WO2019182049A1 - Superconducting wire material and insulated superconducting wire material - Google Patents

Superconducting wire material and insulated superconducting wire material Download PDF

Info

Publication number
WO2019182049A1
WO2019182049A1 PCT/JP2019/011839 JP2019011839W WO2019182049A1 WO 2019182049 A1 WO2019182049 A1 WO 2019182049A1 JP 2019011839 W JP2019011839 W JP 2019011839W WO 2019182049 A1 WO2019182049 A1 WO 2019182049A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
wire
superconducting wire
channel
channel groove
Prior art date
Application number
PCT/JP2019/011839
Other languages
French (fr)
Japanese (ja)
Inventor
桜井 英章
駒井 栄治
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019046015A external-priority patent/JP2019169468A/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2019182049A1 publication Critical patent/WO2019182049A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/10Multi-filaments embedded in normal conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a superconducting wire and an insulating superconducting wire having a wire-in-channel structure.
  • an insulated superconducting wire in which the surface of the superconducting wire is covered with an insulating film is known.
  • This insulated superconducting wire is used as a superconducting cable and a superconducting coil.
  • Superconducting cables are used, for example, as power transmission lines.
  • Superconducting coils are used in fields such as a magnetic resonance imaging (MRI) device, a nuclear magnetic resonance (NMR) device, a particle accelerator, a linear motor car, and a power storage device.
  • a superconducting wire there is known a structure (wire-in-channel (WIC) structure) in which a superconducting core wire is accommodated and fixed in a channel groove of a channel (also referred to as a stabilizing material) having a channel groove.
  • WIC wire-in-channel
  • a superconducting core wire a superconducting multi-core wire (also referred to as a superconducting core material) comprising a metal base material and a plurality of superconducting filaments embedded in the metal base material is widely used.
  • Patent Document 1 discloses a superconducting wire having a WIC structure that is housed and fixed in a channel groove in a state where the periphery of the superconducting multi-core wire is covered with an electrical insulating layer.
  • This Patent Document 1 exemplifies a polymer-based insulator selected from the group consisting of polyvinyl acetal resin, polyethyleneimine, polyethylene terephthalate, glass fiber, polyester, and polyimide as a material for the electrical insulating layer.
  • a method of manufacturing a superconducting wire having a WIC structure a method is known in which a superconducting core wire is inserted into a channel groove of a channel and the channel groove and the superconducting core wire are fixed using solder.
  • the superconducting wire is inserted into the channel groove of the channel, the side wall of the channel groove is tightened so as to be pressed against the superconducting wire, and the upper end of the side wall of the channel groove
  • Patent Document 2 A method of caulking so as to cover the upper portion of the superconducting wire is known (Patent Document 2).
  • the superconducting core wires of the superconducting wire need to be electrically connected and insulated so as not to be short-circuited.
  • a braiding method As a method of forming a superconducting wire with an insulating film, a braiding method, a coating method, and an electrodeposition method are known.
  • the braiding method is a method in which a braided string made of a plurality of fibers is knitted around a superconducting wire and insulated.
  • the coating method is a method in which a varnish containing a resin for forming an insulating film and a solvent is applied to the surface of the superconducting wire to form a coating layer, and then the coating layer is heated and the generated insulating film is baked onto the superconducting wire. It is.
  • the electrodeposition method is performed by immersing a superconducting wire and an electrode in an electrodeposition liquid in which charged insulating resin particles are dispersed, and applying a DC voltage between the superconducting wire and the electrode to obtain a surface of the superconducting wire. Insulating resin particles are electrodeposited to form an electrodeposited layer, then the electrodeposited layer is heated, and the resulting insulating film is baked onto the superconducting wire.
  • the braiding method requires a facility for producing a braided string, which increases the cost of the facility.
  • the coating method or the electrodeposition method is applied to a superconducting wire having a WIC structure
  • the superconducting wire moves in the channel groove, and the superconducting multicore wire and the channel
  • a gap might occur between them.
  • a superconducting wire with a WIC structure when the superconducting state of the superconducting multicore wire is partially broken and transitions to the normal conducting state, a large amount of heat is generated in the superconducting multicore wire, and the generated heat is transferred to the channel.
  • the gap between the superconducting multi-core wire and the channel is small and the thermal conductivity is high.
  • the superconducting multi-core wire is covered with an electrical insulating layer, if the insulating film is heated to be baked on the superconducting wire, a gap is generated between the superconducting multi-core wire and the channel, and the thermal conductivity is reduced. There was a tendency for damage to occur.
  • the present invention has been made in view of the above-described circumstances, and its purpose is to provide a structure between a superconducting core wire and a channel when heated even though the superconducting core wire is covered with an electrical insulating layer. It is an object of the present invention to provide a superconducting wire and an insulating superconducting wire having a WIC structure in which gaps are unlikely to occur and high superconductivity can be maintained over a long period of time.
  • a superconducting wire according to an aspect of the present invention includes a channel including a channel groove having an opening, and the channel groove of the channel.
  • a superconducting wire comprising a superconducting core wire housed and fixed in the core, wherein the superconducting core wire is covered with an electrically insulating layer, and the width of the opening of the channel groove is larger than the diameter of the superconducting core wire. It is characterized by being set narrowly.
  • the channel groove is set so that the width of the opening is narrower than the diameter of the superconducting core wire, and the superconducting core material and the electrical insulating layer are in strong contact with each other. Difficult to move in the groove.
  • the superconducting wire of the present invention has a configuration in which the superconducting core wire is covered with an electrically insulating layer, but when heated, it becomes difficult for a gap to be generated between the superconducting core wire and the channel, and for a long period of time. High superconductivity can be maintained.
  • the opening of the channel groove may be closed.
  • the superconducting core material and the electrical insulation layer are in greater contact, the superconducting core wire is less likely to move within the channel groove, and more gaps are generated between the superconducting core wire and the channel when heated. It becomes difficult.
  • the superconducting core wire is a superconducting multi-core wire comprising a metal base material and a plurality of superconducting filaments embedded in the metal base material.
  • the superconducting core wire is a superconducting multi-core wire composed of a metal base material and a plurality of superconducting filaments embedded in the metal base material, and has high superconductivity. Sex can be maintained.
  • An insulated superconducting wire according to an aspect of the present invention includes the above-described superconducting wire and an insulating film covering at least a part of the superconducting wire. Yes.
  • the insulated superconducting wire of the present invention since the superconducting wire is the above-described superconducting wire, the superconducting core wire hardly moves in the channel groove. For this reason, the insulated superconducting wire of the present invention is less likely to generate a gap between the superconducting core wire and the channel, and can maintain high superconductivity over a long period of time.
  • the surface of the channel may be covered with the insulating film, and the surface of the electrical insulating layer may not be covered with the insulating film.
  • the amount of the insulating film used can be reduced by the amount that the surface of the electrical insulating layer is not covered with the insulating film while maintaining sufficient insulation, and the overall weight of the insulating superconducting wire can be reduced.
  • a superconducting core wire is covered with an electrical insulating layer, but when heated, a gap is hardly generated between the superconducting core wire and the channel, and high superconductivity is maintained over a long period of time. It is possible to provide a superconducting wire having a WIC structure and an insulating superconducting wire that can be used.
  • FIG. 1 is a cross-sectional view of a superconducting wire according to the first embodiment of the present invention.
  • the superconducting wire 11 according to the first embodiment includes a channel 20 having a channel groove 21 and a superconducting core wire 35 accommodated and fixed in the channel groove 21.
  • the cross-sectional shape of the superconducting wire 11 is a substantially quadrangular shape with curvature at the corners.
  • the superconducting core wire 35 is a superconducting multi-core wire 30 composed of a metal base material 31 and a plurality of superconducting filaments 32 embedded in the metal base material 31.
  • the superconducting multi-core wire 30 is covered with an electrical insulating layer 33.
  • the cross-sectional shape of the superconducting multi-core wire 30 is circular, but the cross-sectional shape of the superconducting multi-core wire 30 is not particularly limited, and for example, a rectangular with a curved corner. It may be a shape.
  • the channel groove 21 is set so that the width W of the opening 22 is narrower than the diameter ⁇ of the superconducting multicore wire 30.
