JPS62206706A - Manufacture of insulated wire and heat resistant insulated coil using the wire - Google Patents

Manufacture of insulated wire and heat resistant insulated coil using the wire

Info

Publication number
JPS62206706A
JPS62206706A JP4776486A JP4776486A JPS62206706A JP S62206706 A JPS62206706 A JP S62206706A JP 4776486 A JP4776486 A JP 4776486A JP 4776486 A JP4776486 A JP 4776486A JP S62206706 A JPS62206706 A JP S62206706A
Authority
JP
Japan
Prior art keywords
binder resin
insulating layer
soluble binder
conductor
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4776486A
Other languages
Japanese (ja)
Other versions
JPH0770250B2 (en
Inventor
臼杵 隆吉
河野 宰
池野 義光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP61047764A priority Critical patent/JPH0770250B2/en
Publication of JPS62206706A publication Critical patent/JPS62206706A/en
Publication of JPH0770250B2 publication Critical patent/JPH0770250B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、高温雰囲気下で使用可能な耐熱性の良好な
耐熱絶縁コイルの製造方法およびこれに使用される絶縁
電線に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for manufacturing a heat-resistant insulated coil with good heat resistance that can be used in a high-temperature atmosphere, and an insulated wire used therein.

「従来の技術およびその問題点」 従来、このような高温雰囲気下で使用される耐熱絶縁コ
イルを製造するには、導体上にガラスフリットなどの無
機絶縁物を塗布し、これを加熱してガラス質の絶縁層を
形成して絶縁電線とし、この絶縁電線をコイル状に巻き
回する方法がある。
"Conventional technology and its problems" Conventionally, in order to manufacture heat-resistant insulated coils used in such high-temperature atmospheres, an inorganic insulating material such as glass frit is coated on the conductor, and this is heated to form a glass There is a method in which an insulated wire is formed by forming a high-quality insulating layer, and the insulated wire is wound into a coil.

しかしながら、このものは可撓性に乏しいためコイル巻
きする際に絶縁層にクラックを生じたり、絶縁層が剥離
したりするという問題が有り、また導体と絶縁層層との
熱膨張率が異なるため、ヒートショックなどにより歪み
が絶縁層に蓄積され、絶縁層層が剥離しやすいという問
題があった。
However, since this material lacks flexibility, there are problems such as cracks in the insulating layer or peeling of the insulating layer when coiling it, and also because the thermal expansion coefficients of the conductor and the insulating layer are different. There was a problem in that strain was accumulated in the insulating layer due to heat shock, etc., and the insulating layer was likely to peel off.

このような問題を改善するため、導体上にガラス繊維な
どの無機繊維をバインダー樹脂を用いて固着せしめ、つ
いで加熱してバインダー樹脂を硬化せしめて絶縁電線と
し、これをボビンなどにまきつけたのち、空気中で高温
に加熱してバインダー樹脂を分解消失せしめて、無機繊
維のみとし、導体と無機繊維との密着性をほとんど消失
せしめ、かつ十分な耐熱性が得られるようにする方法が
知られている。
In order to improve this problem, inorganic fibers such as glass fibers are fixed onto the conductor using a binder resin, then heated to harden the binder resin to form an insulated wire, which is then wrapped around a bobbin, etc. There is a known method in which the binder resin is decomposed and disappeared by heating to a high temperature in the air, leaving only inorganic fibers, almost eliminating the adhesion between the conductor and the inorganic fibers, and providing sufficient heat resistance. There is.

しかしながら、この耐熱絶縁コイルの製造方法にあって
は、空気中でのバインダー樹脂の熱分解の際、導体やボ
ビンなどが同時に酸化されるため、導体やボビンは耐酸
化性の良好な材料からなるものを用いる必要があり、材
質的に限られる不都合があった。また、導体と無機繊維
および無機繊維同志が接着されていないため、大径の導
体や硬質の導体をもちいた場合には、導体と無機繊維と
の熱膨張係数の差により無機繊維がこすられたり、引っ
張られたりして切断し、バラバラの状態となり、部分的
に線間短絡が生じる欠点があった。
However, in this method of manufacturing heat-resistant insulated coils, the conductor and bobbin are oxidized at the same time when the binder resin is thermally decomposed in the air, so the conductor and bobbin are made of materials with good oxidation resistance. However, there was a disadvantage that the materials used were limited. In addition, since the conductor and inorganic fibers are not bonded together, if a large diameter conductor or hard conductor is used, the inorganic fibers may be rubbed due to the difference in thermal expansion coefficient between the conductor and the inorganic fibers. , they had the disadvantage that they could be pulled and cut, causing them to fall apart and causing short circuits between lines.

