JP6070288B2 - Ceramic multilayer electronic components - Google Patents

Ceramic multilayer electronic components Download PDF

Info

Publication number
JP6070288B2
JP6070288B2 JP2013042650A JP2013042650A JP6070288B2 JP 6070288 B2 JP6070288 B2 JP 6070288B2 JP 2013042650 A JP2013042650 A JP 2013042650A JP 2013042650 A JP2013042650 A JP 2013042650A JP 6070288 B2 JP6070288 B2 JP 6070288B2
Authority
JP
Japan
Prior art keywords
base electrode
glass
laminate
content
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013042650A
Other languages
Japanese (ja)
Other versions
JP2014170875A (en
Inventor
楫野 隆
隆 楫野
潔 畑中
潔 畑中
鈴木 孝志
孝志 鈴木
健治 神
健治 神
佐藤 真一
真一 佐藤
将来 冨田
将来 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2013042650A priority Critical patent/JP6070288B2/en
Publication of JP2014170875A publication Critical patent/JP2014170875A/en
Application granted granted Critical
Publication of JP6070288B2 publication Critical patent/JP6070288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Description

本発明は、セラミック積層電子部品の端子電極構造に関する。   The present invention relates to a terminal electrode structure of a ceramic multilayer electronic component.

セラミック積層電子部品を回路基板に実装したものが、ヒートサイクル試験のような急激な熱変化を受けたとき、あるいはそのような厳しい環境下に置かれたとき、素体や端子電極、はんだ、回路基板等の各々の熱膨張係数差に起因する熱応力により素体にクラックが生じ、その結果、セラミック積層電子部品が機能しなくなる場合がある。近年、カーエレクトロニクスの進展に伴い上記の問題はより深刻になっており、電子部品に要求される耐熱衝撃性は厳しさを増している。   When a ceramic multilayer electronic component mounted on a circuit board is subjected to a rapid thermal change such as a heat cycle test or placed in such a harsh environment, the element body, terminal electrodes, solder, circuit Cracks may occur in the element body due to thermal stress caused by differences in thermal expansion coefficients of the substrates and the like, and as a result, the ceramic multilayer electronic component may not function. In recent years, with the progress of car electronics, the above-mentioned problems have become more serious, and the thermal shock resistance required for electronic components has become increasingly severe.

そこで、この問題を解決する為に、特許文献1では、積層セラミックコンデンサの外部電極において、導電ペーストを塗布し焼き付けた電極層とNiメッキ層との間に金属粉末を含有する導電性のエポキシ系熱硬化性樹脂層を形成することにより、回路基板実装後の熱衝撃によるコンデンサ本体のクラックや外部電極の剥離を抑えるという技術が提案されている。   Therefore, in order to solve this problem, in Patent Document 1, in the external electrode of the multilayer ceramic capacitor, a conductive epoxy system containing a metal powder between an electrode layer coated with a conductive paste and baked, and a Ni plating layer A technique has been proposed in which the formation of a thermosetting resin layer suppresses cracking of the capacitor body and peeling of external electrodes due to thermal shock after circuit board mounting.

特開平11−162771号公報Japanese Patent Application Laid-Open No. 11-162771

特許文献1に開示の技術によれば、下地電極とめっき金属層の間に導電性のエポキシ系熱硬化樹脂層を形成すると、はんだ及び回路基板の収縮に起因する熱応力は緩和でき、同文献の実施例によれば、積層セラミックコンデンサにおいて−55〜150℃の冷却/加熱サイクルを1000回行って、本体のクラックや外部電極の剥離が発生しなかったとされている。しかしながら、カーエレクトロニクスの進展に伴い、セラミック電子部品に求められる耐熱衝撃性は一層厳しくなっており、より急激で高頻度の耐性、例えば−55℃から155℃の熱衝撃を2000サイクル繰り返した場合にも信頼性に問題が無いことなどが要求されている。このような大きい熱衝撃が繰り返し加わると、特許文献1の技術を用いてもなお積層体と下地電極の界面でクラックが発生する場合がある。これは、下地電極の熱膨張係数が一般的に素体の2倍以上であり、これに起因する熱応力により、これに起因する熱応力でクラックが発生すると考えられる。   According to the technique disclosed in Patent Document 1, when a conductive epoxy thermosetting resin layer is formed between the base electrode and the plated metal layer, the thermal stress caused by the shrinkage of the solder and the circuit board can be alleviated. According to this example, the cooling / heating cycle of −55 to 150 ° C. was performed 1000 times in the multilayer ceramic capacitor, and no cracks in the main body or peeling of the external electrodes occurred. However, with the progress of car electronics, the thermal shock resistance required for ceramic electronic parts has become more severe, and when a more rapid and frequent resistance, for example, a thermal shock of −55 ° C. to 155 ° C. is repeated 2000 cycles. However, it is required that there is no problem in reliability. When such a large thermal shock is repeatedly applied, cracks may still occur at the interface between the laminate and the base electrode even if the technique of Patent Document 1 is used. This is because the thermal expansion coefficient of the base electrode is generally twice or more that of the element body, and it is considered that cracks are generated due to the thermal stress caused by this.

本発明は、上記に鑑みてなされたものであって、耐熱衝撃性に優れたセラミック積層電子部品を提供することを目的とする。   The present invention has been made in view of the above, and an object thereof is to provide a ceramic multilayer electronic component having excellent thermal shock resistance.

上述した課題を解決し、目的を達成するために、第1の手段に係るセラミック積層電子部品は、積層体と、金属とガラス成分を含む下地電極と、めっき金属層より構成される端子電極とを有し、前記下地電極は表面領域と中間領域から構成されており、前記表面領域のガラス成分は酸化ビスマスを含み、かつ表面領域のガラス成分中の酸化ビスマスの含有量が、前記中間領域のガラス成分中の酸化ビスマスの含有量より多いことを特徴とする。
これにより、下地電極の表面領域に含まれるガラス成分の焼成時の粘度が低下し、素体の表面領域に拡散して下地電極と積層体の密着性を強固にして熱衝撃が加わったときのクラックの発生を防止する。
In order to solve the above-described problems and achieve the object, a ceramic multilayer electronic component according to a first means includes a laminate, a base electrode including a metal and a glass component, and a terminal electrode composed of a plated metal layer. The base electrode is composed of a surface region and an intermediate region, the glass component of the surface region contains bismuth oxide, and the content of bismuth oxide in the glass component of the surface region is More than the content of bismuth oxide in the glass component.
As a result, the viscosity during firing of the glass component contained in the surface region of the base electrode decreases, and when the thermal shock is applied by diffusing into the surface region of the element body to strengthen the adhesion between the base electrode and the laminate. Prevents the generation of cracks.

第2の手段に係るセラミック積層電子部品は、前記第1の手段に係るセラミック積層電子部品に於いて、下地電極の表面領域のガラス成分中の酸化ビスマスの含有量が下地電極の中間領域の含有量より20質量%以上多いことが好ましい。これにより、下地電極の表面領域に含まれるガラス成分の焼成時の粘度がより低下し、素体の表面領域に拡散して下地電極と積層体の密着性をいっそう強固にして熱衝撃が加わったときのクラックの発生をさらに効果的に防止する。   The ceramic multilayer electronic component according to the second means is the ceramic multilayer electronic component according to the first means, wherein the content of bismuth oxide in the glass component of the surface region of the base electrode is contained in the intermediate region of the base electrode. It is preferable that it is 20 mass% or more than the amount. As a result, the viscosity at the time of firing the glass component contained in the surface region of the base electrode was further reduced and diffused into the surface region of the base body to further strengthen the adhesion between the base electrode and the laminate, and a thermal shock was applied. The occurrence of cracks is further effectively prevented.