  • the width W of the opening 22 is a distance of a portion where the interval between the groove side surfaces is the narrowest in the cross section of the channel groove 21.
  • the superconducting wire moves in the channel groove when heated to bake the insulating film on the superconducting wire. Thus, a gap may be generated between the superconducting multi-core wire and the channel.
  • the width W of the opening 22 of the channel groove 21 is narrower than the diameter ⁇ of the superconducting multicore wire 30 so that the superconducting multicore wire 30 does not move in the channel groove 21. It is set as follows.
  • the width W of the opening 22 of the channel groove 21 preferably satisfies the following formula (1). ( ⁇ -50 ⁇ m) ⁇ W ⁇ (1)
  • is the diameter of the superconducting multicore wire 30 and is generally in the range of 500 ⁇ m to 1500 ⁇ m.
  • the channel groove 21 has a protrusion 23 formed on the inner wall, and the width W of the opening 22 is set to be narrower than the diameter ⁇ of the superconducting multi-core wire 30 by the protrusion 23.
  • the protrusion 23 is preferably in contact with the electrical insulating layer 33 covering the superconducting multicore wire 30. When the protruding portion 23 is in contact with the electrical insulating layer 33, the superconducting multi-core wire 30 is less likely to move in the channel groove 21.
  • the material of the channel 20 for example, copper, copper alloy, aluminum, or aluminum alloy can be used.
  • the metal base material 31 of the superconducting multicore wire 30 for example, copper, copper alloy, aluminum, or aluminum alloy can be used.
  • the superconducting filament 32 of the superconducting multicore wire 30 for example, NbTi alloy or Nb 3 Sn can be used.
  • the material for the electrical insulating layer 33 include insulating resins such as polyvinyl acetal resin, polyethyleneimine resin, polyethylene terephthalate resin, glass fiber, polyester resin, formalized polyvinyl alcohol resin, polyvinyl alcohol resin, polyamideimide resin, and polyimide resin. Can be used. One of these insulating resins may be used alone, or two or more thereof may be used in combination.
  • the thickness of the electrical insulating layer 33 is, for example, in the range of 5 ⁇ m to 60 ⁇ m.
  • FIGS. 2A and 2B are cross-sectional views illustrating an example of a method for manufacturing a superconducting wire according to the first embodiment.
  • the width of the opening 42 of the channel groove 41 is set wider than the diameter of the superconducting multicore wire 30.
  • the superconducting multi-core wire 30 is accommodated in the channel groove 41 of the channel 40.
  • the channel 40 is pressurized in the direction of the arrow from the side surface to form a protrusion 43 on the inner wall of the opening 42 of the channel groove 41.
  • the width of the opening 42 of the channel groove 41 is made smaller than the diameter of the superconducting multicore wire 30.
  • FIGS. 3A and 3B are cross-sectional views showing another example of the method for manufacturing a superconducting wire according to the first embodiment.
  • the channel 20 in which the width of the opening 22 of the channel groove 21 is set narrower than the diameter of the superconducting multicore wire 30 is formed.
  • both ends of the upper surface of the channel 20 are pressed in the direction of the arrow, and are bent so that the width of the opening 22 of the channel groove 21 is wider than the diameter of the superconducting multicore wire 30.
  • the superconducting multi-core wire 30 is accommodated in the channel groove 21. Then, both ends of the lower surface of the channel 20 are pressurized in the direction of the arrow to return the channel 20 to its original shape.
  • a method of manufacturing the superconducting wire a method of press-fitting the superconducting multi-core wire 30 into the channel groove 21 can be used.
  • the opening 22 of the channel groove 21 is open, but the opening 22 may be closed.
  • An example of a superconducting wire having an opening 22 in the channel groove 21 is shown in FIG. In FIG. 4, portions common to the superconducting wire 11 of the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
  • the protrusions 23 protrude from both sides of the inner wall of the channel groove 21 so as to come into contact with each other, whereby the opening 22 of the channel groove 21 is closed. .
  • the contact area between the inner wall of the channel groove 21 and the superconducting wire 11 is increased, the superconducting multi-core wire 30 and the channel groove 21 are more strongly in contact with each other through the electrical insulating layer 33. For this reason, the superconducting multi-core wire 30 is less likely to move in the channel groove 21.
  • FIG. 5 is a cross-sectional view of an insulated superconducting wire according to the third embodiment of the present invention.
  • the insulated superconducting wire 13 shown in FIG. 5 includes a superconducting wire 11 and an insulating film 60 that covers the superconducting wire 11. Since the superconducting wire 11 is the same as the superconducting wire 11 of the first embodiment described above, the same reference numerals are given and detailed description is omitted.
  • the insulating film 60 preferably has a thickness in the range of 5 ⁇ m to 60 ⁇ m.
  • a material of the insulating film 60 for example, it is generally used as a material of an insulating film of an insulating superconducting wire such as formalized polyvinyl alcohol resin, polyvinyl alcohol resin, polyamideimide resin, polyimide resin, polyesterimide resin, polyester resin, polyurethane resin, etc. Can be used.
  • the insulating film 60 covers the entire surface of the superconducting wire 11.
  • the insulated superconducting wire 13 having such a configuration can be manufactured by a coating method. That is, the insulating superconducting wire 13 is formed by applying a varnish containing a resin for forming an insulating film and a solvent to the surface of the superconducting wire 11 to form a coating layer, and then heating the coating layer to form the generated insulating coating.
  • the superconducting wire 11 can be manufactured by a method of baking. As a method of applying the varnish to the surface of the superconducting wire 11, a dipping method in which the superconducting wire 11 is immersed in the varnish can be used.
  • FIG. 6 is a cross-sectional view of an insulated superconducting wire according to the fourth embodiment of the present invention.
  • the surface of the channel 20 is covered with an insulating film 60, and the electrically insulating layer 33 covering the superconducting multicore wire 30 is not covered with the insulating film 60. It differs from the insulated superconducting wire 13 of the third embodiment. Since the other points are the same as those of the insulated superconducting wire 13 of the third embodiment, the same reference numerals are given and detailed description is omitted.
  • the usage amount of the insulating film 60 can be reduced by the amount that the surface of the electrical insulating layer 33 is not covered with the insulating film 60, and the insulated superconducting wire as a whole. 14 can be reduced in weight.
  • the insulated superconducting wire 14 of the fourth embodiment can be manufactured by an electrodeposition method. That is, the insulating superconducting wire 14 is obtained by immersing the superconducting wire 11 and the electrode in an electrodeposition liquid in which charged insulating resin particles are dispersed, and applying a DC voltage between the superconducting wire 11 and the electrode. In this method, the insulating resin particles are electrodeposited on the surface of the superconducting wire 11 to form an electrodeposited layer, and then the electrodeposited layer is heated to burn the generated insulating film onto the superconducting wire 11. In the electrodeposition method, since the insulating resin particles are not electrodeposited on the surface of the superconducting multi-core wire 30 covered with the electrical insulating layer 33, only the surface of the channel 20 is covered with the insulating film 60.
  • the channel groove 21 has a width W of the opening 22 from the diameter ⁇ of the superconducting multicore wire 30. Since the superconducting multicore wire 30 is covered with the electrical insulating layer 33, the superconducting multicore wire 30 hardly moves in the channel groove 21 when heated. For this reason, the superconducting wire 11 of the first embodiment and the superconducting wire 12 of the second embodiment are less likely to generate a gap between the superconducting multicore wire 30 and the channel 20 and maintain high superconductivity over a long period of time. be able to.
  • the superconducting multi-core wire 30 and the electrical insulating layer 33 are more strongly in contact with each other. For this reason, the superconducting multicore wire 30 is less likely to move in the channel groove 21, and a gap is less likely to be generated between the superconducting multicore wire 30 and the channel 20 when heated.
  • the superconducting wire 11 of the first embodiment and the superconducting wire 12 of the second embodiment use the superconducting multi-core wire 30 as the superconducting core wire 35, higher superconductivity can be maintained over a long period of time. .
  • the superconducting multicore wire 30 is a channel groove 21. Difficult to move in. For this reason, the insulated superconducting wire 13 of the third embodiment and the insulated superconducting wire 14 of the fourth embodiment are less likely to generate a gap between the superconducting multi-core wire 30 and the channel 20, and have high superconductivity over a long period of time. Can be maintained.
  • the superconducting multi-core wire 30 is used as the superconducting core wire 35, but the present invention is not limited to this case.
  • a single metal wire may be used as the superconducting core wire 35.
  • the superconducting wire 11 of the first embodiment in which the opening 22 of the channel groove 21 is opened is used. You may use the superconducting wire 12 of 2nd embodiment by which the part 22 is obstruct
  • a WIC structure that has a configuration in which a superconducting core wire is covered with an electrical insulating layer, but hardly generates a gap between the superconducting core wire and a channel when heated, and can maintain high superconductivity over a long period of time. It is possible to provide a superconducting wire and an insulating superconducting wire.