「問題点を解決するための手段」 そこで、この発明にあっては導体上に、ガラスフリット
を主成分とする無機物粒子(これにはガラスフリットま
たはガラスフリットと高融点無機粒子との混合物が含ま
れる。)と可溶性バインダー樹脂とからなる第1絶縁層
および無機繊維と可溶性バインダー樹脂とからなる第2
絶縁層を設けて絶縁電線とし、これを巻き回してコイル
とし、このコイルを可溶性バインダー樹脂の良溶媒中に
浸漬し、第1絶縁層および第2絶縁層の可溶性バインダ
ー樹脂を溶解除去したのち、非酸化性雰囲気でガラスフ
リットの軟化温度以上に加熱して第1絶縁層を焼成する
ことにより、上記問題点を解決するようにした。
``Means for Solving the Problems'' Therefore, in this invention, inorganic particles mainly composed of glass frit (including glass frit or a mixture of glass frit and high melting point inorganic particles) are coated on the conductor. ) and a soluble binder resin, and a second insulating layer consisting of an inorganic fiber and a soluble binder resin.
An insulated wire is provided by providing an insulating layer, this is wound to form a coil, and this coil is immersed in a good solvent for a soluble binder resin to dissolve and remove the soluble binder resin of the first insulating layer and the second insulating layer. The above-mentioned problem was solved by firing the first insulating layer by heating it to a temperature higher than the softening temperature of the glass frit in a non-oxidizing atmosphere.

第1図は、この発明の絶縁電線の一例を示すもので、図
中符号lは導体である。この導体lは、特に限定される
事はなく、銅、銅合金およびこれら金属で表面被覆され
ている超伝導線などの高温での耐酸化性の乏しい材料か
らなるものが、特に好ましい。導体lの径は0.05〜
5mm程度とされるが、これに限られることはない。
FIG. 1 shows an example of an insulated wire according to the present invention, and the reference numeral l in the figure represents a conductor. The conductor l is not particularly limited, and is particularly preferably made of a material with poor oxidation resistance at high temperatures, such as copper, copper alloy, or superconducting wire whose surface is coated with these metals. The diameter of the conductor l is 0.05~
Although the length is about 5 mm, it is not limited to this.

この導体lの表面には、第1絶縁層2が設けられている
。この第1絶縁層2は、ガラスフリットを主成分とする
無機物粒子と可溶性バインダー樹脂とからなるもので、
無機物粒子100重量部と可溶性バインダー樹脂0.5
〜70重量部とからなる組成物を可溶性バインダー樹脂
の良溶媒に溶解してスラリー状物とし、このスラリー状
物を導体lに塗布し、可溶性バインダー樹脂の硬化温度
以下で加熱し、良溶媒を揮発させることにより得られる
ものである。
A first insulating layer 2 is provided on the surface of the conductor l. This first insulating layer 2 is made of inorganic particles whose main component is glass frit and a soluble binder resin.
100 parts by weight of inorganic particles and 0.5 parts by weight of soluble binder resin
~70 parts by weight of the composition is dissolved in a good solvent for the soluble binder resin to form a slurry, and this slurry is applied to the conductor l and heated below the curing temperature of the soluble binder resin to remove the good solvent. It is obtained by volatilization.

この第1絶縁層2の厚さは100μm以下とされる。1
00μmを越えると、焼成後ヒートショックなどにより
、絶縁層2に歪みが蓄積され、剥離などが生じやすくな
る。
The thickness of this first insulating layer 2 is 100 μm or less. 1
If the thickness exceeds 00 μm, distortion will accumulate in the insulating layer 2 due to heat shock after firing, and peeling will easily occur.

