WO2019188711A1 - Method for manufacturing insulating superconductive wire rod - Google Patents

Method for manufacturing insulating superconductive wire rod Download PDF

Info

Publication number
WO2019188711A1
WO2019188711A1 PCT/JP2019/011863 JP2019011863W WO2019188711A1 WO 2019188711 A1 WO2019188711 A1 WO 2019188711A1 JP 2019011863 W JP2019011863 W JP 2019011863W WO 2019188711 A1 WO2019188711 A1 WO 2019188711A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
wire
superconducting wire
flux
solder
Prior art date
Application number
PCT/JP2019/011863
Other languages
French (fr)
Japanese (ja)
Inventor
桜井 英章
駒井 栄治
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2019188711A1 publication Critical patent/WO2019188711A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/10Multi-filaments embedded in normal conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/68Connections to or between superconductive connectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a method for manufacturing an insulated superconducting wire having a wire-in-channel structure.
  • an insulated superconducting wire in which the surface of the superconducting wire is covered with an insulating film is known.
  • This insulated superconducting wire is used in fields such as a magnetic resonance imaging (MRI) apparatus, a nuclear magnetic resonance (NMR) apparatus, a particle accelerator, a linear motor car, and a power storage device.
  • MRI magnetic resonance imaging
  • NMR nuclear magnetic resonance
  • particle accelerator particle accelerator
  • linear motor car linear motor car
  • a superconducting wire includes a superconducting multi-core wire (also referred to as a superconducting core material) composed of a metal base material and a plurality of superconducting filaments embedded in the metal base material, and a channel (stabilizing material) having a channel groove. Also known is a structure (wire-in-channel (WIC) structure) housed and fixed in a channel groove.
  • WIC wireless-in-channel
  • the superconducting wire with the WIC structure can temporarily bypass the current flowing in the superconducting multicore wire to the channel when the superconducting state of the superconducting multicore wire is partially broken and transitions to the normal conducting state. In the meantime, the superconducting multicore wire can be returned to the superconducting state. For this reason, in the superconducting wire having the WIC structure, it is necessary to cover the entire superconducting wire with an insulating film so that the current diverted to the channel does not leak to the outside.
  • Patent Document 1 as a method of manufacturing an insulated superconducting wire having a WIC structure, a superconducting multicore wire and a channel groove are joined using solder to produce a superconducting wire, and then the surface of the superconducting wire is covered with an insulating resin. Thereafter, a method of heating at a temperature and time at which the insulating resin is cured and the solder does not melt is disclosed.
  • This Patent Document 1 describes a method of passing a superconducting wire through a tank of insulating paint or a method of extruding insulating resin as a method of coating the surface of the superconducting wire with an insulating resin.
  • the insulating film of the insulating superconducting wire has few bubbles.
  • a superconducting wire having a WIC structure in which a superconducting core wire and a channel groove are joined with solder tends to cause solder flux to volatilize and form bubbles in the insulating coating when the insulating coating is formed.
  • the present invention has been made in view of the above-described circumstances, and its purpose is to provide an insulating film with few bubbles with respect to a superconducting wire having a WIC structure in which a channel groove and a superconducting core wire are joined using solder.
  • An object of the present invention is to provide an insulating superconducting wire manufacturing method that can be formed and can maintain high superconductivity over a long period of time.
  • a method for manufacturing an insulated superconducting wire according to an aspect of the present invention includes a channel having a channel groove, and the channel A superconducting core wire accommodated in the channel groove, and the channel groove and the superconducting core wire joined by solder containing flux are immersed in a flux removing solution, and the flux is It includes a flux removing step for removing and an insulating film forming step for forming an insulating film on the surface of the superconducting wire from which the flux has been removed.
  • the flux contained in the solder is removed in the flux removing step, and therefore the flux is less likely to volatilize in the insulating film forming step. For this reason, it becomes possible to form an insulating film with few bubbles.
  • the superconducting core wire is preferably a superconducting multi-core wire made of a metal base material and a plurality of superconducting filaments embedded in the metal base material.
  • the superconducting core wire is a superconducting multi-core wire composed of a metal base material and a plurality of superconducting filaments embedded in the metal base material, and has high superconductivity. Higher superconductivity can be maintained over a long period of time.
  • the outer surface of the channel of the superconducting wire may be covered with the solder. Even in this case, since the flux contained in the solder on the outer surface of the channel is removed in the flux removing step, an insulating film with few bubbles can be formed on the outer surface of the channel.
  • an insulating film with few bubbles can be formed on a superconducting wire having a WIC structure in which a channel groove and a superconducting core wire are joined using solder, and high superconductivity is maintained over a long period of time. It is possible to provide a method of manufacturing an insulated superconducting wire that can be used.
  • FIG. 1 is a flowchart of a method for manufacturing an insulated superconducting wire according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of an example of a superconducting wire that can be used in the method of manufacturing an insulated superconducting wire according to the present embodiment.
  • FIG. 3 is a cross-sectional view of an example of an insulated superconducting wire obtained by the method for producing an insulated superconducting wire of this embodiment.
  • the method of manufacturing an insulated superconducting wire includes an insulated superconducting wire comprising a superconducting wire having a WIC structure in which a channel groove and a superconducting core wire are joined using solder, and an insulating film formed on the surface of the superconducting wire. It is a manufacturing method. As shown in FIG. 1, the manufacturing method of the insulated superconducting wire of this embodiment includes a flux removing step S01 for removing flux contained in the solder of the superconducting wire, and an insulating film for forming an insulating film on the surface of the superconducting wire. Forming step S02.
  • the superconducting wire 11 includes a channel 20 having a channel groove 21 and a superconducting core wire 35 housed and fixed in the channel groove 21.
  • the cross-sectional shape of the superconducting wire 11 is a substantially quadrangular shape with curvature at the corners.
  • the superconducting core wire 35 is a superconducting multi-core wire 30 composed of a metal base material 31 and a plurality of superconducting filaments 32 embedded in the metal base material 31.
  • the channel groove 21 and the superconducting multi-core wire 30 are joined by solder 40.
  • the cross-sectional shape of the superconducting multicore wire 30 is circular, but the cross-sectional shape of the superconducting multicore wire 30 is not particularly limited, and for example, a rectangular with a curved corner. It may be a shape.
  • the material of the channel 20 for example, copper, copper alloy, aluminum, or aluminum alloy can be used.
  • the metal base material 31 of the superconducting multicore wire 30 for example, copper, copper alloy, aluminum, or aluminum alloy can be used.
  • the superconducting filament 32 of the superconducting multi-core wire 30 NbTi alloy and Nb 3 Sn can be used.
  • solder 40 Sn solder can be used.
  • Sn-based solder an alloy of Sn and one or more metals selected from the group consisting of Sb, Ag, and Cu can be used.
  • the solder 40 is preferably Sn—Sb solder or Sn—Ag solder.
  • Solder 40 includes a flux.
  • a flux There is no restriction
  • the flux include main agent (mainly rosin), activator (carboxylic acid, amine salt, bromine (HBr salt)), solvent (glycol, ester, alcohol), additive (antioxidant, etc.) What is comprised can be used.
  • the superconducting wire 11 can be manufactured as follows, for example. First, molten solder is filled in the channel groove 21 of the channel 20. Next, the superconducting multi-core wire 30 is accommodated in the channel groove 21 of the channel 20. Thereafter, the molten solder is cooled and solidified.
  • Flux removal step S01 In the flux removal step S01, the superconducting wire 11 is immersed in a flux removal solution to remove the flux contained in the solder 40.
  • a flux removal liquid There is no restriction
  • the flux contains rosin as the main component, Pine Alpha ST-100S manufactured by Arakawa Chemical Co., Ltd. and NS Clean manufactured by Nikko Petrochemical Co., Ltd. can be used as the flux removal liquid.
  • an insulating film is formed on the surface of the superconducting wire 11 from which the flux has been removed in the flux removing step S01.
  • a coating method or an electrodeposition method can be used as a method for forming an insulating film on the surface of the superconducting wire 11.
  • a varnish containing an insulating resin for forming an insulating film and an organic solvent is applied to the surface of the superconducting wire 11 to form a coating layer, then the coating layer is heated, and the generated insulating film is applied to the superconducting wire.
  • 11 is a method of baking.
  • insulation resin for forming insulation film it is generally used as a material for insulation film of insulated conductive wires such as formalized polyvinyl alcohol resin, polyvinyl alcohol resin, polyamideimide resin, polyimide resin, polyesterimide resin, polyester resin, polyurethane resin. Can be used.