第3の手段に係るセラミック積層電子部品は、前記第1の手段又は前記第2の手段に係るセラミック積層電子部品に於いて、素体の露出面がガラスでコーティングされていることが好ましい。これにより、めっき金属層形成時に、めっき液が素体を腐食して積層体の強度が低下することも同時に抑制することが出来、電子部品の耐熱衝撃性をさらに一層向上することが出来る。   In the ceramic laminated electronic component according to the third means, in the ceramic laminated electronic component according to the first means or the second means, the exposed surface of the element body is preferably coated with glass. Thereby, at the time of forming the plating metal layer, it is possible to simultaneously suppress the plating solution from corroding the element body and lowering the strength of the laminated body, thereby further improving the thermal shock resistance of the electronic component.

本発明によれば、セラミック積層電子部品に熱衝撃が加わった場合の、クラック発生を抑制することが出来る。     According to the present invention, it is possible to suppress the occurrence of cracks when a thermal shock is applied to a ceramic multilayer electronic component.

本発明の一実施形態におけるセラミック積層電子部品の概略構造を示す斜視図である。1 is a perspective view showing a schematic structure of a ceramic multilayer electronic component in one embodiment of the present invention. 図1のI−I線の断面図である。It is sectional drawing of the II line | wire of FIG. 本発明の別の実施形態におけるセラミック積層電子部品であり、図1の素体の露出面にガラス層を形成した場合のI−I線の断面図である。It is a ceramic multilayer electronic component in another embodiment of this invention, and is sectional drawing of the II line | wire at the time of forming a glass layer in the exposed surface of the element | base_body of FIG. 図2で酸化ビスマスの測定領域を示す図である。It is a figure which shows the measurement area | region of a bismuth oxide in FIG. 実施例1の下地電極における、酸化ビスマスの深さ方向分布の測定結果を示す図である。It is a figure which shows the measurement result of the depth direction distribution of bismuth oxide in the base electrode of Example 1. 実施例8の下地電極における、酸化ビスマスの深さ方向分布の測定結果を示す図である。It is a figure which shows the measurement result of the depth direction distribution of bismuth oxide in the base electrode of Example 8.

以下、本発明の好適な実施形態について詳細に説明するが、本発明は以下の実施形態に限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments.

本実施形態によるセラミック電子部品の一例として、セラミック積層電子部品の例を示す。図1は、本実施形態に係るセラミック積層電子部品の一例を示す斜視図である。図2は、図1のI−I線における断面図である。   As an example of the ceramic electronic component according to the present embodiment, an example of a ceramic multilayer electronic component is shown. FIG. 1 is a perspective view showing an example of a ceramic multilayer electronic component according to this embodiment. 2 is a cross-sectional view taken along the line II of FIG.

セラミック積層電子部品1は、セラミックスからなる素体2と、複数の内部電極3とを含む積層体4を有し、換言すれば、素体2と内部電極3が積層された単位構造11を少なくとも1つ備えたものである。より具体的には、積層体4の一方の表面に露出した端部を有する内部電極3と、積層体4の他方の表面に露出した端部を有する内部電極3とが交互に積層されている。積層体4の両表面には、それらの表面を覆うように下地電極5が設けられており、各下地電極5は、積層体4の一方の表面から露出した内部電極3の群、あるいは積層体4の他方の面から露出した内部電極3の群に電気的に接続されている。   The ceramic multilayer electronic component 1 has a multilayer body 4 including an element body 2 made of ceramics and a plurality of internal electrodes 3. In other words, at least a unit structure 11 in which the element body 2 and the internal electrodes 3 are laminated is provided. It has one. More specifically, the internal electrodes 3 having end portions exposed on one surface of the laminate 4 and the internal electrodes 3 having end portions exposed on the other surface of the laminate 4 are alternately laminated. . Base electrodes 5 are provided on both surfaces of the laminate 4 so as to cover the surfaces, and each of the base electrodes 5 is a group of internal electrodes 3 exposed from one surface of the laminate 4 or a laminate. 4 is electrically connected to the group of internal electrodes 3 exposed from the other surface.

セラミック積層電子部品1の素体2はセラミックス、具体的には、半導体セラミックス、誘電体セラミックス及び磁性体セラミックスからなる。   The element body 2 of the ceramic multilayer electronic component 1 is made of ceramics, specifically, semiconductor ceramics, dielectric ceramics, and magnetic ceramics.

内部電極3には、素体2との間での確実なオーミック接触を可能とする観点から、例えば、Ag、Pd、Ni、Cu、またはAlを主成分とする材料が用いられるが、特に材料に限定はない。   For the internal electrode 3, for example, a material mainly composed of Ag, Pd, Ni, Cu, or Al is used from the viewpoint of enabling reliable ohmic contact with the element body 2. There is no limitation.

図1に示すように、端子電極7は、積層体4の表面のうち、内部電極3の端部が露出している面を覆う端子電極主面7aと、その周囲の面の一部、すなわち端子電極主面7aから回り込むように側面の一部を覆う端子電極側面7bとから構成される。また図2に示すように、端子電極7の内部構造は下地電極5とめっき金属層6からなる。下地電極5はめっき金属層6を形成する際の下地になり、また端子電極7と積層体4との密着性を確保する。   As shown in FIG. 1, the terminal electrode 7 includes a terminal electrode main surface 7 a that covers the surface of the laminate 4 where the end of the internal electrode 3 is exposed, and a part of the surrounding surface, that is, The terminal electrode side surface 7b covers a part of the side surface so as to go around from the terminal electrode main surface 7a. As shown in FIG. 2, the internal structure of the terminal electrode 7 includes a base electrode 5 and a plated metal layer 6. The base electrode 5 serves as a base when the plated metal layer 6 is formed, and ensures adhesion between the terminal electrode 7 and the laminate 4.

下地電極5は、金属成分とガラス成分を含む構造となっている。このような構造は例えば、積層体4の内部電極3の端部が露出している表面部分への導電性ペーストの塗布および焼成により得られる。下地電極5を形成するための導電性ペーストとしては、主として、ガラス粉末(フリット)と、有機ビヒクル(バインダー)と、金属粉末とを含むものが挙げられ、導電性ペーストの焼成により、有機ビヒクルは揮散し、最終的にガラス成分および金属成分を含む下地電極5が形成される。なお、導電性ペーストには、必要に応じて、粘度調整剤、無機結合剤、酸化剤等種々の添加剤を加えてもよい。例えば、下地電極5は、金属成分としてAg、Cu、Ni、又はZnの少なくとも1種を含む。   The base electrode 5 has a structure including a metal component and a glass component. Such a structure is obtained, for example, by applying and baking a conductive paste on a surface portion where the end of the internal electrode 3 of the laminate 4 is exposed. The conductive paste for forming the base electrode 5 mainly includes a glass powder (frit), an organic vehicle (binder), and a metal powder. By firing the conductive paste, the organic vehicle is The base electrode 5 that volatilizes and finally contains a glass component and a metal component is formed. In addition, you may add various additives, such as a viscosity modifier, an inorganic binder, and an oxidizing agent, to an electrically conductive paste as needed. For example, the base electrode 5 includes at least one of Ag, Cu, Ni, or Zn as a metal component.