無機物粒子としては、ガラスフリットが体積比で35%
以上含まれているものが好ましく、ガラスフリット以外
の無機物粒子としてはアルミナ、シリカ、ジルコニア、
マグネシア、チタニアなどの高融点無機物や、鉄、ニッ
ケル、コバルト、銅、マンガン、アンチモンなどの結合
性金属酸化物が含まれているものが用いられる。また、
ガラスフリットとしては、使用目的、温度などにより多
少異なるが通常は、次に示すような組成の軟化流動温度
が600ないし700°C程度のものが好ましい。
Glass frit accounts for 35% by volume of inorganic particles.
Those containing the above are preferable, and inorganic particles other than glass frit include alumina, silica, zirconia,
Those containing high melting point inorganic substances such as magnesia and titania, and bonding metal oxides such as iron, nickel, cobalt, copper, manganese, and antimony are used. Also,
The glass frit is preferably one having the following composition and a softening flow temperature of about 600 to 700°C, although it varies somewhat depending on the purpose of use, temperature, etc.

A    Pb0    50〜85%(重重%)82
03     3〜9% 5iOz      1〜4% Zn0    4〜15% B   PbO50〜85% 8203     3〜9% SiO22〜15% A1.03    1〜8% ZrO32〜10% CPbO50〜80% 8203    2〜9% 5iOz      1〜8% ALO30,5〜4% ZnO15〜28% このガラスフリットが体積比で35%未満では第1絶縁
府2の導体【への密着性が低下し、高融点無機物や金層
酸化物間の結合力が不足して不都合である。
A Pb0 50-85% (weight%) 82
03 3-9% 5iOz 1-4% Zn0 4-15% B PbO50-85% 8203 3-9% SiO22-15% A1.03 1-8% ZrO32-10% CPbO50-80% 8203 2-9% 5iOz 1 to 8% ALO30, 5 to 4% ZnO15 to 28% If this glass frit is less than 35% by volume, the adhesion to the conductor of the first insulator 2 will decrease, and the adhesion between high melting point inorganic substances and gold layer oxides will decrease. This is disadvantageous due to the lack of binding force.

また、可溶性バインダー樹脂としては、水、有機溶媒に
溶解しやすい樹脂であればどのようなものでもよいが、
万一微量残存してもモノマーとなって分解消失しやすい
樹脂、例え−ばメタクリル酸エステル重合体、アクリル
酸エステノシ重合体およびこれらの共重合体、水、有機
溶媒のいずれにも溶解するホリエチレンオキサイドなど
が望ましい。
In addition, the soluble binder resin may be any resin as long as it is easily soluble in water and organic solvents.
Resins that easily decompose and disappear as monomers even if a small amount remains, such as methacrylic acid ester polymers, acrylic acid ester polymers, and copolymers thereof, polyethylene that dissolves in both water and organic solvents. Oxide etc. are preferable.

この可溶性バインダー樹脂の配合量は、無機物粒子10
0重量部に対し0.5〜70重量部程度とされ、出来る
だけ少ないほうがよい。
The blending amount of this soluble binder resin is 10 inorganic particles.
It is about 0.5 to 70 parts by weight relative to 0 parts by weight, and it is better to use as little as possible.

また、上記良溶媒としては、水、ケトン類、エステル類
、アルコール類、炭化水素類、ハロゲン化炭化水素類な
どが可溶性バインダー樹脂との組み合わせにおいて適宜
選択される。
Further, as the above-mentioned good solvent, water, ketones, esters, alcohols, hydrocarbons, halogenated hydrocarbons, etc. are appropriately selected in combination with the soluble binder resin.

無機物粒子と可溶性バインダー樹脂と良溶媒とからなる
スラリー状物中の固形分(無機物粒子と可溶性バインダ
ー樹脂)濃度は、50〜80%程度とされ、その粘度な
どによって決められる。
The concentration of solids (inorganic particles and soluble binder resin) in a slurry consisting of inorganic particles, soluble binder resin, and good solvent is about 50 to 80%, and is determined by its viscosity.

良溶媒除去のための加熱は、溶媒気化温度以上、可溶性
バインダー樹脂硬化温度以下の温度範囲で行なわれ、熱
可塑性樹脂では通常100〜1500Cで行なわれ、時
間は1−10時間程度でよい。
Heating for removing a good solvent is carried out in a temperature range above the solvent vaporization temperature and below the soluble binder resin curing temperature, and in the case of thermoplastic resins, it is usually carried out at 100 to 1500 C, and the time may be about 1 to 10 hours.