  • the organic solvent for example, 1,3-dimethyl-2-imidazolidinone, cresol, N-methyl-pyrrolidone and the like can be used.
  • a method of applying the varnish to the surface of the superconducting wire 11 a dipping method in which the superconducting wire 11 is immersed in the varnish can be used.
  • the heating temperature when the coating layer is heated and the generated insulating film is baked on the superconducting wire 11 is, for example, in the range of 200 ° C. or more and 450 ° C. or less, and the heating time is, for example, 0.5 minutes or more and 4 minutes. Within the following range.
  • the superconducting wire 11 and the electrode are immersed in an electrodeposition liquid in which charged insulating resin particles are dispersed, and a DC voltage is applied between the superconducting wire 11 and the electrode, thereby superconducting wire.
  • the insulating resin particles are electrodeposited on the surface of the electrode 11 to form an electrodeposited layer, and then the electrodeposited layer is heated to burn the generated insulating film onto the superconducting wire 11.
  • the electrodeposition liquid can be prepared, for example, by adding an insulating resin poor solvent or water to an insulating resin solution to precipitate the insulating resin. The heating temperature when the electrodeposition layer is heated and the generated insulating film is baked onto the superconducting wire 11 is the same as that in the above coating method.
  • the insulated superconducting wire 51 manufactured as described above includes a superconducting wire 11 and an insulating film 60 that covers the surface of the superconducting wire 11.
  • the thickness of the insulating film 60 is usually in the range of 3 ⁇ m or more and 60 ⁇ m or less.
  • FIG. 4 shows a superconducting wire whose outer surface is covered with solder 40
  • FIG. 5 shows an insulating superconducting wire manufactured using the superconducting wire.
  • a solder layer 41 covering the entire outer surface of the channel 20 and the superconducting multi-core wire 30 is formed on the superconducting wire 12.
  • the superconducting wire 12 shown in FIG. 4 and the insulated superconducting wire 52 shown in FIG. 5 are the same as the superconducting wire 11 shown in FIG. 2 and the insulated superconducting wire 51 shown in FIG. 3 except that the solder layer 41 is formed. Therefore, the same components are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the solder layer 41 is continuously formed with the solder 40 that joins the channel groove 21 and the superconducting multicore wire 30. Although there is no restriction
  • the superconducting wire 12 can be manufactured as follows, for example. First, a molten solder tank is prepared. Next, the superconducting multicore wire 30 and the channel 20 are respectively immersed in the molten solder tank, and the superconducting multicore wire 30 is accommodated in the channel groove 21 in the molten solder tank. Next, the superconducting multicore wire 30 and the channel 20 are pulled up from the molten solder bath. The molten solder filled between the channel groove 21 and the superconducting multicore wire 30 and the molten solder adhering to the outer surface of the channel groove 21 and the superconducting multicore wire 30 are cooled and solidified.
  • the insulated superconducting wire 52 is manufactured using the superconducting wire 12, the flux contained in the solder 40 and the solder layer 41 is removed in the flux removing step S01.
  • the heating temperature and heating time of the superconducting wire 12 are the same as when the above-described superconducting wire 11 is used.
  • an insulating film is formed on the surface of the superconducting wire 12 in an insulating film forming step S02.
  • a coating method or an electrodeposition method can be used as in the case of using the superconducting wire 11 described above.
  • Insulated superconducting wire 52 manufactured as described above has insulating film 60 formed on the entire surface of solder layer 41 as shown in FIG.
  • the solder layer 41 is formed on the entire outer surface of the channel 20 and the superconducting multi-core wire 30, and the state of the outer surface is uniform, so the adhesion between the superconducting wire 12 and the insulating film 60 is uniform. It is easy to become.
  • the solder layer 41 covering the entire outer surface of the channel 20 and the superconducting multicore wire 30 is formed.
  • the solder layer 41 is provided only on the outer surface of the channel 20.
  • the superconducting wire having the solder layer 41 provided only on the outer surface of the channel 20 can be manufactured, for example, as follows. First, a molten solder tank is prepared. Next, the channel 20 is immersed in this molten solder bath, and the channel groove 21 is filled with molten solder. Next, after the channel 20 is pulled up from the molten solder bath, the superconducting multi-core wire 30 is accommodated in the channel groove 21. Then, the molten solder filled between the channel groove 21 and the superconducting multicore wire 30 and the molten solder adhering to the outer surface of the channel groove 21 are cooled and solidified.
  • an insulated superconducting wire of the present embodiment configured as described above, it is included in the solder 40 that joins the channel groove 21 and the superconducting multicore wire 30 in the flux removal step S01. Since the flux that is present is removed, the flux is less likely to volatilize when the insulating film 60 is formed in the insulating film forming step S02. For this reason, it becomes possible to form the insulating film 60 with few bubbles.
  • the superconducting core wire 35 includes a metal base material 31 and a superconducting multicore wire 30 comprising a plurality of superconducting filaments 32 embedded in the metal base material 31.
  • the obtained insulating superconducting wires 51 and 52 can maintain higher superconductivity over a long period of time.
  • the solder layer 41 is formed in the flux removing step S01. Since the flux contained in the solder is removed, the flux is less likely to volatilize when the insulating film 60 is formed in the insulating film forming step S02. For this reason, the insulating film 60 with few bubbles can be formed on the outer surface of the solder layer 41.
  • the superconducting multi-core wire 30 is used as the superconducting core wire 35, but the present invention is not limited to this case.
  • a single metal wire may be used as the superconducting core wire 35.
  • a superconducting multi-core wire As a superconducting multi-core wire, a wire (diameter: 0.66 mm) having a circular cross section made of a copper base material and an NbTi alloy filament embedded in the base material was prepared. Further, a copper channel having a channel groove (groove width: 0.66 mm) was prepared as a channel. As the solder, Sn 95 Sb 5 solder (solder melting point: 238 ° C., flux main component: rosin) was prepared.
  • the above Sn 95 Sb 5 solder was put into a solder bath, heated to 290 ° C. and melted to prepare a molten solder bath.
  • the superconducting multicore wire and the channel were immersed in the molten solder tank, and the superconducting multicore wire was accommodated in the channel groove in the molten solder tank.
  • the superconducting multi-core wire and the channel are pulled up from the molten solder bath, and the molten solder filled between the channel groove and the superconducting multi-core wire and the melt adhering to the outer surface of the channel groove and the superconducting multi-core wire
  • the solder was cooled and solidified.
  • a superconducting wire having a solder layer as shown in FIG. 4 was obtained.
  • the obtained superconducting wire was immersed in a flux removing liquid (Pine Alpha ST-100S, manufactured by Arakawa Chemical Industries, Ltd.) adjusted to a liquid temperature of 60 ° C. for 5 minutes. Next, the superconducting wire taken out from the flux removing solution was immersed in pure water for 5 minutes. Thereafter, the superconducting wire was taken out from the pure water, and the moisture adhering to the surface of the superconducting wire was removed by blowing off with an air wiper.
  • a flux removing liquid Pine Alpha ST-100S, manufactured by Arakawa Chemical Industries, Ltd.
  • An insulating superconducting wire was produced by forming an insulating film on the surface of the superconducting wire from which the flux had been removed by electrodeposition. Specifically, a superconducting wire and an electrode are immersed in an electrodeposition liquid containing polyamideimide (PAI) particles having a negative charge, and a DC voltage is applied with the superconducting wire as a positive electrode and the electrode as a negative electrode, PAI particles were electrodeposited on the surface of the superconducting wire so that the thickness of the insulating film after drying was 40 ⁇ m to form an electrodeposition layer. Next, the superconducting wire having the electrodeposited layer was dried and baked at a temperature of 280 ° C. for 4 minutes to produce an insulated superconducting wire.
  • PAI polyamideimide
  • the entire surface of the insulating coating of the obtained insulating superconducting wire was observed with a microscope, and the number of bubbles having a diameter of 100 ⁇ m or more was counted.
  • the number of bubbles is shown in Table 1 as the number of bubbles per 1 m of insulated superconducting wire (number / m).
  • Example 2 A superconducting wire was obtained in the same manner as in Example 1 except that Sn 97 Ag 3 solder (solder melting point: 221 ° C., flux main component: rosin) was used instead of Sn 95 Sb 5 solder. Next, an insulated superconducting wire was produced in the same manner as in Example 1 except that the obtained superconducting wire was used, and the number of bubbles in the insulating film was counted. The results are shown in Table 1.
  • Insulating superconducting wire that can form an insulating film with few bubbles and maintain high superconductivity over a long period of time with respect to a WIC superconducting wire in which a channel groove and a superconducting core wire are joined using solder It becomes possible to provide the manufacturing method of

