WO2019187933A1 - 健康支援システム、情報提供シート出力装置、方法およびプログラム - Google Patents
健康支援システム、情報提供シート出力装置、方法およびプログラム Download PDFInfo
- Publication number
- WO2019187933A1 WO2019187933A1 PCT/JP2019/007647 JP2019007647W WO2019187933A1 WO 2019187933 A1 WO2019187933 A1 WO 2019187933A1 JP 2019007647 W JP2019007647 W JP 2019007647W WO 2019187933 A1 WO2019187933 A1 WO 2019187933A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- prediction
- person
- health
- target person
- test value
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/70—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mental therapies, e.g. psychological therapy or autogenous training
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H15/00—ICT specially adapted for medical reports, e.g. generation or transmission thereof
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7275—Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
Definitions
- the present invention relates to a health support system, an information providing sheet output device used therefor, a health support method, and a health support program.
- Non-patent Document 1 describes an example of a health risk prediction system that predicts a health risk based on the results of a health check and a lifestyle as a technology related to health prediction and health support.
- the health risk prediction system described in Non-Patent Document 1 includes two subsystems: a test value prediction system and an onset prediction system.
- the test value prediction system indicates the degree of improvement in test results accompanying lifestyle improvements for people who have minor test abnormalities at the present time and who have problems with lifestyles.
- the onset prediction system predicts the disease incidence when continuing an undesirable lifestyle and improving the lifestyle for people who do not have any abnormal testing at the present time but are biased in their lifestyle. is there.
- health support by any subsystem is interactively performed between a medical worker and a examinee, and the examinee can recognize the effect of his / her behavior change. .
- Patent Document 1 supports the selection of a health program for health management, health promotion, disease prevention and treatment, etc., which allows the subject to continue participating without feeling burdened. A method is described. The method described in Patent Literature 1 uses a participant's health program participation record information to present a program whose content is close to the target person's action record from among a plurality of health programs.
- Patent Document 2 describes an example of a method for presenting the relationship between a biometric index, a meal, and an action for the purpose of giving the guidance participant the confidence (self-efficacy) of performing lifestyle improvement behavior.
- the method described in Patent Document 2 is based on actual data in which the value of the biometric index and the actual amount (meal intake amount and the number of actions) satisfy a predetermined condition, and by the multiple regression analysis, The rate of change of the biometric index with respect to presence / absence is calculated. Then, based on the calculated rate of change, foods and actions are ranked and output.
- the challenge is for people who are not interested in their own health, such as those who are away from the test itself, or who are not able to participate in insurance guidance and improvement programs after the test.
- people who are not interested in their own health such as those who are away from the test itself, or who are not able to participate in insurance guidance and improvement programs after the test.
- it is in how to promote behavioral change.
- the person's own inspection results and subsequent participation in the improvement program are few or not at all.
- people are the only ones who can change their behaviors to prevent their own malfunctions and promote health (for health checkups and health guidance). It is important to promote the participation of people and improvement of lifestyle habits when necessary.
- the method described in Non-Patent Document 1 is based on the premise that the test value of the person can be acquired. For this reason, with the method described in Non-Patent Document 1, it is not possible to urge a person who cannot obtain a test value to change his / her behavior so that he / she can receive a health checkup. In other words, the method described in Non-Patent Document 1 is merely a way to make the examinee recognize the current situation and motivate lifestyle improvement in the field of health guidance after receiving a medical examination. For this reason, in particular, there is little or no experience in testing and subsequent participation in improvement programs due to reasons such as low interest in their own health or lack of appropriate information on health services even if they are not low. The method described in Non-Patent Document 1 is not sufficient when it is considered to cause behavior change in a person who is not present.
- Patent Documents 1 and 2 require actual performance values of the person himself / herself, it is still inadequate when considering changing the behavior of the person as described above.
- An object is to provide a health support system, an information providing sheet output device, a health support method, and a health support program that can support behavioral change for health promotion.
- the health support system uses a prediction model in which a relationship between a plurality of variables corresponding to one or more items related to a person's current or past lifestyle and a future test value of the person is defined.
- a test value predicting means for predicting a future test value by using a designated person or a predetermined person as a prediction target person, and each support target person determined as a support target person among the prediction target persons based on the prediction result
- a sheet output means for generating and outputting an information provision sheet including information for improving lifestyle, prevention of malfunction or health promotion of the support target person
- the information providing sheet output apparatus provides a prediction in which a relationship between a plurality of variables corresponding to one or more items related to a person's current or past lifestyle and a future test value of the person is defined.
- a storage means for storing prediction result data indicating a result of predicting a future inspection value using a specified person or a predetermined person as a prediction target person using the model, and based on the prediction result, Create one information provision sheet for each support target that is designated as the target of support, including information for improving the lifestyle of the support target, preventing malfunction, or promoting health.
- sheet output means for outputting.
- the health support method provides a prediction model in which a relationship between a plurality of variables corresponding to one or more items related to a person's current or past lifestyle and a future test value of the person is defined.
- the future inspection value is predicted, and based on the prediction result, one piece for each support target person who is the support target person among the prediction target persons
- An information providing sheet including information for improving the lifestyle habits, prevention of malfunction or health promotion of the support target person is generated and output.
- the relationship between a plurality of variables corresponding to one or more items related to a person's current or past lifestyle and a future test value of the person is defined in the computer.
- a process for predicting future test values using a specified person or a predetermined person as a prediction target using a prediction model, and a support target that is determined as a support target among prediction target persons based on the prediction result One information provision sheet for each person, and a process for generating and outputting an information provision sheet including information for improving the lifestyle of the support target person, prevention of malfunction, or health promotion is executed.
- FIG. 1 is a block diagram illustrating a configuration example of the health support system of the present embodiment.
- a health support system 100 illustrated in FIG. 1 includes a model learning unit 11, a test value prediction unit 12, a sheet output unit 13, and a data storage unit 14.
- the model learning unit 11 learns a prediction model for predicting the future inspection value of the designated target person.
- the prediction model includes at least a plurality of variables including one or more items (hereinafter referred to as lifestyle items) relating to a current or past lifestyle of a subject, and future test values of the subject.
- lifestyle items one or more items relating to a current or past lifestyle of a subject
- future test values of the subject There is no particular limitation as long as it is a model that defines the relationship.
- the predictive model is, for example, a test value at a certain point in time in the past (for example, a test value obtained in the latest health check) and a subject's lifestyle 1 for a predetermined test item.
- One or more variables respectively corresponding to one or more inquiry items may be used as at least explanatory variables, and a model that predicts future test values of the subject as objective variables may be used.
- the explanatory variables are not limited to the above.
- one or more variables indicating each test value for a predetermined period in the past (or obtained by a predetermined number of health examinations in the past), and the attributes of the subject It may further include a variable indicating the value of the item regarding. Examples of items related to the attributes of the subject include gender, age (or age), and the like.
- the model learning unit 11 is, for example, record data held in an organization (local government, company, health insurance association, etc.) to which the support target person belongs, and includes record data including at least a health check and an inquiry result at that time.
- a prediction model may be generated and learned by performing big data analysis using AI (artificial intelligence) technology.
- the learning method performed by the model learning unit 11 is not particularly limited, but various methods such as supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning are possible.
- a machine learning algorithm a neural network which is one of general supervised learning may be used, and other algorithms (for example, support vector machine, deep learning, Gaussian process, decision tree, random tree) Forest) may be used.
- the prediction model include a linear model, a piecewise linear model, a regression model, a logistic regression model, a multiple regression model, a multiple regression model with case classification, and the like.
- the model learning unit 11 learns the prediction model using a learning device that can specify the contribution of each of the plurality of explanatory variables to the objective variable by machine learning using predetermined training data (actual data). May be.
- the model learning unit 11 may learn the prediction model using at least one of sparsity and regularization as a constraint.
- the model learning unit 11 is one of learning devices based on case-dependent multiple regression analysis, and uses a heterogeneous mixed learning that solves a nonlinear and sparse problem with high accuracy in a white box, and uses a prediction model. You may learn.
- the model learning part 11 may specify the magnitude
- the information (various parameters) of the learned prediction model obtained by the model learning unit 11 is stored in, for example, the data storage unit 14.
- the prediction model learned by the model learning unit 11 is not limited to one. That is, when there are a plurality of inspection values to be predicted, the model learning unit 11 learns a prediction model for each inspection item.
- the inspection value prediction unit 12 predicts a future inspection value of the designated prediction target person or a predetermined prediction target person using the learned prediction model obtained by the model learning unit 11.
- the test value prediction unit 12 receives the target person information and the prediction condition, which are information for specifying the prediction target person, and thus the value of each explanatory variable input to the prediction model, and based on the received information.
- a prediction may be made. Note that there may be a plurality of persons to be predicted.
- Target person information may be, for example, a personal ID (Identifier), a user ID within the organization, or the like that can identify attribute data or performance data indicating the attributes of the prediction target person.
- designation regarding a prediction time point at which a test value is predicted (designation as to when a test value is predicted or designation of each prediction time when there are a plurality of prediction time points) may be mentioned.
- Other examples of the prediction condition include designation of whether or not to use the actual data regarding the lifestyle, specification of a value used for each lifestyle item when the actual data is not used, and the like.
- the prediction conditions can be combined.
- the test value prediction unit 12 searches for another person who is similar to the prediction target person based on the specified information, and performs a search. You may use the value of the other person. At this time, it is preferable that the test value prediction unit 12 searches for others who have similar attributes, trends in past test values or lifestyles, or combinations thereof.
- the search target is not particularly limited. For example, it may be external data such as data on the Internet, or data held in a database in an organization to which the target person supporter belongs.
- the prediction result by the inspection value prediction unit 12 is stored in the data storage unit 14 in association with the information of the prediction target person together with the value of the explanatory variable and the prediction condition used for the prediction.
- the inspection value prediction unit 12 predicts future inspection values for each inspection item using a prediction model corresponding to the inspection item. Note that an example of prediction by the inspection value prediction unit 12 (who is targeted, what timing is predicted, etc.) will be described later.
- the sheet output unit 13 creates and outputs one information provision sheet for each support target person based on the prediction result by the inspection value prediction unit 12.
- the information provision sheet is a sheet in which information for improvement of lifestyle, prevention of malfunction, or health promotion of the support target person is identified and directed to each support target person based on the prediction result.
- An example of information providing sheet output by the sheet output unit 13 (specific contents of the information providing sheet, output format, etc.) will be described later.
- the prediction result by the inspection value prediction unit 12 can be used for model verification by the model learning unit 11.
- the model learning unit 11 divides, for example, a predetermined number of past record data for learning and evaluation, learns a prediction model using the learning data, and has learned prediction using the evaluation data.
- the model evaluation may be performed by comparing the predicted value obtained from the model with the actual value, and relearning may be performed as necessary.
- the inspection value obtained after obtaining the predicted value as the actual value to be compared can be included.
- FIG. 2 is a flowchart showing an example of the operation of the health support system of the present embodiment.
- the model learning unit 11 learns a prediction model for each inspection value to be predicted (step S101).
- the learned prediction model information is stored in the data storage unit 14.
- the inspection value prediction unit 12 receives the target person information and the prediction condition, and predicts the future inspection value of the prediction target person using the prediction model based on the received information (step S102).
- the prediction result by the test value prediction unit 12 is stored in the data storage unit 14 in association with the information of the prediction target person together with the value of the explanatory variable and the prediction condition used for the prediction.
- the sheet output unit 13 creates and outputs one information provision sheet for each support target person based on the prediction result by the inspection value prediction unit 12 (step S103).
- model learning phase (step S101), the prediction phase (step S102), and the sheet creation phase (step S103) are shown as a series of operations, but these may be operated independently. Is possible. In that case, the model learning phase may be performed at least once before the prediction phase. The prediction phase may be performed at least once before the sheet creation phase. Further, information exchange between phases may be performed via the data storage unit 14, for example.
- FIG. 3 is a flowchart showing another operation example of the health support system of the present embodiment.
- the model learning phase (step S ⁇ b> 101) is omitted on the assumption that the learned prediction model is stored in the data storage unit 14.
- the test value prediction unit 12 performs the process of predicting the future test value of the prediction target person (Step S102B) for all prediction target persons. Are repeated until the prediction under all the prediction conditions is completed (No in step S102C).
- the sheet output unit 13 is based on the prediction result by the inspection value prediction unit 12, and information on all the support target persons A providing sheet is created (step S103A).
- the test value prediction unit 12 may create information support sheets for a plurality of support target persons in one file.
- step S103B When the information providing sheets for all the supporters are created, they are collectively output (for example, file printing) (step S103B).
- FIG. 4 is a block diagram showing another configuration example of the health support system of the present embodiment.
- the health support system 100 may further include a target selection unit 15 in the configuration illustrated in FIG. 1.
- the model learning unit 11 is omitted on the assumption that the information of the prediction model learned for each inspection item is stored in the data storage unit 14 in advance. Similarly, the model learning unit 11 can be provided.
- the target selection unit 15 selects (specifies) a support target person or a support target item (for example, a test item and a lifestyle item that promotes transformation for improvement) for which an information providing sheet is created in the sheet output unit 13. .
- the target selection unit 15 causes the test value prediction unit 12 to perform prediction for a predetermined support target item candidate while changing the prediction target person or the prediction condition as a simulation, and based on the result, the prediction target person and the support target item Select.
- the prediction target person and the prediction condition to be simulated may be determined in advance, or may be given by the user.
- the target selection unit 15 can also receive support target item candidate designation and output conditions (such as conditions for selecting a support target person and support target items) from the user.
- FIG. 5 is an explanatory diagram showing an example of a method for specifying an output condition by the user. As shown in FIG. 5, a screen for the user to specify output conditions may be prepared in advance.
- the inspection value prediction unit 12 and the sheet output unit 13 may perform part or all of the selection processing in the target selection unit 15.
- FIG. 6 and 7 are flowcharts showing an example of the process flow of the object selection process.
- the example illustrated in FIG. 6 is an example of a process for selecting a support target item
- the example illustrated in FIG. 7 is an example of a process for selecting a support target person.
- the target selection unit 15 maintains the current (or most recent) lifestyle for all the inspection items for the designated prediction target person or the predetermined prediction target person.