このような第1絶縁層2の表面には、第2絶縁層3が設
けられている。この第2絶縁層3は、無機繊維を導体l
上にスパイラル状に巻きつけながら上記可溶性バインダ
ー樹脂とその良溶媒からなる樹脂液を塗布含浸し、可溶
性バインダー樹脂の硬化温度以下で加熱して無機繊維を
固化するとともに第1絶縁層2に固着させたものである
。無機繊維としては、電気用ガラス繊維、アルミナ繊維
、ジルコニア繊維、シリカ繊維などの単繊維あるいはこ
れらからなるより糸、引きそろえ糸、織物にしたテープ
などが使用される。また、可溶性バインダー樹脂として
は、第1絶縁層2に用いられたものと同一のものを用い
るのが好ましいが、必ずしも同一の樹脂でなくともよい
。この樹脂液としては、これら樹脂を溶解した濃度0.
5〜20重量%程度のものが使われる。また、溶媒除去
のための加熱温度は、水、溶剤が揮散する温度であれば
よく、可溶性バインダー樹脂に熱硬化型樹脂をもちいた
場合には、その架橋温度よりも低い温度に保つ必要があ
る。また、熱可塑性樹脂を用いた場合には、100〜1
508C程度で良い。
A second insulating layer 3 is provided on the surface of such a first insulating layer 2. This second insulating layer 3 is made of inorganic fibers as a conductor.
A resin solution consisting of the soluble binder resin and its good solvent is coated and impregnated while being wound spirally on top of the inorganic fibers, and heated at a temperature below the curing temperature of the soluble binder resin to solidify the inorganic fibers and fix them to the first insulating layer 2. It is something that As the inorganic fibers, single fibers such as electrical glass fibers, alumina fibers, zirconia fibers, and silica fibers, or twisted threads, drawn threads, and woven tapes made of these fibers are used. Further, as the soluble binder resin, it is preferable to use the same resin as that used for the first insulating layer 2, but it does not necessarily have to be the same resin. This resin liquid has these resins dissolved at a concentration of 0.
About 5 to 20% by weight is used. In addition, the heating temperature for solvent removal only needs to be the temperature at which the water and solvent volatilize, and if a thermosetting resin is used as the soluble binder resin, it must be kept at a temperature lower than its crosslinking temperature. . In addition, when thermoplastic resin is used, 100 to 1
Approximately 508C is sufficient.

この第2絶縁層3の厚さは、通常5〜500μm程度と
される。また、第2絶縁層3内での無機繊維の割合は、
重量比で60〜99.5%とされ、可溶性バインダー樹
脂が出来るだけ少ないものが好ましい。
The thickness of this second insulating layer 3 is usually about 5 to 500 μm. Furthermore, the proportion of inorganic fibers in the second insulating layer 3 is
It is preferable that the weight ratio is 60 to 99.5%, and that the amount of soluble binder resin is as small as possible.

この第2絶縁層3上には、必要に応じて潤滑層を設けて
もよい。この潤滑層はこの絶縁電線をコイル巻きなどす
る際、表面の滑り性を改善し、加工性を向上させるため
のもので、可溶性のワックス類を塗布することにより形
成される。
A lubricating layer may be provided on the second insulating layer 3 if necessary. The purpose of this lubricating layer is to improve surface slippage and workability when coiling the insulated wire, and is formed by applying a soluble wax.

次に、このような絶縁電線4を用いて、耐熱絶縁コイル
を製造する方法を説明する。
Next, a method of manufacturing a heat-resistant insulated coil using such an insulated wire 4 will be described.

まず、絶縁電線4を第2図に示すようにボビン5に巻き
付け、コイル6とする。次いで、このコイル6を可溶性
バインダー樹脂の良溶媒中に浸漬して可溶性バインダー
樹脂を溶解除去する。絶縁電線4に潤滑層が被覆されて
いるものでは、予め潤滑層をなす潤滑剤を溶解する溶媒
中に浸漬して、潤滑層を除去しておく。潤滑剤と可溶性
バインダー樹脂とが同一の溶媒に溶解するものであれば
、同時に、これらを溶解除去することができる。
First, an insulated wire 4 is wound around a bobbin 5 as shown in FIG. 2 to form a coil 6. Next, this coil 6 is immersed in a good solvent for the soluble binder resin to dissolve and remove the soluble binder resin. If the insulated wire 4 is coated with a lubricant layer, the lubricant layer is removed by immersing it in a solvent that dissolves the lubricant forming the lubricant layer. If the lubricant and soluble binder resin are soluble in the same solvent, they can be dissolved and removed at the same time.