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

A method for manufacturing an insulating superconductive wire rod according to the present invention is characterized by comprising: a flux removing step S01 for removing flux by immersing, in a flux removing liquid, a superconductive wire rod which includes a channel provided with a channel groove, and a superconductive core wire rod accommodated in the channel groove of the channel and in which the channel groove and the superconductive core wire rod are bonded by solder containing flux; and an insulating film forming step S02 for forming an insulating film on a surface of the superconductive wire rod, from which the flux has been removed.

Description

絶縁超電導線材の製造方法Insulated superconducting wire manufacturing method
 本発明は、ワイヤー・イン・チャネル構造の絶縁超電導線材の製造方法に関するものである。
 本願は、2018年3月26日に、日本に出願された特願2018-058494号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for manufacturing an insulated superconducting wire having a wire-in-channel structure.
This application claims priority on March 26, 2018 based on Japanese Patent Application No. 2018-058494 filed in Japan, the contents of which are incorporated herein by reference.
 絶縁電導線材の一つとして、超電導線材の表面を絶縁皮膜で被覆した絶縁超電導線材が知られている。この絶縁超電導線材は、例えば、磁気共鳴画像(MRI)装置、核磁気共鳴(NMR)装置、粒子加速器、リニアモーターカー、さらに電力貯蔵装置などの分野で使用されている。 As one of the insulated conductive wires, an insulated superconducting wire in which the surface of the superconducting wire is covered with an insulating film is known. This insulated superconducting wire is used in fields such as a magnetic resonance imaging (MRI) apparatus, a nuclear magnetic resonance (NMR) apparatus, a particle accelerator, a linear motor car, and a power storage device.
  超電導線材としては、金属母材と、この金属母材に埋設されている複数本の超電導フィラメントとからなる超電導多芯線材(超電導コア材ともいう)を、チャネル溝を備えたチャネル(安定化材ともいう)のチャネル溝に収容固定した構造(ワイヤー・イン・チャネル(WIC)構造)のものが知られている。 A superconducting wire includes a superconducting multi-core wire (also referred to as a superconducting core material) composed of a metal base material and a plurality of superconducting filaments embedded in the metal base material, and a channel (stabilizing material) having a channel groove. Also known is a structure (wire-in-channel (WIC) structure) housed and fixed in a channel groove.
 WIC構造の超電導線材は、超電導多芯線材の超電導状態が部分的に破れて常電導状態に転移した場合には、超電導多芯線材を流れていた電流をチャネルに一時的に迂回させることができ、その間に超電導多芯線材を超電導状態に復帰させることが可能となる。このため、WIC構造の超電導線材では、チャネルに迂回させた電流が外部に漏出しないように、超電導線材全体を絶縁皮膜で被覆することが必要となる。 The superconducting wire with the WIC structure can temporarily bypass the current flowing in the superconducting multicore wire to the channel when the superconducting state of the superconducting multicore wire is partially broken and transitions to the normal conducting state. In the meantime, the superconducting multicore wire can be returned to the superconducting state. For this reason, in the superconducting wire having the WIC structure, it is necessary to cover the entire superconducting wire with an insulating film so that the current diverted to the channel does not leak to the outside.
 特許文献1には、WIC構造の絶縁超電導線材の製造方法として、超電導多芯線材とチャネル溝とをはんだを用いて接合して超電導線材を作製し、次いで超電導線材の表面を絶縁樹脂で被覆した後、絶縁樹脂が硬化して、はんだが溶融しない温度と時間で加熱する方法が開示されている。この特許文献1には、超電導線材の表面を絶縁樹脂で被覆する方法として、超電導線材を絶縁塗料のタンクに通過させる方法や絶縁樹脂を押出し成形する方法が記載されている。 In Patent Document 1, as a method of manufacturing an insulated superconducting wire having a WIC structure, a superconducting multicore wire and a channel groove are joined using solder to produce a superconducting wire, and then the surface of the superconducting wire is covered with an insulating resin. Thereafter, a method of heating at a temperature and time at which the insulating resin is cured and the solder does not melt is disclosed. This Patent Document 1 describes a method of passing a superconducting wire through a tank of insulating paint or a method of extruding insulating resin as a method of coating the surface of the superconducting wire with an insulating resin.
欧州特許第2118941号明細書(B)European Patent No. 2118941 (B)
 ところで、絶縁超電導線材の絶縁皮膜に気泡が発生すると、気泡が発生した部分は膜厚が薄く、強度が低下するため、絶縁皮膜に欠損が生じやすくなり、絶縁超電導線材の超電導性を長期間にわたって維持するのが困難となるおそれがある。従って、絶縁皮膜は気泡が少ないことが好ましい。しかしながら、超電導芯線材とチャネル溝とをはんだを用いて接合したWIC構造の超電導線材は、絶縁皮膜の形成時にはんだのフラックスが揮発して、絶縁皮膜に気泡が発生しやすい傾向がある。 By the way, when air bubbles are generated in the insulating film of the insulating superconducting wire, the portion where the bubbles are generated is thin and the strength is reduced, so that the insulating film is easily damaged, and the superconductivity of the insulating superconducting wire is maintained for a long time. May be difficult to maintain. Therefore, it is preferable that the insulating film has few bubbles. However, a superconducting wire having a WIC structure in which a superconducting core wire and a channel groove are joined with solder tends to cause solder flux to volatilize and form bubbles in the insulating coating when the insulating coating is formed.
 本発明は、前述した事情に鑑みてなされたものであって、その目的は、チャネル溝と超電導芯線材とをはんだを用いて接合したWIC構造の超電導線材に対して、気泡が少ない絶縁皮膜を形成することができ、長期間にわたって高い超電導性を維持することができる絶縁超電導線材の製造方法を提供することにある。 The present invention has been made in view of the above-described circumstances, and its purpose is to provide an insulating film with few bubbles with respect to a superconducting wire having a WIC structure in which a channel groove and a superconducting core wire are joined using solder. An object of the present invention is to provide an insulating superconducting wire manufacturing method that can be formed and can maintain high superconductivity over a long period of time.
 上記の課題を解決するために、本発明の一態様の絶縁超電導線材の製造方法(以下、「本発明の絶縁超電導線材の製造方法」と称する)は、チャネル溝を備えたチャネルと、前記チャネルの前記チャネル溝に収容されている超電導芯線材とを備え、前記チャネル溝と前記超電導芯線材とがフラックスを含むはんだで接合されている超電導線材を、フラックス除去液に浸漬して、前記フラックスを除去するフラックス除去工程と、前記フラックスが除去された前記超電導線材の表面に絶縁皮膜を形成する絶縁皮膜形成工程と、を含むことを特徴としている。 In order to solve the above problems, a method for manufacturing an insulated superconducting wire according to an aspect of the present invention (hereinafter referred to as “a method for manufacturing an insulated superconducting wire of the present invention”) includes a channel having a channel groove, and the channel A superconducting core wire accommodated in the channel groove, and the channel groove and the superconducting core wire joined by solder containing flux are immersed in a flux removing solution, and the flux is It includes a flux removing step for removing and an insulating film forming step for forming an insulating film on the surface of the superconducting wire from which the flux has been removed.
 本発明の絶縁超電導線材の製造方法によれば、フラックス除去工程にて、はんだに含まれているフラックスを除去するので、絶縁皮膜形成工程において、フラックスが揮発しにくい。このため、気泡が少ない絶縁皮膜を形成することが可能となる。 According to the method of manufacturing an insulated superconducting wire of the present invention, the flux contained in the solder is removed in the flux removing step, and therefore the flux is less likely to volatilize in the insulating film forming step. For this reason, it becomes possible to form an insulating film with few bubbles.
 ここで、本発明の絶縁超電導線材の製造方法において、前記超電導芯線材が、金属母材、および前記金属母材に埋設されている複数本の超電導フィラメントからなる超電導多芯線材であることが好ましい。
 この場合、超電導芯線材は、金属母材と、この金属母材に埋設されている複数本の超電導フィラメントとからなる超電導多芯線材であり、高い超電導性を有するので、得られる絶縁超電導線材は長期間にわたってより高い超電導性を維持することができる。
Here, in the method for manufacturing an insulated superconducting wire according to the present invention, the superconducting core wire is preferably a superconducting multi-core wire made of a metal base material and a plurality of superconducting filaments embedded in the metal base material. .
In this case, the superconducting core wire is a superconducting multi-core wire composed of a metal base material and a plurality of superconducting filaments embedded in the metal base material, and has high superconductivity. Higher superconductivity can be maintained over a long period of time.
 また、本発明の絶縁超電導線材の製造方法において、前記超電導線材の前記チャネルの外表面が前記はんだで覆われていてもよい。
 この場合であっても、フラックス除去工程にて、チャネルの外表面のはんだに含まれているフラックスを除去するので、チャネルの外表面に対して気泡が少ない絶縁皮膜を形成することができる。
Moreover, in the manufacturing method of the insulated superconducting wire of the present invention, the outer surface of the channel of the superconducting wire may be covered with the solder.
Even in this case, since the flux contained in the solder on the outer surface of the channel is removed in the flux removing step, an insulating film with few bubbles can be formed on the outer surface of the channel.