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

This superconducting wire material includes: a channel provided with a channel groove having an opening; and a superconducting core wire material that is accommodated and secured in the channel groove of the channel. The superconducting wire material is characterized in that: the superconducting core wire material is covered with an electrical insulation layer; and the width of the opening of the channel groove is set to be narrower than the diameter of the superconducting core wire material.

Description

超電導線材および絶縁超電導線材Superconducting wire and insulated superconducting wire
 本発明は、ワイヤー・イン・チャネル構造の超電導線材および絶縁超電導線材に関するものである。
 本願は、2018年3月22日に、日本に出願された特願2018-054691号、および2019年3月13日に、日本に出願された特願2019-046015号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a superconducting wire and an insulating superconducting wire having a wire-in-channel structure.
This application claims priority based on Japanese Patent Application No. 2018-054691 filed in Japan on March 22, 2018 and Japanese Patent Application No. 2019-046015 filed on March 13, 2019 in Japan. , The contents of which are incorporated herein.
 絶縁電導線材の一つとして、超電導線材の表面を絶縁皮膜で被覆した絶縁超電導線材が知られている。この絶縁超電導線材は、超電導ケーブル、超電導コイルとして利用されている。超電導ケーブルは、例えば、送電線として使用されている。超電導コイルは、例えば、磁気共鳴画像(MRI)装置、核磁気共鳴(NMR)装置、粒子加速器、リニアモーターカー、さらに電力貯蔵装置などの分野で使用されている。 As one of the insulated conductive wires, an insulated superconducting wire in which the surface of the superconducting wire is covered with an insulating film is known. This insulated superconducting wire is used as a superconducting cable and a superconducting coil. Superconducting cables are used, for example, as power transmission lines. Superconducting coils are used in fields such as a magnetic resonance imaging (MRI) device, a nuclear magnetic resonance (NMR) device, a particle accelerator, a linear motor car, and a power storage device.
 超電導線材としては、超電導芯線材を、チャネル溝を備えたチャネル(安定化材ともいう)のチャネル溝に収容固定した構造(ワイヤー・イン・チャネル(WIC)構造)のものが知られている。超電導芯線材としては、金属母材と、この金属母材に埋設されている複数本の超電導フィラメントとからなる超電導多芯線材(超電導コア材ともいう)が広く利用されている。 As a superconducting wire, there is known a structure (wire-in-channel (WIC) structure) in which a superconducting core wire is accommodated and fixed in a channel groove of a channel (also referred to as a stabilizing material) having a channel groove. As a superconducting core wire, a superconducting multi-core wire (also referred to as a superconducting core material) comprising a metal base material and a plurality of superconducting filaments embedded in the metal base material is widely used.
 特許文献1には、超電導多芯線材の周囲を電気絶縁層で被覆した状態で、チャネル溝に収容固定したWIC構造の超電導線材が開示されている。この特許文献1には電気絶縁層の材料としては、ポリビニルアセタール樹脂、ポリエチレンイミン、ポリエチレンテレフタラート、ガラス繊維、ポリエステル、およびポリイミドからなる群から選択されたポリマベースの絶縁体が例示されている。 Patent Document 1 discloses a superconducting wire having a WIC structure that is housed and fixed in a channel groove in a state where the periphery of the superconducting multi-core wire is covered with an electrical insulating layer. This Patent Document 1 exemplifies a polymer-based insulator selected from the group consisting of polyvinyl acetal resin, polyethyleneimine, polyethylene terephthalate, glass fiber, polyester, and polyimide as a material for the electrical insulating layer.
 WIC構造の超電導線材の製造方法として、チャネルのチャネル溝に超電導芯線材を挿入し、半田を用いて、チャネル溝と超電導芯線材とを固定する方法が知られている。また、半田を用いずにWIC構造の超電導線材を製造する方法として、チャネルのチャネル溝に超電導線材を挿入し、チャネル溝の側壁を超電導線材に圧接するように締め付けると共に、チャネル溝側壁の上端部によって超電導線材の上部を覆い被せるようにかしめる方法が知られている(特許文献2)。 As a method of manufacturing a superconducting wire having a WIC structure, a method is known in which a superconducting core wire is inserted into a channel groove of a channel and the channel groove and the superconducting core wire are fixed using solder. In addition, as a method of manufacturing a superconducting wire having a WIC structure without using solder, the superconducting wire is inserted into the channel groove of the channel, the side wall of the channel groove is tightened so as to be pressed against the superconducting wire, and the upper end of the side wall of the channel groove A method of caulking so as to cover the upper portion of the superconducting wire is known (Patent Document 2).
 ところで、上記WIC構造の超電導線材を超電導コイルとして用いる場合には、超電導線材の超電導芯線材同士が、電気的に接続して短絡しないように絶縁することが必要となる。超電導線材を絶縁皮膜で被膜を形成する方法として、ブレーディング法、塗布法、電着法が知られている。ブレーディング法は、複数本の繊維からなる編み紐を、超電導線材を中心に編み込んで絶縁被覆する方法である。塗布法は、絶縁皮膜形成用の樹脂と溶剤とを含むワニスを、超電導線材の表面に塗布して塗布層を形成し、次いで塗布層を加熱して、生成した絶縁皮膜を超電導線材に焼き付ける方法である。電着法は、電荷を有する絶縁樹脂粒子が分散されている電着液に超電導線材と電極とを浸漬し、この超電導線材と電極との間に直流電圧を印加することによって、超電導線材の表面に絶縁樹脂粒子を電着させて電着層を形成し、次いで電着層を加熱して、生成した絶縁皮膜を超電導線材に焼き付ける方法である。 By the way, when the superconducting wire having the WIC structure is used as a superconducting coil, the superconducting core wires of the superconducting wire need to be electrically connected and insulated so as not to be short-circuited. As a method of forming a superconducting wire with an insulating film, a braiding method, a coating method, and an electrodeposition method are known. The braiding method is a method in which a braided string made of a plurality of fibers is knitted around a superconducting wire and insulated. The coating method is a method in which a varnish containing a resin for forming an insulating film and a solvent is applied to the surface of the superconducting wire to form a coating layer, and then the coating layer is heated and the generated insulating film is baked onto the superconducting wire. It is. The electrodeposition method is performed by immersing a superconducting wire and an electrode in an electrodeposition liquid in which charged insulating resin particles are dispersed, and applying a DC voltage between the superconducting wire and the electrode to obtain a surface of the superconducting wire. Insulating resin particles are electrodeposited to form an electrodeposited layer, then the electrodeposited layer is heated, and the resulting insulating film is baked onto the superconducting wire.
日本国特表2017-533579号公報(A)Japanese National Table 2017-533579 (A) 日本国特許第4213290号公報(B)Japanese Patent No. 4213290 (B)
 しかしながら、ブレーディング法は、編み紐を作製するための設備が必要となり、設備のコストが高くなるという問題となる。一方、塗布法や電着法は、WIC構造の超電導線材に適用すると、絶縁皮膜を超電導線材に焼き付けるために加熱すると、超電導線材がチャネル溝内で移動して、超電導多芯線材とチャネルとの間に隙間が発生することがあるという問題があった。WIC構造の超電導線材では、超電導多芯線材の超電導状態が部分的に破れて常電導状態に転移した場合には、超電導多芯線材にて多量の熱が発生し、その発生した熱を、チャネルを介して外部に放出することが必要となる。このため、超電導多芯線材とチャネルとの間は、隙間が少なく、熱伝導性が高いことが望ましい。しかしながら、超電導多芯線材が電気絶縁層で被覆されている場合は、絶縁皮膜を超電導線材に焼き付けるために加熱すると、超電導多芯線材とチャネルとの間に隙間が発生して、熱伝導性が損なわれることが起こりやすい傾向があった。 However, the braiding method requires a facility for producing a braided string, which increases the cost of the facility. On the other hand, when the coating method or the electrodeposition method is applied to a superconducting wire having a WIC structure, when the insulating film is heated to be baked on the superconducting wire, the superconducting wire moves in the channel groove, and the superconducting multicore wire and the channel There was a problem that a gap might occur between them. In a superconducting wire with a WIC structure, when the superconducting state of the superconducting multicore wire is partially broken and transitions to the normal conducting state, a large amount of heat is generated in the superconducting multicore wire, and the generated heat is transferred to the channel. It is necessary to discharge to the outside via For this reason, it is desirable that the gap between the superconducting multi-core wire and the channel is small and the thermal conductivity is high. However, when the superconducting multi-core wire is covered with an electrical insulating layer, if the insulating film is heated to be baked on the superconducting wire, a gap is generated between the superconducting multi-core wire and the channel, and the thermal conductivity is reduced. There was a tendency for damage to occur.
 本発明は、前述した事情に鑑みてなされたものであって、その目的は、超電導芯線材が電気絶縁層で被覆されている構成でありながらも加熱した際に超電導芯線材とチャネルとの間に隙間が発生しにくく、長期間にわたって高い超電導性を維持することができるWIC構造の超電導線材および絶縁超電導線材を提供することにある。 The present invention has been made in view of the above-described circumstances, and its purpose is to provide a structure between a superconducting core wire and a channel when heated even though the superconducting core wire is covered with an electrical insulating layer. It is an object of the present invention to provide a superconducting wire and an insulating superconducting wire having a WIC structure in which gaps are unlikely to occur and high superconductivity can be maintained over a long period of time.
