のばらつきも小さくきるので、研削を行わなくて済み、目標の板厚及び要求品質を満足するガラス基板1を製造するときの生産性はより高くなる。
 以上説明したように、本実施形態では、中間体ガラス板10の中央領域14における板厚のばらつきが小さく、また、複数の中間体ガラス板10の間で、中央領域14の板厚のばらつきが小さい中央領域14に対して、レーザ光を用いて切り出す処理を行うので、クラックの進展の仕方が略一様なものになり、切り出されたガラス板の形状の精度が、形状の輪郭に沿って不均一になることが抑えられ、また、切り出されたガラス板の形状の精度が、中間体ガラス板10間でばらつくことを抑えられる。切り出されたガラス板の形状の精度が高いことで、当該ガラス板の端面研磨処理を省略することができ、あるいは端面研磨処理にかける時間を低減できる。また、レーザ光を用いてガラス板を切り出すので、切り出し端面(外側端面、内側端面)の表面品質を高めることができ、この点でも、端面研磨を行う必要がなく、あるいは、端面研磨時間を大幅に短縮させることができる。
 以上、本発明のガラス基板の製造方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
1 ガラス板
10 中間体ガラス板
11p,12p 主表面
11w 側壁面
11c、12c 面取面
12 周辺領域
14 中央領域
20 ガラス素板
30 キャリア
30a,30b キャリア板
32 孔
34 押さえ部
40a,40b 加熱源
50a,50b 型
60 レーザ光源
70 角部
80 円盤形状のガラス板
 

Claims (15)

  1.  ガラス基板の製造方法であって、
     ガラス素板から中間体ガラス板を成形する成形処理と、
     前記中間体ガラス板を所定の形状に切り出す処理と、を備え、
     前記成形処理は、
     前記ガラス素板の両側の主表面を、前記ガラス素板を支持しながら加熱源と非接触にして前記加熱源を用いて加熱する加熱処理と、
     前記加熱処理された前記ガラス素板の両側の前記主表面を一対の型で挟み込み、前記ガラス素板を加圧して前記中間体ガラス板を成形する加圧処理と、を含み、
     前記切り出す処理では、前記中間体ガラス板の加圧処理部分において所定の輪郭形状に沿ってレーザ光の照射位置を、前記中間体ガラス板に対して相対的に移動させ、前記輪郭形状に沿って前記中間体ガラス板を割断する、ことを特徴とするガラス基板の製造方法。
  2.  前記型のそれぞれは、前記ガラス素板を押圧する略円形状の押圧面を有し、
     前記加圧処理では、前記押圧面を前記主表面に押し付けて、前記ガラス素板の一部を加圧し、
     前記切り出す処理では、前記加圧処理部分の主表面と同心円形状に沿ってレーザ光の照射位置を移動させ、当該同心円形状に沿って前記中間体ガラス板を割断する、請求項1に記載のガラス基板の製造方法。
  3.  前記加圧処理部分は、前記加圧処理において加圧された略円形状の加圧面を有し、
     前記照射位置は、前記加圧面の外周から、前記加圧面の直径の70~98%の距離に位置する、請求項1又は2に記載のガラス基板の製造方法。
  4.  前記加圧処理部分のリタデーション値は10nm未満である、請求項1から3のいずれか1項に記載のガラス基板の製造方法。
  5.  前記加圧処理後であって、前記加圧処理後に最初に行う後処理前の前記加圧処理部分における最大板厚と最小板厚の差は2μm以下である、請求項1から4のいずれか1項に記載のガラス基板の製造方法。
  6.  前記切り出す処理では、レーザ光の照射位置の移動後、前記中間体ガラス板を割断する前に、割断される前記中間体ガラス板の領域と、当該領域の外側の領域との間に温度差を設ける、請求項1から5のいずれか1項に記載のガラス基板の製造方法。
  7.  前記切り出す処理では、レーザ光の照射位置の移動後、前記中間体ガラス板を割断する前に、割断される前記中間体ガラス板の領域と、当該領域の外側の領域との間で、前記中間体ガラス板に対し板厚方向に剪断力を作用させる、請求項1から6のいずれか1項に記載のガラス基板の製造方法。
  8.  前記切り出す処理の前に、前記加圧処理部分と、前記加圧処理部分の外側の前記中間体ガラス板の部分との冷却速度差が小さくなるよう、前記中間体ガラス板の当該部分の冷却を行う、請求項1から7のいずれか1項に記載のガラス基板の製造方法。
  9.  前記切り出す処理では、前記輪郭形状に沿って間隔をあけた複数の位置でレーザ光を照射して、前記加圧処理部分に複数の孔を形成し、
     前記孔の隣り合う間隔は、0.2~10μmである、請求項1から8のいずれか1項に記載のガラス基板の製造方法。
  10.  前記切り出す処理では、前記輪郭形状に沿って間隔をあけた複数の位置でレーザ光を照射して、前記加圧処理部分に複数の孔を形成し、
     前記孔の直径は0.05~5μmである、請求項1から9のいずれか1項に記載のガラス基板の製造方法。
  11.  前記切り出す処理では、前記照射位置の軌跡が前記輪郭形状を連続的に描くように、レーザ光を移動させる、請求項1から8のいずれか1項に記載のガラス基板の製造方法。
  12.  前記加熱処理では、前記ガラス素板の両側に設けられる加熱源からの輻射熱により前記ガラス素板を加熱する、請求項1から11のいずれか1項に記載のガラス基板の製造方法。
  13.  前記加熱処理における前記主表面の昇温速度は、30~95℃/秒である、請求項1から12のいずれか1項に記載のガラス基板の製造方法。
  14.  前記切り出す処理において、前記照射位置は、前記中間体ガラス板の板厚方向の内部に位置し、前記レーザ光の照射により前記内部に形成されたクラック開始部から前記中間体ガラス板の主表面に向かってクラックを進展させる、請求項1から13のいずれか1項に記載のガラス基板の製造方法。
  15.  前記レーザ光は、パルス幅が10-12秒以下のパルスレーザ光である、請求項1から14のいずれか1項に記載のガラス基板の製造方法。
     