 本発明によれば、チャネル溝と超電導芯線材とをはんだを用いて接合したWIC構造の超電導線材に対して、気泡が少ない絶縁皮膜を形成することができ、長期間にわたって高い超電導性を維持することができる絶縁超電導線材の製造方法を提供することが可能となる。 According to the present invention, an insulating film with few bubbles can be formed on a superconducting wire having a WIC structure in which a channel groove and a superconducting core wire are joined using solder, and high superconductivity is maintained over a long period of time. It is possible to provide a method of manufacturing an insulated superconducting wire that can be used.
本発明の一実施形態に係る絶縁超電導線材の製造方法のフロー図である。It is a flowchart of the manufacturing method of the insulated superconducting wire which concerns on one Embodiment of this invention. 本実施形態の絶縁超電導線材の製造方法において用いることができる超電導線材の一例の横断面図である。It is a cross-sectional view of an example of a superconducting wire that can be used in the method for manufacturing an insulated superconducting wire of this embodiment. 本実施形態の絶縁超電導線材の製造方法によって得られる絶縁超電導線材の一例の横断面図である。It is a cross-sectional view of an example of an insulated superconducting wire obtained by the method for producing an insulated superconducting wire of this embodiment. 本実施形態の絶縁超電導線材の製造方法において用いることができる超電導線材の別の一例の横断面図である。It is a cross-sectional view of another example of a superconducting wire that can be used in the method for manufacturing an insulated superconducting wire of this embodiment. 本実施形態の絶縁超電導線材の製造方法によって得られる絶縁超電導線材の別の一例の横断面図である。It is a cross-sectional view of another example of an insulated superconducting wire obtained by the method for producing an insulated superconducting wire of this embodiment.
 以下に、本発明の一実施形態である超電導線材および絶縁超電導線材について、添付した図面を参照して説明する。 Hereinafter, a superconducting wire and an insulating superconducting wire which are one embodiment of the present invention will be described with reference to the accompanying drawings.
 図1は、本発明の一実施形態に係る絶縁超電導線材の製造方法のフロー図である。図2は、本実施形態の絶縁超電導線材の製造方法において用いることができる超電導線材の一例の横断面図である。図3は、本実施形態の絶縁超電導線材の製造方法によって得られる絶縁超電導線材の一例の横断面図である。 FIG. 1 is a flowchart of a method for manufacturing an insulated superconducting wire according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of an example of a superconducting wire that can be used in the method of manufacturing an insulated superconducting wire according to the present embodiment. FIG. 3 is a cross-sectional view of an example of an insulated superconducting wire obtained by the method for producing an insulated superconducting wire of this embodiment.
 本実施形態の絶縁超電導線材の製造方法は、チャネル溝と超電導芯線材とをはんだを用いて接合したWIC構造の超電導線材と、その超電導線材の表面に形成された絶縁皮膜とからなる絶縁超電導線材の製造方法である。
 本実施形態の絶縁超電導線材の製造方法は、図1に示すように、超電導線材のはんだに含まれているフラックスを除去するフラックス除去工程S01と、超電導線材の表面に絶縁皮膜を形成する絶縁皮膜形成工程S02とを含む。
The method of manufacturing an insulated superconducting wire according to the present embodiment includes an insulated superconducting wire comprising a superconducting wire having a WIC structure in which a channel groove and a superconducting core wire are joined using solder, and an insulating film formed on the surface of the superconducting wire. It is a manufacturing method.
As shown in FIG. 1, the manufacturing method of the insulated superconducting wire of this embodiment includes a flux removing step S01 for removing flux contained in the solder of the superconducting wire, and an insulating film for forming an insulating film on the surface of the superconducting wire. Forming step S02.
 (超電導線材)
 超電導線材11は、図2に示すように、チャネル溝21を備えたチャネル20と、チャネル溝21に収容固定されている超電導芯線材35とを備える。超電導線材11の断面形状は、角部に曲率のある略四角形状とされている。超電導芯線材35は、金属母材31と、金属母材31に埋設されている複数本の超電導フィラメント32とからなる超電導多芯線材30とされている。チャネル溝21と超電導多芯線材30とは、はんだ40によって接合されている。なお、図2に示す超電導線材11では、超電導多芯線材30の断面形状が円形とされているが、超電導多芯線材30の断面形状は特に制限はなく、例えば、角部に曲率のある平角形状であってもよい。
(Superconducting wire)
As shown in FIG. 2, the superconducting wire 11 includes a channel 20 having a channel groove 21 and a superconducting core wire 35 housed and fixed in the channel groove 21. The cross-sectional shape of the superconducting wire 11 is a substantially quadrangular shape with curvature at the corners. The superconducting core wire 35 is a superconducting multi-core wire 30 composed of a metal base material 31 and a plurality of superconducting filaments 32 embedded in the metal base material 31. The channel groove 21 and the superconducting multi-core wire 30 are joined by solder 40. In the superconducting wire 11 shown in FIG. 2, the cross-sectional shape of the superconducting multicore wire 30 is circular, but the cross-sectional shape of the superconducting multicore wire 30 is not particularly limited, and for example, a rectangular with a curved corner. It may be a shape.
 チャネル20の材料は、例えば、銅、銅合金、アルミニウム、アルミニウム合金を用いることができる。超電導多芯線材30の金属母材31の材料としては、例えば、銅、銅合金、アルミニウム、アルミニウム合金を用いることができる。超電導多芯線材30の超電導フィラメント32の材料としては、NbTi合金、NbSnを用いることができる。 As the material of the channel 20, for example, copper, copper alloy, aluminum, or aluminum alloy can be used. As a material of the metal base material 31 of the superconducting multicore wire 30, for example, copper, copper alloy, aluminum, or aluminum alloy can be used. As a material of the superconducting filament 32 of the superconducting multi-core wire 30, NbTi alloy and Nb 3 Sn can be used.
 はんだ40としては、Sn系はんだを用いることができる。Sn系はんだとしては、Sb、Ag、Cuからなる群より選ばれる1種以上の金属とSnの合金を用いることができる。はんだ40は、Sn-Sb系はんだ、Sn-Ag系はんだであることが好ましい。 As the solder 40, Sn solder can be used. As the Sn-based solder, an alloy of Sn and one or more metals selected from the group consisting of Sb, Ag, and Cu can be used. The solder 40 is preferably Sn—Sb solder or Sn—Ag solder.
 はんだ40は、フラックスを含む。フラックスの種類は特に制限はなく、樹脂系、有機系、無機系などの各種のフラックスを用いることができる。フラックスとしては、例えば、主剤(主にロジン)、活性剤(カルボン酸、アミン塩、臭素系(HBr塩))、溶剤(グリコール系、エステル系、アルコール系)、添加剤(酸化防止剤等)で構成されているものを用いることができる。 Solder 40 includes a flux. There is no restriction | limiting in particular in the kind of flux, Various types of fluxes, such as resin type, organic type, and inorganic type, can be used. Examples of the flux include main agent (mainly rosin), activator (carboxylic acid, amine salt, bromine (HBr salt)), solvent (glycol, ester, alcohol), additive (antioxidant, etc.) What is comprised can be used.
 超電導線材11は、例えば、次のようにして製造することができる。
 先ず、チャネル20のチャネル溝21に溶融はんだを充填する。次に、チャネル20のチャネル溝21に超電導多芯線材30を収容する。その後、溶融はんだを冷却して固化させる。
The superconducting wire 11 can be manufactured as follows, for example.
First, molten solder is filled in the channel groove 21 of the channel 20. Next, the superconducting multi-core wire 30 is accommodated in the channel groove 21 of the channel 20. Thereafter, the molten solder is cooled and solidified.
(フラックス除去工程S01)
 フラックス除去工程S01では、上記の超電導線材11をフラックス除去液に浸漬して、はんだ40に含まれるフラックスを除去する。フラックス除去液は、特に制限はなく、公知のフラックス除去液を用いることができる。例えば、フラックスがロジンを主成分として含む場合は、フラックス除去液として、荒川化学工業株式会社製のパインアルファST-100S、日鉱石油化学株式会社製のNSクリーンを用いることができる。
(Flux removal step S01)
In the flux removal step S01, the superconducting wire 11 is immersed in a flux removal solution to remove the flux contained in the solder 40. There is no restriction | limiting in particular in a flux removal liquid, A well-known flux removal liquid can be used. For example, when the flux contains rosin as the main component, Pine Alpha ST-100S manufactured by Arakawa Chemical Co., Ltd. and NS Clean manufactured by Nikko Petrochemical Co., Ltd. can be used as the flux removal liquid.
(絶縁皮膜形成工程S02)
 絶縁皮膜形成工程S02では、フラックス除去工程S01にてフラックスが除去された超電導線材11の表面に絶縁皮膜を形成する。超電導線材11の表面に絶縁皮膜を形成する方法としては、例えば、塗布法または電着法を用いることができる。
(Insulating film forming step S02)
In the insulating film forming step S02, an insulating film is formed on the surface of the superconducting wire 11 from which the flux has been removed in the flux removing step S01. As a method for forming an insulating film on the surface of the superconducting wire 11, for example, a coating method or an electrodeposition method can be used.
 塗布法は、絶縁皮膜形成用の絶縁樹脂と有機溶剤とを含むワニスを、超電導線材11の表面に塗布して塗布層を形成し、次いで塗布層を加熱して、生成した絶縁皮膜を超電導線材11に焼き付ける方法である。絶縁皮膜形成用の絶縁樹脂としては、ホルマール化ポリビニルアルコール樹脂、ポリビニルアルコール樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエステルイミド樹脂、ポリエステル樹脂、ポリウレタン樹脂などの絶縁電導線材の絶縁皮膜の材料として一般に利用されているものを用いることができる。また、有機溶剤としては、例えば、1,3-ジメチル-2-イミダゾリジノン、クレゾール、N-メチル-ピロリドンなどを用いることができる。超電導線材11の表面にワニスを塗布する方法としては、超電導線材11をワニスに浸漬するディップ法を用いることができる。塗布層を加熱して、生成した絶縁皮膜を超電導線材11に焼き付ける際の加熱温度は、例えば、200℃以上450℃以下の範囲内であり、加熱時間は、例えば、0.5分間以上4分間以下の範囲内である。 In the coating method, a varnish containing an insulating resin for forming an insulating film and an organic solvent is applied to the surface of the superconducting wire 11 to form a coating layer, then the coating layer is heated, and the generated insulating film is applied to the superconducting wire. 11 is a method of baking. As insulation resin for forming insulation film, it is generally used as a material for insulation film of insulated conductive wires such as formalized polyvinyl alcohol resin, polyvinyl alcohol resin, polyamideimide resin, polyimide resin, polyesterimide resin, polyester resin, polyurethane resin. Can be used. As the organic solvent, for example, 1,3-dimethyl-2-imidazolidinone, cresol, N-methyl-pyrrolidone and the like can be used. As a method of applying the varnish to the surface of the superconducting wire 11, a dipping method in which the superconducting wire 11 is immersed in the varnish can be used. The heating temperature when the coating layer is heated and the generated insulating film is baked on the superconducting wire 11 is, for example, in the range of 200 ° C. or more and 450 ° C. or less, and the heating time is, for example, 0.5 minutes or more and 4 minutes. Within the following range.