下地電極5のガラス成分は酸化ビスマスを含んでいる。そして、図2に示すように、下地電極5を表面領域5aと下地電極の中間領域5bとに分けて比較した場合、下地電極の表面領域5aのガラス成分中における酸化ビスマスの含有量が下地電極の中間領域5bのガラス成分中における酸化ビスマスの含有量より多くなっている。表面領域5aのガラス成分中の酸化ビスマスの含有量が多いと、焼成時のガラス成分の粘度が低下し、積層体4と下地電極5との界面で素体2の表面領域にガラス成分が浸透して、積層体4と下地電極5との密着性が増す。また、焼成時のガラス成分の粘度が低いので、下地電極の表面領域でガラス成分が充分に流動してオープンボイドの発生を抑制する。これにより、端子めっき中にめっき液がオープンボイドから下地電極内部に侵入し、積層体との界面に達して周辺部のガラス成分を溶解し、下地電極と積層体との密着性が低下するのを防ぐことが出来る。これにより激しい熱衝撃を受けても、積層体4と下地電極5との界面にクラックが発生することなく、電子部品の電気特性を維持出来る。   The glass component of the base electrode 5 contains bismuth oxide. As shown in FIG. 2, when the base electrode 5 is divided into the surface region 5a and the intermediate region 5b of the base electrode and compared, the content of bismuth oxide in the glass component of the surface region 5a of the base electrode is the base electrode. More than the content of bismuth oxide in the glass component of the intermediate region 5b. When the content of bismuth oxide in the glass component of the surface region 5a is large, the viscosity of the glass component during firing decreases, and the glass component penetrates into the surface region of the element body 2 at the interface between the laminate 4 and the base electrode 5. Thus, the adhesion between the laminate 4 and the base electrode 5 is increased. Moreover, since the viscosity of the glass component at the time of baking is low, a glass component fully flows in the surface area | region of a base electrode, and generation | occurrence | production of an open void is suppressed. As a result, the plating solution penetrates into the base electrode from the open void during terminal plating, reaches the interface with the laminate, dissolves the peripheral glass components, and decreases the adhesion between the base electrode and the laminate. Can be prevented. As a result, even when subjected to severe thermal shock, the electrical characteristics of the electronic component can be maintained without causing cracks at the interface between the laminate 4 and the base electrode 5.

ガラス成分中における酸化ビスマスの含有量は、中間領域5bより下地電極の表面領域5aの方が20質量%以上多いことが好ましく、30質量%以上多いとさらに好ましい。最も好ましいのは下地電極の表面領域5aの含有量が中間領域5bの含有量より40質量%以上多いことである。   The content of bismuth oxide in the glass component is preferably 20% by mass or more, more preferably 30% by mass or more in the surface region 5a of the base electrode than in the intermediate region 5b. Most preferably, the content of the surface region 5a of the base electrode is 40% by mass or more than the content of the intermediate region 5b.

一方、下地電極5に含まれる全てのガラス成分の酸化ビスマス量を多くすると、ガラス成分の軟化温度が下がり、下地電極に含まれる全てのガラス成分の焼結時の粘度が下がり、ガラス成分が下地電極表面に流れ出して固着不良が発生する。これを避ける為に焼結温度(焼成温度)を下げると、今度は、下地電極に含まれる全てのガラス成分の焼結時の粘度が上がり、積層体と下地電極の界面でガラス成分が素体に充分に浸透せず、積層体と下地電極の密着性が低下する。また、下地電極の表面領域でガラス成分が充分に流動しないので、オープンボイドが発生し、端子めっき中にめっき液がオープンボイドから下地電極内部に侵入し、積層体との界面に達して周辺部のガラス成分を溶解し、下地電極と積層体との密着性を低下するので好ましくない。下地電極5の表面領域5aのガラス成分の酸化ビスマスの含有量のみを大きくすると、下地電極5全体のガラス成分組成が下地電極の中間領域5bのガラス成分組成の場合と同じ温度で焼成することが可能である。また、下地電極5の耐薬品性は下地電極の表面領域5aのガラス成分組成で決まるので、上記の構成にすることで、焼結温度を上げずに、下地電極5全体の耐薬品性を向上することが出来る。   On the other hand, if the amount of bismuth oxide in all the glass components contained in the base electrode 5 is increased, the softening temperature of the glass component is lowered, the viscosity during sintering of all the glass components contained in the base electrode is lowered, and the glass component is the base. It flows out to the electrode surface and a fixing failure occurs. In order to avoid this, if the sintering temperature (firing temperature) is lowered, then the viscosity during sintering of all glass components contained in the base electrode will increase, and the glass component will be at the interface between the laminate and the base electrode. The adhesion between the laminate and the base electrode is reduced. In addition, since the glass component does not flow sufficiently in the surface area of the base electrode, open voids are generated, and the plating solution penetrates into the base electrode from the open voids during terminal plating, reaches the interface with the laminate, and the peripheral part. This is not preferable because the glass component is dissolved and the adhesion between the base electrode and the laminate is lowered. When only the bismuth oxide content of the glass component in the surface region 5a of the base electrode 5 is increased, the glass component composition of the entire base electrode 5 may be fired at the same temperature as in the glass component composition of the intermediate region 5b of the base electrode. Is possible. In addition, since the chemical resistance of the base electrode 5 is determined by the glass component composition of the surface region 5a of the base electrode, the above-described configuration improves the chemical resistance of the base electrode 5 as a whole without increasing the sintering temperature. I can do it.

酸化ビスマスの含有量が下地電極の中間領域5bより下地電極の表面領域5aのほうが多い下地電極の作製方法については特に限定されないが、例えば以下のような方法による。下地電極ペーストでガラス成分の組成中の酸化ビスマス量が多いもの(ペーストH)と少ないもの(ペーストL)の2種類を用意して、積層体4の内部電極の端部が露出している面に、ペーストH、ペーストL、ペーストHの順番で3回繰り返し塗布して、焼成する。   The method for producing the base electrode in which the bismuth oxide content is higher in the surface region 5a of the base electrode than in the intermediate region 5b of the base electrode is not particularly limited. Two types of base electrode paste having a large amount of bismuth oxide (paste H) and a small amount (paste L) in the composition of the glass component are prepared, and the end of the internal electrode of the laminate 4 is exposed. The paste H, paste L, and paste H are repeatedly applied three times in this order and fired.

下地電極5の上記各領域における酸化ビスマス含有量は、下地電極5の深さ方向分布を下記のように測定して、評価する。図3の断面について、まず下地電極の測定領域9を決定する。測定領域9は、まず、積層体4と下地電極5とが接する境界線8の中点から両端へ向けて各1/4の長さをとり、境界線8全体の長さの1/2となる線分Wを決める。この線分の端点からめっき下地電極5と金属層6の界面に向けて延ばした垂線Tと線分Wで囲まれる範囲を測定領域9とする。次に、測定領域9についてEPMAでビスマス含有量の面分析を行う。線分W方向のビスマスの検出量はそれぞれ平均化し、T方向の分布を求める。また、同様にして金属成分検出量の厚みT方向の分布を求め、各深さでのビスマスの検出量を下地電極5の金属成分の検出量で割る。さらにビスマスの検出量に校正で決定される一定の係数をかけて、酸化ビスマス(Bi)の含有量とする。 The bismuth oxide content in each region of the base electrode 5 is evaluated by measuring the depth direction distribution of the base electrode 5 as follows. For the cross section of FIG. 3, first, the measurement region 9 of the base electrode is determined. First, the measurement region 9 takes a length of ¼ from the middle point of the boundary line 8 where the laminate 4 and the base electrode 5 are in contact to both ends, and is ½ of the total length of the boundary line 8. Determine the line segment W. A range surrounded by the perpendicular T and the line W extending from the end point of the line segment toward the interface between the plating base electrode 5 and the metal layer 6 is defined as a measurement region 9. Next, a surface analysis of the bismuth content is performed on the measurement region 9 with EPMA. The detected amounts of bismuth in the line segment W direction are averaged to obtain a distribution in the T direction. Similarly, the distribution of the metal component detection amount in the thickness T direction is obtained, and the detection amount of bismuth at each depth is divided by the detection amount of the metal component of the base electrode 5. Furthermore, the content of bismuth oxide (Bi 2 O 3 ) is obtained by multiplying the detected amount of bismuth by a certain coefficient determined by calibration.