必要に応じて1.これら溶媒を60〜70°C程度に加
熱して樹脂の溶解を促進してもよい。可溶性バインダー
樹脂の具体的な溶解にあたっては、溶媒を数回取り替え
て行うのが好ましい。
1. as necessary. These solvents may be heated to about 60 to 70°C to promote dissolution of the resin. When specifically dissolving the soluble binder resin, it is preferable to change the solvent several times.

この溶媒浸漬により絶縁電線4の第1絶縁層2および第
2絶縁層3の可溶性バインダー樹脂が溶解除去され、第
1絶縁層2は無機物粒子のみから、第2絶縁層3は無機
繊維のみからと耐熱性の良好な無機材料から形成される
ことになる。なお、可溶性バインダー樹脂が0.02%
程度までならば、除去されずに残っていても、次工程の
加熱焼成時に熱分解されて除去されるので、さほどの悪
影響は生じない。 ついで、このコイル6を不活性雰囲
気あるいは真空不活性雰囲気などの非酸化性雰囲気に置
いて、第1絶縁層2のガラスフリットの軟化流動温度以
上の温度に加熱する。この加熱により、ガラスフリット
は熔融し、導体1に固着するととらに高融点無機物や金
属酸化物粒子を結合保持し、さらにその一部が第2絶縁
層3の無機繊維にも部分的に付着し、第2絶縁層3を間
接的に導体Iに接合させる。
By this solvent immersion, the soluble binder resin of the first insulating layer 2 and the second insulating layer 3 of the insulated wire 4 is dissolved and removed, and the first insulating layer 2 is made only of inorganic particles, and the second insulating layer 3 is made only of inorganic fibers. It is formed from an inorganic material with good heat resistance. In addition, soluble binder resin is 0.02%
Even if it remains unremoved, it will be thermally decomposed and removed during the next step of heating and firing, so that it will not have much of an adverse effect. Next, this coil 6 is placed in a non-oxidizing atmosphere such as an inert atmosphere or a vacuum inert atmosphere, and heated to a temperature equal to or higher than the softening and flow temperature of the glass frit of the first insulating layer 2. By this heating, the glass frit melts and adheres to the conductor 1, binds and holds high-melting point inorganic substances and metal oxide particles, and also partially adheres to the inorganic fibers of the second insulating layer 3. , the second insulating layer 3 is indirectly joined to the conductor I.

このようにして得られた耐熱絶縁コイル6は、不活性ガ
ス雰囲気あるいは真空雰囲気中、高温で使用される。
The heat-resistant insulated coil 6 thus obtained is used at high temperatures in an inert gas atmosphere or vacuum atmosphere.

[作用] このような絶縁電線4にあっては、導体lに対する固着
性のない無機物粒子および無機繊維を可溶性バインダー
樹脂を利用して導体Iに固着しているので、コイル巻き
などの加工時に第1および第2絶縁層2.3が導体lか
ら剥離するようなことがなく、良好な加工性を示す。
[Function] In such an insulated wire 4, the inorganic particles and inorganic fibers that do not stick to the conductor I are fixed to the conductor I using a soluble binder resin, so that they are easily attached to the conductor I during processing such as coil winding. The first and second insulating layers 2.3 do not peel off from the conductor 1, and exhibit good workability.

また、このような耐熱絶縁コイル6の製造方法にあって
は、第1絶縁層2および第2絶縁層3の可溶性バインダ
ー樹脂をこれの良溶媒で溶解除去しているので可溶性バ
インダー樹脂除去のための熱処理が不要となり、銅、銅
合金、鉄などの耐酸化性に劣る材料からなる導体lやホ
ビン6を使用することができる。
In addition, in this method of manufacturing the heat-resistant insulated coil 6, since the soluble binder resin of the first insulating layer 2 and the second insulating layer 3 is dissolved and removed using a good solvent thereof, it is necessary to remove the soluble binder resin. This eliminates the need for heat treatment, and the conductor 1 and hobbin 6 made of materials with poor oxidation resistance, such as copper, copper alloy, and iron, can be used.