 電着法は、電荷を有する絶縁樹脂粒子が分散されている電着液に超電導線材11と電極とを浸漬し、この超電導線材11と電極との間に直流電圧を印加することによって、超電導線材11の表面に絶縁樹脂粒子を電着させて電着層を形成し、次いで電着層を加熱して、生成した絶縁皮膜を超電導線材11に焼き付ける方法である。電着液は、例えば、絶縁樹脂の溶液に、絶縁樹脂の貧溶媒や水を添加して、絶縁樹脂を析出させることによって調製することができる。電着層を加熱して、生成した絶縁皮膜を超電導線材11に焼き付ける際の加熱温度は、上記の塗布法の場合と同じである。 In the electrodeposition method, the superconducting wire 11 and the electrode are immersed in an electrodeposition liquid in which charged insulating resin particles are dispersed, and a DC voltage is applied between the superconducting wire 11 and the electrode, thereby superconducting wire. In this method, the insulating resin particles are electrodeposited on the surface of the electrode 11 to form an electrodeposited layer, and then the electrodeposited layer is heated to burn the generated insulating film onto the superconducting wire 11. The electrodeposition liquid can be prepared, for example, by adding an insulating resin poor solvent or water to an insulating resin solution to precipitate the insulating resin. The heating temperature when the electrodeposition layer is heated and the generated insulating film is baked onto the superconducting wire 11 is the same as that in the above coating method.
(絶縁超電導線材)
 以上のようにして製造された絶縁超電導線材51は、図3に示すように、超電導線材11と、超電導線材11の表面を被覆する絶縁皮膜60とを備える。絶縁皮膜60の厚さは、通常は、3μm以上60μm以下の範囲内である。
(Insulated superconducting wire)
As shown in FIG. 3, the insulated superconducting wire 51 manufactured as described above includes a superconducting wire 11 and an insulating film 60 that covers the surface of the superconducting wire 11. The thickness of the insulating film 60 is usually in the range of 3 μm or more and 60 μm or less.
(変形例)
 図2に示した超電導線材11では、はんだ40を、チャネル20のチャネル溝21と超電導多芯線材30の間にのみ充填しているが、チャネル20の外表面をはんだ40で覆ってもよい。チャネル20の外表面がはんだ40で覆われている超電導線材を図4に、その超電導線材を用いて製造した絶縁超電導線材を図5に示す。
(Modification)
In the superconducting wire 11 shown in FIG. 2, the solder 40 is filled only between the channel groove 21 of the channel 20 and the superconducting multicore wire 30, but the outer surface of the channel 20 may be covered with the solder 40. FIG. 4 shows a superconducting wire whose outer surface is covered with solder 40, and FIG. 5 shows an insulating superconducting wire manufactured using the superconducting wire.
 図4および図5に示す超電導線材12には、チャネル20と超電導多芯線材30の外表面全体を覆うはんだ層41が形成されている。なお、図4に示す超電導線材12および図5に示す絶縁超電導線材52は、はんだ層41が形成されていること以外は、図2に示す超電導線材11および図3に示す絶縁超電導線材51と同様の構成であるので、同様の構成部分については同一の符号を付して、詳細な説明を省略する。 4 and FIG. 5, a solder layer 41 covering the entire outer surface of the channel 20 and the superconducting multi-core wire 30 is formed on the superconducting wire 12. The superconducting wire 12 shown in FIG. 4 and the insulated superconducting wire 52 shown in FIG. 5 are the same as the superconducting wire 11 shown in FIG. 2 and the insulated superconducting wire 51 shown in FIG. 3 except that the solder layer 41 is formed. Therefore, the same components are denoted by the same reference numerals, and detailed description thereof is omitted.
 はんだ層41は、チャネル溝21と超電導多芯線材30とを接合するはんだ40と連続的に形成されている。はんだ層41の厚さは特に制限はないが、通常は、0.1μm以上5.0μm以下の範囲内である。 The solder layer 41 is continuously formed with the solder 40 that joins the channel groove 21 and the superconducting multicore wire 30. Although there is no restriction | limiting in particular in the thickness of the solder layer 41, Usually, it exists in the range of 0.1 micrometer or more and 5.0 micrometers or less.
 超電導線材12は、例えば、次のようにして製造することができる。
 先ず、溶融はんだ槽を用意する。次に、この溶融はんだ槽に、超電導多芯線材30とチャネル20とをそれぞれ浸漬させ、溶融はんだ槽内でチャネル溝21に超電導多芯線材30を収容する。次いで、溶融はんだ槽から超電導多芯線材30とチャネル20を引き上げる。そして、チャネル溝21と超電導多芯線材30との間に充填された溶融はんだと、チャネル溝21と超電導多芯線材30の外表面に付着している溶融はんだとを冷却して固化させる。
The superconducting wire 12 can be manufactured as follows, for example.
First, a molten solder tank is prepared. Next, the superconducting multicore wire 30 and the channel 20 are respectively immersed in the molten solder tank, and the superconducting multicore wire 30 is accommodated in the channel groove 21 in the molten solder tank. Next, the superconducting multicore wire 30 and the channel 20 are pulled up from the molten solder bath. The molten solder filled between the channel groove 21 and the superconducting multicore wire 30 and the molten solder adhering to the outer surface of the channel groove 21 and the superconducting multicore wire 30 are cooled and solidified.
 上記の超電導線材12を用いて絶縁超電導線材52を製造する場合は、フラックス除去工程S01において、はんだ40とはんだ層41とに含まれているフラックスを除去する。超電導線材12の加熱温度および加熱時間は、前述の超電導線材11を用いた場合と同じである。 When the insulated superconducting wire 52 is manufactured using the superconducting wire 12, the flux contained in the solder 40 and the solder layer 41 is removed in the flux removing step S01. The heating temperature and heating time of the superconducting wire 12 are the same as when the above-described superconducting wire 11 is used.
 次に、絶縁皮膜形成工程S02にて、超電導線材12の表面に絶縁皮膜を形成する。絶縁皮膜の形成方法としては、前述の超電導線材11を用いた場合と同様に、塗布法または電着法を用いることができる。 Next, an insulating film is formed on the surface of the superconducting wire 12 in an insulating film forming step S02. As a method for forming the insulating film, a coating method or an electrodeposition method can be used as in the case of using the superconducting wire 11 described above.
 以上のようにして製造された絶縁超電導線材52は、図5に示すように、はんだ層41の表面全体に絶縁皮膜60が形成される。超電導線材12は、チャネル20と超電導多芯線材30の外表面全体にはんだ層41が形成されており、外表面の状態が均一であるので、超電導線材12と絶縁皮膜60との密着性が均一となりやすい。 Insulated superconducting wire 52 manufactured as described above has insulating film 60 formed on the entire surface of solder layer 41 as shown in FIG. In the superconducting wire 12, the solder layer 41 is formed on the entire outer surface of the channel 20 and the superconducting multi-core wire 30, and the state of the outer surface is uniform, so the adhesion between the superconducting wire 12 and the insulating film 60 is uniform. It is easy to become.
 なお、図4に示した超電導線材12では、チャネル20と超電導多芯線材30の外表面全体を覆うはんだ層41が形成されているが、はんだ層41は、チャネル20の外表面にのみ設けてもよい。チャネル20の外表面にのみはんだ層41を設けた超電導線材は、例えば、次のようにして製造することができる。
 先ず、溶融はんだ槽を用意する。次に、この溶融はんだ槽にチャネル20を浸漬して、チャネル溝21に溶融はんだを充填する。次いで、溶融はんだ槽からチャネル20を引き上げた後、チャネル溝21に超電導多芯線材30を収容する。そして、チャネル溝21と超電導多芯線材30との間に充填された溶融はんだと、チャネル溝21の外表面に付着している溶融はんだとを冷却して固化させる。
In the superconducting wire 12 shown in FIG. 4, the solder layer 41 covering the entire outer surface of the channel 20 and the superconducting multicore wire 30 is formed. However, the solder layer 41 is provided only on the outer surface of the channel 20. Also good. The superconducting wire having the solder layer 41 provided only on the outer surface of the channel 20 can be manufactured, for example, as follows.
First, a molten solder tank is prepared. Next, the channel 20 is immersed in this molten solder bath, and the channel groove 21 is filled with molten solder. Next, after the channel 20 is pulled up from the molten solder bath, the superconducting multi-core wire 30 is accommodated in the channel groove 21. Then, the molten solder filled between the channel groove 21 and the superconducting multicore wire 30 and the molten solder adhering to the outer surface of the channel groove 21 are cooled and solidified.
 以上のような構成とされた本実施形態の絶縁超電導線材の製造方法によれば、フラックス除去工程S01にて、チャネル溝21と超電導多芯線材30とを接合しているはんだ40に含まれているフラックスを除去するので、絶縁皮膜形成工程S02において、絶縁皮膜60を形成する際に、フラックスが揮発しにくい。このため、気泡が少ない絶縁皮膜60を形成することが可能となる。 According to the method for manufacturing an insulated superconducting wire of the present embodiment configured as described above, it is included in the solder 40 that joins the channel groove 21 and the superconducting multicore wire 30 in the flux removal step S01. Since the flux that is present is removed, the flux is less likely to volatilize when the insulating film 60 is formed in the insulating film forming step S02. For this reason, it becomes possible to form the insulating film 60 with few bubbles.