尚、下地電極5の金属成分が複数ある場合はその総和で割る。また、金属成分中にビスマスが含まれる場合は、主成分である金属成分の面分析を行い、これに金属成分中のビスマスの含有量に相当する一定の係数をかけてビスマスの面分析値から引き、それ以外は同様の方法でガラス成分中のビスマスの深さ方向分布を算出する。下地電極5の金属成分の検出量で割るのは、下地電極5の金属成分に対するガラス成分の量が下地電極内で一様でない場合があるからである。これを元に積層体4と下地電極5との境界線8から下地電極5の厚さの1/6の深さまでの酸化ビスマスの検出量の平均値を積層体側の表面領域の含有量とし、めっき金属層6との界面から下地電極5の厚さの1/6の深さまでの酸化ビスマスの検出量の平均値をめっき金属層側の表面領域の含有量とする。両者のうち小さいほうを、表面領域5aの酸化ビスマスの含有量とする。また、上記表面領域以外、すなわちめっき金属層6との界面から下地電極5の厚さの1/6から5/6までの区域の平均値を中間領域5bの酸化ビスマスの含有量とする。   In addition, when there are a plurality of metal components of the base electrode 5, it is divided by the sum. In addition, when bismuth is contained in the metal component, the surface analysis of the metal component as the main component is performed, and this is multiplied by a certain coefficient corresponding to the content of bismuth in the metal component, from the surface analysis value of bismuth. Otherwise, the distribution in the depth direction of bismuth in the glass component is calculated in the same manner. The reason for dividing by the detected amount of the metal component of the base electrode 5 is that the amount of the glass component relative to the metal component of the base electrode 5 may not be uniform within the base electrode. Based on this, the average value of the detected amount of bismuth oxide from the boundary line 8 between the laminate 4 and the base electrode 5 to the depth of 1/6 of the thickness of the base electrode 5 is taken as the content of the surface region on the laminate side, The average value of the detected amount of bismuth oxide from the interface with the plated metal layer 6 to the depth of 1/6 of the thickness of the base electrode 5 is defined as the content of the surface region on the plated metal layer side. The smaller of the two is defined as the bismuth oxide content of the surface region 5a. Further, the average value of the area other than the above-described surface area, that is, the area from the interface with the plated metal layer 6 to 1/6 to 5/6 of the thickness of the base electrode 5 is defined as the content of bismuth oxide in the intermediate area 5b.

めっき金属層6は、例えば、下地電極5側から積層形成されたNiめっき金属層6aおよびSnめっき金属層6bを含む2層構造を有する。Niめっき金属層6aは、実装時に溶融状態のはんだと下地電極5との接触を防止して、はんだ食われを防止するものである。その厚さは例えば2μm程度である。Niめっき金属層6aを厚くするほどはんだ食われは抑制できるが生産性は低下する。またNiめっき金属層6aを電気めっき法で形成する場合は、層を厚くし過ぎると応力が増大し、Niめっき金属層6aと下地電極5間、もしくは下地電極5と積層体4間で剥離が発生する場合がある。   The plated metal layer 6 has, for example, a two-layer structure including a Ni plated metal layer 6a and a Sn plated metal layer 6b that are stacked from the base electrode 5 side. The Ni-plated metal layer 6a prevents contact between the molten solder and the base electrode 5 during mounting, and prevents solder erosion. The thickness is about 2 μm, for example. As the Ni plating metal layer 6a is made thicker, the solder erosion can be suppressed, but the productivity is lowered. Further, when the Ni-plated metal layer 6a is formed by electroplating, the stress increases when the layer is made too thick, and peeling occurs between the Ni-plated metal layer 6a and the base electrode 5 or between the base electrode 5 and the laminate 4. May occur.

Niめっき金属層6aは好ましくは電気めっき法で形成される。めっき装置は電気バレルめっき装置が好ましく用いられる。この場合、バケットと称する不導通性の網籠にチップ及びメディアと称する金属球を投入し、これを回転させながらタンブラーと称する陰極をこの混合体の内部に挿入してめっきを行う。電子はタンブラーからメディアを介してチップの下地電極に供給され、下地電極上5にNiが析出する。   The Ni plating metal layer 6a is preferably formed by electroplating. As the plating apparatus, an electric barrel plating apparatus is preferably used. In this case, a metal ball called a chip and a medium is put into a non-conductive net called a bucket, and a cathode called a tumbler is inserted into the mixture while rotating to perform plating. Electrons are supplied from the tumbler to the base electrode of the chip through the medium, and Ni is deposited on the base electrode 5.

Niめっき液の種類はワット浴、もしくはスルファミン酸Niめっき液が好ましく用いられる。ワット浴からの析出被膜は素地との密着性がよく、半光沢で耐食性がある。ワット浴の組成は、硫酸Ni6水和物200〜380g/L、塩化Ni6水和物30〜60g/L、ほう酸30〜45g/Lである。通常pH1.5〜5、温度40〜70℃で用いられ、pH調整剤は炭酸Niが好ましく用いられる。   As the type of the Ni plating solution, a Watt bath or a sulfamic acid Ni plating solution is preferably used. The deposited film from the Watt bath has good adhesion to the substrate, and is semi-glossy and corrosion resistant. The composition of the Watt bath is 200 to 380 g / L of sulfuric acid Ni hexahydrate, 30 to 60 g / L of Ni chloride hexachloride, and 30 to 45 g / L of boric acid. Usually, the pH is 1.5 to 5 and the temperature is 40 to 70 ° C., and the pH adjuster is preferably Ni carbonate.

スルファミン酸Niめっき液の組成は、通常、スルファミン酸Ni4水和物350〜450g/L、ほう酸30〜40g/L、臭化Ni3〜10g/Lであり、pH4〜4.5、温度40〜60℃で用いられる。pH調整剤はワット浴と同様に炭酸Niが用いられる。   The composition of the sulfamic acid Ni plating solution is usually 350 to 450 g / L sulfamic acid Ni tetrahydrate, 30 to 40 g / L boric acid, 3 to 10 g / L bromide, pH 4 to 4.5, and temperature 40 to 60. Used at ° C. As the pH adjuster, Ni carbonate is used as in the Watts bath.

Snめっき金属層6bは、はんだの濡れ性を向上させる機能を有するものであり、その厚さは例えば4μm程度とされる。Snめっき金属層も好ましくは電気バレルめっきで形成される。   The Sn plating metal layer 6b has a function of improving the wettability of the solder, and the thickness thereof is, for example, about 4 μm. The Sn plating metal layer is also preferably formed by electric barrel plating.

Snめっき液にはpHが12以上のアルカリ性Snめっき液(Sn酸塩浴)、pHが2以下の酸性Snめっき液、pHが4〜8の中性Snめっき液があるが、セラミックス素体は耐薬品性に課題がある場合が多く、強アルカリ、強酸ともに素体が腐食されるので中性のSnめっき液が好ましい。   The Sn plating solution includes an alkaline Sn plating solution (Sn salt bath) having a pH of 12 or more, an acidic Sn plating solution having a pH of 2 or less, and a neutral Sn plating solution having a pH of 4 to 8. In many cases, there is a problem in chemical resistance, and since the element body is corroded with both strong alkali and strong acid, a neutral Sn plating solution is preferable.