- the prediction condition is set so that the test value at that time is predicted (step S201).
- step S201 target person information indicating the target of prediction and a prediction condition are output to the inspection value prediction unit 12.
- the prediction condition set in step S201 may be referred to as a first prediction condition.
- test value prediction unit 12 When the test value prediction unit 12 receives the target person information and the prediction condition (first prediction condition), the test value prediction unit 12 predicts the future test value of the prediction target person using the prediction model based on the received information (Ste S202).
- the prediction process itself of the test value prediction unit 12 is the same as that in step S102, except that the value of the explanatory variable input to the prediction model changes depending on the target person information and the prediction conditions.
- step S203 it is determined whether or not all predictions indicated by the target person information and the prediction conditions have been completed. When all predictions are completed (Yes in step S203), the process proceeds to step S204. If not completed (No in step S203), the process returns to step S202, and the prediction is repeated. Prediction completion determination may be performed by the inspection value prediction unit 12 or may be performed by the target selection unit 15 that has received a prediction value as a prediction result.
- step S204 the target selection unit 15 determines, based on the prediction result based on the first prediction condition, for each prediction target person as a test item whose test target value is predicted to be deteriorated in the future.
- the test value that is predicted to deteriorate in the future is specified by, for example, the test value obtained by comparing the latest test value used for prediction with the test value predicted in step S202 for each of the predicted test items. It may be performed based on the degree of change.
- the inspection value is specified by selecting an inspection item whose degree of change is equal to or greater than a predetermined threshold, or by selecting a predetermined number of inspection items in descending order of the degree of change.
- the degree of change may be a change rate in the deterioration direction of the predicted test value with respect to the latest test value, or a change rate that is a ratio of the change amount in the range of values that can be taken by the test item.
- a reference value (upper limit reference value or lower limit reference value, etc.) determined to be deteriorated for each inspection item is set in advance, and predicted from the inspection items for which prediction is performed. You may select the thing in which a test value is in a worse state (one exceeding an upper limit reference value or one exceeding a lower limit reference value), and may further select a predetermined number in descending order of the degree of change. At this time, although the latest test value is not in a deteriorated state, it is possible to select a predicted test value in a deteriorated state.
- the target selection unit 15 changes the test item as a support target item for each prediction target person and changes when the lifestyle is changed
- the prediction conditions are set again so that the inspection value for each pattern is predicted (step S205).
- a prediction condition is set so that all possible change patterns for a combination of a plurality of variables corresponding to lifestyle items are to be predicted.
- step S205 the target person information indicating the prediction target person and the prediction condition are output to the inspection value prediction unit 12.
- the prediction condition set in step S205 may be referred to as a second prediction condition.
- the test value prediction unit 12 Upon receiving the target person information and the prediction condition (second prediction condition), the test value prediction unit 12 predicts the future test value of the prediction target person using the prediction model based on the received information (Ste S206).
- the prediction process itself of the test value prediction unit 12 is the same as that in step S102, except that the value of the explanatory variable input to the prediction model changes depending on the target person information and the prediction conditions.
- step S207 it is determined whether or not all predictions indicated by the prediction information and the prediction conditions have been completed. When all predictions are completed (Yes in step S207), the process proceeds to step S208. If not completed (No in step S207), the process returns to step S206 and repeats the prediction.
- the completion determination of prediction may be performed by the test value prediction unit 12 as in step S203, or may be performed by the target selection unit 15 that has received a prediction value as a prediction result.
- step S208 the target selection unit 15 has changed the lifestyle change pattern with a high degree of improvement for each inspection item that is a support target item of the prediction target person based on the prediction result based on the second prediction condition.
- a lifestyle item is determined as a target of transformation support in the support target item.
- the identification of the lifestyle item is, for example, the test value predicted in step S202 (predicted value when the lifestyle is maintained as it is) for each of the predicted inspection items and the lifestyle change patterns. You may specify based on the improvement degree for every change pattern calculated
- the degree of improvement is the amount of change in the improvement direction of the predicted value (predicted value in each change pattern) when the lifestyle is changed at least partially relative to the predicted value when the lifestyle is maintained as it is, or It may be a change rate that is a ratio of the change amount in a range of values that can be taken by the inspection item.
- the target selection unit 15 sets all the specified target candidate candidates or the predetermined target candidate candidates as prediction target persons for the specified test item or the predetermined test item.
- a prediction condition is set so that a test value when the current (or most recent) lifestyle is maintained is predicted (step S211).
- the designated target candidate candidate or the predetermined target candidate candidate may be a set of arbitrary candidates designated as a target candidate set by the user, or is determined in advance as a target candidate set. It may be a set of arbitrary candidates (for example, a set of persons belonging to an organization assumed to be a user of the system). Moreover, it may be a set of candidates composed of those who meet the extraction condition specified by the user from the set of these arbitrary candidates.
- step S211 target person information indicating the target of prediction and prediction conditions are output to the inspection value prediction unit 12.
- the prediction target person set in step S211 may be referred to as a first prediction target person.
- test value prediction unit 12 When the test value prediction unit 12 receives the target person information (information indicating the first prediction target person) and the prediction condition, the test value prediction unit 12 uses the prediction model to determine the future test value of the prediction target person based on the received information. Is predicted (step S212).
- step S213 it is determined whether or not all the predictions indicated by the target person information and the prediction conditions have been completed. When all the predictions are completed (Yes in step S213), the process proceeds to step S214. If not completed (No in step S213), the process returns to step S212 to repeat the prediction.
- step S214 the target selection unit 15 determines a support target person based on the prediction result for each of the first prediction target persons.
- the target selection unit 15 rearranges the first prediction target persons in the order in which the predicted values are poor (for example, in order of increasing variation and in order of large difference from the standard value), and then a predetermined number of persons Alternatively, a person who satisfies a predetermined condition may be determined as a support target person. At this time, it is also possible for the target selection unit 15 to perform only the rearrangement and determine all the first prediction target persons as support target persons.
- the object selecting unit 15 When rearranging, if there are predicted values of a plurality of inspection items, the object selecting unit 15 preferably judges the predicted results comprehensively and rearranges the predicted results into a lower ranking. Moreover, as an example of predetermined conditions, the person who exceeds the reference value made into a deterioration state, the person who transfers to a deterioration state from the state which is not a deterioration state, etc. are mentioned, for example.
- the target selection unit 15 may select a support target person or a support target item (examination item and lifestyle item to be changed for improvement) through such processing.
- FIG. 8 is an explanatory diagram showing an image of utilizing the information providing sheet.
- the future of an individual is used by using a prediction model (a prediction model corresponding to each examination item) derived from past accumulated medical examination result data. Predicts the health status of the patient and generates prediction result data.
- an information providing sheet showing the prediction results and lifestyle improvement items derived based on the prediction results is provided to the individual. The information providing sheet is printed and mailed to the individual, for example. With such an information provision sheet, to present the future prospects, such as the future prediction when continuing the lifestyle as it is, the specific improvement items to improve it and its effects, etc. Motivate people to improve their lives and participate in health services.
- FIG. 9 is a schematic image of the information providing sheet.
- the information providing sheet may include mailing destination information D11 for mailing.
- the mailing address information D11 includes, for example, the address and name of the person to be supported, and is arranged at a position corresponding to the window frame of the envelope with window.
- the information providing sheet may include a medical examination result prediction D12 indicating a prediction of a health examination result of the support target person when the current lifestyle is maintained.
- the medical examination result prediction D12 may include a graph D121 indicating the transition of examination values including predicted values at a plurality of future points in time, such as one year ahead and two years ahead, for each examination item examined in the health examination.
- a face mark D122 corresponding to the health degree at that time may be displayed in association with each time when the predicted value or the actual value is obtained.
- the health level of each test value is based on, for example, the “health check value of health check items” from the Ministry of Health, Labor and Welfare. May be classified into the recommended area).
- the graph background may be displayed in different colors based on the determination value (see shaded display in the graph in the figure).
- FIG. 10 shows a display example of the medical examination result prediction of a certain examination item in the information providing sheet. As shown in FIG. 10, in the medical examination result prediction D12, not only the actual value of the support target person and the transition of the predicted value are displayed in a graph, but also the average value of the same age in the target organization or the like is also displayed in a graph. Also good.
- information D123 indicating a test value including a predicted value, a medical viewpoint for the transition, a relationship between each test value and a disease, and the like may be presented.
- the information D123 includes, for example, a message explaining the risk of lifestyle-related diseases and diseases associated with deterioration of the test value, a list of specific disease risk names, and the like for the test value predicted to deteriorate. Also good.
- FIG. 11 shows an example of information D123 indicating the relationship between each test value and the disease. By including such information, it is possible for the support target person to know what kind of illness will result if each test value deteriorates.
- the information provision sheet identifies lifestyle items and their contents that have a high improvement rate after reviewing the test values, which are specified as a result of simulations for test values that have a large deviation from the reference value.
- the life improvement proposal information D13 shown together may be included. In the example shown in FIG. 9, a simulation is performed on two test values, the first test value having the first highest deviation from the reference value and the second test value having the second highest difference, and a life improvement proposal is proposed. Information D13 is presented.
- the life improvement proposal information D13 for example, a display is provided so that it is possible to clearly understand how the predicted value changes when reviewing lifestyle habits (exercise, meal, drinking, sleep, etc.).
- lifestyle habits exercise, meal, drinking, sleep, etc.
- the present content answer to an inquiry
- the content after review the graph which shows the change of the predicted value before and after review
- the recommendation degree the example of a display of the predicted value change before and behind the review as one of the life improvement proposal information D13 is shown.
- FIG. 12 the example of a display of the predicted value change before and behind the review as one of the life improvement proposal information D13 is shown. In the example shown in FIG.
- the predicted values before and after the review are displayed in one graph so that the support target can compare and check how the inspection value changes before and after the review. .
- the inspection values after review it is possible to show the effect of continuing to improve lifestyle habits.
- the lifestyle items to be presented may be displayed in a ranking format in descending order of recommendation degree, which is obtained by scoring the degree of improvement. By doing so, it can be used as a reference for creating a plan for improving life.
- the information providing sheet may include a remarks column D14 in which tips for promoting health (introduction of initiatives in the target organization, etc.), contact information, and the like are presented.
- the information provision sheet is created after adjusting the size so that when the information is output, it is output on one sheet for each support target person.
- the information providing sheet may be, for example, a size that becomes A3 size when spread (A4 size when folded).
- Such an information provision sheet can provide prediction values based on actual data and big data, changes in prediction values before and after improvement, and the like, so that the target supporter can objectively grasp his / her state.
- the support target person can grasp the health problem including the future situation, thereby producing a sense of crisis.
- the efficiency can be improved by presenting an effective and specific approach specified by the AI (detailed review of lifestyle habits for improving inspection items). Further, by presenting the future prediction when the lifestyle is reviewed, the support target person can grasp the future image after his / her own efforts, so that a sense of expectation can be produced. Through such a sense of crisis, improved efficiency, and a sense of expectation, it provides an opportunity to change behavior and encourages the start of action (accelerating behavior change).
- FIG. 13 is an explanatory diagram showing an example of a usage scene for a series of processes from future prediction to sheet output.
- this processing may be performed before a health check is held or during a medical checkup period, as a prediction target person (support target person candidate).
- a prediction target person support target person candidate
- the process may be performed as a prediction target person (support target candidate) at the health guidance call time.
- Prediction may be performed on the basis of past health examination results, and the obtained prediction information (including prediction results by simulation and analysis results thereof) may be output as an information provision sheet.
- the subject has not undergone a health checkup in the past few years, or if he / she has been on an irregular basis, there will be a deficiency in the results of past health checks necessary for the prediction of the subject.
- prediction may be performed after the missing portion is complemented with an average value of the same age and same sex, and the obtained prediction information may be output as an information provision sheet.
- the information provision sheet output at the said timing may be enclosed with a medical examination slip (ticket showing medical examination qualification) and sent to a subject.
- output control may be performed so that each support target person's sheet is printed together with the support target person's consultation form.
- the target of the guidance such as those who have been found to have findings of the current health check
- the past of the subject Prediction may be performed based on the health check result, and the obtained prediction information may be output as an information provision sheet.
- the deficient portion may be complemented with the average value of the same age and the same sex as described above, and prediction may be performed.
- the information providing sheet output at the timing may be sent to the target person in a health guidance calling notification.
- output control may be performed so that each support target person's sheet is printed together with the support target person's call notification in order to facilitate the enclosing.
- the content of the information provision sheet output at this time is also provided to an instructor who provides health guidance, such as outputting it on a screen at the time of guidance.
- the participation rate of health guidance can be expected to increase by providing information using future predictions and deepening understanding of the situation at the time of calling to the health guidance target person.
- the target person for the future high-risk person a person who is predicted to be in a worsening state even if not in a worsening state
- the target person for the future high-risk person a person who is predicted to be in a worsening state even if not in a worsening state
- the deficient portion may be complemented with the average value of the same age and the same sex as described above, and prediction may be performed. It is also possible to target persons who have all past medical examination results and at least those who have registered the latest medical examination results.
- the current health check result is below the reference value and not subject to health guidance, but information may be provided by extracting those who are likely to exceed the reference value in the near future based on the prediction result.
- the support target can grasp his / her health problem at an early stage without waiting for the next medical checkup, etc., so that the lifestyle can be reviewed and a health promotion effect can be expected.
- ⁇ (Utilization example 1) This is a prediction model obtained by analyzing big data using AI based on the medical checkup data showing the health checkup results of each individual held by the organization (the management organization) that provides health support for individuals. Using a prediction model that predicts future test values using past test values, one or more lifestyle items, gender and age as explanatory variables, outputs the results of predicting the future of an individual as a single sheet And provide it to individuals.
- ⁇ (Utilization example 2) Input the explanatory variables (test values, lifestyle items, gender, age) obtained from the health examination results for the last two years of the individual, and obtain the information obtained as a result of forecasting up to three years in the future. Output as a sheet.
- predictions may be made when the current lifestyle is continued.
- at least a person who is predicted to have a bad future inspection value may be output.
- the sheet contains information that shows the improvement contents of life improvement and the effects, such as what kind of improvement can be obtained by improving the life of the test value predicted to deteriorate in the future. May be included.