 また、本実施形態の絶縁超電導線材の製造方法においては、超電導芯線材35が、金属母材31、および金属母材31に埋設されている複数本の超電導フィラメント32からなる超電導多芯線材30とされており、高い超電導性を有するので、得られる絶縁超電導線材51、52は長期間にわたってより高い超電導性を維持することができる。 Further, in the method for manufacturing an insulated superconducting wire according to the present embodiment, the superconducting core wire 35 includes a metal base material 31 and a superconducting multicore wire 30 comprising a plurality of superconducting filaments 32 embedded in the metal base material 31. In addition, since it has high superconductivity, the obtained insulating superconducting wires 51 and 52 can maintain higher superconductivity over a long period of time.
 また、本実施形態の絶縁超電導線材の製造方法においては、チャネル20と超電導多芯線材30の外表面全体を覆うはんだ層41が形成されていても、フラックス除去工程S01にて、はんだ層41のはんだに含まれているフラックスを除去するので、絶縁皮膜形成工程S02において、絶縁皮膜60を形成する際に、フラックスが揮発しにくい。このため、はんだ層41の外表面に気泡が少ない絶縁皮膜60を形成することができる。 Moreover, in the manufacturing method of the insulated superconducting wire of this embodiment, even if the solder layer 41 covering the entire outer surface of the channel 20 and the superconducting multi-core wire 30 is formed, the solder layer 41 is formed in the flux removing step S01. Since the flux contained in the solder is removed, the flux is less likely to volatilize when the insulating film 60 is formed in the insulating film forming step S02. For this reason, the insulating film 60 with few bubbles can be formed on the outer surface of the solder layer 41.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、超電導芯線材35として超電導多芯線材30を用いているが、この場合に限定されない。例えば、超電導芯線材35として、単一の金属線を用いてもよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, in this embodiment, the superconducting multi-core wire 30 is used as the superconducting core wire 35, but the present invention is not limited to this case. For example, a single metal wire may be used as the superconducting core wire 35.
 次に、本発明の作用効果を実施例により説明する。 Next, the function and effect of the present invention will be described with reference to examples.
[本発明例1]
 超電導多芯線材として、銅製の母材と、この母材に埋設されているNbTi合金フィラメントとからなる断面円形状の線材(直径:0.66mm)を用意した。また、チャネルとして、チャネル溝(溝の幅:0.66mm)を備えた銅製のチャネルを用意した。はんだとして、Sn95Sbはんだ(はんだ融点:238℃、フラックス主成分:ロジン)を用意した。
[Invention Example 1]
As a superconducting multi-core wire, a wire (diameter: 0.66 mm) having a circular cross section made of a copper base material and an NbTi alloy filament embedded in the base material was prepared. Further, a copper channel having a channel groove (groove width: 0.66 mm) was prepared as a channel. As the solder, Sn 95 Sb 5 solder (solder melting point: 238 ° C., flux main component: rosin) was prepared.
 上記のSn95Sbはんだを、はんだ槽に投入して290℃に加熱して溶融させて溶融はんだ槽を用意した。次に、この溶融はんだ槽に、超電導多芯線材とチャネルとをそれぞれ浸漬させ、溶融はんだ槽内でチャネル溝に超電導多芯線材を収容した。次いで、溶融はんだ槽から超電導多芯線材とチャネルを引き上げて、チャネル溝と超電導多芯線材との間に充填された溶融はんだと、チャネル溝と超電導多芯線材の外表面に付着している溶融はんだとを冷却して固化させた。こうして、図4に示すようなはんだ層が形成されている超電導線材を得た。 The above Sn 95 Sb 5 solder was put into a solder bath, heated to 290 ° C. and melted to prepare a molten solder bath. Next, the superconducting multicore wire and the channel were immersed in the molten solder tank, and the superconducting multicore wire was accommodated in the channel groove in the molten solder tank. Next, the superconducting multi-core wire and the channel are pulled up from the molten solder bath, and the molten solder filled between the channel groove and the superconducting multi-core wire and the melt adhering to the outer surface of the channel groove and the superconducting multi-core wire The solder was cooled and solidified. Thus, a superconducting wire having a solder layer as shown in FIG. 4 was obtained.
(フラックス除去工程)
 得られた超電導線材を、液温60℃に調整したフラックス除去液(パインアルファST-100S、荒川化学工業株式会社製)に5分間浸漬した。次いで、フラックス除去液から取り出した超電導線材を、純水に5分間浸漬した。その後、超電導線材を純水から取り出し、超電導線材の表面に付着している水分を、エアワイパ―で吹き飛ばして除去した。
(Flux removal process)
The obtained superconducting wire was immersed in a flux removing liquid (Pine Alpha ST-100S, manufactured by Arakawa Chemical Industries, Ltd.) adjusted to a liquid temperature of 60 ° C. for 5 minutes. Next, the superconducting wire taken out from the flux removing solution was immersed in pure water for 5 minutes. Thereafter, the superconducting wire was taken out from the pure water, and the moisture adhering to the surface of the superconducting wire was removed by blowing off with an air wiper.
(絶縁皮膜形成工程)
 フラックスを除去した超電導線材の表面に、電着法により絶縁皮膜を形成して絶縁超電導線材を製造した。具体的には、負の電荷を有するポリアミドイミド(PAI)粒子を含有する電着液に、超電導線材と電極とを浸漬し、超電導線材を正極とし、電極を負極として直流電圧を印加して、超電導線材の表面に乾燥後の絶縁皮膜の厚さが40μmとなるようにPAI粒子を電着させて電着層を形成した。次いで、電着層を形成した超電導線材を、280℃の温度で4分間乾燥・焼き付け処理を行って、絶縁超電導線材を製造した。
(Insulating film formation process)
An insulating superconducting wire was produced by forming an insulating film on the surface of the superconducting wire from which the flux had been removed by electrodeposition. Specifically, a superconducting wire and an electrode are immersed in an electrodeposition liquid containing polyamideimide (PAI) particles having a negative charge, and a DC voltage is applied with the superconducting wire as a positive electrode and the electrode as a negative electrode, PAI particles were electrodeposited on the surface of the superconducting wire so that the thickness of the insulating film after drying was 40 μm to form an electrodeposition layer. Next, the superconducting wire having the electrodeposited layer was dried and baked at a temperature of 280 ° C. for 4 minutes to produce an insulated superconducting wire.
 得られた絶縁超電導線材の絶縁皮膜の表面全体を、マイクロスコープ顕微鏡にて観察し、直径100μm以上の気泡の数をカウントした。気泡の数を、絶縁超電導線材1mあたりの気泡数(個/m)として表1に示す。 The entire surface of the insulating coating of the obtained insulating superconducting wire was observed with a microscope, and the number of bubbles having a diameter of 100 μm or more was counted. The number of bubbles is shown in Table 1 as the number of bubbles per 1 m of insulated superconducting wire (number / m).
[本発明例2]
 Sn95Sbはんだの代わりに、Sn97Agはんだ(はんだ融点:221℃、フラックス主成分:ロジン)を用いたこと以外は、本発明例1と同様にして超電導線材を得た。次いで、得られた超電導線材を用いたこと以外は、本発明例1と同様にして絶縁超電導線材を製造し、絶縁皮膜の気泡の数をカウントした。その結果を、表1に示す
[Invention Example 2]
A superconducting wire was obtained in the same manner as in Example 1 except that Sn 97 Ag 3 solder (solder melting point: 221 ° C., flux main component: rosin) was used instead of Sn 95 Sb 5 solder. Next, an insulated superconducting wire was produced in the same manner as in Example 1 except that the obtained superconducting wire was used, and the number of bubbles in the insulating film was counted. The results are shown in Table 1.
[比較例1、2]
 フラックス除去工程を行わずに、絶縁皮膜形成工程を行ったこと以外は、それぞれ本発明例1、2と同様にして、絶縁超電導線材を製造し、絶縁皮膜の気泡の数をカウントした。その結果を、表1に示す。
[Comparative Examples 1 and 2]
An insulating superconducting wire was produced in the same manner as in Invention Examples 1 and 2 except that the insulating film forming process was performed without performing the flux removing process, and the number of bubbles in the insulating film was counted. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 フラックス除去工程を行わなかった比較例1、2で得られた絶縁超電導線材は、絶縁皮膜に多数の気泡が混入していた。これは、はんだに含まれるフラックスが、絶縁皮膜形成工程の乾燥・焼き付け処理時に揮発したためであると考えられる。 In the insulated superconducting wires obtained in Comparative Examples 1 and 2 where the flux removal process was not performed, many bubbles were mixed in the insulating film. This is presumably because the flux contained in the solder volatilized during the drying / baking process in the insulating film forming process.
 これに対して、フラックス除去工程を行った本発明例1、2で得られた絶縁超電導線材は、絶縁皮膜中の気泡数が顕著に低減することが確認された。 On the other hand, it was confirmed that the number of bubbles in the insulating film was significantly reduced in the insulating superconducting wires obtained in Examples 1 and 2 of the present invention in which the flux removal process was performed.
 チャネル溝と超電導芯線材とをはんだを用いて接合したWIC構造の超電導線材に対して、気泡が少ない絶縁皮膜を形成することができ、長期間にわたって高い超電導性を維持することができる絶縁超電導線材の製造方法を提供することが可能となる Insulating superconducting wire that can form an insulating film with few bubbles and maintain high superconductivity over a long period of time with respect to a WIC superconducting wire in which a channel groove and a superconducting core wire are joined using solder It becomes possible to provide the manufacturing method of
 11、12 超電導線材
 20 チャネル
 21 チャネル溝
 30 超電導多芯線材
 31 金属母材
 32 超電導フィラメント
 35 超電導芯線材
 40 はんだ
 41 はんだ層
 51、52 絶縁超電導線材
 60 絶縁皮膜
DESCRIPTION OF SYMBOLS 11, 12 Superconducting wire 20 Channel 21 Channel groove 30 Superconducting multi-core wire 31 Metal base material 32 Superconducting filament 35 Superconducting core wire 40 Solder 41 Solder layer 51, 52 Insulating superconducting wire 60 Insulating film