中性Snめっき液の組成の例として、Sn塩としてメタンスルホン酸Snを40〜60g/L、導電塩としてメタンスルホン酸アンモニウムを30〜50g/L、キレート剤としてグルコン酸ナトリウムを150〜250g/L添加しアンモニアでpHを4に調整したものが挙げられる。   Examples of the composition of the neutral Sn plating solution include 40 to 60 g / L of methanesulfonic acid Sn as the Sn salt, 30 to 50 g / L of ammonium methanesulfonate as the conductive salt, and 150 to 250 g / L of sodium gluconate as the chelating agent. Examples include those in which L is added and the pH is adjusted to 4 with ammonia.

パワーデバイス等のように、端子電極7に大電流が流れる場合は、めっき金属層6中、下地電極5とNiめっき金属層6aとの間にCuめっき金属層を設けることも好ましい。Cuは電気抵抗が小さいので、端子電極の抵抗を下げて電子部品の使用時の発熱を抑えることが出来る。Cuめっき金属層の厚さは、1〜4μmが好ましい。またCuめっき金属層の形成方法は電気めっきが好ましい。電気Cuめっき液の組成の例としてpH8のピロリン酸銅めっき液が挙げられる。   When a large current flows through the terminal electrode 7 as in a power device or the like, it is also preferable to provide a Cu plating metal layer between the base electrode 5 and the Ni plating metal layer 6 a in the plating metal layer 6. Since Cu has a small electric resistance, the resistance of the terminal electrode can be lowered to suppress heat generation during use of the electronic component. The thickness of the Cu plating metal layer is preferably 1 to 4 μm. Further, electroplating is preferable as a method for forming the Cu plating metal layer. An example of the composition of the electric Cu plating solution is a copper pyrophosphate plating solution having a pH of 8.

本実施形態のセラミック電子部品の別の例のI−I線における断面図を図4に示す。図4では素体の露出面にガラス層10を形成しており、これにより、めっき中のめっき液が素体を腐食して素体の強度が低下することを防止することが出来る。また、ガラスは絶縁体であるので、素体の抵抗が低い場合に、電気めっき中にめっきが、素体の露出面に析出することも防止出来る。   FIG. 4 shows a cross-sectional view taken along line II of another example of the ceramic electronic component of the present embodiment. In FIG. 4, the glass layer 10 is formed on the exposed surface of the element body, which can prevent the plating solution during plating from corroding the element body and reducing the strength of the element body. Moreover, since glass is an insulator, it is possible to prevent the plating from being deposited on the exposed surface of the element during electroplating when the resistance of the element is low.

素体2にはZnが含まれることがある。この場合、素体の耐薬品性が低下するので、ガラス層10を形成することが好ましい。   The element body 2 may contain Zn. In this case, since the chemical resistance of the element body is lowered, it is preferable to form the glass layer 10.

Znを含む素体の例は、半導体セラミックスでは、バリスタ、サーミスタなどの主成分として、また、誘電体セラミックス及び磁性体セラミックスでは、焼結助剤としてZnを含む低融点ガラスが好ましく用いられる。特に後者では、セラミック積層部品の小型化に伴い薄層化が進み、このためにさらに焼結温度の低下が進んでおり、使用例も一段と増加している。   As an example of an element body containing Zn, low melting glass containing Zn as a sintering aid is preferably used as a main component such as a varistor and thermistor in semiconductor ceramics, and as a sintering aid in dielectric ceramics and magnetic ceramics. In particular, in the latter case, the thickness of the ceramic multilayer component has been reduced with the reduction in the size of the ceramic laminated part. For this reason, the sintering temperature has been further lowered, and the number of usage examples has further increased.

特に積層コイル、チップコンデンサー等のセラミック電子部品では小型化のトレンドが顕著であり、この為には材料の焼結温度を下げる必要がある。これを達成する為に焼結助剤として亜鉛系等の低融点ガラスを添加することが好ましく行われる。この場合焼結温度は低下する反面、素体2の強度及び耐薬品性は低下する傾向にある。   In particular, ceramic electronic components such as multilayer coils and chip capacitors are prominent in miniaturization. For this purpose, it is necessary to lower the sintering temperature of the material. In order to achieve this, it is preferable to add a low melting point glass such as zinc as a sintering aid. In this case, the sintering temperature decreases, but the strength and chemical resistance of the element body 2 tend to decrease.

ガラス層10の形成方法は、スパッター法、電子ビーム蒸着法、熱CVD法、プラズマCVD法、ガラススラリーをスプレーして加熱する方法、ディップ法、ゾルゲル法、等が挙げられる。   Examples of the method for forming the glass layer 10 include a sputtering method, an electron beam evaporation method, a thermal CVD method, a plasma CVD method, a method of spraying and heating a glass slurry, a dipping method, a sol-gel method, and the like.

ガラス層10の組成は、耐薬品性を考慮してジルコニアを含むことが好ましい。またジルコニアの含有量は好ましくは3質量%以上、さらに好ましくは5質量%以上であり、10質量%以上が最も好ましい。また、アルカリ酸化物の含有量が10質量%以下、酸化亜鉛の含有量が5質量%以下であることが耐薬品性を向上する為に好ましく、同様の理由でガラスの融点は650℃以上であることが好ましい。後者はガラスの融点が高いほど耐薬品性が良好であることによる。また、アルカリ酸化物を含まない無アルカリガラスは耐マイグレーション性が高く、高温耐湿試験でガラスの比抵抗が低下しないので好ましい。   The composition of the glass layer 10 preferably contains zirconia in consideration of chemical resistance. The content of zirconia is preferably 3% by mass or more, more preferably 5% by mass or more, and most preferably 10% by mass or more. Further, the alkali oxide content is preferably 10% by mass or less and the zinc oxide content is preferably 5% by mass or less in order to improve chemical resistance. For the same reason, the melting point of the glass is 650 ° C. or more. Preferably there is. The latter is because the higher the melting point of the glass, the better the chemical resistance. An alkali-free glass containing no alkali oxide is preferable because it has high migration resistance and does not lower the specific resistance of the glass in a high-temperature moisture resistance test.

また、ガラス層10の連続性を担保する為に、ガラス層は非晶質であることが好ましい。結晶化ガラスは焼成時にチップ同士の固着を防止出来るメリットがあるが、ガラス層が多孔質になる傾向があり、めっき中にめっき液が積層体の内部に侵入する可能性がある。   In order to ensure the continuity of the glass layer 10, the glass layer is preferably amorphous. Crystallized glass has the merit of preventing sticking of chips during firing, but the glass layer tends to be porous, and the plating solution may enter the inside of the laminate during plating.

〔実施例1〕
外形寸法が1.0×0.5×0.5mmである積層コイルの積層体を110個作成した。ここで素体の材質はNiCuZn系フェライトであり、内部電極層に挟まれる素体の厚さは10μmとした。また、内部電極はAgで、厚さは5μmとした。
[Example 1]
110 laminated bodies of laminated coils having outer dimensions of 1.0 × 0.5 × 0.5 mm were produced. Here, the material of the element body was NiCuZn ferrite, and the thickness of the element body sandwiched between the internal electrode layers was 10 μm. The internal electrode was made of Ag and the thickness was 5 μm.