 上記の課題を解決するために、本発明の一態様の超電導線材(以下、「本発明の超電導線材」と称する)は、開口部を有するチャネル溝を備えたチャネルと、前記チャネルの前記チャネル溝に収容固定されている超電導芯線材とを含む超電導線材であって、前記超電導芯線材は電気絶縁層で被覆されており、前記チャネル溝の前記開口部の幅が前記超電導芯線材の直径よりも狭く設定されていることを特徴としている。 In order to solve the above problems, a superconducting wire according to an aspect of the present invention (hereinafter referred to as “superconducting wire of the present invention”) includes a channel including a channel groove having an opening, and the channel groove of the channel. A superconducting wire comprising a superconducting core wire housed and fixed in the core, wherein the superconducting core wire is covered with an electrically insulating layer, and the width of the opening of the channel groove is larger than the diameter of the superconducting core wire. It is characterized by being set narrowly.
 本発明の超電導線材によれば、チャネル溝は、開口部の幅が超電導芯線材の直径よりも狭く設定されていて、超電導芯材と電気絶縁層とが強く接触するので、超電導芯線材がチャネル溝内で移動しにくい。このため、本発明の超電導線材は、超電導芯線材は電気絶縁層で被覆された構成でありながらも加熱した際に、超電導芯線材とチャネルとの間に隙間が発生しにくくなり、長期間にわたって高い超電導性を維持することができる。 According to the superconducting wire of the present invention, the channel groove is set so that the width of the opening is narrower than the diameter of the superconducting core wire, and the superconducting core material and the electrical insulating layer are in strong contact with each other. Difficult to move in the groove. For this reason, the superconducting wire of the present invention has a configuration in which the superconducting core wire is covered with an electrically insulating layer, but when heated, it becomes difficult for a gap to be generated between the superconducting core wire and the channel, and for a long period of time. High superconductivity can be maintained.
 ここで、本発明の超電導線材において、前記チャネル溝の前記開口部は閉塞されていてもよい。
 この場合、超電導芯材と電気絶縁層とがより強く接触するので、超電導芯線材がチャネル溝内でより移動しにくくなり、加熱した際に超電導芯線材とチャネルとの間に隙間がより発生しにくくなる。
Here, in the superconducting wire of the present invention, the opening of the channel groove may be closed.
In this case, since the superconducting core material and the electrical insulation layer are in greater contact, the superconducting core wire is less likely to move within the channel groove, and more gaps are generated between the superconducting core wire and the channel when heated. It becomes difficult.
 また、本発明の超電導線材において、前記超電導芯線材は、金属母材と、この金属母材に埋設されている複数本の超電導フィラメントとからなる超電導多芯線材であることが好ましい。
 この場合、超電導芯線材は、金属母材と、この金属母材に埋設されている複数本の超電導フィラメントとからなる超電導多芯線材であり、高い超電導性を有するので、長期間にわたってより高い超電導性を維持することができる。
In the superconducting wire of the present invention, it is preferable that the superconducting core wire is a superconducting multi-core wire comprising a metal base material and a plurality of superconducting filaments embedded in the metal base material.
In this case, the superconducting core wire is a superconducting multi-core wire composed of a metal base material and a plurality of superconducting filaments embedded in the metal base material, and has high superconductivity. Sex can be maintained.
 本発明の一態様の絶縁超電導線材(以下、「本発明の絶縁超電導線材」と称する)は、上述の超電導線材と、前記超電導線材の少なくとも一部を被覆する絶縁皮膜とを備えることを特徴としている。 An insulated superconducting wire according to an aspect of the present invention (hereinafter referred to as “insulated superconducting wire of the present invention”) includes the above-described superconducting wire and an insulating film covering at least a part of the superconducting wire. Yes.
 本発明の絶縁超電導線材によれば、超電導線材が上述の超電導線材とされているので、超電導芯線材がチャネル溝内で移動しにくい。このため、本発明の絶縁超電導線材は、超電導芯線材とチャネルとの間に隙間が発生しにくくなり、長期間にわたって高い超電導性を維持することができる。 According to the insulated superconducting wire of the present invention, since the superconducting wire is the above-described superconducting wire, the superconducting core wire hardly moves in the channel groove. For this reason, the insulated superconducting wire of the present invention is less likely to generate a gap between the superconducting core wire and the channel, and can maintain high superconductivity over a long period of time.
 ここで、本発明の絶縁超電導線材において、前記チャネルは表面が前記絶縁皮膜で被覆され、前記電気絶縁層は表面が前記絶縁皮膜で被覆されていない構成とされていてもよい。
 この場合、十分な絶縁性を保ちながら、電気絶縁層の表面が絶縁皮膜で被覆されていない分だけ絶縁皮膜の使用量を減らすことができ、全体として絶縁超電導線材の軽量化が可能となる。
Here, in the insulated superconducting wire of the present invention, the surface of the channel may be covered with the insulating film, and the surface of the electrical insulating layer may not be covered with the insulating film.
In this case, the amount of the insulating film used can be reduced by the amount that the surface of the electrical insulating layer is not covered with the insulating film while maintaining sufficient insulation, and the overall weight of the insulating superconducting wire can be reduced.
 本発明によれば、超電導芯線材が電気絶縁層で被覆されている構成でありながらも加熱した際に超電導芯線材とチャネルとの間に隙間が発生しにくく、長期間にわたって高い超電導性を維持することができるWIC構造の超電導線材および絶縁超電導線材を提供することが可能となる。 According to the present invention, a superconducting core wire is covered with an electrical insulating layer, but when heated, a gap is hardly generated between the superconducting core wire and the channel, and high superconductivity is maintained over a long period of time. It is possible to provide a superconducting wire having a WIC structure and an insulating superconducting wire that can be used.
本発明の第一実施形態に係る超電導線材の横断面図である。It is a cross-sectional view of the superconducting wire according to the first embodiment of the present invention. 本発明の第一実施形態に係る超電導線材の一例の製造方法を説明する横断面図である。It is a cross-sectional view explaining the manufacturing method of an example of the superconducting wire which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る超電導線材の一例の製造方法を説明する横断面図である。It is a cross-sectional view explaining the manufacturing method of an example of the superconducting wire which concerns on 1st embodiment of this invention. 本発明の一実施形態である超電導線材の別の製造方法の一例を説明する横断面図である。It is a cross-sectional view explaining an example of another manufacturing method of the superconducting wire which is one Embodiment of this invention. 本発明の一実施形態である超電導線材の別の製造方法の一例を説明する横断面図である。It is a cross-sectional view explaining an example of another manufacturing method of the superconducting wire which is one Embodiment of this invention. 本発明の第二実施形態に係る超電導線材の横断面図である。It is a cross-sectional view of the superconducting wire according to the second embodiment of the present invention. 本発明の第三実施形態に係る絶縁超電導線材の横断面図である。It is a cross-sectional view of the insulated superconducting wire according to the third embodiment of the present invention. 本発明の第四実施形態に係る絶縁超電導線材の横断面図である。It is a cross-sectional view of the insulated superconducting wire according to the fourth embodiment of the present invention.
 以下に、本発明の一実施形態である超電導線材および絶縁超電導線材について、添付した図面を参照して説明する。 Hereinafter, a superconducting wire and an insulating superconducting wire which are one embodiment of the present invention will be described with reference to the accompanying drawings.
 図1は、本発明の第一実施形態に係る超電導線材の横断面図である。
 図1に示すように、第一実施形態に係る超電導線材11は、チャネル溝21を備えたチャネル20と、チャネル溝21に収容固定されている超電導芯線材35とを備える。超電導線材11の断面形状は、角部に曲率のある略四角形状とされている。超電導芯線材35は、金属母材31と、金属母材31に埋設されている複数本の超電導フィラメント32とからなる超電導多芯線材30とされている。超電導多芯線材30は、電気絶縁層33で被覆されている。なお、図1に示す超電導線材11では、超電導多芯線材30の断面形状が円形とされているが、超電導多芯線材30の断面形状は特に制限はなく、例えば、角部に曲率のある平角形状であってもよい。
FIG. 1 is a cross-sectional view of a superconducting wire according to the first embodiment of the present invention.
As shown in FIG. 1, the superconducting wire 11 according to the first embodiment includes a channel 20 having a channel groove 21 and a superconducting core wire 35 accommodated and fixed in the channel groove 21. The cross-sectional shape of the superconducting wire 11 is a substantially quadrangular shape with curvature at the corners. The superconducting core wire 35 is a superconducting multi-core wire 30 composed of a metal base material 31 and a plurality of superconducting filaments 32 embedded in the metal base material 31. The superconducting multi-core wire 30 is covered with an electrical insulating layer 33. In the superconducting wire 11 shown in FIG. 1, the cross-sectional shape of the superconducting multi-core wire 30 is circular, but the cross-sectional shape of the superconducting multi-core wire 30 is not particularly limited, and for example, a rectangular with a curved corner. It may be a shape.
 チャネル溝21は、開口部22の幅Wが、超電導多芯線材30の直径φよりも狭くなるように設定されている。開口部22の幅Wとは、チャネル溝21の横断面において、溝側面の間隔が最も狭い部分の距離である。
 チャネル溝の開口部の幅が超電導多芯線材の直径よりも広く設定されている従来のWIC構造の超電導線材では、絶縁皮膜を超電導線材に焼き付けるために加熱すると超電導線材がチャネル溝内で移動して、超電導多芯線材とチャネルとの間に隙間が発生することがあった。加熱によって超電導線材がチャネル溝内で移動する理由は、必ずしも明らかではないが、金属母材と超電導フィラメントの熱膨張係数の違いによって超電導多芯線材自体がねじれること、仮に電気絶縁層が樹脂で形成されている場合は、超電導多芯線材を被覆している電気絶縁層(絶縁樹脂層)から発生する揮発成分に超電導多芯線材が押されることなどが考えられる。そこで、本実施形態の超電導線材11では、超電導多芯線材30がチャネル溝21内で移動しないように、チャネル溝21の開口部22の幅Wを超電導多芯線材30の直径φよりも狭くなるように設定している。
The channel groove 21 is set so that the width W of the opening 22 is narrower than the diameter φ of the superconducting multicore wire 30. The width W of the opening 22 is a distance of a portion where the interval between the groove side surfaces is the narrowest in the cross section of the channel groove 21.