Claims (3)

  1.  チャネル溝を備えたチャネルと、前記チャネルの前記チャネル溝に収容されている超電導芯線材とを備え、前記チャネル溝と前記超電導芯線材とがフラックスを含むはんだで接合されている超電導線材を、フラックス除去液に浸漬して、前記フラックスを除去するフラックス除去工程と、
     前記フラックスが除去された前記超電導線材の表面に絶縁皮膜を形成する絶縁皮膜形成工程と、
     を含むことを特徴とする絶縁超電導線材の製造方法。
    A channel having a channel groove and a superconducting core wire accommodated in the channel groove of the channel, and the superconducting wire in which the channel groove and the superconducting core wire are joined by solder containing a flux, A flux removing step of removing the flux by immersing in a removing solution;
    An insulating film forming step of forming an insulating film on the surface of the superconducting wire from which the flux has been removed;
    The manufacturing method of the insulated superconducting wire characterized by including this.
  2.  前記超電導線材が、金属母材、および前記金属母材に埋設されている複数本の超電導フィラメントからなる超電導多芯線材であることを特徴とする請求項1に記載の絶縁超電導線材の製造方法。 The method for manufacturing an insulated superconducting wire according to claim 1, wherein the superconducting wire is a superconducting multi-core wire comprising a metal base material and a plurality of superconducting filaments embedded in the metal base material.
  3.  前記超電導線材の前記チャネルの外表面が前記はんだで覆われていることを特徴とする請求項1または2に記載の絶縁超電導線材の製造方法。 3. The method of manufacturing an insulated superconducting wire according to claim 1, wherein an outer surface of the channel of the superconducting wire is covered with the solder.
PCT/JP2019/011863 2018-03-26 2019-03-20 Method for manufacturing insulating superconductive wire rod WO2019188711A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018058494A JP2019169448A (en) 2018-03-26 2018-03-26 Process for producing insulated superconducting wire material
JP2018-058494 2018-03-26