次に、銀粉が70質量%、ガラス粉が7質量%、残部はバインダと溶剤である下地電極ペーストを、積層体の内部電極が露出している面に乾燥後の厚さが6μmになるように塗布した。ガラス粉の組成はBiが68質量%、Bが9質量%、ZnOが8質量%、SiOが5質量%、ZrOが3質量%、NaOが2質量%、その他の成分が5質量%のものを用いた。以降このペーストをペーストHと略記する。この上に、銀粉が70質量%、ガラス粉が7質量%、残部はバインダと溶剤である下地電極ペーストを乾燥後の厚さが24μmになるように塗布した。ガラス粉の組成はBiが34質量%、Bが21質量%、ZnOが19質量%、SiOが9質量%、ZrOが8質量%、NaOが4質量%、その他の成分が5質量%のものを用いた。以降このペーストをぺーストLと略記する。さらにその上にペーストHを同じ厚さに塗布して焼結温度680℃で10分間焼成した。焼成後の下地電極の厚さは30μmであった。次に焼成後のチップ100個を任意に抽出し、電気バレルめっきでNiめっき金属層を下地電極上に2μm、さらにその上にSnめっき金属層を4μm形成した。Niめっき液はpH4.5で液温度40℃のワット浴、Snめっき液はpH6の中性浴を用いた。 Next, 70% by mass of silver powder, 7% by mass of glass powder, and the remainder is a binder and solvent base electrode paste such that the internal electrode of the laminate is exposed to a thickness of 6 μm after drying. It was applied to. The composition of the glass powder was 68% by mass of Bi 2 O 3 , 9% by mass of B 2 O 3 , 8% by mass of ZnO, 5% by mass of SiO 2 , 3% by mass of ZrO 2 , and 2 % by mass of Na 2 O. The other components were 5% by mass. Hereinafter, this paste is abbreviated as paste H. On top of this, 70% by mass of silver powder, 7% by mass of glass powder, and the remainder was applied with a binder and solvent as a base electrode paste so that the thickness after drying was 24 μm. The composition of the glass powder Bi 2 O 3 is 34 wt%, B 2 O 3 is 21 wt%, ZnO is 19 mass%, SiO 2 is 9 wt%, ZrO 2 is 8 mass%, Na 2 O 4% by weight The other components were 5% by mass. Hereinafter, this paste is abbreviated as “paste L”. Furthermore, paste H was applied to the same thickness thereon and baked at a sintering temperature of 680 ° C. for 10 minutes. The thickness of the base electrode after firing was 30 μm. Next, 100 chips after firing were arbitrarily extracted, and Ni plating metal layer was formed on the base electrode by 2 μm by electric barrel plating, and further Sn plating metal layer was formed by 4 μm thereon. The Ni plating solution was a Watt bath having a pH of 4.5 and a solution temperature of 40 ° C., and the Sn plating solution was a neutral bath having a pH of 6.

端子めっき後のチップを10個、任意に抽出して断面研磨し、中央部の幅250μmの領域でBi及びAgの組成の面分析を行い、ガラス成分中の酸化ビスマス量の深さ方向分布を評価した。10個のチップを平均した結果を図5に示す。次に、積層体との界面から下地電極の厚さの1/6の深さの領域に相当する0〜5μmまでの酸化ビスマス量の平均値を積層体側の表面領域の含有量、めっき金属層との界面から下地電極の厚さの1/6から5/6までの領域に相当する10〜20μmまでの平均値を中間領域の含有量とし、さらにめっき金属層との界面から下地電極の厚さの1/6の深さの領域に相当する25〜30μmまでの平均値をめっき金属層側の表面領域の含有量とした。まためっき金属層側の表面領域の含有量と積層体側の表面領域の含有量の小さいほうを表面領域の含有量とし、中間領域の含有量と比較した。結果を表1に示す。   Ten chips after terminal plating are arbitrarily extracted and cross-section polished, and a surface analysis of the composition of Bi and Ag is performed in the region of 250 μm width in the center, and the distribution in the depth direction of the amount of bismuth oxide in the glass component is determined. evaluated. The results of averaging 10 chips are shown in FIG. Next, the average value of the amount of bismuth oxide from 0 to 5 μm corresponding to the region having a depth of 1/6 of the thickness of the base electrode from the interface with the laminated body is the content of the surface region on the laminated body side, the plated metal layer The average value of 10 to 20 μm corresponding to the region from 1/6 to 5/6 of the thickness of the base electrode from the interface with the intermediate electrode is the content of the intermediate region, and the thickness of the base electrode from the interface with the plated metal layer The average value from 25 to 30 μm corresponding to a region having a depth of 1/6 of the thickness was taken as the content of the surface region on the plated metal layer side. Moreover, the one where the content of the surface region on the plated metal layer side and the content of the surface region on the laminate side is the surface region content was compared with the content of the intermediate region. The results are shown in Table 1.

次に100個のチップの1MHzでのインダクタンス及び直流抵抗を測定した。そして−55℃から155℃の熱衝撃を2000サイクル及び3000サイクル加える熱衝撃試験を行い、試験後のインダクタンス及び直流抵抗を測定した。なお、試験前後のインダクタンス、直流抵抗の少なくとも一方が20%以上変化しているチップを不良と判断した。結果を表1に示す。尚、熱衝撃試験の3000サイクル印加後の不良数は、2000サイクル印加後の不良チップも含めた総数である。実施例1において不良と判断されたチップは無かった。   Next, the inductance and DC resistance at 1 MHz of 100 chips were measured. And the thermal shock test which applies the thermal shock of -55 degreeC to 155 degreeC 2000 cycles and 3000 cycles was done, and the inductance and DC resistance after a test were measured. A chip in which at least one of the inductance and DC resistance before and after the test changed by 20% or more was judged as defective. The results are shown in Table 1. The number of defects after 3000 cycles of thermal shock test is the total number including defective chips after 2000 cycles. There was no chip judged to be defective in Example 1.

〔実施例2〕
ペーストHのガラス粉の組成について、Biを61.5質量%に変更し、その他の組成は各成分の比率を変えずに調整したこと以外は実施例1と同様にしてチップを作成し、評価を行った。結果を表1に示す。
[Example 2]
A chip was prepared in the same manner as in Example 1 except that the composition of the glass powder of paste H was changed to 61.5% by mass of Bi 2 O 3 and other compositions were adjusted without changing the ratio of each component. And evaluated. The results are shown in Table 1.

〔実施例3〕
ペーストHのガラス粉の組成について、Biを55.5質量%に変更し、その他の組成は各成分の比率を変えずに調整したこと以外は実施例1と同様にしてチップを作成し、評価を行った。結果を表1に示す。
Example 3
A chip was prepared in the same manner as in Example 1 except that the composition of the glass powder of paste H was changed to 55.5% by mass of Bi 2 O 3 and the other compositions were adjusted without changing the ratio of each component. And evaluated. The results are shown in Table 1.

〔実施例4〕
ペーストHのガラス粉の組成について、Biを49.0質量%に変更し、その他の組成は各成分の比率を変えずに調整したこと以外は実施例1と同様にしてチップを作成し、評価を行った。結果を表1に示す。
Example 4
A chip was prepared in the same manner as in Example 1 except that the composition of the glass powder of paste H was changed to 49.0% by mass of Bi 2 O 3 and the other compositions were adjusted without changing the ratio of each component. And evaluated. The results are shown in Table 1.

〔実施例5〕
ペーストHのガラス粉の組成について、Biを42.0質量%に変更し、その他の組成は各成分の比率を変えずに調整したこと以外は実施例1と同様にしてチップを作成し、評価を行った。結果を表1に示す。
Example 5
A chip was prepared in the same manner as in Example 1 except that Bi 2 O 3 was changed to 42.0% by mass with respect to the composition of the glass powder of paste H, and other compositions were adjusted without changing the ratio of each component. And evaluated. The results are shown in Table 1.

〔実施例6〕
ペーストHのガラス粉の組成について、Biを37.0量%に変更し、その他の組成は各成分の比率を変えずに調整したこと以外は実施例1と同様にしてチップを作成し、評価を行った。結果を表1に示す。
Example 6
A chip was prepared in the same manner as in Example 1 except that the composition of the paste H glass powder was changed to 37.0% by weight of Bi 2 O 3 and the other compositions were adjusted without changing the ratio of each component. And evaluated. The results are shown in Table 1.