- the sheet may include information indicating a specific means for improving lifestyle habits promoted by the management organization as a hint for promoting health (for example, remarks column D14).
- the rate of initiation of life improvement can be improved by presenting not only the details of general life improvement reviews, such as recommending reviews of exercise and meals, but also means that exist in close proximity.
- the sheet extracts information of up to n (for example, 2) test values that are predicted to deteriorate in the future, and indicates information for reviewing life improvement that is predicted to have a high improvement effect.
- n test values to be extracted are the ones that have the highest rate of deterioration by comparing the current test value with the test value at a future time point (not limited to one and the latest, for example, 3 years later). May be selected in order. By evaluating using the ratio, test values with different units and value ranges can be equally evaluated.
- Test values to be extracted at this time are body weight, waist circumference, LDL (Low-density lipoprotein) cholesterol, HDL (High-density lipoprotein) cholesterol, neutral fat, diastolic blood pressure (diastolic blood pressure), systolic blood pressure ( 9 test values of systolic blood pressure), HbA1c (Hemoglobin A1c), fasting blood glucose may be used.
- the sheet may be created and output based on a result of a prediction performed on a person who is a subject of a predetermined health examination such as a periodic health examination for a national health health subscriber.
- the sheet may be created and output for a person who has not undergone a medical examination in the past predetermined number of times or a person who has undergone irregular examinations.
- the sheet may have a field in which an address and a name are written for sending, a field in which an identification number of a person to be examined is written, and the sheet may be sent together with a consultation ticket.
- the sheet may be created and output for a health guidance target person who has a finding after receiving a predetermined health checkup.
- the sheet may have a field where the address and name are written for sending, a field where the identification number of the person to be examined is written, and it is sent together with the health guidance call notification. Also good.
- the sheet is created for people who have undergone a predetermined health check and there are no problems with the test value at the present time, but the test value is predicted to worsen in the future (for example, eventually become a founder) It may be output.
- ⁇ (Utilization example 9)
- seat output to the person who is predicted that a test value will worsen in the future.
- the current test value and the future test value may be evaluated for all candidates, and a predetermined number of persons may be selected from the descending order of increase rate (deterioration rate) in the worsening direction.
- Such a limitation can be realized, for example, by receiving an output condition setting from a user (a user in a management organization).
- each support target person can fit on one sheet so that a large number of sheets can be output, and one sheet per page May be output as a file consisting of a plurality of pages in which are arranged.
- the maximum number of pages that can be stored in one file may be determined by setting conditions or the like. If the maximum number of pages is exceeded, the file can be automatically divided (generated as a separate file). is there.
- prediction information that increases interest in one's own health produces a sense of crisis, or produces a sense of expectation due to an improvement effect can be compactly combined into one sheet. It can be output collectively. For this reason, appropriate changes in behaviors aimed at preventing malfunctions and promoting health for many people, including those who are not interested in their own health or who do not have appropriate information on health services even if they are not low Can help.
- FIG. 14 is a schematic block diagram showing a configuration example of a computer according to the embodiment of the present invention.
- the computer 1000 includes a CPU 1001, a main storage device 1002, an auxiliary storage device 1003, an interface 1004, a display device 1005, and an input device 1006.
- the health support system of the above-described embodiment may be implemented in the computer 1000.
- the operation of the apparatus may be stored in the auxiliary storage device 1003 in the form of a program.
- the CPU 1001 reads a program from the auxiliary storage device 1003 and develops it in the main storage device 1002, and executes predetermined processing in the embodiment according to the program.
- the CPU 1001 is an example of an information processing apparatus that operates according to a program.
- a CPU Central Processing Unit
- MPU Micro Processing Unit
- MCU Memory Control Unit
- GPU Graphics Processing Unit
- the auxiliary storage device 1003 is an example of a tangible medium that is not temporary.
- Other examples of the non-temporary tangible medium include a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, and a semiconductor memory connected via the interface 1004.
- this program is distributed to the computer 1000 via a communication line, the computer 1000 that has received the distribution may develop the program in the main storage device 1002 and execute predetermined processing in each embodiment.
- the program may be for realizing a part of predetermined processing in the embodiment.
- the program may be a difference program that realizes the predetermined processing in the embodiment in combination with another program already stored in the auxiliary storage device 1003.
- the interface 1004 transmits / receives information to / from other devices.
- the display device 1005 presents information to the user.
- the input device 1006 accepts input of information from the user.
- some elements of the computer 1000 may be omitted. For example, if the computer 1000 does not present information to the user, the display device 1005 can be omitted. For example, if the computer 1000 does not accept information input from the user, the input device 1006 can be omitted.
- circuitry IV general-purpose or dedicated circuits
- processors etc., or combinations thereof.
- circuitry IV general-purpose or dedicated circuits
- processors etc.
- combinations thereof may be constituted by a single chip or may be constituted by a plurality of chips connected via a bus.
- some or all of the above-described components may be realized by a combination of the above-described circuit and the like and a program.
- the plurality of information processing apparatuses and circuits may be centrally arranged or distributedly arranged.
- the information processing apparatus, the circuit, and the like may be realized as a form in which each is connected via a communication network, such as a client and server system and a cloud computing system.
- FIG. 15 is a block diagram showing an outline of the health support system of the present invention.
- a health support system 60 shown in FIG. 15 includes a test value prediction unit 61 and a sheet output unit 62.
- the test value predicting means 61 (for example, the test value predicting unit 12) has a relationship between a plurality of variables corresponding to one or more items related to a person's current or past lifestyle and a future test value of the person. Using the specified prediction model, a future test value is predicted using a designated person or a predetermined person as a prediction target person.
- the sheet output means 62 (for example, the sheet output unit 13) is one information providing sheet for each support target person who is a support target person among the prediction target persons based on the result of the prediction, An information provision sheet including information for improving the lifestyle of the support target person, preventing malfunction, or promoting health is created and output.
- FIG. 16 is a block diagram showing an outline of the information providing sheet output apparatus of the present invention.
- An information providing sheet output device 63 shown in FIG. 16 includes the sheet output unit 62 and a storage unit 64.
- the storage unit 64 (for example, the data storage unit 14) defines a relationship between a plurality of variables corresponding to one or more items related to a person's current or past lifestyle and a future test value of the person. Using the prediction model, prediction result data indicating a result of predicting a future test value with a designated person or a predetermined person as a prediction target person is stored.
- the prediction model includes a plurality of variables corresponding to a test value for a predetermined period of a certain person, one or more items related to a current or past lifestyle, a future test value of the person,
- the test value predicting means obtains test values for at least the past predetermined period used for the prediction model from the performance data of the prediction target person, and the prediction target person's
- the test value prediction means predicts a future test value, and when the test value for the past predetermined period used for the prediction model in the prediction target person's performance data is missing,
- the health support system according to appendix 1, supplemented with test values of another person of the same age and same sex as the person.
- the said test value prediction means is a means to predict each test value of the said some test
- the test value prediction means predicts a first test value that is a future test value of the prediction target person when the prediction target person continues the current lifestyle, and a test value predicted to deteriorate in the future
- the second test value which is the future test value of the prediction target person when the lifestyle is reviewed, with respect to the high-risk test item that is the test item, and the information
- the provision sheet includes the first test value of the plurality of test items of the support target person, and the high risk test item when the prediction result of the support target person includes the high risk test item. Improvement effect against For high revision items, health support system according to Appendix 1 or Appendix 2 contains at least the second test value after the content and review of the item after review.
- inspection item is 2 or less, and the said sheet output means compares the present test value with a future test value, and the said high risk test
- the said test value prediction means predicts the future test value of all the review patterns with respect to the one or more items regarding the said lifestyle about the said high risk test item
- the said sheet output means is the said all output Additional remarks 3 or 10 that specify a predetermined number of review patterns in descending order of improvement from the review patterns, and that change items in the specified review patterns are review items that have a high improvement effect on the high-risk inspection items
- the health support system according to appendix 4.
- Supplementary note 6 From Supplementary note 1 to which the prediction target person who is the candidate for the support target or the candidate for the support target is determined based on the past predetermined number of medical examinations that are regularly performed.
- the health support system according to any one of appendix 5.
- (Supplementary note 7) The information providing sheet according to any one of supplementary notes 1 to 6, including information indicating a concrete means for improving lifestyle habits promoted by an organization to which the support target person belongs. Health support system.
- Additional remark 8 The said information provision sheet
- the inspection value predicting means uses a plurality of prediction models respectively corresponding to a plurality of inspection items, and targets each of a plurality of prediction subjects, and each of the plurality of future inspection items of each prediction subject.
- the sheet output means creates one information providing sheet for each support target person who is a support target person among the plurality of prediction target persons.
- the health support system according to any one of appendix 1 to appendix 8, which is created as a file in which the information providing sheet of the support target person is arranged.
- Storage means for storing prediction result data indicating a result of predicting a future test value with a person or a predetermined person as a prediction target person, and based on the prediction result, the prediction target person was selected as a support target person
- a sheet output means for generating and outputting an information providing sheet for each person to be supported, the information providing sheet including information for improvement of lifestyle, prevention of malfunction or health promotion of the person to be supported;
- An information providing sheet output device comprising:
- a health support method comprising: creating and outputting an information providing sheet including information for improving the lifestyle of the support target person, preventing malfunction, or promoting health.
- the present invention can be suitably applied to health support in organizational units.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Data Mining & Analysis (AREA)
- Child & Adolescent Psychology (AREA)
- Developmental Disabilities (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Psychology (AREA)
- Social Psychology (AREA)
- Medical Treatment And Welfare Office Work (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
健康支援システム60は、ある人物の現在または過去の生活習慣に関する1つ以上の項目に対応した複数の変数と、その人物の将来の検査値との関係が規定された予測モデルを用いて、指定された人物または所定の人物の予測対象者の将来の検査値を予測する検査値予測手段61と、予測の結果に基づいて、予測対象者のうち支援の対象者とされた支援対象者ごとに1枚の情報提供シートであって、その支援対象者の生活習慣の改善、不調予防または健康増進のための情報を含む情報提供シートを作成して出力するシート出力手段62とを備える。
Description
本発明は、健康支援システム、それに用いられる情報提供シート出力装置、健康支援方法および健康支援プログラムに関する。
近年、少子高齢化が進む中で、国家全体として増加する医療費を削減しながら、健康寿命を延伸させていくことが重要な課題となっている。
例えば、日本では、平成26年3月に保健事業指針の一部が改正された。これに基づき、健康・医療情報を活用してPDCAサイクル(Plan-do-check-act cycle )に沿った効果的かつ効率的な保健事業の実現が望まれている。すなわち、やみくもに保健事業を実施するのではなく、データを活用して科学的にアプローチすることにより、保健事業の実効性を高めていくことが求められている。
しかし、個々人で自身の健康への興味を高めたり、生活習慣を見直したりすることは容易ではないとされている。例えば、個人が自身の健康や生活習慣に関して取得できる情報は限られている。例えば、個人が、毎年の健康診断結果のみから、生活習慣の見直しの必要性やその効果を具体的に見積もったり、不調予防や健康増進に向けた具体的行動を行ったりすることは困難である。
健康予測や健康支援に関する技術として、非特許文献1には、健康診断の成績とライフスタイルを元に健康危険度を予知する健康危険度予測システムの例が記載されている。非特許文献1に記載の健康危険度予測システムは、検査値予測システムと、発症予測システムの2つのサブシステムを含む。検査値予測システムは、現時点で軽度の検査異常を伴っていてかつライフスタイルに問題がある人を対象に、ライフスタイルの改善に伴う検査成績の改善度合いを示すものである。また、発症予想システムは、現時点で検査異常を伴わないがライフスタイルに偏りがある人を対象に、望ましくないライフスタイルを継続した場合とライフスタイルを改善した場合の疾病発症率を予測するものである。非特許文献1によれば、いずれのサブシステムによる健康支援も医療従事者と受診者との間でインタラクティブに行われ、受診者は自分の行動変容の効果を認識することができるとされている。
また、特許文献1には、健康管理や健康増進、あるいは疾病の予防や治療等のための健康プログラムであって、対象者が、負担を感じずに参加し続けられる健康プログラムの選択を支援する方法が記載されている。特許文献1に記載の方法は、参加者の健康プログラムの参加実績情報を利用して、複数の健康プログラムの中から、内容が対象者の行動実績に近いプログラムを提示する。
また、特許文献2には、指導の参加者に生活習慣の改善行動を実行する自信(自己効力感)を持たせる目的で、生体指標と食事や行動との関係を提示する方法の一例が記載されている。特許文献2に記載の方法は、生体指標の値および実績量(食事の摂取量や行動数)が所定の条件を満たす実績データを対象にして、重回帰分析により、食品の摂取量および行動の有無に対する生体指標の変化率を算出する。そして、算出された変化率に基づいて、食品および行動を順位づけて出力する。
高橋 英孝、吉田 勝美、「ライフスタイル改善のためのHRA(健康危険度予測システム)」、日本人間ドッグ学会誌(JHD)Vol.11 No.4 1997年、p.123-128.