さらに、このようにして得られた耐熱絶縁コイル5は導
体1表面がすべて無機材料からなる絶縁物で構成されて
いるので、その耐熱性は極めて高くなる。また、導体1
表面にはガラスあるいはガラスと無機物粒子とからなる
絶縁物が密着し、その外側に無機繊維からなる絶縁物が
、内側のガラスによって部分的に密着した状態となって
いるため、熱歪みの蓄積がすくなく導体1上の絶縁層が
導体Iから剥離することがない。さらに、外側の無機繊
維が内側のガラスによって部分的に固着されているので
、熱膨張係数の差による導体lとの伸縮差によって無機
繊維がこすられ切断されてもバラバラになるようなこと
がないため、部分的な線間短絡を生じることがなく、か
つ絶縁物の厚さが厚くなるので絶縁耐圧も増大する [実施例] 径1.5mmの銅線表面にっぎの組成のスラリー状物を
塗布した。
Furthermore, since the heat-resistant insulated coil 5 thus obtained has the entire surface of the conductor 1 made of an insulator made of an inorganic material, its heat resistance is extremely high. Also, conductor 1
Glass or an insulating material made of glass and inorganic particles is in close contact with the surface, and an insulating material made of inorganic fibers on the outside is partially in contact with the inner glass, which prevents the accumulation of thermal strain. The insulating layer on the conductor 1 will not peel off from the conductor I at least. Furthermore, since the outer inorganic fibers are partially fixed by the inner glass, they will not fall apart even if the inorganic fibers are rubbed and cut due to the difference in expansion and contraction with the conductor l due to the difference in thermal expansion coefficient. Therefore, there is no possibility of partial short circuits between wires, and the insulation voltage increases because the thickness of the insulator becomes thicker. Coated.

a ガラスフリット(軟化点700°C)65重量部 b アルミナ         35重量部Cノルマル
・ブチルメタアクリレート50部とイソ・ブチルアクリ
レート50部からなる共重合体(ガラス転移温度40°
C) 35重量部d トルエン         50
重量部ついで、これを約150°Cで乾燥してトルエン
を揮散させ、30μIの第1絶縁層を形成した。
a Glass frit (softening point 700°C) 65 parts by weight b Alumina 35 parts by weight C Copolymer consisting of 50 parts normal butyl methacrylate and 50 parts isobutyl acrylate (glass transition temperature 40°
C) 35 parts by weight d Toluene 50
Part by weight was then dried at about 150°C to volatilize the toluene and form a first insulating layer with a thickness of 30 μI.

この第1絶縁層上に径7μmのガラス繊維をスパイラル
状に密に巻きつけながら、上記共重合体35重量部とト
ルエン50重量部とからなる樹脂液をこれに塗布含浸し
、約150°Cで乾燥しトルエンを揮散させ、100μ
mの第2絶縁層を設けて、絶縁電線を得た。
While glass fibers having a diameter of 7 μm are tightly wound in a spiral shape on this first insulating layer, a resin solution consisting of 35 parts by weight of the above-mentioned copolymer and 50 parts by weight of toluene is applied and impregnated at about 150°C. to volatilize the toluene and 100μ
A second insulating layer of m was provided to obtain an insulated wire.

ついで、この絶縁電線を胴径50mm、内幅150mm
のセラミックコーティングした金属製ボビンにlO層パ
イファイラー巻きにしてコイルを作成した。
Next, this insulated wire has a body diameter of 50 mm and an inner width of 150 mm.
A coil was created by winding the IO layer with a pie filer around a ceramic-coated metal bobbin.

このコイルをアクリレート共重合体の良溶媒であるジク
ロルメタンに浸漬し、コイルの2ないし3層程度の樹脂
が溶解したところで新しいジクロルメタンにとりかえる
方法でアクリレート共重合体を溶解除去した。さらに、
このコイルを窒素雰囲気中で700°C10,5時間加
熱し、導体上に多孔質の無機物層とその上に部分的にこ
の層と接着したガラス繊維層とが設けられた耐熱絶縁コ
イルをえた。
This coil was immersed in dichloromethane, which is a good solvent for acrylate copolymer, and when about two to three layers of resin of the coil were dissolved, the acrylate copolymer was dissolved and removed by replacing it with fresh dichloromethane. moreover,
This coil was heated at 700° C. for 10.5 hours in a nitrogen atmosphere to obtain a heat-resistant insulated coil having a porous inorganic layer on the conductor and a glass fiber layer partially adhered thereto.

この耐熱絶縁コイルの高温での線間の絶縁抵抗値、絶縁
破壊電圧を窒素雰囲気中で測定したところ、別表に示す
結果が得られた。
When the insulation resistance value and dielectric breakdown voltage between the wires of this heat-resistant insulated coil at high temperatures were measured in a nitrogen atmosphere, the results shown in the attached table were obtained.