〔実施例7〕
ペーストHのガラス粉の組成について、Biを35.0質量%に変更し、その他の組成は各成分の比率を変えずに調整したこと以外は実施例1と同様にしてチップを作成し、評価を行った。結果を表1に示す。
Example 7
A chip was prepared in the same manner as in Example 1 except that Bi 2 O 3 was changed to 35.0% by mass with respect to the composition of the glass powder of paste H, and other compositions were adjusted without changing the ratio of each component. And evaluated. The results are shown in Table 1.

実施例1〜7から、表面領域の酸化ビスマスの含有量が中間領域の含有量より多いと、2000サイクルの熱衝撃試験で不良が発生しないことが解る。特に、表面領域の酸化ビスマスの含有量が中間領域の含有量より20%以上多いと3000サイクルの熱衝撃試験でも不良が発生しないことが解る。   From Examples 1 to 7, it can be seen that when the content of bismuth oxide in the surface region is larger than the content of the intermediate region, no defect occurs in the thermal shock test of 2000 cycles. In particular, it can be seen that when the content of bismuth oxide in the surface region is 20% or more higher than the content in the intermediate region, no defect occurs even in the 3000-cycle thermal shock test.

〔実施例8〕
実施例1と同じ積層体を準備し、内部電極が露出している面に、積層体側から順にペーストHを6μm、ペーストLを9μm、ペーストHを6μm、ペーストLを9μm、及びペーストHを6μmの厚さでそれぞれ塗布した。焼成条件は、実施例と同じ680℃−10分間では固着不良が100個中9個発生したため、焼成温度を下げ、660℃で10分間とした。その他は実施例1と同様にチップを作成し、実施例1と同様の評価を行った。結果を表1に示す。また、EPMAにてガラス成分中の酸化ビスマス量の深さ方向分布を測定した結果を図6に示す。中間領域に部分的に酸化ビスマスの多い領域がある場合も、
表面領域の酸化ビスマスの含有量が中間領域の含有量より20%以上多いと3000サイクルの熱衝撃試験でも不良が発生しないことが解る。
Example 8
The same laminate as Example 1 was prepared, and on the surface where the internal electrodes were exposed, paste H was 6 μm, paste L was 9 μm, paste H was 6 μm, paste L was 9 μm, and paste H was 6 μm in order from the laminate side. The thickness of each was applied. The firing conditions were the same as in the example at 680 ° C. for 10 minutes, because 9 out of 100 defects occurred, and the firing temperature was lowered to 660 ° C. for 10 minutes. Otherwise, a chip was prepared in the same manner as in Example 1, and the same evaluation as in Example 1 was performed. The results are shown in Table 1. Moreover, the result of having measured the depth direction distribution of the amount of bismuth oxide in a glass component in EPMA is shown in FIG. Even if there is a region with a lot of bismuth oxide in the middle region,
It can be seen that when the content of bismuth oxide in the surface region is 20% or more higher than the content in the intermediate region, no defect occurs even in the 3000-cycle thermal shock test.

〔実施例9〕
実施例1の積層体において、素体の材質をZnOを主成分とするバリスタとし、内部電極の材質をPdとした。そして、チップ作成後、積層体が露出している面にペーストHと同じガラス粉の組成をもつガラス層を3μmの厚さで形成した。そのほかは実施例1と同様にして作成し、評価した。結果を表1に示す。素体の耐薬品性が乏しい場合でも、積層体の露出面にガラス層を形成し、さらに下地電極の表面領域の酸化ビスマスの含有量が中間領域の含有量より20%以上多いと3000サイクルの熱衝撃試験でも不良が発生しないことが解る。
Example 9
In the laminated body of Example 1, the material of the element body was a varistor mainly composed of ZnO, and the material of the internal electrode was Pd. And after chip | tip preparation, the glass layer which has the composition of the same glass powder as the paste H was formed by the thickness of 3 micrometers on the surface which the laminated body has exposed. Others were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1. Even when the chemical resistance of the element body is poor, a glass layer is formed on the exposed surface of the laminate, and if the content of bismuth oxide in the surface region of the base electrode is more than 20% more than the content of the intermediate region, 3000 cycles It can be seen that no defect occurs even in the thermal shock test.

Figure 0006070288
Figure 0006070288

〔比較例1〕
下地電極をペーストLだけで30μmの厚さに作製した以外は実施例1と同様にしてチップを作成し評価を行った。結果を表2に示すが、熱衝撃試験後に不良が発生した。不良原因は全て直流抵抗の過大であった。不良チップの積層体と下地電極の界面の断面をFIBで観察すると、下地電極と積層体の界面にクラックが発生していた。
[Comparative Example 1]
A chip was prepared and evaluated in the same manner as in Example 1 except that the base electrode was made with a paste L alone to a thickness of 30 μm. The results are shown in Table 2, and defects occurred after the thermal shock test. The cause of all defects was excessive DC resistance. When the cross section of the interface between the defective chip laminate and the base electrode was observed by FIB, a crack was generated at the interface between the base electrode and the laminate.

〔比較例2〕
めっき金属層側のペーストをペーストLにした以外は実施例1と同様にしてチップを作成し評価を行った。結果を表2に示すが、熱衝撃試験後に不良が発生した。不良原因は全て直流抵抗の過大であった。不良チップの積層体と下地電極の界面の断面をFIBで観察すると、下地電極と積層体の界面にクラックが発生していた。
[Comparative Example 2]
A chip was prepared and evaluated in the same manner as in Example 1 except that the paste on the plated metal layer side was changed to paste L. The results are shown in Table 2, and defects occurred after the thermal shock test. The cause of all defects was excessive DC resistance. When the cross section of the interface between the defective chip laminate and the base electrode was observed by FIB, a crack was generated at the interface between the base electrode and the laminate.

〔比較例3〕
積層体側のペーストをペーストLにした以外は実施例1と同様にしてチップを作成し、評価を行った。結果を表2に示すが、ヒートサイクル試験後不良が発生した。不良原因は全て直流抵抗の過大であった。不良チップの積層体と下地電極の界面の断面をFIBで観察すると、下地電極と積層体の界面にクラックが発生していた。
[Comparative Example 3]
A chip was prepared and evaluated in the same manner as in Example 1 except that the paste on the laminate side was changed to paste L. The results are shown in Table 2, and defects occurred after the heat cycle test. The cause of all defects was excessive DC resistance. When the cross section of the interface between the defective chip laminate and the base electrode was observed by FIB, a crack was generated at the interface between the base electrode and the laminate.

〔比較例4〕
実施例1でペーストLを塗布した、中間領域部に相当する部分のペーストをペーストHにした以外は実施例1と同様にしてチップを作成し、評価を行った。結果を表2に示す。なお、比較例4は、下地電極の焼成条件を実施例1と同じく680℃で10分間としたところ、下地電極焼成時に固着不良が100個中32個発生してしまったため、焼成温度を640℃(10分間)に下げている。結果を表2に示すが、熱衝撃試験後不良が発生した。不良原因は全て直流抵抗の過大であった。不良チップの積層体と下地電極の界面の断面をFIBで観察すると、下地電極と積層体の界面にクラックが発生していた。

Figure 0006070288
[Comparative Example 4]
A chip was prepared and evaluated in the same manner as in Example 1 except that the paste corresponding to the intermediate region, to which the paste L was applied in Example 1, was replaced with the paste H. The results are shown in Table 2. In Comparative Example 4, the firing condition of the base electrode was set at 680 ° C. for 10 minutes as in Example 1. As a result, 32 out of 100 defects occurred during firing of the base electrode, and the firing temperature was 640 ° C. (10 minutes). The results are shown in Table 2, and defects occurred after the thermal shock test. The cause of all defects was excessive DC resistance. When the cross section of the interface between the defective chip laminate and the base electrode was observed by FIB, a crack was generated at the interface between the base electrode and the laminate.
Figure 0006070288

比較例1〜4より、表面領域の酸化ビスマスの含有量が中間領域の含有量より少ないと、2000サイクルの熱衝撃試験で不良が発生することが解る。   From Comparative Examples 1 to 4, it can be seen that when the content of bismuth oxide in the surface region is less than the content of the intermediate region, a defect occurs in the thermal shock test of 2000 cycles.