課題は、例えば検査自体から遠ざかっている人や、検査を受けてもその後の保険指導や改善プログラムに参加するところまでいかない人等に代表されるような自身の健康に興味が高くない人に対して、いかに行動変容を促すかという点にある。そのような人の場合、その人自身の検査実績やその後の改善プログラムへの参加実績が少ない、または全くないことも想定される。しかし、国家全体や組織全体における保健事業の実効性を高めていくためには、そのような人たちにこそ、自身の不調予防や健康増進のための行動変容(健康診断の受診、保健指導への参加、必要な場合には生活習慣の改善等)を促すことが重要となる。
例えば、非特許文献1に記載の方法は、あくまでその人の検査値が取得できることを前提としている。このため、非特許文献1に記載の方法では、検査値を取得できない人に対して健康診断を受診させるよう行動変容を促すことはできない。すなわち、非特許文献1に記載の方法は、あくまで健康診断を受診後の保健指導等の現場において、受診者に現状を認識させてライフスタイル改善への動機付けを行おうというものにすぎない。このため、特に、自身の健康に関心が低かったり、低くなくても保健事業に関する適切な情報を持たなかったりする等の理由から、検査実績やその後の改善プログラムへの参加実績が少ない、または全くない人にも行動変容を起こさせようと考えた場合、非特許文献1に記載の方法では不十分である。
特許文献1、2に記載の方法も同様、その人自身による行動の実績値を必要とすることから、上述したような人に行動変容を起こさせようと考えた場合、やはり不十分である。
本発明は、上述した課題に鑑みて、自身の健康に関心が低かったり、低くなくても保健事業に関する適切な情報を持たなかったりするような人を含めた多くの人にとって適切に、不調予防や健康増進に向けた行動変容を支援することができる健康支援システム、情報提供シート出力装置、健康支援方法および健康支援プログラムを提供することを目的とする。
本発明による健康支援システムは、ある人物の現在または過去の生活習慣に関する1つ以上の項目に対応した複数の変数と、その人物の将来の検査値との関係が規定された予測モデルを用いて、指定された人物または所定の人物を予測対象者として将来の検査値を予測する検査値予測手段と、予測の結果に基づいて、予測対象者のうち支援の対象者とされた支援対象者ごとに1枚の情報提供シートであって、その支援対象者の生活習慣の改善、不調予防または健康増進のための情報を含む情報提供シートを作成して出力するシート出力手段とを備えることを特徴とする。
また、本発明による情報提供シート出力装置は、ある人物の現在または過去の生活習慣に関する1つ以上の項目に対応した複数の変数と、その人物の将来の検査値との関係が規定された予測モデルを用いて、指定された人物または所定の人物を予測対象者として将来の検査値を予測した結果を示す予測結果データを記憶する記憶手段と、予測の結果に基づいて、予測対象者のうち支援の対象者とされた支援対象者ごとに1枚の情報提供シートであって、その支援対象者の生活習慣の改善、不調予防または健康増進のための情報を含む情報提供シートを作成して出力するシート出力手段とを備えることを特徴とする。
また、本発明による健康支援方法は、ある人物の現在または過去の生活習慣に関する1つ以上の項目に対応した複数の変数と、その人物の将来の検査値との関係が規定された予測モデルを用いて、指定された人物または所定の人物を予測対象者として将来の検査値を予測し、予測の結果に基づいて、予測対象者のうち支援の対象者とされた支援対象者ごとに1枚の情報提供シートであって、その支援対象者の生活習慣の改善、不調予防または健康増進のための情報を含む情報提供シートを作成して出力することを特徴とする。
また、本発明による健康支援プログラムは、コンピュータに、ある人物の現在または過去の生活習慣に関する1つ以上の項目に対応した複数の変数と、その人物の将来の検査値との関係が規定された予測モデルを用いて、指定された人物または所定の人物を予測対象者として将来の検査値を予測する処理、および予測の結果に基づいて、予測対象者のうち支援の対象者とされた支援対象者ごとに1枚の情報提供シートであって、その支援対象者の生活習慣の改善、不調予防または健康増進のための情報を含む情報提供シートを作成して出力する処理を実行させることを特徴とする。
本発明によれば、多くの人にとって適切に、不調予防や健康増進に向けた行動変容を支援することができる。
以下、図面を参照して本発明の実施形態について説明する。図1は、本実施形態の健康支援システムの構成例を示すブロック図である。図1に示す健康支援システム100は、モデル学習部11と、検査値予測部12と、シート出力部13と、データ記憶部14とを備える。
モデル学習部11は、指定された対象者の将来の検査値を予測するための予測モデルを学習する。ここで、予測モデルは、少なくとも、ある対象者の現在または過去の生活習慣に関する1つ以上の項目(以下、生活習慣項目という)を含む複数の変数と、該対象者の将来の検査値との関係を規定するモデルであれば特に限定されない。予測モデルは、例えば、所定の検査項目に対して、該対象者の過去のある1時点における検査値(例えば、直近の健康診断で得られた検査値)と、該対象者の生活習慣に関する1つ以上の問診項目(生活習慣項目)とにそれぞれ対応した1つ以上の変数とを少なくとも説明変数とし、目的変数として対象者の将来の検査値を予測するモデルであってもよい。なお、説明変数は、上記に限定されず、例えば、過去の所定期間分(もしくは過去の所定回数分の健康診断で得られた)各検査値を示す1つ以上の変数や、対象者の属性に関する項目の値を示す変数をさらに含んでいてもよい。対象者の属性に関する項目の例としては、性別、年齢(または年代)等が挙げられる。
モデル学習部11は、例えば、支援対象者が属する組織(自治体、企業、健康保険組合等)で保有している実績データであって、健康診断とその際の問診結果とを少なくとも含む実績データに対して、AI(artificial intelligence )技術を利用したビックデータ分析を行うことにより、予測モデルを生成、学習してもよい。
モデル学習部11が行う学習方法は、特に限定されないが、教師あり学習、教師なし学習、半教師あり学習、強化学習等様々考えられる。また、機械学習のアルゴリズムとしては、一般的な教師あり学習の一つであるニューラルネットワークが利用されてもよいし、他のアルゴリズム(例えば、サポートベクターマシン、ディープラーニング、ガウシアンプロセス、決定木、ランダムフォレスト)が利用されてもよい。また、予測モデルの例としては、線形モデル、区分線形モデル、回帰モデル、ロジスティック回帰モデル、重回帰モデル、場合分け付き重回帰モデル等が挙げられる。
モデル学習部11は、例えば、所定の訓練データ(実績データ)を用いた機械学習により目的変数に対する複数の説明変数の各々の寄与度を特定可能な学習器を利用して、予測モデルを学習してもよい。その際、モデル学習部11は、スパース性および正則化のうち少なくともいずれかを制約に用いて、予測モデルを学習してもよい。一例として、モデル学習部11は、場合分け付き重回帰分析に基づく学習器の1つであって、非線形でかつスパースな問題を高精度にホワイトボックスで解く異種混合学習を利用して、予測モデルの学習を行ってもよい。また、モデル学習部11は、学習の結果、予測モデルの予測式の各変数の係数の大きさ(絶対値)を寄与度として特定してもよい。このとき、寄与度がゼロの変数を、説明変数から除外してもよい。
モデル学習部11によって得られた学習済みの予測モデルの情報(各種パラメータ)は、例えば、データ記憶部14に記憶される。なお、モデル学習部11によって学習される予測モデルは1つに限定されない。すなわち、予測したい検査値が複数ある場合、モデル学習部11は、検査項目ごとに予測モデルを学習する。
検査値予測部12は、モデル学習部11によって得られた学習済みの予測モデルを用いて、指定された予測対象者、または所定の予測対象者の将来の検査値を予測する。このとき、検査値予測部12は、予測対象者ひいては予測モデルに入力する各説明変数の値を特定するための情報である対象者情報と予測条件とを受け付け、受け付けたこれらの情報に基づいて予測を行ってもよい。なお、予測対象者は複数であってもよい。このとき、ある組織に属する者全員等と、予測対象者の条件や該当範囲を予め指定することも可能である。なお、本システムのユーザがその都度、予測対象者の条件や該当範囲を指定することも可能である。
対象者情報は、例えば、予測対象者の属性を示す属性データや実績データを特定可能な、個人ID(Identifier)や該組織内のユーザID等であってもよい。また、対象者情報として、直接、予測モデルに入力する各説明変数の値を指定することも可能である。予測条件の例として、検査値を予測する予測時点に関する指定(いつの時点の検査値を予測するかの指定や予測時点が複数ある場合は各予測時点の指定等)が挙げられる。また、予測条件の他の例としては、生活習慣に関して、実績データを利用するか否かの指定や、実績データを利用しない場合に各生活習慣項目に対して用いる値の指定等が挙げられる。なお、予測条件は、これらを組み合わせることも可能である。
なお、予測対象者の実績データが存在しない場合等、対象者情報を受け付けても必ず全ての説明変数について予測対象者に該当する説明変数の値が特定できるわけではない。そこで、検査値予測部12は、予測対象者に該当する値が特定できない説明変数があった場合には、特定できた情報を基に、予測対象者と似ている他者を検索し、検索された他者の値を利用してもよい。このとき、検査値予測部12は、属性、過去の検査値の傾向または生活習慣のいずれか、またはそれらの組み合わせが似ている他者を検索するのが好ましい。なお、検索対象は特に限定されない。例えば、インターネット上のデータ等の外部データでもよいし、対象者支援者が属する組織内のデータベースに保持されているデータでもよい。
検査値予測部12による予測結果は、予測に用いた説明変数の値や予測条件とともに、予測対象者の情報と対応づけてデータ記憶部14に記憶される。なお、予測したい検査値が複数ある場合、検査値予測部12は、検査項目ごとに、その検査項目に対応した予測モデルを用いて、将来の検査値を予測する。なお、検査値予測部12による予測の例(誰を対象に、どのタイミングで、何を予測するか等)については後述する。
シート出力部13は、検査値予測部12による予測結果を基に、支援対象者ごとに1枚の情報提供シートを作成して出力する。ここで、情報提供シートは、予測結果を基に特定され支援対象者それぞれに向けられた、当該支援対象者の生活習慣の改善、不調予防または健康増進のための情報をまとめたシートである。なお、シート出力部13による情報提供シート出力の例(情報提供シートの具体的な内容や、出力形式等)については後述する。
また、検査値予測部12による予測結果は、モデル学習部11によるモデル検証に用いることも可能である。モデル学習部11は、例えば、過去所定数分の実績データを、学習用と評価用に分割し、学習用データを利用して予測モデルを学習し、評価用データを利用して学習済みの予測モデルから得た予測値と実績値とを比較してモデル評価を行い、必要に応じて再学習してもよい。このとき、比較対象とする実績値として予測値を得た後に得られた検査値を含めることができる。
次に、本実施形態の動作を説明する。図2は、本実施形態の健康支援システムの動作の一例を示すフローチャートである。図2に示す例では、まず、モデル学習部11が、予測したい検査値ごとに予測モデルを学習する(ステップS101)。本例では、学習された予測モデルの情報はデータ記憶部14に記憶される。
次いで、検査値予測部12が、対象者情報と予測条件とを受け付けて、受け付けた情報を基に、予測モデルを用いて予測対象者の将来の検査値を予測する(ステップS102)。本例では、検査値予測部12による予測結果は、予測に用いた説明変数の値や予測条件とともに、予測対象者の情報と対応づけてデータ記憶部14に記憶される。
最後に、シート出力部13が、検査値予測部12による予測結果を基に、支援対象者ごとに1枚の情報提供シートを作成して出力する(ステップS103)。
なお、上記では、モデル学習フェーズ(ステップS101)と、予測フェーズ(ステップS102)と、シート作成フェーズ(ステップS103)とを一連の動作として示しているが、これらをそれぞれ独立して動作させることも可能である。その場合において、モデル学習フェーズは、予測フェーズの前に少なくとも1度行われればよい。また、予測フェーズは、シート作成フェーズの前に少なくとも1度行われればよい。また、フェーズ間の情報のやりとりは、例えば、データ記憶部14を介して行われればよい。
また、図3は、本実施形態の健康支援システムの他の動作例を示すフローチャートである。なお、図3に示す例では、学習済みの予測モデルがデータ記憶部14に記憶されているものとして、モデル学習フェーズ(ステップS101)が省略されている。
本例では、対象者情報および予測条件を受け付けると(ステップS102AのYes)、検査値予測部12が、予測対象者の将来の検査値を予測する処理(ステップS102B)を、全ての予測対象者に対して全ての予測条件での予測が完了するまで繰り返す(ステップS102CのNo)。
全ての予測対象者に対して全ての予測条件での予測が完了すると(ステップS102CのYes)、シート出力部13が、検査値予測部12による予測結果を基に、全ての支援対象者の情報提供シートを作成する(ステップS103A)。このとき、検査値予測部12は、複数の支援対象者の情報提供シートを、1つのファイルにまとめて作成してもよい。
全ての支援者の情報提供シートが作成されると、それらを一括して出力(例えば、ファイル印刷)する(ステップS103B)。
また、図4は、本実施形態の健康支援システムの他の構成例を示すブロック図である。図4に示すように、健康支援システム100は、図1に示す構成に、さらに対象選択部15を備えていてもよい。なお、図4に示す例では、検査項目ごとに学習された予測モデルの情報が予めデータ記憶部14に記憶されているものとして、モデル学習部11を省略しているが、第1の実施形態と同様、モデル学習部11を備えることも可能である。
対象選択部15は、シート出力部13に情報提供シートを作成される支援対象者や支援対象項目(例えば、検査項目とその改善のために変容を促す生活習慣項目等)を選択(特定)する。対象選択部15は、シミュレーションとして、予測対象者または予測条件を変えながら、検査値予測部12に所定の支援対象項目候補に対する予測を行わせ、その結果を基に、予測対象者や支援対象項目を選択する。シミュレーションの対象とする予測対象者や予測条件は、予め定められていてもよいし、ユーザが与えることも可能である。また、対象選択部15は、支援対象項目候補の指定や、出力条件(支援対象者や支援対象項目を選ぶ際の条件等)を、ユーザから受け付けることも可能である。
図5は、ユーザによる出力条件の指定方法の例を示す説明図である。図5に示すように、出力条件をユーザが指定するための画面を予め用意しておいてもよい。
対象選択部15における選択処理の一部または全部を、検査値予測部12やシート出力部13が行うことも可能である。
図6および図7は、対象選択処理の処理フローの一例を示すフローチャートである。図6に示す例は、支援対象項目を選択するための処理の一例であり、図7に示す例は、支援対象者を選択するための処理の一例である。
図6に示す例では、まず、対象選択部15が、指定された予測対象者、または所定の予測対象者について、全ての検査項目を対象に、かつ現在(または直近)の生活習慣を維持したときの検査値が予測されるよう、予測条件を設定する(ステップS201)。
ステップS201の結果、予測対象者を示す対象者情報と予測条件とが検査値予測部12に出力される。以下、ステップS201で設定された予測条件を、第1の予測条件という場合がある。
検査値予測部12は、対象者情報と、予測条件(第1の予測条件)とを受け付けると、受け付けた情報を基に、予測モデルを用いて予測対象者の将来の検査値を予測する(ステップS202)。対象者情報および予測条件により予測モデルに入力される説明変数の値が変わるだけで、検査値予測部12の予測処理自体はステップS102と同様である。
続くステップS203では、対象者情報および予測条件が示す全ての予測が完了したか否かを判定する。全ての予測が完了した場合には(ステップS203のYes)、ステップS204に進む。完了していなければ(ステップS203のNo)、ステップS202に戻り、予測を繰り返す。予測の完了判定は、検査値予測部12が行ってもよいし、予測結果として予測値を受け付けた対象選択部15が行うことも可能である。
