JP2020009709A - Superconducting wire rod and insulated superconducting wire rod - Google Patents

Superconducting wire rod and insulated superconducting wire rod Download PDF

Info

Publication number
JP2020009709A
JP2020009709A JP2018132238A JP2018132238A JP2020009709A JP 2020009709 A JP2020009709 A JP 2020009709A JP 2018132238 A JP2018132238 A JP 2018132238A JP 2018132238 A JP2018132238 A JP 2018132238A JP 2020009709 A JP2020009709 A JP 2020009709A
Authority
JP
Japan
Prior art keywords
superconducting
wire
superconducting wire
channel
channel groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018132238A
Other languages
Japanese (ja)
Inventor
桜井 英章
Hideaki Sakurai
英章 桜井
駒井 栄治
Eiji Komai
栄治 駒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2018132238A priority Critical patent/JP2020009709A/en
Publication of JP2020009709A publication Critical patent/JP2020009709A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

To provide a superconducting wire rod in which bubbles in the insulation covering when covering with insulation covering are hard to occur, and to provide an insulated superconducting wire rod in which the superconducting wire rod is covered with an insulation covering.SOLUTION: The superconducting wire rod 11 includes a channel 20 having a channel groove 21, and a superconducting core wire rod 35 housed in the channel groove 21 of the channel 20, and in which, characterized, the channel groove 21 and the superconducting core wire rod 35 are joined via a joining material layer 40 formed at the bottom of the channel groove 21, and when the channel groove 21 of the channel 20 is plane-viewed from the groove opening side, the joining material layer 40 is not seen in the inside of the channel groove 21.SELECTED DRAWING: Figure 1

Description

本発明は、超電導線材および絶縁超電導線材に関するものである。   The present invention relates to a superconducting wire and an insulated superconducting wire.

絶縁電導線材の一つとして、超電導線材の表面を絶縁皮膜で被覆した絶縁超電導線材が知られている。この絶縁超電導線材は、例えば、磁気共鳴画像(MRI)装置、核磁気共鳴(NMR)装置、粒子加速器、リニアモーターカー、さらに電力貯蔵装置などの分野で使用されている。   An insulated superconducting wire in which the surface of a superconducting wire is covered with an insulating film is known as one of the insulated conducting wires. This insulated superconducting wire is used, for example, in the fields of a magnetic resonance imaging (MRI) device, a nuclear magnetic resonance (NMR) device, a particle accelerator, a linear motor car, and a power storage device.

超電導線材としては、金属母材と、この金属母材に埋設されている複数本の超電導フィラメントとからなる超電導多芯線材(超電導コア材ともいう)を、チャネル溝を備えたチャネル(安定化材ともいう)のチャネル溝に収容固定した構造(ワイヤー・イン・チャネル(WIC)構造)のものが知られている。   As the superconducting wire, a superconducting multi-core wire (also referred to as a superconducting core material) composed of a metal base material and a plurality of superconducting filaments embedded in the metal base material is formed by a channel having a channel groove (a stabilizing material). ) (Wire-in-channel (WIC) structure) that is housed and fixed in a channel groove.

WIC構造の超電導線材は、超電導多芯線材の超電導状態が部分的に破れて常電導状態に転移した場合には、超電導多芯線材を流れていた電流をチャネルに一時的に迂回させることができ、その間に超電導多芯線材を超電導状態に復帰させることが可能となる。このため、WIC構造の超電導線材では、チャネルに迂回させた電流が外部に漏出しないように、超電導線材全体を絶縁皮膜で被覆することが必要となる。   When the superconducting state of the superconducting multi-core wire is partially broken and the state changes to the normal conducting state, the superconducting wire of the WIC structure can temporarily diverte the current flowing through the superconducting multi-core wire to the channel. In the meantime, the superconducting multi-core wire can be returned to the superconducting state. For this reason, in a superconducting wire having a WIC structure, it is necessary to cover the entire superconducting wire with an insulating film so that the current diverted to the channel does not leak outside.

特許文献1には、WIC構造の絶縁超電導線材の製造方法として、超電導多芯線材とチャネル溝とをはんだを用いて接合して超電導線材を作製し、次いで超電導線材の表面を絶縁樹脂で被覆した後、絶縁樹脂が硬化して、はんだが溶融しない温度と時間で加熱する方法が開示されている。この特許文献1に開示されている絶縁超電導線材では、チャネル溝と超電導芯線材との間にはんだが充填されており、このはんだの表面を絶縁樹脂で被覆している。また、特許文献1には、超電導線材の表面を絶縁樹脂で被覆する方法として、超電導線材を絶縁塗料のタンクに通過させる方法や絶縁樹脂を押出し成形する方法が記載されている。   Patent Document 1 discloses a method of manufacturing an insulated superconducting wire having a WIC structure, in which a superconducting multi-core wire and a channel groove are joined by using solder to produce a superconducting wire, and then the surface of the superconducting wire is coated with an insulating resin. Thereafter, a method of heating at a temperature and for a time at which the insulating resin hardens and the solder does not melt is disclosed. In the insulated superconducting wire disclosed in Patent Document 1, solder is filled between the channel groove and the superconducting core wire, and the surface of the solder is covered with an insulating resin. Patent Document 1 discloses a method of coating the surface of a superconducting wire with an insulating resin, such as passing the superconducting wire through a tank of insulating paint or extruding the insulating resin.

欧州特許第2118941号明細書European Patent No. 2118941

ところで、絶縁超電導線材の絶縁皮膜に気泡が発生すると、気泡が発生した部分は膜厚が薄く、強度が低下するため、絶縁皮膜に欠損が生じやすくなり、絶縁超電導線材の超電導性を長期間にわたって維持するのが困難となるおそれがある。従って、絶縁皮膜は気泡が少ないことが好ましい。しかしながら、チャネル溝と超電導芯線材との間にはんだが充填されている超電導線材を絶縁樹脂で被覆すると、はんだのフラックスが揮発して、絶縁皮膜に気泡が発生しやすい傾向がある。   By the way, when air bubbles are generated in the insulating film of the insulated superconducting wire, the portion where the air bubbles are generated is thin and the strength is reduced, so that the insulating film is likely to be broken, and the superconductivity of the insulated superconducting wire is extended for a long time. It can be difficult to maintain. Therefore, it is preferable that the insulating film has few bubbles. However, if the superconducting wire filled with solder between the channel groove and the superconducting core wire is coated with an insulating resin, the flux of the solder volatilizes, and air bubbles tend to be generated in the insulating film.