以上のように、本発明に係るセラミック積層電子部品は、耐熱衝撃性の向上に有用である。   As described above, the ceramic multilayer electronic component according to the present invention is useful for improving the thermal shock resistance.

1…セラミック積層電子部品
2…素体
3…内部電極
4…積層体(焼結体)
5…下地電極
5a…下地電極の表面領域
5b…下地電極の中間領域
6…めっき金属層
6a…Niめっき金属層
6b…Snめっき金属層
7…端子電極
7a…端子電極の主面
7b…端子電極の側面
8…境界線
9…測定領域
10…ガラス層
11…単位構造
DESCRIPTION OF SYMBOLS 1 ... Ceramic laminated electronic component 2 ... Element body 3 ... Internal electrode 4 ... Laminated body (sintered body)
DESCRIPTION OF SYMBOLS 5 ... Base electrode 5a ... Surface region of base electrode 5b ... Middle region of base electrode 6 ... Metal plating layer 6a ... Ni plating metal layer 6b ... Sn plating metal layer 7 ... Terminal electrode 7a ... Main surface of terminal electrode 7b ... Terminal electrode Side surface 8 ... Boundary line 9 ... Measurement area 10 ... Glass layer 11 ... Unit structure

Claims (3)

積層体と、金属とガラス成分を含む下地電極と、めっき金属層より構成される端子電極とを有し、前記下地電極は表面領域と中間領域から構成されており、前記表面領域のガラス成分は酸化ビスマスを含み、かつ表面領域のガラス成分中の酸化ビスマスの含有量が、前記中間領域のガラス成分中の酸化ビスマスの含有量より多いことを特徴とするセラミック積層電子部品。   It has a laminate, a base electrode containing a metal and a glass component, and a terminal electrode composed of a plated metal layer, the base electrode is composed of a surface region and an intermediate region, and the glass component of the surface region is A ceramic laminated electronic component comprising bismuth oxide and having a bismuth oxide content in a glass component in a surface region greater than a bismuth oxide content in a glass component in the intermediate region. 前記表面領域のガラス成分中の酸化ビスマスの含有量が、前記中間領域のガラス成分中の酸化ビスマスの含有量より20質量%以上多いことを特徴とする請求項1に記載のセラミック積層電子部品。   2. The ceramic multilayer electronic component according to claim 1, wherein the content of bismuth oxide in the glass component in the surface region is 20% by mass or more than the content of bismuth oxide in the glass component in the intermediate region. 前記素体の露出面にガラス層が形成されていることを特徴とする請求項1または2のいずれかのセラミック積層電子部品。   3. The ceramic multilayer electronic component according to claim 1, wherein a glass layer is formed on an exposed surface of the element body.
JP2013042650A 2013-03-05 2013-03-05 Ceramic multilayer electronic components Active JP6070288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013042650A JP6070288B2 (en) 2013-03-05 2013-03-05 Ceramic multilayer electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013042650A JP6070288B2 (en) 2013-03-05 2013-03-05 Ceramic multilayer electronic components

Publications (2)

Publication Number Publication Date
JP2014170875A JP2014170875A (en) 2014-09-18
JP6070288B2 true JP6070288B2 (en) 2017-02-01

Family

ID=51693044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013042650A Active JP6070288B2 (en) 2013-03-05 2013-03-05 Ceramic multilayer electronic components

Country Status (1)

Country Link
JP (1) JP6070288B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107077970A (en) * 2014-09-19 2017-08-18 株式会社村田制作所 Chip-shaped ceramic semiconductors electronic unit
KR20180058634A (en) 2016-11-24 2018-06-01 티디케이가부시기가이샤 Electronic component
JP7106817B2 (en) * 2017-05-19 2022-07-27 Tdk株式会社 electronic components
KR20180105891A (en) * 2017-03-16 2018-10-01 삼성전기주식회사 Coil Electronic Component and Manufacturing Method Thereof
JP7171171B2 (en) * 2017-07-25 2022-11-15 太陽誘電株式会社 Ceramic electronic component and method for manufacturing ceramic electronic component
JP7139677B2 (en) * 2018-05-08 2022-09-21 Tdk株式会社 electronic components
JP7099178B2 (en) * 2018-08-27 2022-07-12 Tdk株式会社 Multilayer coil parts
JP7003889B2 (en) * 2018-10-10 2022-01-21 株式会社村田製作所 Multilayer ceramic electronic components and their mounting structure
JP7215112B2 (en) * 2018-11-28 2023-01-31 Tdk株式会社 coil parts
JP6904383B2 (en) * 2019-07-17 2021-07-14 Tdk株式会社 Laminated electronic components and their mounting structure
JP7452487B2 (en) * 2021-04-21 2024-03-19 株式会社村田製作所 Condensation test method for electronic components

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969907A (en) * 1982-10-15 1984-04-20 松下電器産業株式会社 Temperature compensating laminated layer ceramic condenser
JP2000040635A (en) * 1998-07-21 2000-02-08 Murata Mfg Co Ltd Ceramic electronic part and manufacture thereof
JP3636123B2 (en) * 2001-09-20 2005-04-06 株式会社村田製作所 Manufacturing method of multilayer ceramic electronic component and multilayer ceramic electronic component
JP2011124403A (en) * 2009-12-11 2011-06-23 Koa Corp Method of manufacturing electronic components

Also Published As

Publication number Publication date
JP2014170875A (en) 2014-09-18

Similar Documents

Publication Publication Date Title
JP6070288B2 (en) Ceramic multilayer electronic components
US8587923B2 (en) Laminated electronic component including water repellant and manufacturing method therefor
KR101136173B1 (en) Laminated electronic component and manufacturing method therefor
JP4561831B2 (en) Ceramic substrate, electronic device, and method for manufacturing ceramic substrate
US9013859B2 (en) Laminated electronic component and manufacturing method therefor
US9328014B2 (en) Ceramic electronic component and glass paste
US20090052114A1 (en) Multilayer electronic component and method for manufacturing the same
US8320101B2 (en) Multilayer electronic component and method for manufacturing the same
JP6070287B2 (en) Ceramic multilayer electronic components
US20100328843A1 (en) Laminated ceramic electronic component and manufacturing method therefor
JP2014053551A (en) Ceramic electronic component
KR20120016005A (en) Laminate type ceramic electronic component and manufacturing method therefor
JP2021019010A (en) Multilayer electronic component and mounting structure of the same
JP2013206898A (en) Chip type electronic component
JP4539719B2 (en) Manufacturing method of ceramic electronic component and Sn plating bath
JP5835047B2 (en) Ceramic electronic components
KR100375293B1 (en) Conductive paste and multi-layer ceramic electronic component using the same
JP4986167B2 (en) Electro nickel plating solution and plating method
CN102376450B (en) Multilayer ceramic electronic component and manufacture method thereof
JP4775082B2 (en) Electronic components
JP2013110363A (en) Ceramic electronic component
JP4710204B2 (en) Method for forming end face electrode of electronic component
JP2010171108A (en) Method of manufacturing ceramic body
JP2007242706A (en) Method of manufacturing ceramic electronic component
JP2012077324A (en) Nickel plating liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R150 Certificate of patent or registration of utility model

Ref document number: 6070288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150