In the conventional WIC structure superconducting wire in which the width of the opening of the channel groove is set wider than the diameter of the superconducting multi-core wire, the superconducting wire moves in the channel groove when heated to bake the insulating film on the superconducting wire. Thus, a gap may be generated between the superconducting multi-core wire and the channel. The reason why the superconducting wire moves in the channel groove by heating is not necessarily clear, but the superconducting multi-core wire itself is twisted due to the difference in thermal expansion coefficient between the metal base material and the superconducting filament, and the electrical insulating layer is formed of resin. In such a case, it is conceivable that the superconducting multicore wire is pushed by a volatile component generated from the electrical insulating layer (insulating resin layer) covering the superconducting multicore wire. Therefore, in the superconducting wire 11 of the present embodiment, the width W of the opening 22 of the channel groove 21 is narrower than the diameter φ of the superconducting multicore wire 30 so that the superconducting multicore wire 30 does not move in the channel groove 21. It is set as follows.
 チャネル溝21の開口部22の幅Wは、下記の式(1)を満足することが好ましい。
   (φ-50μm)≦W<φ・・・(1)
 ここで、φは、超電導多芯線材30の直径であり、一般に500μm以上1500μm以下の範囲内である。
The width W of the opening 22 of the channel groove 21 preferably satisfies the following formula (1).
(Φ-50μm) ≦ W <φ (1)
Here, φ is the diameter of the superconducting multicore wire 30 and is generally in the range of 500 μm to 1500 μm.
 チャネル溝21は、内壁に突出部23が形成されており、この突出部23によって開口部22の幅Wが超電導多芯線材30の直径φよりも狭くなるように設定されている。突出部23は、超電導多芯線材30を被覆している電気絶縁層33と接していることが好ましい。突出部23が電気絶縁層33と接することによって、超電導多芯線材30がチャネル溝21内で移動しにくくなる。 The channel groove 21 has a protrusion 23 formed on the inner wall, and the width W of the opening 22 is set to be narrower than the diameter φ of the superconducting multi-core wire 30 by the protrusion 23. The protrusion 23 is preferably in contact with the electrical insulating layer 33 covering the superconducting multicore wire 30. When the protruding portion 23 is in contact with the electrical insulating layer 33, the superconducting multi-core wire 30 is less likely to move in the channel groove 21.
 チャネル20の材料としては、例えば、銅、銅合金、アルミニウム、アルミニウム合金を用いることができる。超電導多芯線材30の金属母材31の材料としては、例えば、銅、銅合金、アルミニウム、アルミニウム合金を用いることができる。超電導多芯線材30の超電導フィラメント32の材料としては、例えば、NbTi合金、NbSnを用いることができる。電気絶縁層33の材料としては、例えば、ポリビニルアセタール樹脂、ポリエチレンイミン樹脂、ポリエチレンテレフタラート樹脂、ガラス繊維、ポリエステル樹脂、ホルマール化ポリビニルアルコール樹脂、ポリビニルアルコール樹脂、ポリアミドイミド樹脂、ポリイミド樹脂などの絶縁樹脂を用いることができる。これらの絶縁樹脂は1種を単独で使用してもよいし、2種以上を組合せて使用してもよい。電気絶縁層33の厚さは、例えば、5μm以上60μm以下の範囲内である。 As the material of the channel 20, for example, copper, copper alloy, aluminum, or aluminum alloy can be used. As a material of the metal base material 31 of the superconducting multicore wire 30, for example, copper, copper alloy, aluminum, or aluminum alloy can be used. As a material of the superconducting filament 32 of the superconducting multicore wire 30, for example, NbTi alloy or Nb 3 Sn can be used. Examples of the material for the electrical insulating layer 33 include insulating resins such as polyvinyl acetal resin, polyethyleneimine resin, polyethylene terephthalate resin, glass fiber, polyester resin, formalized polyvinyl alcohol resin, polyvinyl alcohol resin, polyamideimide resin, and polyimide resin. Can be used. One of these insulating resins may be used alone, or two or more thereof may be used in combination. The thickness of the electrical insulating layer 33 is, for example, in the range of 5 μm to 60 μm.
 次に、第一実施形態に係る超電導線材の製造方法について説明する。
 図2A及び図2Bは、第一実施形態に係る超電導線材の製造方法の一例を示す横断面図である。
 図2A及び図2Bに示す超電導線材の製造方法では、先ず、図2Aに示すように、チャネル溝41の開口部42の幅が、超電導多芯線材30の直径よりも広く設定されているチャネル40を用意する。そして、このチャネル40のチャネル溝41に、超電導多芯線材30を収容する。
Next, the manufacturing method of the superconducting wire according to the first embodiment will be described.
2A and 2B are cross-sectional views illustrating an example of a method for manufacturing a superconducting wire according to the first embodiment.
In the superconducting wire manufacturing method shown in FIGS. 2A and 2B, first, as shown in FIG. 2A, the width of the opening 42 of the channel groove 41 is set wider than the diameter of the superconducting multicore wire 30. Prepare. The superconducting multi-core wire 30 is accommodated in the channel groove 41 of the channel 40.
 次いで、図2Bに示すように、チャネル40を側面から矢印方向に加圧して、チャネル溝41の開口部42の内壁に突出部43を形成させる。この突出部43を形成することによって、チャネル溝41の開口部42の幅を超電導多芯線材30の直径よりも狭くする。 Next, as shown in FIG. 2B, the channel 40 is pressurized in the direction of the arrow from the side surface to form a protrusion 43 on the inner wall of the opening 42 of the channel groove 41. By forming the protrusion 43, the width of the opening 42 of the channel groove 41 is made smaller than the diameter of the superconducting multicore wire 30.
 図3A及び図3Bは、第一実施形態に係る超電導線材の製造方法の別の一例を示す横断面図である。
 図3A及び図3Bに示す超電導線材の製造方法では、先ず、図3Aに示すように、チャネル溝21の開口部22の幅が超電導多芯線材30の直径よりも狭く設定されているチャネル20を用意する。そして、このチャネル20の上面の両端を矢印方向に加圧して、チャネル溝21の開口部22の幅が超電導多芯線材30の直径よりも広くなるように折り曲げる。
3A and 3B are cross-sectional views showing another example of the method for manufacturing a superconducting wire according to the first embodiment.
In the superconducting wire manufacturing method shown in FIGS. 3A and 3B, first, as shown in FIG. 3A, the channel 20 in which the width of the opening 22 of the channel groove 21 is set narrower than the diameter of the superconducting multicore wire 30 is formed. prepare. Then, both ends of the upper surface of the channel 20 are pressed in the direction of the arrow, and are bent so that the width of the opening 22 of the channel groove 21 is wider than the diameter of the superconducting multicore wire 30.
 次いで、図3Bに示すように、チャネル溝21に超電導多芯線材30を収容する。そして、チャネル20を下面の両端を矢印方向に加圧して、チャネル20を元の形状に戻す。 Next, as shown in FIG. 3B, the superconducting multi-core wire 30 is accommodated in the channel groove 21. Then, both ends of the lower surface of the channel 20 are pressurized in the direction of the arrow to return the channel 20 to its original shape.
 また、超電導線材の製造方法として、チャネル溝21に超電導多芯線材30を圧入する方法を用いることができる。この場合は、チャネル溝21の開口部22の幅Wと、超電導多芯線材30の直径φとの差を50μm以下として、幅Wと直径φとの差を小さくすることが好ましい。 Also, as a method of manufacturing the superconducting wire, a method of press-fitting the superconducting multi-core wire 30 into the channel groove 21 can be used. In this case, it is preferable to set the difference between the width W of the opening 22 of the channel groove 21 and the diameter φ of the superconducting multicore wire 30 to 50 μm or less, and to reduce the difference between the width W and the diameter φ.
 第一実施形態に係る超電導線材11では、チャネル溝21の開口部22は開口しているが、開口部22は閉塞されていてもよい。チャネル溝21の開口部22が開口している超電導線材の例を図4に示す。なお、図4において、上述の第一実施形態の超電導線材11と共通する部分は同一の符号を付してその説明を省略する。 In the superconducting wire 11 according to the first embodiment, the opening 22 of the channel groove 21 is open, but the opening 22 may be closed. An example of a superconducting wire having an opening 22 in the channel groove 21 is shown in FIG. In FIG. 4, portions common to the superconducting wire 11 of the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
 図4に示す第二実施形態に係る超電導線材11では、チャネル溝21の内壁の両側から突出部23が互いに接触がするように突出することによって、チャネル溝21の開口部22が閉塞されている。この場合、チャネル溝21の内壁と超電導線材11との接触面積が大きくなるので、超電導多芯線材30とチャネル溝21とが電気絶縁層33を介してより強く接触する。このため、超電導多芯線材30がチャネル溝21内でより移動しにくくなる。 In the superconducting wire 11 according to the second embodiment shown in FIG. 4, the protrusions 23 protrude from both sides of the inner wall of the channel groove 21 so as to come into contact with each other, whereby the opening 22 of the channel groove 21 is closed. . In this case, since the contact area between the inner wall of the channel groove 21 and the superconducting wire 11 is increased, the superconducting multi-core wire 30 and the channel groove 21 are more strongly in contact with each other through the electrical insulating layer 33. For this reason, the superconducting multi-core wire 30 is less likely to move in the channel groove 21.
 次に、絶縁超電導線材について説明する。
 図5は、本発明の第三実施形態に係る絶縁超電導線材の横断面図である。
 図5に示す絶縁超電導線材13は、超電導線材11と、超電導線材11を被覆する絶縁皮膜60とを備える。超電導線材11は、上述の第一実施形態の超電導線材11と同じであるので、同一の符号を付して、詳細な説明を省略する。
Next, the insulated superconducting wire will be described.
FIG. 5 is a cross-sectional view of an insulated superconducting wire according to the third embodiment of the present invention.
The insulated superconducting wire 13 shown in FIG. 5 includes a superconducting wire 11 and an insulating film 60 that covers the superconducting wire 11. Since the superconducting wire 11 is the same as the superconducting wire 11 of the first embodiment described above, the same reference numerals are given and detailed description is omitted.
 絶縁皮膜60は、膜厚が、5μm以上60μm以下の範囲内にあることが好ましい。