[発明の効果] 以上説明したように、この発明の絶縁電線は導体上にガ
ラスフリットを主成分とする無機物粒子と可溶性バイン
ダー樹脂からなる第1絶縁層および無機繊維と可溶性バ
インダー樹脂とからなる第2絶縁層が設けられたもので
あるので、導体に対する固着性のない無機物粒子および
無機繊維を可溶性バインダー樹脂を利用して導体に固着
しているので、コイル巻きなどの加工時に第1および第
2絶縁層が導体から剥離するようなことがなく、良好な
加工性を示す。また、この発明の耐熱絶縁コイルの製造
方法は、導体上にガラスフリットを主成分とする無機物
粒子と可溶性バインダー樹脂からなる第1MA縁層およ
び無機繊維と可溶性バインダー樹脂とからなる第2絶縁
層が設けられた絶縁電線を巻き回してコイルとし、この
コイルを可溶性バインダー樹脂の良溶媒中に浸漬し、第
1絶縁層および第2絶縁層の可溶性バインダー樹脂を溶
解除去したのち、非酸化性雰囲気でガラスフリットの軟
化iL度以上に加熱して第iI!!!、縁層を焼成する
ものであるので、バインダー樹脂の分解除去のfこめの
酸化雰囲気での加熱処理が不要となるので、耐熱性に劣
る材料からなる導体やボビンなどを使用することができ
る。また、大径の導体を用いても、高温からの急冷によ
る熱歪みなどにより、無機繊維が切断されてバラバラに
なり部分的な線間短絡を起こすことがなく、絶縁層を厚
く出来るから絶縁耐圧値の高い耐熱絶縁コイル5が得ら
れるなどの利点があるものとなる。
[Effects of the Invention] As explained above, the insulated wire of the present invention has a first insulating layer made of inorganic particles mainly composed of glass frit and a soluble binder resin, and a first insulating layer made of inorganic fibers and a soluble binder resin on a conductor. Since two insulating layers are provided, inorganic particles and inorganic fibers that do not stick to the conductor are fixed to the conductor using a soluble binder resin, so the first and second insulating layers are used during processing such as coil winding. The insulating layer does not peel off from the conductor and exhibits good workability. Further, the method for manufacturing a heat-resistant insulated coil of the present invention includes a first MA edge layer made of inorganic particles mainly composed of glass frit and a soluble binder resin, and a second insulating layer made of inorganic fibers and a soluble binder resin on a conductor. The provided insulated wire is wound to form a coil, this coil is immersed in a good solvent of soluble binder resin, and after dissolving and removing the soluble binder resin of the first and second insulating layers, it is heated in a non-oxidizing atmosphere. Heat the glass frit to a temperature higher than the softening point II! ! ! Since the edge layer is fired, there is no need for heat treatment in an oxidizing atmosphere to decompose and remove the binder resin, so conductors and bobbins made of materials with poor heat resistance can be used. In addition, even if a large diameter conductor is used, the inorganic fibers will not be cut and broken apart due to thermal distortion caused by rapid cooling from high temperatures, causing local short circuits between wires, and the insulation layer can be thickened, so the dielectric strength can be increased. This has advantages such as the ability to obtain a heat-resistant insulated coil 5 with a high value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の絶縁電線の一例を示す概略断面図
、第2図はこの発明の耐熱絶縁コイルの製造方法によっ
て得られた耐熱絶縁コイルの一例を示す部分断面図であ
る。 l・・・導体、 2・・・第1絶縁層 3・・・第2絶縁層 6・・・コイル
FIG. 1 is a schematic cross-sectional view showing an example of an insulated wire of the present invention, and FIG. 2 is a partial cross-sectional view showing an example of a heat-resistant insulated coil obtained by the method of manufacturing a heat-resistant insulated coil of the present invention. l...Conductor, 2...First insulating layer 3...Second insulating layer 6...Coil

Claims (2)