本発明は、前述した事情に鑑みてなされたものであって、その目的は、絶縁皮膜で被覆する際に絶縁皮膜に気泡が発生しにくい超電導線材、およびその超電導線材を絶縁皮膜で被覆した絶縁超電導線材を提供することにある。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a superconducting wire in which bubbles are hardly generated in an insulating film when the insulating film is covered with the insulating film, and an insulating material in which the superconducting wire is coated with the insulating film. It is to provide a superconducting wire.

上記の課題を解決するために、本発明の超電導線材は、チャネル溝を備えたチャネルと、前記チャネルの前記チャネル溝に収容されている超電導芯線材とを備え、前記チャネル溝と前記超電導芯線材とが、前記チャネル溝の底部に形成されている接合材層を介して接合され、前記チャネルの前記チャネル溝を溝開放側から平面視したときに、前記チャネル溝の内部に前記接合材層が見られないことを特徴としている。   In order to solve the above problems, a superconducting wire of the present invention includes a channel having a channel groove, and a superconducting core wire housed in the channel groove of the channel, wherein the channel groove and the superconducting core wire are provided. Are bonded via a bonding material layer formed at the bottom of the channel groove, and when the channel groove of the channel is viewed in plan from the groove opening side, the bonding material layer is inside the channel groove. It is characterized by not being seen.

本発明の超電導線材によれば、チャネル溝と超電導芯線材とが、チャネル溝の底部に形成されている接合材層を介して接合されており、接合材の上に直接、絶縁皮膜を形成する必要がない。このため、超電導線材を絶縁皮膜で被覆する際に、はんだのフラックスなど接合材に起因するガスが絶縁皮膜に入りにくくなり、絶縁皮膜に気泡が発生しにくくなる。また、チャネル溝と超電導芯線材とが、チャネル溝の底部に形成されている接合材層を介して接合されているので、チャネル溝と超電導芯線材との間にはんだを充填する場合と比較して、接合材の使用量を少なくすることができる。このため、超電導線材を絶縁皮膜で被覆する際に、接合材に起因するガスの生成量が少なくなり、絶縁皮膜に気泡が発生しにくくなる。さらに、チャネルのチャネル溝を溝開放側から平面視したときに、チャネル溝の内部に接合材層が見られないようにされていて、超電導線材を絶縁皮膜で被覆する際に、接合材層と絶縁樹脂が接触しないので、接合材に起因するガスが絶縁皮膜に入りにくくなり、絶縁皮膜に気泡がより発生しにくくなる。   According to the superconducting wire of the present invention, the channel groove and the superconducting core wire are joined via the joining material layer formed at the bottom of the channel groove, and the insulating film is formed directly on the joining material. No need. Therefore, when the superconducting wire is covered with the insulating film, gas derived from the bonding material, such as solder flux, is less likely to enter the insulating film, and bubbles are less likely to be generated in the insulating film. In addition, since the channel groove and the superconducting core wire are joined via the joining material layer formed at the bottom of the channel groove, compared with the case where solder is filled between the channel groove and the superconducting core wire. As a result, the amount of the joining material used can be reduced. Therefore, when the superconducting wire is coated with the insulating film, the amount of gas generated due to the bonding material is reduced, and bubbles are less likely to be generated in the insulating film. Furthermore, when the channel groove of the channel is viewed in plan from the groove opening side, the bonding material layer is not seen inside the channel groove, and when the superconducting wire is covered with the insulating film, the bonding material layer Since the insulating resin does not come into contact, gas caused by the bonding material is less likely to enter the insulating film, and bubbles are less likely to be generated in the insulating film.

ここで、本発明の超電導線材においては、前記接合材層が、導電性接合材層であることが好ましい。
この場合、接合材層が、導電性接合材層であり、超電導芯線材とチャネルとの導電性が向上するので、超電導芯線材の超電導状態が部分的に破れて常電導状態に転移したときは、超電導芯線材を流れていた電流をチャネルに効率よく迂回させることができる。
Here, in the superconducting wire of the present invention, it is preferable that the bonding material layer is a conductive bonding material layer.
In this case, since the bonding material layer is a conductive bonding material layer, and the conductivity between the superconducting core wire and the channel is improved, when the superconducting state of the superconducting core wire partially breaks and transitions to a normal conducting state. In addition, the current flowing through the superconducting core wire can be efficiently diverted to the channel.

また、本発明の超電導線材においては、前記導電性接合材層が、はんだペーストの硬化体もしくは銀ペーストの焼結体であることが好ましい。
この場合、導電性接合材層が、はんだペーストの硬化体もしくは銀ペーストの焼結体であり、超電導芯線材とチャネルとの導電性が確実に向上するので、超電導芯線材の超電導状態が部分的に破れて常電導状態に転移したときは、超電導芯線材を流れていた電流をチャネルに効率よく確実に迂回させることができる。
In the superconducting wire of the present invention, it is preferable that the conductive bonding material layer is a cured body of a solder paste or a sintered body of a silver paste.
In this case, since the conductive bonding material layer is a cured body of the solder paste or a sintered body of the silver paste, and the conductivity between the superconducting core wire and the channel is reliably improved, the superconducting state of the superconducting core wire is partially changed. In the case where the superconducting wire breaks into the normal conducting state, the current flowing through the superconducting core wire can be efficiently and reliably diverted to the channel.