Publications (1)

Publication Number Publication Date
WO2019188711A1 true WO2019188711A1 (en) 2019-10-03

Family

ID=68058171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011863 WO2019188711A1 (en) 2018-03-26 2019-03-20 Method for manufacturing insulating superconductive wire rod

Country Status (2)

Country Link
JP (1) JP2019169448A (en)
WO (1) WO2019188711A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767376A (en) * 2019-11-14 2020-02-07 中国科学院合肥物质科学研究院 Thermal forming method suitable for improving mechanical property of high-temperature superconducting composite conductor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262309A (en) * 1990-09-24 1992-09-17 General Atomic Co Method and apparatus for fabricating superconductive wire by bonding superconductive filament
JPH07230971A (en) * 1994-02-17 1995-08-29 Fujitsu Ltd Method of forming solder electrode
JP2000294053A (en) * 1999-04-12 2000-10-20 Kobe Steel Ltd Stabilized compisite superconductive wire and its manufacture
JP2014072003A (en) * 2012-09-28 2014-04-21 Fujikura Ltd Method of producing oxide superconducting wire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262309A (en) * 1990-09-24 1992-09-17 General Atomic Co Method and apparatus for fabricating superconductive wire by bonding superconductive filament
JPH07230971A (en) * 1994-02-17 1995-08-29 Fujitsu Ltd Method of forming solder electrode
JP2000294053A (en) * 1999-04-12 2000-10-20 Kobe Steel Ltd Stabilized compisite superconductive wire and its manufacture
JP2014072003A (en) * 2012-09-28 2014-04-21 Fujikura Ltd Method of producing oxide superconducting wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767376A (en) * 2019-11-14 2020-02-07 中国科学院合肥物质科学研究院 Thermal forming method suitable for improving mechanical property of high-temperature superconducting composite conductor
CN110767376B (en) * 2019-11-14 2020-12-08 中国科学院合肥物质科学研究院 Thermal forming method suitable for improving mechanical property of high-temperature superconducting composite conductor

Also Published As

Publication number Publication date
JP2019169448A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
US4092182A (en) Soldering flux composition
WO2019188654A1 (en) Method for manufacturing insulating superconductive wire rod
WO2019188711A1 (en) Method for manufacturing insulating superconductive wire rod
JP2975246B2 (en) Sn-plated wire for electrical contact and method of manufacturing the same
JP6355304B2 (en) Solderable insulated wire and manufacturing method thereof
WO2019188592A1 (en) Method for manufacturing insulating superconductive wire rod
JP2004154864A (en) Lead-free soldering alloy
JP2020009709A (en) Superconducting wire rod and insulated superconducting wire rod
WO2019177026A1 (en) Method for manufacturing insulated conductor wire material
WO2021020382A1 (en) Insulated superconductive wire, production method for insulated superconductive wire, superconductive coil, and channel for insulated superconductive wire
WO2021020386A1 (en) Insulating superconducting wire material, method of manufacturing insulating superconducting wire material, and superconducting coil
JPH1031921A (en) Manufacture of flat insulated electric wire
US10546670B2 (en) Insulated wire with soldered portion and method for manufacturing same
JPS62206706A (en) Manufacture of insulated wire and heat resistant insulated coil using the wire
JP2019160636A (en) Coating die and manufacturing method of insulation conductor wire material
JPH0221508A (en) Conductor for minute wire winding
JP2002185118A (en) Soldering method
KR102283210B1 (en) Superconducting thin film and its manufacturing method including an anodized surface
JP2003162926A (en) Self-binding insulated wire and coil using the same
JPH06208807A (en) Conductor for electric/electronic equipment and manufacture thereof
JPH04315776A (en) Method of connection superconducting wire
JP2020035575A (en) Method of manufacturing insulated bus bar
JPS63195918A (en) Manufacture of electrically insulating material
JPH0821512B2 (en) Insulation coil manufacturing method
JPH0238594A (en) Production of lead wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19774219

Country of ref document: EP

Kind code of ref document: A1