 絶縁皮膜60の材料としては、例えば、ホルマール化ポリビニルアルコール樹脂、ポリビニルアルコール樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエステルイミド樹脂、ポリエステル樹脂、ポリウレタン樹脂などの絶縁超電導線材の絶縁皮膜の材料として一般に利用されているものを用いることができる。
The insulating film 60 preferably has a thickness in the range of 5 μm to 60 μm.
As a material of the insulating film 60, for example, it is generally used as a material of an insulating film of an insulating superconducting wire such as formalized polyvinyl alcohol resin, polyvinyl alcohol resin, polyamideimide resin, polyimide resin, polyesterimide resin, polyester resin, polyurethane resin, etc. Can be used.
 絶縁超電導線材13では、絶縁皮膜60が超電導線材11の表面全体を被覆している。このような構成の絶縁超電導線材13は、塗布法によって製造することができる。すなわち、絶縁超電導線材13は、絶縁皮膜形成用の樹脂と溶剤とを含むワニスを、超電導線材11の表面に塗布して塗布層を形成し、次いで塗布層を加熱して、生成した絶縁皮膜を超電導線材11に焼き付ける方法によって製造することができる。超電導線材11の表面にワニスを塗布する方法としては、超電導線材11をワニスに浸漬させるディップ法を用いることができる。 In the insulated superconducting wire 13, the insulating film 60 covers the entire surface of the superconducting wire 11. The insulated superconducting wire 13 having such a configuration can be manufactured by a coating method. That is, the insulating superconducting wire 13 is formed by applying a varnish containing a resin for forming an insulating film and a solvent to the surface of the superconducting wire 11 to form a coating layer, and then heating the coating layer to form the generated insulating coating. The superconducting wire 11 can be manufactured by a method of baking. As a method of applying the varnish to the surface of the superconducting wire 11, a dipping method in which the superconducting wire 11 is immersed in the varnish can be used.
 図6は、本発明の第四実施形態に係る絶縁超電導線材の横断面図である。
 図6に示す絶縁超電導線材14は、チャネル20は表面が絶縁皮膜60で被覆され、超電導多芯線材30を被覆している電気絶縁層33は表面が絶縁皮膜60で被覆されていない点で、第三実施形態の絶縁超電導線材13と相違する。この他の点は、第三実施形態の絶縁超電導線材13と同じであるので、同一の符号を付して、詳細な説明を省略する。
 図6に示す第四実施形態に係る絶縁超電導線材14では、電気絶縁層33の表面が絶縁皮膜60で被覆されていない分だけ絶縁皮膜60の使用量を減らすことができ、全体として絶縁超電導線材14の軽量化が可能となる。
FIG. 6 is a cross-sectional view of an insulated superconducting wire according to the fourth embodiment of the present invention.
In the insulated superconducting wire 14 shown in FIG. 6, the surface of the channel 20 is covered with an insulating film 60, and the electrically insulating layer 33 covering the superconducting multicore wire 30 is not covered with the insulating film 60. It differs from the insulated superconducting wire 13 of the third embodiment. Since the other points are the same as those of the insulated superconducting wire 13 of the third embodiment, the same reference numerals are given and detailed description is omitted.
In the insulated superconducting wire 14 according to the fourth embodiment shown in FIG. 6, the usage amount of the insulating film 60 can be reduced by the amount that the surface of the electrical insulating layer 33 is not covered with the insulating film 60, and the insulated superconducting wire as a whole. 14 can be reduced in weight.
 第四実施形態の絶縁超電導線材14は、電着法によって製造することができる。すなわち、絶縁超電導線材14は、電荷を有する絶縁樹脂粒子が分散されている電着液に、超電導線材11と電極とを浸漬し、超電導線材11と電極との間に直流電圧を印加することによって、超電導線材11の表面に絶縁樹脂粒子を電着させて電着層を形成し、次いで電着層を加熱して、生成した絶縁皮膜を超電導線材11に焼き付ける方法である。電着法では、電気絶縁層33で被覆されている超電導多芯線材30の表面には絶縁樹脂粒子が電着しないので、チャネル20の表面のみが絶縁皮膜60で被覆される。 The insulated superconducting wire 14 of the fourth embodiment can be manufactured by an electrodeposition method. That is, the insulating superconducting wire 14 is obtained by immersing the superconducting wire 11 and the electrode in an electrodeposition liquid in which charged insulating resin particles are dispersed, and applying a DC voltage between the superconducting wire 11 and the electrode. In this method, the insulating resin particles are electrodeposited on the surface of the superconducting wire 11 to form an electrodeposited layer, and then the electrodeposited layer is heated to burn the generated insulating film onto the superconducting wire 11. In the electrodeposition method, since the insulating resin particles are not electrodeposited on the surface of the superconducting multi-core wire 30 covered with the electrical insulating layer 33, only the surface of the channel 20 is covered with the insulating film 60.
 以上のような構成とされた第一実施形態の超電導線材11および第二実施形態の超電導線材12によれば、チャネル溝21は、開口部22の幅Wが超電導多芯線材30の直径φよりも狭く設定されているので、超電導多芯線材30が電気絶縁層33で被覆された構成でありながらも加熱した際に、超電導多芯線材30がチャネル溝21内で移動しにくい。このため、第一実施形態の超電導線材11および第二実施形態の超電導線材12は、超電導多芯線材30とチャネル20との間に隙間が発生しにくくなり、長期間にわたって高い超電導性を維持することができる。特に、第二実施形態の超電導線材12は、チャネル溝21の開口部22は閉塞されているので、超電導多芯線材30と電気絶縁層33とがより強く接触する。このため、超電導多芯線材30がチャネル溝21内でより移動しにくくなり、加熱した際に超電導多芯線材30とチャネル20との間に隙間がより発生しにくくなる。 According to the superconducting wire 11 of the first embodiment and the superconducting wire 12 of the second embodiment configured as described above, the channel groove 21 has a width W of the opening 22 from the diameter φ of the superconducting multicore wire 30. Since the superconducting multicore wire 30 is covered with the electrical insulating layer 33, the superconducting multicore wire 30 hardly moves in the channel groove 21 when heated. For this reason, the superconducting wire 11 of the first embodiment and the superconducting wire 12 of the second embodiment are less likely to generate a gap between the superconducting multicore wire 30 and the channel 20 and maintain high superconductivity over a long period of time. be able to. In particular, in the superconducting wire 12 of the second embodiment, since the opening 22 of the channel groove 21 is closed, the superconducting multi-core wire 30 and the electrical insulating layer 33 are more strongly in contact with each other. For this reason, the superconducting multicore wire 30 is less likely to move in the channel groove 21, and a gap is less likely to be generated between the superconducting multicore wire 30 and the channel 20 when heated.
 また、第一実施形態の超電導線材11および第二実施形態の超電導線材12は、超電導芯線材35として超電導多芯線材30を用いているので、長期間にわたってより高い超電導性を維持することができる。 Further, since the superconducting wire 11 of the first embodiment and the superconducting wire 12 of the second embodiment use the superconducting multi-core wire 30 as the superconducting core wire 35, higher superconductivity can be maintained over a long period of time. .
 第三実施形態の絶縁超電導線材13および第四実施形態の絶縁超電導線材14によれば、超電導線材11が上述の第一実施形態の超電導線材11であるので、超電導多芯線材30がチャネル溝21内で移動しにくい。このため、第三実施形態の絶縁超電導線材13および第四実施形態の絶縁超電導線材14は、超電導多芯線材30とチャネル20との間に隙間が発生しにくくなり、長期間にわたって高い超電導性を維持することができる。 According to the insulated superconducting wire 13 of the third embodiment and the insulated superconducting wire 14 of the fourth embodiment, since the superconducting wire 11 is the superconducting wire 11 of the first embodiment described above, the superconducting multicore wire 30 is a channel groove 21. Difficult to move in. For this reason, the insulated superconducting wire 13 of the third embodiment and the insulated superconducting wire 14 of the fourth embodiment are less likely to generate a gap between the superconducting multi-core wire 30 and the channel 20, and have high superconductivity over a long period of time. Can be maintained.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、超電導芯線材35として超電導多芯線材30を用いているが、この場合に限定されない。例えば、超電導芯線材35として、単一の金属線を用いてもよい。
 また、第三実施形態の絶縁超電導線材13および第四実施形態の絶縁超電導線材14では、チャネル溝21の開口部22が開口している第一実施形態の超電導線材11を用いているが、開口部22が閉塞されている第二実施形態の超電導線材12を用いてもよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, in this embodiment, the superconducting multi-core wire 30 is used as the superconducting core wire 35, but the present invention is not limited to this case. For example, a single metal wire may be used as the superconducting core wire 35.
Further, in the insulated superconducting wire 13 of the third embodiment and the insulated superconducting wire 14 of the fourth embodiment, the superconducting wire 11 of the first embodiment in which the opening 22 of the channel groove 21 is opened is used. You may use the superconducting wire 12 of 2nd embodiment by which the part 22 is obstruct | occluded.
 超電導芯線材が電気絶縁層で被覆されている構成でありながらも加熱した際に超電導芯線材とチャネルとの間に隙間が発生しにくく、長期間にわたって高い超電導性を維持することができるWIC構造の超電導線材および絶縁超電導線材を提供することが可能となる。 A WIC structure that has a configuration in which a superconducting core wire is covered with an electrical insulating layer, but hardly generates a gap between the superconducting core wire and a channel when heated, and can maintain high superconductivity over a long period of time. It is possible to provide a superconducting wire and an insulating superconducting wire.
 11、12 超電導線材
 13、14 絶縁超電導線材
 20、40 チャネル
 21、41 チャネル溝
 22、42 開口部
 23、43 突出部
 30 超電導多芯線材
 31 金属母材
 32 超電導フィラメント
 33 電気絶縁層
 35 超電導芯線材
 60 絶縁皮膜
11, 12 Superconducting wire 13, 14 Insulated superconducting wire 20, 40 Channel 21, 41 Channel groove 22, 42 Opening 23, 43 Protrusion 30 Superconducting multi-core wire 31 Metal base material 32 Superconducting filament 33 Electrical insulation layer 35 Superconducting core wire 60 Insulation film