また、本発明の超電導線材においては、前記超電導芯線材が、金属母材、および前記金属母材に埋設されている複数本の超電導フィラメントからなる超電導多芯線材であることが好ましい。
この場合、超電導芯線材が超電導多芯線材であり、高い超電導性を有するので、長期間にわたってより高い超電導性を維持することができる。
In the superconducting wire of the present invention, it is preferable that the superconducting core wire is a superconducting multicore wire composed of a metal base material and a plurality of superconducting filaments embedded in the metal base material.
In this case, since the superconducting core wire is a superconducting multicore wire and has high superconductivity, higher superconductivity can be maintained for a long period of time.

本発明の絶縁超電導線材は、上述の超電導線材と、前記超電導線材の少なくとも一部を被覆する絶縁皮膜とを備えることを特徴としている。
本発明の絶縁超電導線材によれば、上述の超電導線材に絶縁被膜を形成するので、絶縁皮膜に気泡が発生しにくい。このため、本発明の絶縁超電導線材は、長期間にわたって高い超電導性を維持することができる。
An insulated superconducting wire of the present invention includes the above-described superconducting wire and an insulating film covering at least a part of the superconducting wire.
According to the insulated superconducting wire of the present invention, since the insulating film is formed on the above-described superconducting wire, bubbles are hardly generated in the insulating film. For this reason, the insulated superconducting wire of the present invention can maintain high superconductivity for a long period of time.

本発明によれば、絶縁皮膜で被覆する際に絶縁皮膜に気泡が発生しにくい超電導線材、およびその超電導線材を絶縁皮膜で被覆した絶縁超電導線材を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide a superconducting wire rod in which bubbles are less likely to be generated in the insulating film when covered with the insulating coat layer, and an insulated superconducting wire rod in which the superconducting wire rod is covered with the insulating coat.

本発明の第一実施形態に係る超電導線材の横断面図である。It is a cross section of a superconducting wire concerning a first embodiment of the present invention. 本発明の第一実施形態に係る超電導線材の製造方法の一例を示す横断面図である。It is a cross-sectional view showing an example of the manufacturing method of the superconducting wire concerning the first embodiment of the present invention. 本発明の第二実施形態に係る絶縁超電導線材の横断面図である。It is a cross section of an insulated superconducting wire concerning a second embodiment of the present invention.

以下に、本発明の一実施形態である超電導線材および絶縁超電導線材について、添付した図面を参照して説明する。   Hereinafter, a superconducting wire and an insulated superconducting wire according to an embodiment of the present invention will be described with reference to the attached drawings.

図1は、本発明の第一実施形態に係る超電導線材の横断面図である。
図1に示すように、第一実施形態に係る超電導線材11は、チャネル溝21を備えたチャネル20と、チャネル溝21に収容固定されている超電導芯線材35とを備える。チャネル溝21と超電導芯線材35とは、チャネル溝21の底部に形成されている接合材層40を介して接合されている。超電導線材11の断面形状は、角部に曲率のある略四角形状とされている。超電導芯線材35は、金属母材31と、金属母材31に埋設されている複数本の超電導フィラメント32とからなる超電導多芯線材30とされている。超電導多芯線材30は断面形状が円形とされていて、チャネル溝21の底部は、超電導多芯線材30に沿って湾曲した形状とされている。チャネル溝21の底部を、超電導多芯線材30に沿って湾曲した形状とすることによって、接合材層40の厚さを薄くすることができ、接合材の使用量を少なくすることができる。なお、超電導多芯線材30の断面形状は特に制限はなく、例えば、角部に曲率のある平角形状であってもよい。
FIG. 1 is a cross-sectional view of the superconducting wire according to the first embodiment of the present invention.
As shown in FIG. 1, the superconducting wire 11 according to the first embodiment includes a channel 20 having a channel groove 21 and a superconducting core wire 35 housed and fixed in the channel groove 21. The channel groove 21 and the superconducting core wire 35 are joined via a joining material layer 40 formed at the bottom of the channel groove 21. The cross-sectional shape of the superconducting wire 11 is a substantially square shape having a curvature at a corner. The superconducting core wire 35 is a superconducting multicore wire 30 including a metal base material 31 and a plurality of superconducting filaments 32 embedded in the metal base material 31. The superconducting multifilamentary wire 30 has a circular cross section, and the bottom of the channel groove 21 has a curved shape along the superconducting multifilamentary wire 30. By making the bottom of the channel groove 21 curved along the superconducting multi-core wire 30, the thickness of the bonding material layer 40 can be reduced, and the amount of bonding material used can be reduced. The cross-sectional shape of the superconducting multi-core wire 30 is not particularly limited, and may be, for example, a rectangular shape having a curvature at a corner.

チャネル20の材料としては、例えば、銅、銅合金、アルミニウム、アルミニウム合金を用いることができる。超電導多芯線材30の金属母材31の材料としては、例えば、銅、銅合金、アルミニウム、アルミニウム合金を用いることができる。超電導多芯線材30の超電導フィラメント32の材料としては、例えば、NbTi合金、NbSnを用いることができる。 As a material of the channel 20, for example, copper, a copper alloy, aluminum, or an aluminum alloy can be used. As a material of the metal base material 31 of the superconducting multi-core wire 30, for example, copper, copper alloy, aluminum, and aluminum alloy can be used. As a material of the superconducting filament 32 of the superconducting multi-core wire 30, for example, an NbTi alloy or Nb 3 Sn can be used.

接合材層40は、チャネル溝21の内壁面と超電導多芯線材30とが直接接触している部位よりもチャネル溝21の底部側(図1において下側)に形成されている。チャネル溝21の内壁面と超電導多芯線材30とが直接接触している部位よりも上側には接合材層40は形成されていない。よって、チャネル20のチャネル溝21を溝開放側から平面視したときに、チャネル溝21の内部には接合材層40が見られない。   The bonding material layer 40 is formed on the bottom side (lower side in FIG. 1) of the channel groove 21 than the part where the inner wall surface of the channel groove 21 and the superconducting multi-core wire 30 are in direct contact. The bonding material layer 40 is not formed above a portion where the inner wall surface of the channel groove 21 and the superconducting multi-core wire 30 are in direct contact. Therefore, when the channel groove 21 of the channel 20 is viewed in a plan view from the groove opening side, the bonding material layer 40 is not seen inside the channel groove 21.