ステップS204では、対象選択部15が、第1の予測条件に基づく予測結果を基に、予測対象者ごとに、将来悪化が予測される検査値を支援対象項目とする検査項目に決定する。
将来悪化が予測される検査値の特定は、例えば、予測を行った検査項目の各々について予測に用いた直近の検査値とステップS202で予測された検査値とを比較して求められる検査値の変化度合いに基づいて行われてもよい。例えば、求めた変化度合いが所定の閾値以上である検査項目を選択したり、該変化度合いが高い順に所定数の検査項目を選択したりすることにより、検査値が特定される。ここで、変化度合いは、直近の検査値に対する予測された検査値の悪化方向への変化量、もしくは当該検査項目が取り得る値域幅における該変化量の割合である変化率であってもよい。また、他の特定方法としては、予め検査項目ごとに悪化したと判定される基準値(上限基準値または下限基準値等)を定めておき、予測を行った検査項目の中から、予測された検査値が悪化状態のもの(上限基準値を上回るものや下限基準値を上回るもの)を選択したり、さらにその中から変化度合いの高い順に所定数を選択したりしてもよい。このとき、直近の検査値は悪化状態ではないが、予測された検査値は悪化状態となっているものを選択することも可能である。
予測対象者ごとに支援対象項目とする検査項目が決定すると、対象選択部15は、予測対象者の各々について、支援対象項目とされた検査項目を対象に、かつ生活習慣を変更した場合の変更パターンごとの検査値が予測されるよう、予測条件を再度設定する(ステップS205)。ステップS205では、生活習慣項目に対応する複数の変数の組合せに対し取り得る全ての変更パターンが予測対象になるよう、予測条件を設定する。
ステップS205の結果、予測対象者を示す対象者情報と予測条件とが検査値予測部12に出力される。以下、ステップS205で設定された予測条件を、第2の予測条件という場合がある。
検査値予測部12は、対象者情報と、予測条件(第2の予測条件)とを受け付けると、受け付けた情報を基に、予測モデルを用いて予測対象者の将来の検査値を予測する(ステップS206)。対象者情報および予測条件により予測モデルに入力される説明変数の値が変わるだけで、検査値予測部12の予測処理自体はステップS102と同様である。
続くステップS207では、予測情報および予測条件が示す全ての予測が完了したか否かを判定する。全ての予測が完了した場合には(ステップS207のYes)、ステップS208に進む。完了していなければ(ステップS207のNo)、ステップS206に戻り、予測を繰り返す。予測の完了判定は、ステップS203と同様、検査値予測部12が行ってもよいし、予測結果として予測値を受け付けた対象選択部15が行うことも可能である。
ステップS208では、対象選択部15が、第2の予測条件に基づく予測結果を基に、予測対象者の支援対象項目とされた検査項目ごとに、改善度合いが大きい生活習慣の変更パターンにおいて変更した生活習慣項目を、その支援対象項目における変容支援の対象に決定する。
該生活習慣項目の特定は、例えば、予測を行った検査項目の各々について、ステップS202で予測された検査値(生活習慣を現状維持したときの予測値)と、生活習慣の各変更パターンでの予測値とをそれぞれ比較して求められる変更パターンごとの改善度合いに基づいて特定してもよい。例えば、改善度合いが所定の閾値以上である生活習慣の変更パターンを選択したり、改善度合いが高い順に所定数の変更パターンを選択したりすることにより、特定できる。ここで、改善度合いは、生活習慣を現状維持したときの予測値に対する、生活習慣を少なくとも一部変更したときの予測値(各変更パターンでの予測値)の良化方向への変化量、もしくは当該検査項目が取り得る値域幅における該変化量の割合である変化率であってもよい。
また、図7に示す例では、まず、対象選択部15が、指定された検査項目、または所定の検査項目について、指定された対象者候補、または所定の対象者候補の全てを予測対象者にして、かつ現在(または直近)の生活習慣を維持したときの検査値が予測されるよう、予測条件を設定する(ステップS211)。ここで、指定された対象者候補、または所定の対象者候補とは、ユーザから対象者候補集合として指定された任意の候補者の集合であってもよいし、予め対象者候補集合として定められている任意の候補者の集合(例えば、当該システムのユーザとされる組織に属する者の集合)であってもよい。また、それらの任意の候補者の集合の中から、ユーザが指定した抽出条件に合致する者からなる候補者の集合であってもよい。
ステップS211の結果、予測対象者を示す対象者情報と予測条件とが検査値予測部12に出力される。以下、ステップS211で設定された予測対象者を、第1の予測対象者という場合がある。
検査値予測部12は、対象者情報(第1の予測対象者を示す情報)と、予測条件とを受け付けると、受け付けた情報を基に、予測モデルを用いて予測対象者の将来の検査値を予測する(ステップS212)。
続くステップS213では、対象者情報および予測条件が示す全ての予測が完了したか否かを判定する。全ての予測が完了した場合には(ステップS213のYes)、ステップS214に進む。完了していなければ(ステップS213のNo)、ステップS212に戻り、予測を繰り返す。
ステップS214では、対象選択部15が、第1の予測対象者の各々に対する予測結果を基に、支援対象者を決定する。
対象選択部15は、例えば、第1の予測対象者を予測値が悪い順(例えば、変化幅が大きい順、標準値との差が大きい順)に並び変えた上で、上位所定数の者や所定の条件を満たす者を支援対象者に決定してもよい。このとき、対象選択部15は並び替えのみを行って、第1の予測対象者全員を支援対象者に決定することも可能である。
並び替えに際し、対象選択部15は、複数の検査項目の予測値がある場合は、それらの予測結果を総合的に判断して、予測結果が悪い順位に並び変えるのが好ましい。また、所定の条件の例としては、例えば、悪化状態とされる基準値を超える者、悪化状態でない状態から悪化状態に移行する者等が挙げられる。
対象選択部15は、例えばこのような処理により、支援対象者や、支援対象項目(検査項目とその改善のために変容支援の対象とする生活習慣項目)を選択してもよい。
次に、検査値予測部12による予測の例、およびシート出力部13によるシート出力の例をいくつか示す。なお、以下の一部では、検査値予測部12によって予測対象者が決定され、シート出力部13によって支援対象者および支援対象項目が決定される例を示すが、対象選択部15を備える構成の場合、これらの決定を対象選択部15が行うことも可能である。
図8は、情報提供シートの利活用イメージを示す説明図である。図8に示すように、本実施形態の健康支援システム100では、過去の蓄積された健康診断の実績データから導き出された予測モデル(各検査項目に対応した予測モデル)を用いて、個人の将来の健康状態を予測して、予測結果データを生成する。その上で、予測結果およびそれを基に導き出される生活習慣の改善項目等を示す情報提供シートを、当該個人に提供する。情報提供シートは、例えば、印刷されて当該個人に郵送される。このような情報提供シートにより、今のままの生活習慣を続けたときの将来の予測やそれを改善するための具体的な改善項目およびその効果等、具体的な将来像を予測で提示することにより、生活改善や保健事業参加の動機付けを行う。
また、図9は、情報提供シートの概略イメージである。図9に示すように、情報提供シートは、郵送を行うための郵送先情報D11を含んでいてもよい。郵送先情報D11は、例えば、支援対象者の住所と氏名とを含み、窓付き封筒の該窓枠に合わせた位置に配置される。
また、情報提供シートは、今の生活習慣を維持した場合の支援対象者の健康診断結果の予測を示す健診結果予測D12を含んでいてもよい。健診結果予測D12は、健康診断で検査される検査項目ごとに、1年先、2年先といった将来の複数時点の予測値を含む検査値の推移を示すグラフD121を含んでいてもよい。なお、グラフD121には、予測値または実績値を得た各時点に対応づけて、その時点における健康度合いに応じた顔マークD122を表示してもよい。各検査値の健康度合いは、例えば、厚生労働省の「健診検査項目の健診判定値」に基づいて3段階(正常域/保健指導判定値を満たした保健指導域/受診勧奨判定値を満たした受診勧奨域)に分類してもよい。また、顔マークD122を表示する他、例えば、当該判定値に基づいてグラフ背景を色分け表示してもよい(図中のグラフ内の網かけ表示等参照)。
健診結果予測D12では、例えば、今後自身がどのような健康状態になるかを直感的にイメージできるように、検査項目毎に、昨年と今年の健診結果(実績値)と、1~n年後の各年の検査値(予測値)とを連続してグラフ表示してもよい。なお、本例では、n=3としている。図10に、情報提供シート内のある検査項目の健診結果予測の表示例を示す。図10に示すように、健診結果予測D12では、支援対象者の実績値および予測値の推移をグラフ表示するだけでなく、対象組織内等における同年代の平均値等も併せてグラフ表示してもよい。
また、健診結果予測D12では、予測値を含む検査値およびその推移に対する医学的見地や各検査値と疾病との関係等を示す情報D123を提示してもよい。情報D123は、例えば、悪化が予測された検査値について、当該検査値が悪化することに伴う生活習慣病や疾病のリスクを説明するメッセージや、具体的な疾病リスク名のリスト等を含んでいてもよい。図11に、各検査値と疾病との関係を示す情報D123の例を示す。このような情報を含むことにより、各検査値が悪化するとどのような病気につながるかを支援対象者が知ることができる。
また、情報提供シートは、基準値との乖離が大きい検査値を対象としたシミュレーションの結果特定される、当該検査値に対して見直し後の改善率の高い生活習慣項目とその内容を、改善効果とともに示す生活改善提案情報D13を含んでいてもよい。なお、図9に示す例では、基準値との乖離が1番目に高かった第1の検査値と2番目に高かった第2の検査値の2つの検査値についてシミュレーションを行って、生活改善提案情報D13を提示している。
生活改善提案情報D13では、例えば、生活習慣(運動、食事、飲酒、睡眠等)をどう見直すと予測値がどう変化するかが具体的にわかるような表示を行う。例えば、生活改善提案情報D13では、第1の検査値および第2の検査値についてそれぞれ、当該検査値に対して見直し後の改善度合いの大きい生活習慣項目を上位所定数特定した上で、各生活習慣項目について、現在の内容(問診に対する回答)と見直し後の内容と、見直し前後の予測値の変化を示すグラフと、お勧め度合いとを表示してもよい。図12に、生活改善提案情報D13の1つとしての見直し前後の予測値変化の表示例を示す。図12に示す例では、支援対象者が見直し前と見直し後でどのように検査値が変化するかを比較確認できるように、見直し前と見直し後の予測値を1つのグラフで表示している。このように見直し後の検査値も併せて提示することで、生活習慣の改善を取り組み続けた場合の効果を示すことができる。
このとき、提示する生活習慣項目を、改善度合いの程度をスコア化したお勧め度の高い順にランキング形式で表示してもよい。そのようにすることで、生活改善に向けたプラン作成の参考にすることができる。
また、情報提供シートは、上記以外にも、健康増進のヒント(対象組織での取り組みの紹介等)や連絡先等が提示される備考欄D14を含んでいてもよい。
情報提供シートは、これらの情報を、出力した際に支援対象者1人につき1枚の用紙で出力されるようサイズを調整した上で作成する。情報提供シートは、例えば、見開き時にA3サイズ(折りたたんだ時にA4サイズ)となる大きさであってもよい。
このような情報提供シートによれば、実績データやビッグデータに基づいた予測値や改善前後の予測値の変化等を提供できるので、対象支援者は客観的に自身の状態を把握できる。例えば、支援対象者が、将来の状況も含めて健康課題を把握することができるので、それにより危機感を演出できる。さらに、AIによって特定された効果的かつ具体的な取り組み(検査項目を良化するための具体的な生活習慣の見直し内容)を提示することにより、効率性を向上できる。さらに、生活習慣を見直した際の将来予測も併せて提示することにより、支援対象者が、自身の取り組み後の将来像を把握することができるので、期待感を演出できる。このような危機感の演出、効率性の向上、期待感の演出を通して、行動変容のきっかけを提供して、行動に着手するのを後押しする(行動変容を加速させる)。
また、図13は、将来予測からシート出力までの一連の処理の利用シーンの例を示す説明図である。図13に示すように、当該処理は、健康診断の開催時期の前または最中に、受診対象者のうち未受診者を予測対象者(支援対象者候補)として行ってもよい。健康診断の開催時期に併せて未受診者に情報提供を行うことにより、健康診断への受診勧奨となり、受診率の向上効果が見込まれる。また、図13に示すように、当該処理は、保健指導呼出し時期に、その対象者を予測対象者(支援対象者候補)として行ってもよい。保健指導の呼出し時期に情報提供を行うことにより、保健指導への受診勧奨となり、受診率の向上効果が見込まれる。また、図13に示すように、健康診断や保健指導が実施された後の任意のタイミングで行うことも可能である。例えば、健康診断や保健指導の実施時期でないタイミングで情報提供を行うことにより、指導内容の継続意欲の向上や、健康診断や保健指導以外の手段で自身の生活を見直すきっかけを与える等生活改善への勧奨となり、健康増進を促進できる。
健康診断開催のタイミングに併せて情報提供を行う際、例えば、その受診対象者が直近の過去数年(過去1~2年)の健康診断を受診している場合には、その受診対象者の過去の健康診断結果を基に予測を行い、得られた予測情報(シミュレーションによる予測結果やその分析結果を含む)を情報提供シートにして出力してもよい。一方、その受診対象者が過去数年の健康診断を受診していない場合や受診していても不定期受診の場合には、その対象者の予測に必要な過去の健康診断結果に欠損が生じていることが考えられる。その場合は、当該欠損部分を同年齢・同性の平均値で補完した上で予測を行い、得られた予測情報を情報提供シートにして出力してもよい。また、当該タイミングで出力される情報提供シートは、受診票(受診資格を表すチケット)に同封されて対象者に送付されてもよい。このとき、同封を容易にするために、各支援対象者のシートがその支援対象者の受診票とともに印刷されるように出力制御をしてもよい。
健康診断の受診率が高い人でも、直近の検査値は悪化状態ではないが予測された検査値は悪化状態となっている場合も考えられるため、そのような人に将来予測を用いた情報提供を行うことで、不調予防効果が期待できる。また、過去の健康診断への受診率が低い人には、将来予測を用いた情報提供を行って自身の健康への興味を高めることで、受診率向上効果が期待できる。
また、保健指導開催のタイミングに併せて情報提供を行う際、例えば、その指導対象者(今回の健康診断結果が所見ありと判定された有所見者等)を対象に、その対象者の過去の健康診断結果を基に予測を行い、得られた予測情報を情報提供シートにして出力してもよい。このとき、過去の健康診断結果に欠損がある場合には、上記と同様、欠損部分を同年齢・同性の平均値で補完した上で予測を行えばよい。また、指導対象者の全てを対象にする以外にも、指導対象者であってかつ将来検査値が悪化傾向にある人を対象にすることも可能である。また、当該タイミングで出力される情報提供シートは、保健指導の呼出し通知に同封されて対象者に送付されてもよい。このとき、同封を容易にするために、各支援対象者のシートがその支援対象者の呼出し通知とともに印刷されるように出力制御をしてもよい。また、このとき出力された情報提供シートの内容は、指導の際、画面に出力する等、保健指導を行う指導員にも提供されるのが好ましい。
健康診断受診後、保健指導対象者への呼出しの時期に、将来予測を用いた情報提供を行って自身の状況理解を深めることで、保健指導の参加率向上が期待できる。
また、任意のタイミングでの情報提供を行う際には、例えば、将来の高リスク者(現在は悪化状態になくても将来悪化状態になることが予測された者)を対象に、その対象者の過去の健康診断結果を基に予測を行い、得られた予測情報を情報提供シートにして出力してもよい。このとき、過去の健康診断結果に欠損がある場合には、上記と同様、欠損部分を同年齢・同性の平均値で補完した上で予測を行えばよい。なお、過去の健康診断結果が全て揃っている人や少なくとも直近の健康診断結果が登録されている人を対象にすることも可能である。