Claims (5)

  1.  開口部を有するチャネル溝を備えたチャネルと、前記チャネルの前記チャネル溝に収容固定されている超電導芯線材とを含む超電導線材であって、
     前記超電導芯線材は電気絶縁層で被覆されており、
     前記チャネル溝の前記開口部の幅が前記超電導芯線材の直径よりも狭く設定されていることを特徴とする超電導線材。
    A superconducting wire comprising a channel having a channel groove having an opening and a superconducting core wire housed and fixed in the channel groove of the channel,
    The superconducting core wire is covered with an electrical insulating layer,
    A width of the opening of the channel groove is set to be narrower than a diameter of the superconducting core wire.
  2.  前記チャネル溝の前記開口部が閉塞されていることを特徴とする請求項1に記載の超電導線材。 The superconducting wire according to claim 1, wherein the opening of the channel groove is closed.
  3.  前記超電導芯線材は、金属母材と、この金属母材に埋設されている複数本の超電導フィラメントとからなる超電導多芯線材であることを特徴とする請求項1または2に記載の超電導線材。 The superconducting wire according to claim 1 or 2, wherein the superconducting core wire is a superconducting multi-core wire made of a metal base material and a plurality of superconducting filaments embedded in the metal base material.
  4.  請求項1から3のいずれか1項に記載の超電導線材と、前記超電導線材の少なくとも一部を被覆する絶縁皮膜とを備えることを特徴とする絶縁超電導線材。 An insulated superconducting wire comprising the superconducting wire according to any one of claims 1 to 3 and an insulating film covering at least a part of the superconducting wire.
  5.  前記チャネルは表面が前記絶縁皮膜で被覆され、前記電気絶縁層は表面が前記絶縁皮膜で被覆されていないことを特徴とする請求項4に記載の絶縁超電導線材。 The insulated superconducting wire according to claim 4, wherein a surface of the channel is covered with the insulating film, and a surface of the electrical insulating layer is not covered with the insulating film.
PCT/JP2019/011839 2018-03-22 2019-03-20 Superconducting wire material and insulated superconducting wire material WO2019182049A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-054691 2018-03-22
JP2018054691 2018-03-22
JP2019-046015 2019-03-13
JP2019046015A JP2019169468A (en) 2018-03-22 2019-03-13 Superconducting wire material and insulated superconducting wire material