接合材層40は、導電性接合材層であることが好ましい。導電性接合材層は、はんだペーストの硬化体もしくは銀ペーストの焼結体であることが好ましい。
はんだペーストは、はんだ粉末とフラックスとを含む組成物である。はんだ粉末としては、Sn系はんだ粉末を用いることができる。Sn系はんだ粉末としては、Sb、Ag、Cuの群より選ばれる1種以上の金属とSnの合金を用いることができる。はんだ粉は、Sn−Sb系はんだ粉、Sn−Ag系はんだ粉、Sn−Ag−Cu系はんだ粉であることが好ましい。フラックスの種類は特に制限はなく、樹脂系、有機系、無機系などの各種のフラックスを用いることができる。はんだペーストとしては、例えば、Sn3.0Ag0.5Cu粉を88.2〜88.4質量%、ジエチレングリコールモノヘキシルエーテルを2〜4質量%、2−エチル−1,3−ヘキサンジオールを1質量%未満、ロジンを4〜6質量%、その他微量成分を含む組成物を用いることができる。
The bonding material layer 40 is preferably a conductive bonding material layer. The conductive bonding material layer is preferably a cured body of a solder paste or a sintered body of a silver paste.
The solder paste is a composition containing a solder powder and a flux. As the solder powder, Sn-based solder powder can be used. As the Sn-based solder powder, an alloy of Sn and one or more metals selected from the group consisting of Sb, Ag, and Cu can be used. The solder powder is preferably a Sn-Sb-based solder powder, a Sn-Ag-based solder powder, or a Sn-Ag-Cu-based solder powder. The type of the flux is not particularly limited, and various fluxes such as resin, organic, and inorganic can be used. The solder paste, for example, a Sn 3.0 Ag 0.5 Cu powder 88.2 to 88.4 wt%, 2-4 wt% of diethylene glycol monohexyl ether, 2-ethyl-1,3-hexanediol A composition containing less than 1% by mass, 4 to 6% by mass of rosin, and other minor components can be used.

銀ペーストは、銀粉と溶剤とを含む組成物である。銀粉は、150℃以上300℃以下の温度で焼結可能な微粉末であることが好ましい。銀粉は、粒子径が0.1μm以上40μm以下の範囲内にあることが好ましい。溶剤は、沸点が150℃以上300℃以下の範囲内にあることが好ましい。溶剤としては、2−メチルプロパノエート、α−テルピネオール、酢酸2−エチルヘキシル、酢酸3−メチルブチルを用いることができる。   The silver paste is a composition containing silver powder and a solvent. The silver powder is preferably a fine powder that can be sintered at a temperature of 150 ° C. or more and 300 ° C. or less. The silver powder preferably has a particle diameter in the range of 0.1 μm or more and 40 μm or less. The solvent preferably has a boiling point in the range of 150 ° C to 300 ° C. As the solvent, 2-methylpropanoate, α-terpineol, 2-ethylhexyl acetate, and 3-methylbutyl acetate can be used.

次に、第一実施形態に係る超電導線材の製造方法について説明する。
図2は、第一実施形態に係る超電導線材の製造方法の一例を示す横断面図である。第一実施形態に係る超電導線材11は、例えば、次のようにして製造することができる。
図2に示すように、先ず、チャネル20のチャネル溝21に、接合材ペーストを塗布・乾燥して、接合材ペースト層41を形成する。次に、チャネル溝21に超電導多芯線材30を収容する。次いで、超電導多芯線材30をチャネル溝21に押し付けながら、接合材ペースト層41を加熱した後、冷却して、接合材ペースト層41を硬化させて接合材層40を生成させる。なお、接合材層40の幅、厚さを調整することによって、チャネル20のチャネル溝21を溝開放側から平面視したときに、チャネル溝21の内部に接合材層40が見られないようにすることが望ましい。
Next, a method for manufacturing a superconducting wire according to the first embodiment will be described.
FIG. 2 is a cross-sectional view illustrating an example of the method for manufacturing a superconducting wire according to the first embodiment. The superconducting wire 11 according to the first embodiment can be manufactured, for example, as follows.
As shown in FIG. 2, first, a bonding material paste is applied to the channel groove 21 of the channel 20 and dried to form a bonding material paste layer 41. Next, the superconducting multi-core wire 30 is accommodated in the channel groove 21. Next, the bonding material paste layer 41 is heated while the superconducting multi-core wire 30 is pressed against the channel groove 21, and then cooled, and the bonding material paste layer 41 is cured to form the bonding material layer 40. The width and the thickness of the bonding material layer 40 are adjusted so that the bonding material layer 40 cannot be seen inside the channel groove 21 when the channel groove 21 of the channel 20 is viewed in plan from the groove opening side. It is desirable to do.

接合材ペーストとしては、はんだペーストおよび銀ペーストを用いることができる。また、銀ペーストとして、酸化銀粉と還元剤と溶剤とを含む酸化銀ペーストを用いることができる。この酸化銀ペーストは、酸化銀粉が還元剤によって還元されて銀粉と変化することによって銀ペースト層を生成する。   As the joining material paste, a solder paste and a silver paste can be used. In addition, a silver oxide paste containing silver oxide powder, a reducing agent, and a solvent can be used as the silver paste. This silver oxide paste forms a silver paste layer by the silver oxide powder being reduced by the reducing agent and changing into silver powder.