例えば、今回の健康診断結果は基準値以下で保健指導の対象ではないが、近い将来基準値を超える可能性が高い者を、予測結果を基に抽出して、情報提供を行ってもよい。これにより、次の健診等を待たずに早期に支援対象者は自身の健康課題を把握できるので、生活習慣の見直しのきっかけとなることができ、健康増進効果が期待できる。
以下は、本実施形態の健康支援システムの他の利活用の例である。
・(利活用例1)
個人に向けて健康支援を行う側の組織(管理組織という)で保有している各個人の健康診断結果を示す健診データを基に、AIでビックデータ分析して得られた予測モデルであって、過去の検査値、1つ以上の生活習慣項目、性別および年代を説明変数として将来の検査値を予測する予測モデルを利用して、個人の将来を予測した結果を1枚のシートとして出力し、個人に提供する。
個人に向けて健康支援を行う側の組織(管理組織という)で保有している各個人の健康診断結果を示す健診データを基に、AIでビックデータ分析して得られた予測モデルであって、過去の検査値、1つ以上の生活習慣項目、性別および年代を説明変数として将来の検査値を予測する予測モデルを利用して、個人の将来を予測した結果を1枚のシートとして出力し、個人に提供する。
・(利活用例2)
個人の直近2年分の健康診断結果から得られる説明変数(検査値、生活習慣項目、性別、年齢)を入力とし、将来3年後までの予測を行った結果得られた情報を1枚のシートにして出力する。
個人の直近2年分の健康診断結果から得られる説明変数(検査値、生活習慣項目、性別、年齢)を入力とし、将来3年後までの予測を行った結果得られた情報を1枚のシートにして出力する。
このとき、現在の生活習慣を続けた場合の予測を行ってもよい。また、予測の結果、将来の検査値が悪いと予測される人を少なくとも出力対象としてもよい。また、シートには、将来悪化すると予測された検査値について、どのような生活改善を行えばどれくらいの改善効果が得られるか等、生活改善の見直し内容とその効果とを対応づけて示す情報を含んでいてもよい。
・(利活用例3)
また、シートには、健康増進のヒントとして、管理組織で推進している具体的な生活習慣改善のための手段を示す情報を含んでいてもよい(例えば、備考欄D14)。運動や食事の見直しを推奨するといった一般的な生活改善の見直し内容だけでなく、具体的に身近に存在する手段を提示することで、生活改善の着手率を向上できる。
また、シートには、健康増進のヒントとして、管理組織で推進している具体的な生活習慣改善のための手段を示す情報を含んでいてもよい(例えば、備考欄D14)。運動や食事の見直しを推奨するといった一般的な生活改善の見直し内容だけでなく、具体的に身近に存在する手段を提示することで、生活改善の着手率を向上できる。
・(利活用例4)
また、シートには、将来悪化すると予測される検査値について、最大n個(例えば、2個)の検査値までを抽出して、改善効果が高いと予測される生活改善の見直し内容を示す情報を含んでいてもよい(例えば、生活改善提案情報D13)。抽出されるn個の検査値は、現在の検査値と将来の時点(1つおよび直近に限定されない。例えば、3年後でもよい)の検査値とを比較し、最も悪化の割合が大きいものから順に選択されたものであってもよい。割合を用いて評価することで、単位や値域が異なる検査値を同等に評価できる。
また、シートには、将来悪化すると予測される検査値について、最大n個(例えば、2個)の検査値までを抽出して、改善効果が高いと予測される生活改善の見直し内容を示す情報を含んでいてもよい(例えば、生活改善提案情報D13)。抽出されるn個の検査値は、現在の検査値と将来の時点(1つおよび直近に限定されない。例えば、3年後でもよい)の検査値とを比較し、最も悪化の割合が大きいものから順に選択されたものであってもよい。割合を用いて評価することで、単位や値域が異なる検査値を同等に評価できる。
また、このとき抽出対象とされる検査値は、体重、腹囲、LDL(Low-density lipoprotein )コレステロール、HDL(High-density lipoprotein)コレステロール、中性脂肪、最低血圧(拡張期血圧)、最高血圧(収縮期血圧)、HbA1c(Hemoglobin A1c)、空腹時血糖の9検査値であってもよい。
・(利活用例5)
また、ある検査値について改善効果が高いと予測される生活改善の見直し内容を示す際、生活改善に関する項目の組み合わせとして取り得る全ての見直しパターンについて予測を行い、最も改善効果が高い(例えば、改善度合いが大きい)と計算された順に、その改善の程度とともにその見直し内容を提示してもよい。
また、ある検査値について改善効果が高いと予測される生活改善の見直し内容を示す際、生活改善に関する項目の組み合わせとして取り得る全ての見直しパターンについて予測を行い、最も改善効果が高い(例えば、改善度合いが大きい)と計算された順に、その改善の程度とともにその見直し内容を提示してもよい。
・(利活用例6)
また、シートは、国民健康保健加入者における定期健診等、所定の健康診断の受診対象者を対象にして行った予測の結果を基に作成、出力されてもよい。また、シートは、過去所定回数の健康診断における未受診者や不定期受診者を対象に作成、出力されてもよい。また、当該シートは、送付用に住所および氏名が記載された欄や、受診対象者の識別番号が記載された欄を有していてもよく、また受診券と一緒に送付されてもよい。
また、シートは、国民健康保健加入者における定期健診等、所定の健康診断の受診対象者を対象にして行った予測の結果を基に作成、出力されてもよい。また、シートは、過去所定回数の健康診断における未受診者や不定期受診者を対象に作成、出力されてもよい。また、当該シートは、送付用に住所および氏名が記載された欄や、受診対象者の識別番号が記載された欄を有していてもよく、また受診券と一緒に送付されてもよい。
・(利活用例7)
また、シートは、所定の健康診断受診後、所見ありとなった保健指導対象者を対象に作成、出力されてもよい。また、当該シートは、送付用に住所および氏名が記載された欄や、受診対象者の識別番号が記載された欄を有していてもよく、また保健指導の呼出し通知と一緒に送付されてもよい。
また、シートは、所定の健康診断受診後、所見ありとなった保健指導対象者を対象に作成、出力されてもよい。また、当該シートは、送付用に住所および氏名が記載された欄や、受診対象者の識別番号が記載された欄を有していてもよく、また保健指導の呼出し通知と一緒に送付されてもよい。
・(利活用例8)
また、シートは、所定の健康診断を受診していて現時点で検査値に問題がないが、将来検査値が悪くなる(例えば、いずれ有所見者となる)と予測される人を対象に作成、出力されてもよい。
また、シートは、所定の健康診断を受診していて現時点で検査値に問題がないが、将来検査値が悪くなる(例えば、いずれ有所見者となる)と予測される人を対象に作成、出力されてもよい。
健康診断を受診していて現時点で検査値に問題がない人の場合、たとえ、その人の生活習慣が悪くいずれ有所見者となる可能性が高かったとしても、該当者へアプローチするきっかけがないことが多いが、そのような人にもシートを送付できるようにする。これにより、該当者への意識付け、注意喚起を行うことができるようにする。
・(利活用例9)
また、シート出力の対象者とされる支援対象者を、より将来検査値が悪化すると予測される人に限定してもよい。例えば、全ての候補者について現在の検査値と将来の検査値を評価して、悪化方向への増加の割合(悪化率)が高い順から所定数の者を対象者としてもよい。なお、そのような限定は、例えば、ユーザ(管理組織における利用者)から出力条件の設定を受け付けることにより、実現できる。
また、シート出力の対象者とされる支援対象者を、より将来検査値が悪化すると予測される人に限定してもよい。例えば、全ての候補者について現在の検査値と将来の検査値を評価して、悪化方向への増加の割合(悪化率)が高い順から所定数の者を対象者としてもよい。なお、そのような限定は、例えば、ユーザ(管理組織における利用者)から出力条件の設定を受け付けることにより、実現できる。
・(利活用例10)
また、シート出力の対象者とされる支援対象者を、年代、性別または悪化する検査値等の所定の条件で絞り込んでもよい。これにより、例えば「20代、30代の若年層の生活改善に力を入れたい」、「糖尿病患者の発生率を下げるため、血糖関連検査値にフォーカスしたい」等の、管理組織における健康課題に応じた柔軟な支援を行うことができる。
また、シート出力の対象者とされる支援対象者を、年代、性別または悪化する検査値等の所定の条件で絞り込んでもよい。これにより、例えば「20代、30代の若年層の生活改善に力を入れたい」、「糖尿病患者の発生率を下げるため、血糖関連検査値にフォーカスしたい」等の、管理組織における健康課題に応じた柔軟な支援を行うことができる。
・(利活用例11)
また、支援対象者が数千、数万といった大きな数になった場合でもシートを大量出力可能なように、各支援対象者につき1枚のシートに収まるようにするとともに、1頁にシート1枚が配置された複数頁からなるファイルにして出力してもよい。このとき、条件の設定等により、1ファイルに収める最大頁数が定められていてもよく、最大頁数を超える場合には、自動でファイルを分割(別ファイルにして生成)することも可能である。
また、支援対象者が数千、数万といった大きな数になった場合でもシートを大量出力可能なように、各支援対象者につき1枚のシートに収まるようにするとともに、1頁にシート1枚が配置された複数頁からなるファイルにして出力してもよい。このとき、条件の設定等により、1ファイルに収める最大頁数が定められていてもよく、最大頁数を超える場合には、自動でファイルを分割(別ファイルにして生成)することも可能である。
以上のように、本実施形態によれば、自身の健康に対して興味を高めたり、危機感を演出したり、改善効果による期待感を演出するような予想情報をコンパクトに1枚のシートに纏めて出力したりすることができる。このため、自身の健康に関心が低かったり、低くなくても保健事業に関する適切な情報を持たなかったりするような人を含めた多くの人の不調予防や健康増進に向けた行動変容を適切に支援することができる。
また、図14は、本発明の実施形態にかかるコンピュータの構成例を示す概略ブロック図である。コンピュータ1000は、CPU1001と、主記憶装置1002と、補助記憶装置1003と、インタフェース1004と、ディスプレイ装置1005と、入力デバイス1006とを備える。
上述した実施形態の健康支援システムは、コンピュータ1000に実装されてもよい。その場合、該装置の動作は、プログラムの形式で補助記憶装置1003に記憶されていてもよい。CPU1001は、プログラムを補助記憶装置1003から読み出して主記憶装置1002に展開し、そのプログラムに従って実施形態における所定の処理を実施する。なお、CPU1001は、プログラムに従って動作する情報処理装置の一例であり、CPU(Central Processing Unit )以外にも、例えば、MPU(Micro Processing Unit )やMCU(Memory Control Unit)やGPU(Graphics Processing Unit )等を備えていてもよい。
補助記憶装置1003は、一時的でない有形の媒体の一例である。一時的でない有形の媒体の他の例として、インタフェース1004を介して接続される磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等が挙げられる。また、このプログラムが通信回線によってコンピュータ1000に配信される場合、配信を受けたコンピュータ1000がそのプログラムを主記憶装置1002に展開し、各実施形態における所定の処理を実行してもよい。
また、プログラムは、実施形態における所定の処理の一部を実現するためのものであってもよい。さらに、プログラムは、補助記憶装置1003に既に記憶されている他のプログラムとの組み合わせで実施形態における所定の処理を実現する差分プログラムであってもよい。
インタフェース1004は、他の装置との間で情報の送受信を行う。また、ディスプレイ装置1005は、ユーザに情報を提示する。また、入力デバイス1006は、ユーザからの情報の入力を受け付ける。
また、実施形態における処理内容によっては、コンピュータ1000の一部の要素は省略可能である。例えば、コンピュータ1000がユーザに情報を提示しないのであれば、ディスプレイ装置1005は省略可能である。例えば、コンピュータ1000がユーザから情報入力を受け付けないのであれば、入力デバイス1006は省略可能である。
また、上記の各構成要素の一部または全部は、汎用または専用の回路(Circuitry )、プロセッサ等やこれらの組み合わせによって実施される。これらは単一のチップによって構成されてもよいし、バスを介して接続される複数のチップによって構成されてもよい。また、上記の各構成要素の一部又は全部は、上述した回路等とプログラムとの組み合わせによって実現されてもよい。
上記の各構成要素の一部又は全部が複数の情報処理装置や回路等により実現される場合には、複数の情報処理装置や回路等は、集中配置されてもよいし、分散配置されてもよい。例えば、情報処理装置や回路等は、クライアントアンドサーバシステム、クラウドコンピューティングシステム等、各々が通信ネットワークを介して接続される形態として実現されてもよい。
次に、本発明の概要を説明する。図15は、本発明の健康支援システムの概要を示すブロック図である。図15に示す健康支援システム60は、検査値予測手段61と、シート出力手段62とを備える。
検査値予測手段61(例えば、検査値予測部12)は、ある人物の現在または過去の生活習慣に関する1つ以上の項目に対応した複数の変数と、その人物の将来の検査値との関係が規定された予測モデルを用いて、指定された人物または所定の人物を予測対象者として将来の検査値を予測する。
シート出力手段62(例えば、シート出力部13)は、上記の予測の結果に基づいて、予測対象者のうち支援の対象者とされた支援対象者ごとに1枚の情報提供シートであって、その支援対象者の生活習慣の改善、不調予防または健康増進のための情報を含む情報提供シートを作成して出力する。
このような構成によれば、多くの人にとっての不調予防や健康増進に向けた行動変容を適切に支援することができる。
また、図16は、本発明の情報提供シート出力装置の概要を示すブロック図である。図16に示す情報提供シート出力装置63は、上記のシート出力手段62と、記憶手段64とを備える。
記憶手段64(例えば、データ記憶部14)は、ある人物の現在または過去の生活習慣に関する1つ以上の項目に対応した複数の変数と、その人物の将来の検査値との関係が規定された予測モデルを用いて、指定された人物または所定の人物を予測対象者として将来の検査値を予測した結果を示す予測結果データを記憶する。
このような構成によっても、多くの人にとっての不調予防や健康増進に向けた行動変容を適切に支援することができる。
なお、上記の実施形態は以下の付記のようにも記載できる。
(付記1)ある人物の現在または過去の生活習慣に関する1つ以上の項目に対応した複数の変数と、前記人物の将来の検査値との関係が規定された予測モデルを用いて、指定された人物または所定の人物を予測対象者として将来の検査値を予測する検査値予測手段と、前記予測の結果に基づいて、予測対象者のうち支援の対象者とされた支援対象者ごとに1枚の情報提供シートであって、その支援対象者の生活習慣の改善、不調予防または健康増進のための情報を含む情報提供シートを作成して出力するシート出力手段とを備えることを特徴とする健康支援システム。
(付記2)前記予測モデルは、ある人物の過去所定期間分の検査値と、現在または過去の生活習慣に関する1つ以上の項目とに対応した複数の変数と、前記人物の将来の検査値との関係が規定された予測モデルであり、前記検査値予測手段は、予測対象者の実績データから少なくとも前記予測モデルに用いられる前記過去所定期間分の検査値を取得して、前記予測対象者の将来の検査値を予測し、前記検査値予測手段は、予測対象者の実績データにおいて前記予測モデルに用いられる前記過去所定期間分の検査値に欠損があった場合に、欠損箇所をその予測対象者と同年代および同性の他の者の検査値で補完する付記1に記載の健康支援システム。