【特許請求の範囲】[Claims] (1)導体上に、ガラスフリットを主成分とする無機物
粒子と可溶性バインダー樹脂とからなる第1絶縁層およ
び無機繊維と可溶性バインダー樹脂とからなる第2絶縁
層が設けられたことを特徴とする絶縁電線。
(1) A first insulating layer made of inorganic particles mainly composed of glass frit and a soluble binder resin and a second insulating layer made of inorganic fibers and a soluble binder resin are provided on the conductor. Insulated wire.
(2)導体上に、ガラスフリットを主成分とする無機物
粒子と可溶性バインダー樹脂とからなる第1絶縁層およ
び無機繊維と可溶性バインダー樹脂とからなる第2絶縁
層が設けられた絶縁電線を巻き回してコイルとし、この
コイルを可溶性バインダー樹脂の良溶媒中に浸漬し、第
1絶縁層および第2絶縁層の可溶性バインダー樹脂を溶
解除去したのち、非酸化性雰囲気でガラスフリットの軟
化温度以上に加熱して第1絶縁層を焼成することを特徴
とする耐熱絶縁コイルの製造方法。
(2) Winding an insulated wire on a conductor, which has a first insulating layer made of inorganic particles mainly composed of glass frit and a soluble binder resin, and a second insulating layer made of inorganic fibers and a soluble binder resin. This coil is immersed in a good solvent of soluble binder resin to dissolve and remove the soluble binder resin of the first and second insulating layers, and then heated to a temperature higher than the softening temperature of the glass frit in a non-oxidizing atmosphere. 1. A method for manufacturing a heat-resistant insulated coil, which comprises baking the first insulating layer.
JP61047764A 1986-03-05 1986-03-05 Insulated wire and method for manufacturing heat-resistant insulated coil using the same Expired - Lifetime JPH0770250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61047764A JPH0770250B2 (en) 1986-03-05 1986-03-05 Insulated wire and method for manufacturing heat-resistant insulated coil using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61047764A JPH0770250B2 (en) 1986-03-05 1986-03-05 Insulated wire and method for manufacturing heat-resistant insulated coil using the same

Publications (2)

Publication Number Publication Date
JPS62206706A true JPS62206706A (en) 1987-09-11
JPH0770250B2 JPH0770250B2 (en) 1995-07-31

Family

ID=12784436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61047764A Expired - Lifetime JPH0770250B2 (en) 1986-03-05 1986-03-05 Insulated wire and method for manufacturing heat-resistant insulated coil using the same

Country Status (1)

Country Link
JP (1) JPH0770250B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282817U (en) * 1988-12-15 1990-06-27
JP2009176718A (en) * 2007-11-06 2009-08-06 Honeywell Internatl Inc Flexible insulation wire for use in high temperature, and manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167303A (en) * 1980-05-28 1981-12-23 Fujikura Ltd Heat resistance insulating coil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167303A (en) * 1980-05-28 1981-12-23 Fujikura Ltd Heat resistance insulating coil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282817U (en) * 1988-12-15 1990-06-27
JP2009176718A (en) * 2007-11-06 2009-08-06 Honeywell Internatl Inc Flexible insulation wire for use in high temperature, and manufacturing method

Also Published As

Publication number Publication date
JPH0770250B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
EP0012422B1 (en) Heat-resistant electrically insulated wires and a method for preparing the same
JPS62206706A (en) Manufacture of insulated wire and heat resistant insulated coil using the wire
WO2019188654A1 (en) Method for manufacturing insulating superconductive wire rod
US4261097A (en) Method for insulating superconductors in a magnet winding
JPS6017805A (en) Multiwire conductor with connection easiness and direct soldering type
WO2019188711A1 (en) Method for manufacturing insulating superconductive wire rod
JPH0125166B2 (en)
RU2183875C2 (en) Technology of manufacture of superconductive wire
JPS6328019A (en) Manufacture of insulating coil
JPH0656823B2 (en) Method for manufacturing heat resistant insulated coil
JPS6328020A (en) Manufacture of insulating coil
US4231151A (en) Method and apparatus for manufacturing a filament served bondable conductor
US3293076A (en) Process of forming a superconductor
JPS5958813A (en) Manufacture of amorphous metal core
JP2020009709A (en) Superconducting wire rod and insulated superconducting wire rod
WO2019188592A1 (en) Method for manufacturing insulating superconductive wire rod
US6572916B1 (en) Coating method for use in a process for producing high-temperature superconductive strip conductors
JP2003162926A (en) Self-binding insulated wire and coil using the same
JP3475075B2 (en) Aluminum layer-coated magnetic wire and method of manufacturing the same
JPS5941244B2 (en) Heat resistant magnet wire
JPH0223961B2 (en)
JPS6336085B2 (en)
JPH05198422A (en) Manufacture of heat resisting insulated coil
JPS5914842B2 (en) Heat resistant magnet wire
JPS59224081A (en) Method of connecting composite superconductive conductor