Publications (1)

Publication Number Publication Date
WO2019182049A1 true WO2019182049A1 (en) 2019-09-26

Family

ID=67987301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011839 WO2019182049A1 (en) 2018-03-22 2019-03-20 Superconducting wire material and insulated superconducting wire material

Country Status (1)

Country Link
WO (1) WO2019182049A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134625A (en) * 1996-11-18 1997-05-20 Mitsubishi Cable Ind Ltd Manufacture of insulated superconducting wire
JP2000294053A (en) * 1999-04-12 2000-10-20 Kobe Steel Ltd Stabilized compisite superconductive wire and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134625A (en) * 1996-11-18 1997-05-20 Mitsubishi Cable Ind Ltd Manufacture of insulated superconducting wire
JP2000294053A (en) * 1999-04-12 2000-10-20 Kobe Steel Ltd Stabilized compisite superconductive wire and its manufacture

Similar Documents

Publication Publication Date Title
US2978530A (en) Conductor for transformer windings
RU2684901C2 (en) Metallic assembly containing superconductor
JP2003092218A (en) Coil for electric/electronic equipment, and manufacturing method therefor
KR20160034795A (en) Superconducting cable
JP2017069460A (en) Coil component and manufacturing method therefor
CN103282972A (en) Shielded conducting line structure
KR20220146609A (en) Segmented Superconducting Cable
JP2019169468A (en) Superconducting wire material and insulated superconducting wire material
US3164670A (en) Electrical conductor
WO2019182049A1 (en) Superconducting wire material and insulated superconducting wire material
KR20080066034A (en) Multi-conductor cable for the transmission of alternating currents with a square-wave profile
US20150243409A1 (en) Insulated winding wire containing semi-conductive layers
EP0798950B1 (en) High voltage noise filter and magnetron device using it
KR101514274B1 (en) Single pancake coil bobbin of co-winding structure
JP4824508B2 (en) Litz wire coil
JP2020009668A (en) Superconducting wire rod and insulated superconducting wire rod
CN109643604B (en) High-voltage cable for winding and electromagnetic induction device comprising same
WO2021020386A1 (en) Insulating superconducting wire material, method of manufacturing insulating superconducting wire material, and superconducting coil
US3015686A (en) Article of manufacture utilizing a stranded core construction and method of making
WO2021020382A1 (en) Insulated superconductive wire, production method for insulated superconductive wire, superconductive coil, and channel for insulated superconductive wire
US3142786A (en) Miniaturized aluminum movable coil
US20220336141A1 (en) Transformer
KR100681883B1 (en) Bobbinless solenoid with teflon coated pin
JP3444567B2 (en) Gas insulation induction equipment
US20170194828A1 (en) Electric Engine Stator, Electric Engine, and Electric Engine Stator Coil Insulation Process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771378

Country of ref document: EP

Kind code of ref document: A1