(付記3)前記検査値予測手段は、複数の検査項目にそれぞれ対応した複数の予測モデルを用いて、予測対象者の将来の前記複数の検査項目のそれぞれの検査値を予測する手段であって、前記検査値予測手段は、予測対象者が現在の生活習慣を続けた場合の当該予測対象者の将来の検査値である第1の検査値を予測するとともに、将来悪化すると予測された検査値があった場合に、その検査項目である高リスク検査項目に対して、さらに、生活習慣を見直した場合の当該予測対象者の将来の検査値である第2の検査値を予測し、前記情報提供シートは、支援対象者の前記複数の検査項目の前記第1の検査値を含むとともに、その支援対象者の予測結果に前記高リスク検査項目が含まれていた場合に、前記高リスク検査項目に対して改善効果が高い見直し項目について、見直し後の当該項目の内容および見直し後の前記第2の検査値を少なくとも含む付記1または付記2に記載の健康支援システム。
(付記4)前記高リスク検査項目は、2以下であり、前記シート出力手段は、現在の検査値と将来の検査値とを比較して、最も悪化の割合の大きいものから順に前記高リスク検査項目を選択する付記3に記載の健康支援システム。
(付記5)前記検査値予測手段は、前記高リスク検査項目について、前記生活習慣に関する1つ以上の項目に対する全ての見直しパターンの将来の検査値を予測し、前記シート出力手段は、前記全ての見直しパターンの中から改善度合いの大きい順に所定数の見直しパターンを特定し、特定された見直しパターンにおいて変更された項目を、前記高リスク検査項目に対して改善効果が高い見直し項目とする付記3または付記4に記載の健康支援システム。
(付記6)前記支援対象者または前記支援対象者の候補とされる予測対象者が、定期的に実施される所定の健康診断の過去所定回数分の受診率に基づいて決定される付記1から付記5のうちのいずれか1項に記載の健康支援システム。
(付記7)前記情報提供シートは、支援対象者が属する組織が推進している具体的な生活習慣改善のための手段を示す情報を含む付記1から付記6のうちのいずれか1項に記載の健康支援システム。
(付記8)前記情報提供シートは、所定の窓付き封筒の窓枠に合わせた位置に、支援対象者の住所と氏名とが記載されている付記1から付記7のうちのいずれか1項に記載の健康支援システム。
(付記9)前記検査値予測手段は、複数の検査項目にそれぞれ対応した複数の予測モデルを用いて、複数の予測対象者を対象に、各予測対象者の将来の前記複数の検査項目のそれぞれの検査値を予測し、前記シート出力手段は、前記複数の予測対象者のうち支援の対象者とされた支援対象者ごとに1枚の情報提供シートを作成する際、1頁ごとに一人の支援対象者の前記情報提供シートが配置されたファイルとして作成する付記1から付記8のうちのいずれか1項に記載の健康支援システム。
(付記10)ある人物の現在または過去の生活習慣に関する1つ以上の項目に対応した複数の変数と、前記人物の将来の検査値との関係が規定された予測モデルを用いて、指定された人物または所定の人物を予測対象者として将来の検査値を予測した結果を示す予測結果データを記憶する記憶手段と、前記予測の結果に基づいて、予測対象者のうち支援の対象者とされた支援対象者ごとに1枚の情報提供シートであって、その支援対象者の生活習慣の改善、不調予防または健康増進のための情報を含む情報提供シートを作成して出力するシート出力手段とを備えることを特徴とする情報提供シート出力装置。
(付記11)ある人物の現在または過去の生活習慣に関する1つ以上の項目に対応した複数の変数と、前記人物の将来の検査値との関係が規定された予測モデルを用いて、指定された人物または所定の人物を予測対象者として将来の検査値を予測し、前記予測の結果に基づいて、予測対象者のうち支援の対象者とされた支援対象者ごとに1枚の情報提供シートであって、その支援対象者の生活習慣の改善、不調予防または健康増進のための情報を含む情報提供シートを作成して出力することを特徴とする健康支援方法。
(付記12)コンピュータに、ある人物の現在または過去の生活習慣に関する1つ以上の項目に対応した複数の変数と、前記人物の将来の検査値との関係が規定された予測モデルを用いて、指定された人物または所定の人物を予測対象者として将来の検査値を予測する処理、および前記予測の結果に基づいて、予測対象者のうち支援の対象者とされた支援対象者ごとに1枚の情報提供シートであって、その支援対象者の生活習慣の改善、不調予防または健康増進のための情報を含む情報提供シートを作成して出力する処理を実行させるための健康支援プログラム。
以上、本実施形態および実施例を参照して本願発明を説明したが、本願発明は上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
この出願は、2018年3月26日に出願された日本特許出願2018-058535を基礎とする優先権を主張し、その開示の全てをここに取り込む。
本発明は、組織単位での健康支援に好適に適用可能である。
100 健康支援システム
11 モデル学習部
12 検査値予測部
13 シート出力部
14 データ記憶部
15 対象選択部
1000 コンピュータ
1001 CPU
1002 主記憶装置
1003 補助記憶装置
1004 インタフェース
1005 ディスプレイ装置
1006 入力デバイス
60 健康支援システム
61 検査値予測手段
62 シート出力手段
63 情報提供シート出力装置
64 記憶手段
11 モデル学習部
12 検査値予測部
13 シート出力部
14 データ記憶部
15 対象選択部
1000 コンピュータ
1001 CPU
1002 主記憶装置
1003 補助記憶装置
1004 インタフェース
1005 ディスプレイ装置
1006 入力デバイス
60 健康支援システム
61 検査値予測手段
62 シート出力手段
63 情報提供シート出力装置
64 記憶手段
Claims (12)
- ある人物の現在または過去の生活習慣に関する1つ以上の項目に対応した複数の変数と、前記人物の将来の検査値との関係が規定された予測モデルを用いて、指定された人物または所定の人物を予測対象者として将来の検査値を予測する検査値予測手段と、
前記予測の結果に基づいて、予測対象者のうち支援の対象者とされた支援対象者ごとに1枚の情報提供シートであって、その支援対象者の生活習慣の改善、不調予防または健康増進のための情報を含む情報提供シートを作成して出力するシート出力手段とを備える
ことを特徴とする健康支援システム。 - 前記予測モデルは、ある人物の過去所定期間分の検査値と、現在または過去の生活習慣に関する1つ以上の項目とに対応した複数の変数と、前記人物の将来の検査値との関係が規定された予測モデルであり、
前記検査値予測手段は、予測対象者の実績データから少なくとも前記予測モデルに用いられる前記過去所定期間分の検査値を取得して、前記予測対象者の将来の検査値を予測し、
前記検査値予測手段は、予測対象者の実績データにおいて前記予測モデルに用いられる前記過去所定期間分の検査値に欠損があった場合に、欠損箇所をその予測対象者と同年代および同性の他の者の検査値で補完する
請求項1に記載の健康支援システム。 - 前記検査値予測手段は、複数の検査項目にそれぞれ対応した複数の予測モデルを用いて、予測対象者の将来の前記複数の検査項目のそれぞれの検査値を予測する手段であって、
前記検査値予測手段は、予測対象者が現在の生活習慣を続けた場合の当該予測対象者の将来の検査値である第1の検査値を予測するとともに、将来悪化すると予測された検査値があった場合に、その検査項目である高リスク検査項目に対して、さらに、生活習慣を見直した場合の当該予測対象者の将来の検査値である第2の検査値を予測し、
前記情報提供シートは、支援対象者の前記複数の検査項目の前記第1の検査値を含むとともに、その支援対象者の予測結果に前記高リスク検査項目が含まれていた場合に、前記高リスク検査項目に対して改善効果が高い見直し項目について、見直し後の当該項目の内容および見直し後の前記第2の検査値を少なくとも含む
請求項1または請求項2に記載の健康支援システム。 - 前記高リスク検査項目は、2以下であり、
前記シート出力手段は、現在の検査値と将来の検査値とを比較して、最も悪化の割合の大きいものから順に前記高リスク検査項目を選択する
請求項3に記載の健康支援システム。 - 前記検査値予測手段は、前記高リスク検査項目について、前記生活習慣に関する1つ以上の項目に対する全ての見直しパターンの将来の検査値を予測し、
前記シート出力手段は、前記全ての見直しパターンの中から改善度合いの大きい順に所定数の見直しパターンを特定し、特定された見直しパターンにおいて変更された項目を、前記高リスク検査項目に対して改善効果が高い見直し項目とする
請求項3または請求項4に記載の健康支援システム。 - 前記支援対象者または前記支援対象者の候補とされる予測対象者が、定期的に実施される所定の健康診断の過去所定回数分の受診率に基づいて決定される
請求項1から請求項5のうちのいずれか1項に記載の健康支援システム。 - 前記情報提供シートは、支援対象者が属する組織が推進している具体的な生活習慣改善のための手段を示す情報を含む
請求項1から請求項6のうちのいずれか1項に記載の健康支援システム。 - 前記情報提供シートは、所定の窓付き封筒の窓枠に合わせた位置に、支援対象者の住所と氏名とが記載されている
請求項1から請求項7のうちのいずれか1項に記載の健康支援システム。 - 前記検査値予測手段は、複数の検査項目にそれぞれ対応した複数の予測モデルを用いて、複数の予測対象者を対象に、各予測対象者の将来の前記複数の検査項目のそれぞれの検査値を予測し、
前記シート出力手段は、前記複数の予測対象者のうち支援の対象者とされた支援対象者ごとに1枚の情報提供シートを作成する際、1頁ごとに一人の支援対象者の前記情報提供シートが配置されたファイルとして作成する
請求項1から請求項8のうちのいずれか1項に記載の健康支援システム。 - ある人物の現在または過去の生活習慣に関する1つ以上の項目に対応した複数の変数と、前記人物の将来の検査値との関係が規定された予測モデルを用いて、指定された人物または所定の人物を予測対象者として将来の検査値を予測した結果を示す予測結果データを記憶する記憶手段と、
前記予測の結果に基づいて、予測対象者のうち支援の対象者とされた支援対象者ごとに1枚の情報提供シートであって、その支援対象者の生活習慣の改善、不調予防または健康増進のための情報を含む情報提供シートを作成して出力するシート出力手段とを備える
ことを特徴とする情報提供シート出力装置。 - ある人物の現在または過去の生活習慣に関する1つ以上の項目に対応した複数の変数と、前記人物の将来の検査値との関係が規定された予測モデルを用いて、指定された人物または所定の人物を予測対象者として将来の検査値を予測し、
前記予測の結果に基づいて、予測対象者のうち支援の対象者とされた支援対象者ごとに1枚の情報提供シートであって、その支援対象者の生活習慣の改善、不調予防または健康増進のための情報を含む情報提供シートを作成して出力する
ことを特徴とする健康支援方法。 - コンピュータに、
ある人物の現在または過去の生活習慣に関する1つ以上の項目に対応した複数の変数と、前記人物の将来の検査値との関係が規定された予測モデルを用いて、指定された人物または所定の人物を予測対象者として将来の検査値を予測する処理、および
前記予測の結果に基づいて、予測対象者のうち支援の対象者とされた支援対象者ごとに1枚の情報提供シートであって、その支援対象者の生活習慣の改善、不調予防または健康増進のための情報を含む情報提供シートを作成して出力する処理
を実行させるための健康支援プログラム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020510477A JP7078291B2 (ja) | 2018-03-26 | 2019-02-27 | 健康支援システム、情報提供シート出力装置、方法およびプログラム |
CN201980021881.6A CN111971756A (zh) | 2018-03-26 | 2019-02-27 | 健康援助系统、信息提供表格输出设备、方法和程序 |
EP19776192.7A EP3780001A4 (en) | 2018-03-26 | 2019-02-27 | HEALTH ASSISTANCE SYSTEM, DEVICE, METHOD AND PROGRAM FOR DISTRIBUTION OF INFORMATION SHEETS |
US16/981,867 US20210257072A1 (en) | 2018-03-26 | 2019-02-27 | Health assistance system, information providing sheet output device, method, and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-058535 | 2018-03-26 | ||
JP2018058535 | 2018-03-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019187933A1 true WO2019187933A1 (ja) | 2019-10-03 |
Family
ID=68061194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/007647 WO2019187933A1 (ja) | 2018-03-26 | 2019-02-27 | 健康支援システム、情報提供シート出力装置、方法およびプログラム |
Country Status (5)
Country | Link |
---|---|
US (1) | US20210257072A1 (ja) |
EP (1) | EP3780001A4 (ja) |
JP (1) | JP7078291B2 (ja) |
CN (1) | CN111971756A (ja) |
WO (1) | WO2019187933A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6935118B1 (ja) * | 2021-04-15 | 2021-09-15 | ケイスリー株式会社 | 行動支援システム、行動支援方法及び行動支援プログラム |
JP2021179847A (ja) * | 2020-05-14 | 2021-11-18 | 株式会社Nttドコモ | スコア算出装置 |
WO2022176886A1 (ja) * | 2021-02-17 | 2022-08-25 | 株式会社アシックス | 情報通知装置 |
WO2022254625A1 (ja) * | 2021-06-02 | 2022-12-08 | 日本電信電話株式会社 | 予測装置、学習装置、予測方法、学習方法およびプログラム |
WO2022269909A1 (ja) * | 2021-06-25 | 2022-12-29 | 日本電気株式会社 | 秘密計算システム、事業者サーバ、情報処理システム、秘密計算方法、及び記録媒体 |
JP7199486B1 (ja) | 2021-08-31 | 2023-01-05 | アニコム ホールディングス株式会社 | 予測装置、予測システム及び予測方法 |
JP2023026082A (ja) * | 2021-08-12 | 2023-02-24 | 株式会社三菱総合研究所 | 情報処理装置、情報処理方法及びプログラム |
WO2023162958A1 (ja) * | 2022-02-25 | 2023-08-31 | 株式会社Preferred Networks | 情報処理装置、方法、およびプログラム |
JP7337316B2 (ja) | 2020-01-20 | 2023-09-04 | 株式会社AncientTree | 治療に伴う検査データの予測、記録、比較装置 |
JP7534749B2 (ja) | 2020-11-17 | 2024-08-15 | 勤次郎株式会社 | ヘルスケアシステム、および、ヘルスケアプログラム |
WO2024203382A1 (ja) * | 2023-03-27 | 2024-10-03 | Necソリューションイノベータ株式会社 | 学習モデル生成装置、検査値予測装置、学習モデル生成方法、検査値予測方法、及びコンピュータ読み取り可能な記録媒体 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7048796B1 (ja) * | 2021-05-31 | 2022-04-05 | 大塚製薬株式会社 | 生活者の健康状態を把握、健康予測モデルでの生活者の健康維持、増進をサポートする方法及び情報提供方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002203199A (ja) * | 2000-12-28 | 2002-07-19 | Mitsubishi Kagaku Bio-Clinical Laboratories Inc | 検査報告書及び検査報告書作成システム及びそのシステムのためのサーバ及び出力端末並びにコンピュータ読み取り可能な記録媒体 |
JP2013190915A (ja) | 2012-03-13 | 2013-09-26 | Hitachi Ltd | 生活習慣改善支援システム及び生体指標の分析方法 |
JP2014119817A (ja) * | 2012-12-13 | 2014-06-30 | Hitachi Systems Ltd | 健康管理予測システム |
JP2015103039A (ja) | 2013-11-26 | 2015-06-04 | 株式会社日立製作所 | 健康プログラム分析システム及びプラットフォームサービス提供方法 |
JP2016030336A (ja) * | 2014-07-25 | 2016-03-07 | 理想科学工業株式会社 | 印刷装置 |
WO2016181490A1 (ja) * | 2015-05-12 | 2016-11-17 | 株式会社日立製作所 | 分析システム及び分析方法 |
JP2017021725A (ja) * | 2015-07-14 | 2017-01-26 | 株式会社スタージェン | 健康管理支援装置、健康管理支援システム及び健康管理支援方法 |
WO2017204233A1 (ja) * | 2016-05-23 | 2017-11-30 | Necソリューションイノベータ株式会社 | 健康状態予測装置、健康状態予測方法、及びコンピュータ読み取り可能な記録媒体 |
JP2018058535A (ja) | 2016-10-07 | 2018-04-12 | 横浜ゴム株式会社 | 空気入りタイヤ |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020184056A1 (en) * | 2001-05-30 | 2002-12-05 | Toshiaki Tsuboi | Health promotion practitioner support apparatus and computer readable medium storing health promotion practitioner support program |
JP4062910B2 (ja) * | 2001-11-29 | 2008-03-19 | 株式会社日立製作所 | 健康管理支援方法及び装置と健康余命予測データ生成方法及び装置 |
JP2012155179A (ja) | 2011-01-27 | 2012-08-16 | Toshiba Corp | 欠陥検査支援装置、欠陥検査支援方法 |
EP3054412A4 (en) * | 2013-10-01 | 2017-03-01 | Tohoku University | Health information processing device, health information display device, and method |
US20150193583A1 (en) * | 2014-01-06 | 2015-07-09 | Cerner Innovation, Inc. | Decision Support From Disparate Clinical Sources |
-
2019
- 2019-02-27 CN CN201980021881.6A patent/CN111971756A/zh active Pending
- 2019-02-27 EP EP19776192.7A patent/EP3780001A4/en not_active Withdrawn
- 2019-02-27 WO PCT/JP2019/007647 patent/WO2019187933A1/ja unknown
- 2019-02-27 JP JP2020510477A patent/JP7078291B2/ja active Active
- 2019-02-27 US US16/981,867 patent/US20210257072A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002203199A (ja) * | 2000-12-28 | 2002-07-19 | Mitsubishi Kagaku Bio-Clinical Laboratories Inc | 検査報告書及び検査報告書作成システム及びそのシステムのためのサーバ及び出力端末並びにコンピュータ読み取り可能な記録媒体 |
JP2013190915A (ja) | 2012-03-13 | 2013-09-26 | Hitachi Ltd | 生活習慣改善支援システム及び生体指標の分析方法 |
JP2014119817A (ja) * | 2012-12-13 | 2014-06-30 | Hitachi Systems Ltd | 健康管理予測システム |
JP2015103039A (ja) | 2013-11-26 | 2015-06-04 | 株式会社日立製作所 | 健康プログラム分析システム及びプラットフォームサービス提供方法 |
JP2016030336A (ja) * | 2014-07-25 | 2016-03-07 | 理想科学工業株式会社 | 印刷装置 |
WO2016181490A1 (ja) * | 2015-05-12 | 2016-11-17 | 株式会社日立製作所 | 分析システム及び分析方法 |
JP2017021725A (ja) * | 2015-07-14 | 2017-01-26 | 株式会社スタージェン | 健康管理支援装置、健康管理支援システム及び健康管理支援方法 |
WO2017204233A1 (ja) * | 2016-05-23 | 2017-11-30 | Necソリューションイノベータ株式会社 | 健康状態予測装置、健康状態予測方法、及びコンピュータ読み取り可能な記録媒体 |
JP2018058535A (ja) | 2016-10-07 | 2018-04-12 | 横浜ゴム株式会社 | 空気入りタイヤ |
Non-Patent Citations (1)
Title |
---|
HIDETAKA TAKAHASHIKATSUMI YOSHIDA: "Health Risk Appraisal (HRA) for Lifestyle Improvemen", JOURNAL OF JAPAN SOCIETY OF NINGEN DOCK (JHD, vol. 11, no. 4, 1997, pages 123 - 128 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7337316B2 (ja) | 2020-01-20 | 2023-09-04 | 株式会社AncientTree | 治療に伴う検査データの予測、記録、比較装置 |
JP2021179847A (ja) * | 2020-05-14 | 2021-11-18 | 株式会社Nttドコモ | スコア算出装置 |
JP7410794B2 (ja) | 2020-05-14 | 2024-01-10 | 株式会社Nttドコモ | スコア算出装置 |
JP7534749B2 (ja) | 2020-11-17 | 2024-08-15 | 勤次郎株式会社 | ヘルスケアシステム、および、ヘルスケアプログラム |
WO2022176886A1 (ja) * | 2021-02-17 | 2022-08-25 | 株式会社アシックス | 情報通知装置 |
JP2022163957A (ja) * | 2021-04-15 | 2022-10-27 | ケイスリー株式会社 | 行動支援システム、行動支援方法及び行動支援プログラム |
JP6935118B1 (ja) * | 2021-04-15 | 2021-09-15 | ケイスリー株式会社 | 行動支援システム、行動支援方法及び行動支援プログラム |
WO2022254625A1 (ja) * | 2021-06-02 | 2022-12-08 | 日本電信電話株式会社 | 予測装置、学習装置、予測方法、学習方法およびプログラム |
WO2022269909A1 (ja) * | 2021-06-25 | 2022-12-29 | 日本電気株式会社 | 秘密計算システム、事業者サーバ、情報処理システム、秘密計算方法、及び記録媒体 |
JP7270005B2 (ja) | 2021-08-12 | 2023-05-09 | 株式会社三菱総合研究所 | 情報処理装置、情報処理方法及びプログラム |
JP2023026082A (ja) * | 2021-08-12 | 2023-02-24 | 株式会社三菱総合研究所 | 情報処理装置、情報処理方法及びプログラム |
WO2023032836A1 (ja) * | 2021-08-31 | 2023-03-09 | アニコム ホールディングス株式会社 | 予測装置、予測システム及び予測方法 |
JP2023035074A (ja) * | 2021-08-31 | 2023-03-13 | アニコム ホールディングス株式会社 | 予測装置、予測システム及び予測方法 |
JP7199486B1 (ja) | 2021-08-31 | 2023-01-05 | アニコム ホールディングス株式会社 | 予測装置、予測システム及び予測方法 |
WO2023162958A1 (ja) * | 2022-02-25 | 2023-08-31 | 株式会社Preferred Networks | 情報処理装置、方法、およびプログラム |
WO2024203382A1 (ja) * | 2023-03-27 | 2024-10-03 | Necソリューションイノベータ株式会社 | 学習モデル生成装置、検査値予測装置、学習モデル生成方法、検査値予測方法、及びコンピュータ読み取り可能な記録媒体 |
Also Published As
Publication number | Publication date |
---|---|
EP3780001A4 (en) | 2021-05-26 |
JPWO2019187933A1 (ja) | 2021-04-08 |
EP3780001A1 (en) | 2021-02-17 |
CN111971756A (zh) | 2020-11-20 |
JP7078291B2 (ja) | 2022-05-31 |
US20210257072A1 (en) | 2021-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019187933A1 (ja) | 健康支援システム、情報提供シート出力装置、方法およびプログラム | |
Elliott et al. | Psychometrics of the Personal Questionnaire: A client-generated outcome measure. | |
Owen et al. | Good-enough level and dose-effect models: Variation among outcomes and therapists | |
Narain et al. | Cardiovascular risk prediction: a comparative study of Framingham and quantum neural network based approach | |
JP7430295B2 (ja) | 個体慢性疾患進行リスク可視化評価方法及びシステム | |
Saltzman et al. | Post-combat adaptation: Improving social support and reaching constructive growth | |
KR20170061222A (ko) | 건강데이터 패턴의 일반화를 통한 건강수치 예측 방법 및 그 장치 | |
JP2016520228A (ja) | 医療システムにおけるコンテキスト意識予測 | |
JP2016197330A (ja) | 分析システム、リハビリテーション支援システム、方法およびプログラム | |
Tengnah et al. | A predictive model for hypertension diagnosis using machine learning techniques | |
CN107180283A (zh) | 一种基于最优特征组合的再住院行为预测系统及方法 | |
KR102304563B1 (ko) | 사용자 맞춤형 비만 관리 서비스 제공 방법 및 장치 | |
Fasihi et al. | Artificial intelligence used to diagnose osteoporosis from risk factors in clinical data and proposing sports protocols | |
Spalter et al. | Improvements and decline in the physical functioning of Israeli older adults | |
Li et al. | A process model of emotional labor of nursing: case study of two Chinese public hospitals | |
Lee et al. | Prediction of hospitalization using artificial intelligence for urgent patients in the emergency department | |
Chang et al. | Spectator emotions in predicting psychological vigor: Emotional meta experience and affect valuation perspectives | |
Grant et al. | Machine learning versus traditional methods for the development of risk stratification scores: a case study using original Canadian Syncope Risk Score data | |
Pocnet et al. | Personality, tobacco consumption, physical inactivity, obesity markers, and metabolic components as risk factors for cardiovascular disease in the general population | |
JP2011128922A (ja) | 美容サポートシステム及び美容サポート方法 | |
US20140164012A1 (en) | System and methods for simulating future medical episodes | |
Krutko et al. | Intelligent internet technology for personalized health-saving support | |
US8666766B2 (en) | System and methods for simulating future medical episodes | |
White et al. | Patients’ perceptions of and attitudes toward voice therapy: a pilot study | |
JP2017037406A (ja) | 提示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19776192 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020510477 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019776192 Country of ref document: EP Effective date: 20201026 |