接合材ペースト層41の加熱温度は、接合材ペーストとして、はんだペーストを用いる場合は、はんだ粉の溶融温度以上で、かつ超電導多芯線材30の耐熱温度以下の温度であることが好ましい。また、接合材ペーストとして、銀ペーストを用いる場合は、銀粉の焼結温度以上で、かつ超電導多芯線材30の耐熱温度以下の温度であることが好ましい。
超電導多芯線材30の耐熱温度は、超電導多芯線材30を加熱したときに、温度4.2K(ケルビン)で測定される超電導臨界電流値が、加熱前のそれよりも5%低下する温度である。
When a solder paste is used as the bonding material paste, the heating temperature of the bonding material paste layer 41 is preferably equal to or higher than the melting temperature of the solder powder and equal to or lower than the heat resistance temperature of the superconducting multi-core wire 30. When a silver paste is used as the bonding material paste, the temperature is preferably equal to or higher than the sintering temperature of silver powder and equal to or lower than the heat-resistant temperature of superconducting multi-core wire 30.
The heat resistant temperature of the superconducting multi-core wire 30 is a temperature at which the superconducting critical current value measured at a temperature of 4.2 K (Kelvin) is reduced by 5% from that before heating when the superconducting multi-core wire 30 is heated. is there.

次に、絶縁超電導線材について説明する。
図3は、本発明の第二実施形態に係る絶縁超電導線材の横断面図である。
図3に示す絶縁超電導線材12は、超電導線材11と、超電導線材11を被覆する絶縁皮膜50とを備える。超電導線材11は、上述の第一実施形態の超電導線材11と同じであるので、同一の符号を付して、詳細な説明を省略する。
Next, the insulated superconducting wire will be described.
FIG. 3 is a cross-sectional view of the insulated superconducting wire according to the second embodiment of the present invention.
The insulated superconducting wire 12 shown in FIG. 3 includes a superconducting wire 11 and an insulating film 50 that covers the superconducting wire 11. Since the superconducting wire 11 is the same as the superconducting wire 11 of the first embodiment described above, the same reference numerals are given and the detailed description is omitted.

絶縁皮膜50は、膜厚が、5μm以上60μm以下の範囲内にあることが好ましい。
絶縁皮膜50の材料としては、例えば、ホルマール化ポリビニルアルコール樹脂、ポリビニルアルコール樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエステルイミド樹脂、ポリエステル樹脂、ポリウレタン樹脂などの絶縁超電導線材の絶縁皮膜の材料として一般に利用されているものを用いることができる。
The insulating film 50 preferably has a thickness in a range of 5 μm or more and 60 μm or less.
As a material of the insulating film 50, for example, it is generally used as a material of an insulating film of an insulating superconducting wire such as formalized polyvinyl alcohol resin, polyvinyl alcohol resin, polyamide imide resin, polyimide resin, polyester imide resin, polyester resin, and polyurethane resin. Can be used.

超電導線材11の表面に絶縁皮膜50を形成する方法としては、例えば、塗布法または電着法を用いることができる。
塗布法は、絶縁皮膜形成用の絶縁樹脂と溶剤とを含むワニスを、超電導線材11の表面に塗布して塗布層を形成し、次いで塗布層を加熱して、生成した絶縁皮膜を超電導線材11に焼き付ける方法である。超電導線材11の表面にワニスを塗布する方法としては、超電導線材11をワニスに浸漬するディップ法を用いることができる。塗布層を加熱して、生成した絶縁皮膜を超電導線材11に焼き付ける際の加熱温度は、例えば、200℃以上450℃以下の範囲内であり、加熱時間は、例えば、0.5分間以上20分間以下の範囲内である。
As a method of forming the insulating film 50 on the surface of the superconducting wire 11, for example, a coating method or an electrodeposition method can be used.
In the coating method, a varnish containing an insulating resin for forming an insulating film and a solvent is applied to the surface of the superconducting wire 11 to form a coating layer, and then the coating layer is heated to form the resulting insulating film on the superconducting wire 11. It is a method of baking. As a method of applying varnish to the surface of superconducting wire 11, a dipping method in which superconducting wire 11 is immersed in varnish can be used. The heating temperature at the time of heating the coating layer and baking the generated insulating film on the superconducting wire 11 is, for example, in the range of 200 ° C. or more and 450 ° C. or less, and the heating time is, for example, 0.5 minute or more and 20 minutes or more. Within the following range.

電着法は、電荷を有する絶縁樹脂粒子が分散されている電着液に超電導線材11と電極とを浸漬し、超電導線材11と電極との間に直流電圧を印加することによって、超電導線材11の表面に絶縁樹脂粒子を電着させて電着層を形成し、次いで電着層を加熱して、生成した絶縁皮膜を超電導線材11に焼き付ける方法である。電着液は、例えば、絶縁樹脂の溶液に、絶縁樹脂の貧溶媒や水を添加することによって調製することができる。電着層を加熱して、生成した絶縁皮膜を超電導線材11に焼き付ける際の加熱温度は、上記の塗布法の場合と同じである。   In the electrodeposition method, the superconducting wire 11 and the electrode are immersed in an electrodeposition solution in which insulating resin particles having electric charge are dispersed, and a DC voltage is applied between the superconducting wire 11 and the electrode to form the superconducting wire 11. Is a method in which insulating resin particles are electrodeposited on the surface of the substrate to form an electrodeposited layer, and then the electrodeposited layer is heated to bake the resulting insulating film on the superconducting wire 11. The electrodeposition liquid can be prepared, for example, by adding a poor solvent or water for the insulating resin to a solution of the insulating resin. The heating temperature at the time of heating the electrodeposition layer and baking the generated insulating film on the superconducting wire 11 is the same as in the above-described coating method.

以上のような構成とされた第一実施形態の超電導線材11によれば、チャネル溝21と超電導多芯線材30とが、チャネル溝21の底部に形成されている接合材層40を介して接合されており、接合材の上に直接、絶縁皮膜を形成しないこととなる。このため、超電導線材11を絶縁皮膜50で被覆する際に、はんだのフラックスや酸化銀の還元剤など接合材に起因するガスが絶縁皮膜50に入りにくくなり、絶縁皮膜50に気泡が発生しにくくなる。また、チャネル溝21と超電導多芯線材30とが、チャネル溝21の底部に形成されている接合材層40を介して接合されているので、チャネル溝と超電導芯線材との間にはんだを充填する場合と比較して、接合材の使用量を少なくすることができる。このため、超電導線材11を絶縁皮膜50で被覆する際に、接合材に起因するガスの生成量が少なくなり、絶縁皮膜50に気泡が発生しにくくなる。   According to the superconducting wire 11 of the first embodiment configured as described above, the channel groove 21 and the superconducting multi-core wire 30 are joined via the joining material layer 40 formed at the bottom of the channel groove 21. Therefore, the insulating film is not formed directly on the bonding material. Therefore, when the superconducting wire 11 is coated with the insulating film 50, a gas derived from the bonding material such as a flux of solder or a reducing agent of silver oxide hardly enters the insulating film 50, and bubbles are hardly generated in the insulating film 50. Become. Further, since the channel groove 21 and the superconducting multi-core wire 30 are joined via the joining material layer 40 formed at the bottom of the channel groove 21, the space between the channel groove and the superconducting core wire is filled with solder. The amount of the joining material used can be reduced as compared with the case of performing the bonding. Therefore, when the superconducting wire 11 is covered with the insulating film 50, the amount of gas generated due to the bonding material is reduced, and bubbles are less likely to be generated in the insulating film 50.

また、第一実施形態の超電導線材11において、チャネル20のチャネル溝21を溝開放側から平面視したときに、チャネル溝21の内部に接合材層40が見られない場合、超電導線材11を絶縁皮膜50で被覆する際に、接合材層40と絶縁樹脂が接触しないので、接合材に起因するガスが絶縁皮膜50に入りにくくなり、絶縁皮膜50に気泡がより発生しにくくなる。   In the superconducting wire 11 of the first embodiment, when the bonding material layer 40 is not seen inside the channel groove 21 when the channel groove 21 of the channel 20 is viewed in plan from the groove opening side, the superconducting wire 11 is insulated. Since the bonding material layer 40 and the insulating resin do not come into contact with each other when the coating is performed with the film 50, the gas due to the bonding material is less likely to enter the insulating film 50, and bubbles are less likely to be generated in the insulating film 50.

また、第一実施形態の超電導線材11において、接合材層40が、導電性接合材層である場合、超電導多芯線材30とチャネル20との導電性が向上するので、超電導多芯線材30の超電導状態が部分的に破れて常電導状態に転移したときは、超電導多芯線材30を流れていた電流をチャネル20に効率よく迂回させることができる。   In the superconducting wire 11 of the first embodiment, when the bonding material layer 40 is a conductive bonding material layer, the conductivity between the superconducting multi-core wire 30 and the channel 20 is improved. When the superconducting state is partially broken and transitions to the normal conducting state, the current flowing through the superconducting multi-core wire 30 can be efficiently diverted to the channel 20.

また、第一実施形態の超電導線材11において、導電性接合材層が、はんだペーストの硬化体もしくは銀ペーストの焼結体である場合、超電導多芯線材30とチャネルとの導電性が確実に向上するので、超電導多芯線材30の超電導状態が部分的に破れて常電導状態に転移したときは、超電導多芯線材30を流れていた電流をチャネル20に効率よく確実に迂回させることができる。   In the superconducting wire 11 of the first embodiment, when the conductive bonding material layer is a cured body of a solder paste or a sintered body of a silver paste, the conductivity between the superconducting multi-core wire 30 and the channel is reliably improved. Therefore, when the superconducting state of the superconducting multi-core wire 30 partially breaks and the superconducting multi-core wire 30 transitions to the normal conducting state, the current flowing through the superconducting multi-core wire 30 can be efficiently and reliably diverted to the channel 20.

また、第一実施形態の超電導線材11において、超電導芯線材35が、超電導多芯線材30である場合、高い超電導性を有するので、長期間にわたってより高い超電導性を維持することができる。   Further, in the superconducting wire 11 of the first embodiment, when the superconducting core wire 35 is the superconducting multi-core wire 30, the superconducting wire has high superconductivity, so that higher superconductivity can be maintained for a long period of time.

第二実施形態の絶縁超電導線材12によれば、上述の超電導線材11に絶縁皮膜50を形成するので、絶縁皮膜50に気泡が発生しにくい。このため、第二実施形態の絶縁超電導線材12は、長期間にわたって高い超電導性を維持することができる。   According to the insulated superconducting wire 12 of the second embodiment, since the insulating film 50 is formed on the above-described superconducting wire 11, bubbles are not easily generated in the insulating film 50. For this reason, the insulated superconducting wire 12 of the second embodiment can maintain high superconductivity for a long period of time.

以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、本実施形態では、超電導芯線材35として超電導多芯線材30を用いているが、この場合に限定されない。例えば、超電導芯線材35として、単一の金属線を用いてもよい。
As described above, the embodiments of the present invention have been described, but the present invention is not limited thereto, and can be appropriately changed without departing from the technical idea of the present invention.
For example, in the present embodiment, the superconducting multi-core wire 30 is used as the superconducting core wire 35, but the present invention is not limited to this case. For example, a single metal wire may be used as superconducting core wire 35.

次に、本発明の作用効果を実施例により説明する。   Next, the operation and effect of the present invention will be described with reference to examples.

[本発明例1]
超電導多芯線材として、銅製の母材と、この母材に埋設されているNbTi合金フィラメントとからなる断面円形状の線材(直径:0.66mm、耐熱温度:300℃)を用意した。また、チャネルとして、底部が超電導多芯線材の形状に沿って湾曲しているチャネル溝(溝の幅:0.66mm)を備えた銅製のチャネルを用意した。
[Example 1 of the present invention]
As the superconducting multi-core wire, a wire having a circular cross section (diameter: 0.66 mm, heat-resistant temperature: 300 ° C.) composed of a copper base material and an NbTi alloy filament embedded in the base material was prepared. In addition, a copper channel provided with a channel groove (groove width: 0.66 mm) whose bottom is curved along the shape of the superconducting multi-core wire was prepared as the channel.

チャネルのチャネル溝の底部にディスペンサーを用いて、はんだペースト(はんだ粉:Sn95Sb、はんだ粉の融点:238℃)を塗布して、幅0.5mm、厚さ0.03mmのはんだペースト層を形成した。次に、チャネル溝に超電導多芯線材を収容した。次いで、超電導多芯線材をチャネル溝に押し付けながら、はんだペースト層を260℃で3分間加熱して溶融させた後、冷却して、はんだペースト層を硬化させて超電導線材を作製した。得られた超電導線材のチャネルのチャネル溝を溝開放側から平面視したところ、チャネル溝の内部に、はんだペーストの硬化体は見られなかった。 A solder paste (solder powder: Sn 95 Sb 5 , melting point of solder powder: 238 ° C.) is applied to the bottom of the channel groove of the channel using a dispenser, and a solder paste layer having a width of 0.5 mm and a thickness of 0.03 mm is applied. Was formed. Next, the superconducting multi-core wire was accommodated in the channel groove. Next, while the superconducting multi-core wire was pressed against the channel groove, the solder paste layer was heated and melted at 260 ° C. for 3 minutes, then cooled, and the solder paste layer was cured to produce a superconducting wire. When the channel groove of the channel of the obtained superconducting wire was viewed in plan from the groove opening side, no cured body of the solder paste was found inside the channel groove.

得られた超電導線材の表面に、電着法により絶縁皮膜を形成して絶縁超電導線材を製造した。具体的には、次のようにして絶縁皮膜を形成した。先ず、負の電荷を有するポリアミドイミド(PAI)粒子と水を含有する電着液に、超電導線材と電極とを浸漬した。次いで、超電導線材を正極とし、電極を負極として直流電圧を印加して、超電導線材の表面に乾燥後の皮膜の厚さが40μmとなるようにPAI粒子を電着させて、電着層を形成した。そして、電着層を形成した超電導線材を、280℃の温度で4分間乾燥・焼き付け処理を行って、絶縁超電導線材を製造した。   An insulating film was formed on the surface of the obtained superconducting wire by an electrodeposition method to produce an insulating superconducting wire. Specifically, an insulating film was formed as follows. First, a superconducting wire and an electrode were immersed in an electrodeposition solution containing polyamide-imide (PAI) particles having a negative charge and water. Then, a DC voltage is applied with the superconducting wire as a positive electrode and the electrode as a negative electrode, and PAI particles are electrodeposited on the surface of the superconducting wire so that the thickness of the film after drying becomes 40 μm, thereby forming an electrodeposition layer. did. The superconducting wire on which the electrodeposition layer was formed was dried and baked at a temperature of 280 ° C. for 4 minutes to produce an insulated superconducting wire.

得られた絶縁超電導線材の絶縁皮膜の表面全体を、マイクロスコープ顕微鏡にて観察し、直径100μm以上の気泡の数をカウントした。その結果、絶縁超電導線材1mあたりの気泡数は1個/m未満であり、絶縁超電導線材の絶縁皮膜にはほとんど気泡が発生していなかった。   The entire surface of the insulating film of the obtained insulating superconducting wire was observed with a microscope, and the number of bubbles having a diameter of 100 μm or more was counted. As a result, the number of bubbles per meter of the insulated superconducting wire was less than 1 / m, and almost no bubbles were generated in the insulating film of the insulated superconducting wire.

[本発明例2]
はんだペーストの代わりに、銀ペースト(銀粉の平均粒子径:10μm、銀粉の焼結温度:250℃)を用いたこと以外は、本発明例1と同様にして超電導線材を作製し、得られた超電導線材の表面に、電着法により絶縁皮膜を形成して絶縁超電導線材を製造した。そして、得られた絶縁超電導線材の絶縁皮膜の気泡の数を、本発明例1と同様にカウントした。その結果、絶縁超電導線材1mあたりの気泡数は1個/m未満であり、絶縁超電導線材の絶縁皮膜にはほとんど気泡が発生していなかった。
[Example 2 of the present invention]
A superconducting wire was produced and obtained in the same manner as in Example 1 of the present invention, except that a silver paste (average particle diameter of silver powder: 10 μm, sintering temperature of silver powder: 250 ° C.) was used instead of the solder paste. An insulating film was formed on the surface of the superconducting wire by electrodeposition to produce an insulated superconducting wire. Then, the number of bubbles in the insulating film of the obtained insulating superconducting wire was counted in the same manner as in Inventive Example 1. As a result, the number of bubbles per meter of the insulated superconducting wire was less than 1 / m, and almost no bubbles were generated in the insulating film of the insulated superconducting wire.

[比較例1]
超電導線材を次のようにして作製したこと以外は、本発明例1と同様にして絶縁超電導線材を製造した。
チャネルのチャネル溝に、Sn95Sbはんだを260℃に加熱して生成させた溶融はんだを充填した。次に、チャネルのチャネル溝に超電導多芯線材を収容した。次いで、チャネル表面に付着した溶融はんだを除去した後、溶融はんだを冷却して硬化させて、絶縁超電導線材を作製した。得られた超電導線材のチャネルのチャネル溝を溝開放側から平面視したところ、チャネル溝と超電導多芯線材との間には、はんだ硬化体が露出していることが確認された。
[Comparative Example 1]
An insulated superconducting wire was manufactured in the same manner as in Inventive Example 1 except that the superconducting wire was prepared as follows.
The channel groove of the channel was filled with molten solder generated by heating Sn 95 Sb 5 solder to 260 ° C. Next, the superconducting multi-core wire was accommodated in the channel groove of the channel. Next, after removing the molten solder adhered to the channel surface, the molten solder was cooled and cured to produce an insulated superconducting wire. When the channel groove of the channel of the obtained superconducting wire was viewed in plan from the groove opening side, it was confirmed that the cured solder was exposed between the channel groove and the superconducting multi-core wire.

得られた絶縁超電導線材のチャネル溝と超電導多芯線材との間のはんだ硬化体の上に形成された絶縁皮膜の気泡の数を、本発明例1と同様にカウントした。その結果、絶縁超電導線材1mあたりの気泡数は10個/mであり、絶縁超電導線材のはんだ硬化体の上の絶縁皮膜には多数の気泡が発生していることが確認された。   The number of bubbles of the insulating film formed on the cured solder between the channel groove of the obtained insulated superconducting wire and the superconducting multi-core wire was counted in the same manner as in Inventive Example 1. As a result, the number of bubbles per meter of the insulated superconducting wire was 10 / m, and it was confirmed that many bubbles were generated in the insulating film on the cured solder of the insulated superconducting wire.

11 超電導線材
12 絶縁超電導線材
20 チャネル
21 チャネル溝
22 開口部
30 超電導多芯線材
31 金属母材
32 超電導フィラメント
33 電気絶縁層
35 超電導芯線材
40 接合材層
41 接合材ペースト層
50 絶縁皮膜
REFERENCE SIGNS LIST 11 superconducting wire 12 insulated superconducting wire 20 channel 21 channel groove 22 opening 30 superconducting multi-core wire 31 metal base material 32 superconducting filament 33 electric insulating layer 35 superconducting core wire 40 bonding material layer 41 bonding material paste layer 50 insulating film

Claims (5)

チャネル溝を備えたチャネルと、前記チャネルの前記チャネル溝に収容されている超電導芯線材とを備え、
前記チャネル溝と前記超電導芯線材とが、前記チャネル溝の底部に形成されている接合材層を介して接合され、
前記チャネルの前記チャネル溝を溝開放側から平面視したときに、前記チャネル溝の内部に前記接合材層が見られないことを特徴とする超電導線材。
A channel having a channel groove, comprising a superconducting core wire housed in the channel groove of the channel,
The channel groove and the superconducting core wire are bonded via a bonding material layer formed at the bottom of the channel groove,
A superconducting wire, wherein the bonding material layer is not seen inside the channel groove when the channel groove of the channel is viewed in plan from the groove opening side.
前記接合材層が、導電性接合材層であることを特徴とする請求項1に記載の超電導線材。   The superconducting wire according to claim 1, wherein the bonding material layer is a conductive bonding material layer. 前記導電性接合材層が、はんだペーストの硬化体もしくは銀ペーストの焼結体からなることを特徴とする請求項2に記載の超電導線材。   3. The superconducting wire according to claim 2, wherein the conductive bonding material layer is formed of a cured body of a solder paste or a sintered body of a silver paste. 4. 前記超電導芯線材が、金属母材、および前記金属母材に埋設されている複数本の超電導フィラメントからなる超電導多芯線材であることを特徴とする請求項1から3のいずれか一項に記載の超電導線材。   The said superconducting core wire is a superconducting multicore wire consisting of a metal base material and a plurality of superconducting filaments embedded in the metal base material, The superconducting core wire material according to any one of claims 1 to 3, wherein Superconducting wire. 請求項1から4のいずれか一項に記載の超電導線材と、前記超電導線材の少なくとも一部を被覆する絶縁皮膜とを備えることを特徴とする絶縁超電導線材。   An insulated superconducting wire, comprising: the superconducting wire according to any one of claims 1 to 4; and an insulating coating covering at least a part of the superconducting wire.
JP2018132238A 2018-07-12 2018-07-12 Superconducting wire rod and insulated superconducting wire rod Pending JP2020009709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018132238A JP2020009709A (en) 2018-07-12 2018-07-12 Superconducting wire rod and insulated superconducting wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018132238A JP2020009709A (en) 2018-07-12 2018-07-12 Superconducting wire rod and insulated superconducting wire rod

Publications (1)

Publication Number Publication Date
JP2020009709A true JP2020009709A (en) 2020-01-16

Family

ID=69152277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018132238A Pending JP2020009709A (en) 2018-07-12 2018-07-12 Superconducting wire rod and insulated superconducting wire rod

Country Status (1)

Country Link
JP (1) JP2020009709A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116741459A (en) * 2023-07-05 2023-09-12 广东中实金属有限公司 Preparation method of ultra-large copper grooved wire for superconducting cable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116741459A (en) * 2023-07-05 2023-09-12 广东中实金属有限公司 Preparation method of ultra-large copper grooved wire for superconducting cable
CN116741459B (en) * 2023-07-05 2024-01-02 广东中实金属有限公司 Preparation method of copper grooved wire for superconducting cable

Similar Documents

Publication Publication Date Title
KR102157059B1 (en) Method of producing surface-mount inductor
JP6481777B2 (en) Electronic component and manufacturing method thereof
US10186376B2 (en) Coil component comprising a plurality of coated conductive wires and manufacturing method thereof
JP6070288B2 (en) Ceramic multilayer electronic components
JP2013211333A (en) Method of manufacturing surface mount inductor
KR20100063328A (en) Method to make round wire and superconducting wire using superconducting tape
JP6070287B2 (en) Ceramic multilayer electronic components
JP2009187743A (en) Superconductive tape wire rod, and repair method of defective portion
JP6481776B2 (en) Coil component and manufacturing method thereof
JP2020009709A (en) Superconducting wire rod and insulated superconducting wire rod
WO2019188654A1 (en) Method for manufacturing insulating superconductive wire rod
JP2001217470A (en) High-temperature superconductive element and its manufacturing method
WO2019188711A1 (en) Method for manufacturing insulating superconductive wire rod
JP4391066B2 (en) Multi-layered superconducting conductor terminal structure and manufacturing method thereof
JP6947097B2 (en) Manufacturing method of insulated superconducting wire
JPH08186050A (en) Electronic device and production thereof
JP2021125474A (en) Coil component and manufacturing method thereof
JP2021057455A (en) Coil component, circuit board, and electronic device
JP2019169468A (en) Superconducting wire material and insulated superconducting wire material
JPH10275641A (en) Superconductor and alternating current metal terminal connecting structure
WO2019177026A1 (en) Method for manufacturing insulated conductor wire material
JP2019160636A (en) Coating die and manufacturing method of insulation conductor wire material
JP2002185118A (en) Soldering method
WO2019182049A1 (en) Superconducting wire material and insulated superconducting wire material
JP2021022508A (en) Insulative superconducting wire rod, manufacturing method of insulative superconducting wire rod, and superconducting coil