PCT/JP2019/013385 2018-03-30 2019-03-27 ガラス基板の製造方法 WO2019189480A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018070209 2018-03-30
JP2018-070209 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189480A1 true WO2019189480A1 (ja) 2019-10-03

Family

ID=68059037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013385 WO2019189480A1 (ja) 2018-03-30 2019-03-27 ガラス基板の製造方法

Country Status (1)

Country Link
WO (1) WO2019189480A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023282252A1 (ja) * 2021-07-05 2023-01-12 Hoya株式会社 ガラス基板の製造方法及び円盤状ガラス基板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1111973A (ja) * 1997-06-17 1999-01-19 Hoya Corp 板ガラスの平坦化方法、および該方法を用いた磁気記録媒体の製造方法
JP2006500308A (ja) * 2002-09-19 2006-01-05 プレマカラン ティ. ボアズ、 ガラスを同時に加熱及び冷却して強化ガラスを製造するためのシステム及び方法
JP2009087409A (ja) * 2007-09-27 2009-04-23 Hoya Corp 磁気記録媒体用ガラス基板の製造方法及び磁気記録媒体
JP2013140648A (ja) * 2011-12-29 2013-07-18 Hoya Corp 磁気ディスク用ガラス基板の製造方法および磁気ディスク用ガラス基板
JP2015067500A (ja) * 2013-09-30 2015-04-13 Hoya株式会社 磁気ディスク用ガラス基板の製造方法
JP2016219085A (ja) * 2015-05-25 2016-12-22 旭硝子株式会社 磁気記録媒体基板用ガラス、磁気記録媒体基板、および磁気記録媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1111973A (ja) * 1997-06-17 1999-01-19 Hoya Corp 板ガラスの平坦化方法、および該方法を用いた磁気記録媒体の製造方法
JP2006500308A (ja) * 2002-09-19 2006-01-05 プレマカラン ティ. ボアズ、 ガラスを同時に加熱及び冷却して強化ガラスを製造するためのシステム及び方法
JP2009087409A (ja) * 2007-09-27 2009-04-23 Hoya Corp 磁気記録媒体用ガラス基板の製造方法及び磁気記録媒体
JP2013140648A (ja) * 2011-12-29 2013-07-18 Hoya Corp 磁気ディスク用ガラス基板の製造方法および磁気ディスク用ガラス基板
JP2015067500A (ja) * 2013-09-30 2015-04-13 Hoya株式会社 磁気ディスク用ガラス基板の製造方法
JP2016219085A (ja) * 2015-05-25 2016-12-22 旭硝子株式会社 磁気記録媒体基板用ガラス、磁気記録媒体基板、および磁気記録媒体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023282252A1 (ja) * 2021-07-05 2023-01-12 Hoya株式会社 ガラス基板の製造方法及び円盤状ガラス基板

Similar Documents

Publication Publication Date Title
CN111630009B (zh) 圆盘形状的玻璃坯板及磁盘用玻璃基板的制造方法
WO2021020587A1 (ja) 円環形状のガラス板の製造方法、磁気ディスク用ガラス基板の製造方法、磁気ディスクの製造方法、円環形状のガラス板、磁気ディスク用ガラス基板、及び磁気ディスク
CN112512741B (zh) 玻璃基板的制造方法以及磁盘的制造方法
JP7227273B2 (ja) ガラス板の製造方法、ガラス板の面取り方法、および磁気ディスクの製造方法
JP7311702B2 (ja) ガラス板および磁気ディスク
WO2019189480A1 (ja) ガラス基板の製造方法
JP7366141B2 (ja) ガラス板の製造方法、磁気ディスク用ガラス基板の製造方法、および磁気ディスクの製造方法
WO2019189594A1 (ja) 中間体ガラス板の製造方法、ガラス板の製造方法、及び中間体ガラス板
WO2022114060A1 (ja) ガラス板の製造方法、磁気ディスク用ガラス基板の製造方法、磁気ディスクの製造方法、及び円環形状のガラス板
JP6198780B2 (ja) 磁気ディスク用ガラスブランク及び磁気ディスク用ガラスブランクの製造方法
US20240327280A1 (en) Manufacturing method for glass substrate and disc-shaped glass substrate
US20240174556A1 (en) Method for manufacturing annular glass substrate, annular glass substrate, and method for manufacturing glass substrate for magnetic disc
JP2015163578A (ja) 磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、及び切断刃部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774630

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19774630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP