WO2019187282A1 - 不織布及びフィルタ - Google Patents

不織布及びフィルタ Download PDF

Info

Publication number
WO2019187282A1
WO2019187282A1 PCT/JP2018/039982 JP2018039982W WO2019187282A1 WO 2019187282 A1 WO2019187282 A1 WO 2019187282A1 JP 2018039982 W JP2018039982 W JP 2018039982W WO 2019187282 A1 WO2019187282 A1 WO 2019187282A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
mass
resin composition
linear polypropylene
fabric according
Prior art date
Application number
PCT/JP2018/039982
Other languages
English (en)
French (fr)
Inventor
康三 飯場
雄士 鞠谷
亘 宝田
翔 波多野
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2019521860A priority Critical patent/JP6636215B1/ja
Priority to EP18911499.4A priority patent/EP3763862B1/en
Priority to CN201880091887.6A priority patent/CN111918995B/zh
Priority to KR1020207029092A priority patent/KR102380495B1/ko
Priority to US17/042,433 priority patent/US11491429B2/en
Publication of WO2019187282A1 publication Critical patent/WO2019187282A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • B01D39/163Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin sintered or bonded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/08Filter cloth, i.e. woven, knitted or interlaced material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/18Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being cellulose or derivatives thereof
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0618Non-woven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0622Melt-blown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0627Spun-bonded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0654Support layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1208Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1216Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1291Other parameters
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/022Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/04Filters

Definitions

  • This disclosure relates to nonwoven fabrics and filters.
  • meltblown nonwoven fabrics are flexible and uniform because the fibers constituting the nonwoven fabric can be made finer than general spunbond nonwoven fabrics. Excellent in properties and density. For this reason, meltblown nonwoven fabrics are singly or laminated with other nonwoven fabrics, etc., filters such as liquid filters, air filters, sanitary materials, medical materials, agricultural coating materials, earth and wood, building materials, oil adsorbent materials, automotive materials It is used for electronic materials, separators, clothing, packaging materials, sound absorbing materials, and the like.
  • fibers constituting the nonwoven fabric fibers of thermoplastic resins such as polypropylene and polyethylene are known.
  • a filter is used for the purpose of collecting fine particles present in a liquid, gas or the like and removing the fine particles from the liquid, gas or the like. It is known that the efficiency of collecting fine particles of the filter (hereinafter also referred to as “collection efficiency”) tends to be excellent when the average fiber diameter of the nonwoven fabric fibers constituting the filter is small. It is also known that the collection efficiency decreases as the particle size of the fine particles decreases.
  • WO 2000/22219 and WO 2015/093451 are obtained by molding a resin composition containing polyethylene and polyethylene wax by a melt blow method, for example, as a nonwoven fabric having a small average fiber diameter.
  • Nonwoven fabrics have been proposed.
  • a nonwoven fabric obtained by molding a resin composition containing polyethylene and polyethylene wax by a melt blow method is used as a composite fiber formed from a polyester and an ethylene polymer.
  • stacked with the spun bond nonwoven fabric which becomes this is proposed.
  • an embodiment of the present disclosure provides a nonwoven fabric excellent in collection efficiency, that is, a small average fiber diameter and a small proportion of 5-fold fibers, or a filter using the nonwoven fabric.
  • the present disclosure includes the following embodiments.
  • ⁇ 1> A nonwoven fabric containing fibers,
  • the fiber has a uniaxial elongation viscosity measured under the conditions of an elongation strain rate of 2.5 ⁇ 10 2 (1 / second) and 160 ° C., and 430 Pa ⁇ s to 1200 Pa ⁇ s, and
  • ⁇ 2> The nonwoven fabric according to ⁇ 1>, wherein the shear viscosity is 10 Pa ⁇ s to 20 Pa ⁇ s.
  • ⁇ 3> The nonwoven fabric according to ⁇ 1> or ⁇ 2>, wherein the fiber is a fiber formed from a resin composition.
  • the resin composition includes a long-chain branched polypropylene.
  • ⁇ 5> The nonwoven fabric according to ⁇ 4>, wherein the content of the long-chain branched polypropylene is 0.7% by mass to 5% by mass with respect to the total mass of the resin composition.
  • ⁇ 6> The nonwoven fabric according to ⁇ 3> or ⁇ 4>, wherein the resin composition further includes linear polypropylene.
  • ⁇ 7> The non-woven fabric according to ⁇ 6>, wherein the content of the linear polypropylene is 95% by mass to 99.3% by mass with respect to the total mass of the resin composition.
  • ⁇ 9> The nonwoven fabric according to ⁇ 8>, wherein the content of the linear polypropylene having a weight average molecular weight of 20,000 or more is 50% by mass or more based on the total mass of the linear polypropylene.
  • ⁇ 10> The nonwoven fabric according to any one of ⁇ 6> to ⁇ 9>, wherein the linear polypropylene includes linear polypropylene having a weight average molecular weight of less than 20,000.
  • ⁇ 11> The nonwoven fabric according to ⁇ 10>, wherein the content of the linear polypropylene having a weight average molecular weight of less than 20,000 is 50% by mass or less based on the total mass of the linear polypropylene.
  • ⁇ 12> The nonwoven fabric according to any one of ⁇ 1> to ⁇ 11>, wherein an average fiber diameter (Da) of the fibers is 2.7 ⁇ m or less.
  • ⁇ 13> The nonwoven fabric according to ⁇ 12>, wherein a ratio (Dd / Da) of a standard deviation (Dd) of the average fiber diameter to the average fiber diameter (Da) is 70 to 100.
  • ⁇ 14> The nonwoven fabric according to any one of ⁇ 1> to ⁇ 13>, wherein a ratio of fibers having a fiber diameter of 5 times or more of an average fiber diameter is 20% by mass or less.
  • ⁇ 15> The nonwoven fabric according to any one of ⁇ 1> to ⁇ 14>, which is a meltblown nonwoven fabric.
  • a filter comprising the nonwoven fabric according to any one of ⁇ 1> to ⁇ 15>.
  • non-woven fabric that is excellent in collection efficiency, that is, has a small average fiber diameter and a small ratio of 5-fold fibers, or a filter using the non-woven fabric.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in a numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the values shown in the examples.
  • the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means. In the present specification, a combination of preferred embodiments is a more preferred embodiment.
  • the nonwoven fabric of the present disclosure is a nonwoven fabric containing fibers, and the uniaxial elongation viscosity measured under the conditions of an elongation strain rate of 2.5 ⁇ 10 2 (1 / second) and 160 ° C. is 430 Pa ⁇ s to 1200 Pa ⁇ s, and Ratio of the uniaxial elongation viscosity (Pa ⁇ s) to the shear viscosity (Pa ⁇ s) measured at a shear strain rate of 2.5 ⁇ 10 2 (1 / second) and 160 ° C. (uniaxial elongation viscosity / shear viscosity) Is 35-65.
  • the nonwoven fabric of the present disclosure contains fibers, and the fibers have an elongation strain rate of 2.times.10 2 (1 / second) and a shear viscosity (Pa ⁇ s) measured at 160 ° C. Since the ratio of uniaxial elongational viscosity (Pa ⁇ s) (uniaxial elongational viscosity / shear viscosity) measured under the conditions of 5 ⁇ 10 2 (1 / second) and 160 ° C. is 35 to 65, there are 5 times fewer fibers, and The average fiber diameter is small. Therefore, such a nonwoven fabric has fewer 5-fold fibers, an average fiber diameter is reduced, and is excellent in collection efficiency.
  • the inventors speculate that the reason why the ratio of the uniaxial elongation viscosity to the uniaxial elongation viscosity and the shear viscosity is within a predetermined range is that the number of fibers is 5 times smaller and the average fiber diameter is smaller as follows. .
  • the resin or resin composition is discharged from a thin nozzle and stretched by a high-speed air stream.
  • the fiber diameter is temporarily increased during drawing even when the high draw ratio condition necessary for fine fiber formation is used.
  • the phenomenon of periodically repeating the change in the fiber diameter (hereinafter, also referred to as “thickening and thinning of the fiber diameter”) is suppressed, so that the average fiber diameter of the resulting fiber is small. It is considered that the diameter distribution tends to be uniform.
  • the uniaxial elongation viscosity and shear viscosity of the fiber are the same as the uniaxial elongation viscosity and shear viscosity of the resin composition before forming the fiber.
  • the fibers contained in the nonwoven fabric according to the present disclosure have a uniaxial elongation viscosity measured under the conditions of an elongation strain rate of 2.5 ⁇ 10 2 (1 / second) and 160 ° C. of 430 Pa ⁇ s to 1200 Pa ⁇ s.
  • the uniaxial elongation viscosity measured at a fiber elongation strain rate of 2.5 ⁇ 10 2 (1 / second) and 160 ° C. is 430 Pa ⁇ s or more
  • the fiber diameter is increased and decreased during stretching. Since the phenomenon of repeating automatically is suppressed, the ratio of the 5-fold fiber in the obtained nonwoven fabric can be reduced, and the collection efficiency can be improved.
  • the uniaxial elongation viscosity of the fiber is 1200 Pa ⁇ s or less
  • the draw ratio can be increased by a high-speed air flow, so that the average fiber diameter can be reduced and the collection efficiency can be improved.
  • the “elongation strain rate” represents a speed at which a melted fiber is deformed in a uniaxial direction.
  • the uniaxial elongation viscosity is preferably 450 Pa ⁇ s to 1200 Pa ⁇ s, more preferably 550 Pa ⁇ s to 1000 Pa ⁇ s.
  • the shear viscosity measured under conditions of a shear strain rate of 2.5 ⁇ 10 2 (1 / second) and 160 ° C. is preferably 10 Pa ⁇ s to 100 Pa ⁇ s from the viewpoint of reducing the average fiber diameter. More preferably, it is 10 Pa ⁇ s to 20 Pa ⁇ s.
  • the shear strain rate represents an average rate when the melted fiber is three-dimensionally deformed.
  • the shear strain rate represents the rate at which the molten resin changes with time as defined in three dimensions, that is, the time derivative of strain.
  • ⁇ e Uniaxial elongational viscosity
  • shear viscosity
  • the shear viscosity ( ⁇ ) (Pa ⁇ s) is calculated from the apparent shear stress and shear strain rate when the L / D is 10 by the following equation.
  • ⁇ (Pa) represents an apparent shear stress
  • ⁇ dot (Pa) (a symbol in which a dot (•) is written above ⁇ ; hereinafter, also simply referred to as “ ⁇ ”) is a shear strain rate.
  • the uniaxial elongation viscosity ( ⁇ e) is expressed by the Cogswell method from the values of the apparent shear stress and shear strain rate when the L / D is 10 and the values when the L / D is 0.2. Is used to calculate.
  • the description of “Cogswell, F. N.“ Stretching flow instabilities at the exits of extrusion dies. ”Journal of Non-Newtonian Fluid Mechanics 2.1 (1977): 37-47” can be referred to.
  • n represents a power low index
  • ⁇ dot (a symbol in which a dot (•) is written above ⁇ ; hereinafter, also simply referred to as “ ⁇ ”) represents a shear strain rate
  • is This represents the shear viscosity ( ⁇ ) when L / D is 10
  • ⁇ P 0 2 represents the square of the pressure loss generated in the die when the capillary length is 0, and can be obtained by Bagley correction.
  • Bagley's capillary length for example, “Bagley, EB“ The separation of elastic and viscous effects in polymer flow. ”Transactions of the Society of Rheology 5.1 (1961): 355-368.” Can be referred to. .
  • the ratio of the uniaxial elongation viscosity (Pa ⁇ s) to the shear viscosity (Pa ⁇ s) is 35 to 65.
  • the uniaxial elongation viscosity / shear viscosity is 35 to 65, the average fiber diameter is small and the ratio of the 5-fold fiber is small, and such a nonwoven fabric is excellent in collection efficiency.
  • the uniaxial elongation viscosity / shear viscosity is preferably 35 to 60, and more preferably 35 to 50.
  • the fiber in the nonwoven fabric according to the present disclosure is not particularly limited as long as the uniaxial elongation viscosity and the uniaxial elongation viscosity / shear viscosity in a predetermined condition satisfy the stated range, and may be a fiber formed from a resin. It may be a fiber formed from the composition. From the viewpoint of facilitating adjustment of the uniaxial extensional viscosity and the uniaxial extensional viscosity / shear viscosity under the predetermined conditions to the above-described ranges, the fibers in the nonwoven fabric of the present disclosure are preferably fibers formed from a resin composition.
  • the resin composition contains linear polypropylene from the viewpoint of reducing the average fiber diameter and improving the collection efficiency.
  • a linear polypropylene means a polypropylene which does not have a long chain branched structure.
  • the long chain branched structure will be described in detail in the long chain branched polypropylene described later.
  • the linear polypropylene is not particularly limited, and may be a homopolymer of linear propylene or a copolymer of linear propylene and ⁇ -olefin.
  • the ⁇ -olefin to be copolymerized is preferably an ⁇ -olefin having 2 or more carbon atoms, and more preferably an ⁇ -olefin having 2 or 4 to 8 carbon atoms.
  • Specific examples of the ⁇ -olefin to be copolymerized include ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene and the like.
  • the linear polypropylene may include linear polypropylene having a weight average molecular weight of 20,000 or more (hereinafter also referred to as “high molecular weight linear polypropylene”), and a linear polypropylene having a weight average molecular weight of less than 20,000.
  • Polypropylene hereinafter also referred to as “low molecular weight linear polypropylene”
  • both high molecular weight linear polypropylene and low molecular weight linear polypropylene may be included.
  • Nonwoven fabrics containing high molecular weight linear polypropylene as the linear polypropylene are preferred because spinning is stabilized and there is a tendency to have fewer fivefold fibers.
  • Nonwoven fabrics containing low-molecular-weight linear polypropylene as linear polypropylene are preferred because they can reduce the viscosity at the time of spinning and can increase the draw ratio by high-speed airflow, and therefore tend to be made into fine fibers.
  • Non-woven fabric containing both high-molecular-weight linear polypropylene and low-molecular-weight linear polypropylene as the linear polypropylene has a tendency to reduce the viscosity at the time of spinning within a range in which spinning is stabilized, so that the average fiber diameter is thin, and There is a tendency to reduce the number of 5-fold fibers, which is more preferable.
  • the weight average molecular weight (Mw) of the high molecular weight linear polypropylene is preferably 20,000 or more, more preferably 30,000 or more, and further preferably 40,000 or more. Moreover, as a weight average molecular weight (Mw) of a high molecular weight linear polypropylene, it is preferable that it is 80,000 or less, It is more preferable that it is 70,000 or less, It is still more preferable that it is 650,000 or less. It is preferable that the weight average molecular weight (Mw) of the high molecular weight linear polypropylene is within the above range because the average fiber diameter tends to be small. From the above viewpoint, the weight average molecular weight (Mw) of the high molecular weight linear polypropylene is preferably 20,000 to 80,000, more preferably 30,000 to 70,000, and 40,000 to 650,000. More preferably.
  • the weight average molecular weight (Mw) of the low molecular weight linear polypropylene is preferably less than 20,000, more preferably 15,000 or less, and even more preferably 13,000 or less.
  • the weight average molecular weight (Mw) of the low molecular weight linear polypropylene is less than 20,000, the low molecular weight linear polypropylene may be a wax-like polymer because the molecular weight is relatively low.
  • the weight average molecular weight (Mw) of the low molecular weight linear polypropylene is preferably 400 or more, more preferably 1,000 or more, still more preferably 2,000 or more, and 6,000. The above is particularly preferable.
  • the weight average molecular weight (Mw) of the low molecular weight linear polypropylene is preferably 400 or more and less than 20,000, more preferably 400 to 15,000, and 1,000 to 14,000. More preferably, it is particularly preferably 6,000 to 13,000.
  • the weight average molecular weight (Mw) of linear polypropylene refers to the polystyrene-reduced weight average molecular weight measured by gel permeation chromatography with the following equipment and conditions.
  • Density of the high molecular weight linear polypropylene is not particularly limited, for example, be a 0.870g / cm 3 ⁇ 0.980g / cm 3, preferably 0.900g / cm 3 ⁇ 0.980g / cm 3 , more preferably 0.920 g / cm 3 to 0.975 g / cm 3 , and still more preferably 0.940 g / cm 3 to 0.970 g / cm 3 .
  • the density of the low molecular weight linear polypropylene is not particularly limited, for example, be a 0.890g / cm 3 ⁇ 0.980g / cm 3, preferably 0.910g / cm 3 ⁇ 0.980g / cm 3 , more preferably 0.920 g / cm 3 to 0.980 g / cm 3 , and still more preferably 0.940 g / cm 3 to 0.980 g / cm 3 .
  • the density of polypropylene is a value when measured at 25 ° C. and 1 atm (101.25 hPa).
  • the density of the high molecular weight linear polypropylene is 0.870 g / cm 3 or more, the durability, heat resistance, strength, and stability over time of the obtained nonwoven fabric tend to be further improved.
  • the density of the high molecular weight linear polypropylene is 0.980 g / cm 3 or less, the heat-sealability and flexibility of the resulting nonwoven fabric tend to be further improved.
  • the density of the low molecular weight linear polypropylene is within the above range, the kneadability with the high molecular weight linear polypropylene tends to be excellent, and the spinnability and stability over time tend to be excellent.
  • the density of linear polypropylene (g / cm 3 ) is determined by heat treating a strand obtained at the time of measuring a melt flow rate (MFR) at 190 ° C. under a load of 2.16 kg at 120 ° C. for 1 hour. The value obtained by slowly cooling to room temperature (25 ° C.) over time and then measuring with a density gradient tube in accordance with JIS K7112: 1999.
  • MFR melt flow rate
  • the melt flow rate (MFR) of the linear polypropylene is not particularly limited as long as the nonwoven fabric can be produced in combination with the long-chain branched polypropylene described later.
  • the melt flow rate (MFR) of the linear polypropylene is preferably 1000 g / 10 min to 2500 g / 10 min, more preferably 1200 g / 10 min to 2000 g / min, from the viewpoints of fine average fiber diameter, spinnability and the like. 10 minutes, more preferably 1300 g / 10 minutes to 1800 g / 10 minutes.
  • melt flow rate (MFR) of linear polypropylene refers to a value obtained by measurement under conditions of a load of 2.16 kg and 190 ° C. in accordance with ASTM D1238.
  • the fiber contained in the nonwoven fabric according to the present disclosure is a fiber formed from a resin composition
  • the content of the linear polypropylene is reduced from the viewpoint of improving the collection efficiency by reducing the average fiber diameter, and spinning. From the viewpoint of stabilization, it is preferably 90% by mass or more, more preferably 95% by mass or more, and 95% by mass to 99.3% by mass with respect to the total mass of the resin composition. Further preferred.
  • linear polypropylene may be used individually by 1 type, or may use 2 or more types together.
  • the fiber contained in the nonwoven fabric according to the present disclosure is a fiber formed from a resin composition
  • the content of the high-molecular-weight linear polypropylene reduces the average fiber diameter and improves the collection efficiency, and spinning.
  • the resin is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, still more preferably 70% by mass to 99% by mass, based on the total mass of the linear polypropylene.
  • a mass% to 95 mass% is particularly preferred.
  • the fiber contained in the nonwoven fabric according to the present disclosure is a fiber formed from a resin composition
  • the content of the low-molecular-weight linear polypropylene is reduced from the average fiber diameter to improve the collection efficiency, and spinning.
  • it is preferably more than 0% by mass and 50% by mass or less, more preferably more than 0% by mass and 30% by mass or less, more preferably 1% by mass to 30% by mass with respect to the total mass of the linear polypropylene.
  • the nonwoven fabric according to the present disclosure contains both high-molecular-weight linear polypropylene and low-molecular-weight linear polypropylene as linear polypropylene
  • the content of the high molecular weight linear polypropylene is 50% by mass or more (more preferably 70% by mass or more, still more preferably 70% by mass to 99% by mass, and particularly preferably based on the total mass of the linear polypropylene. 80% by mass to 95% by mass)
  • the content of the low molecular weight linear polypropylene is 50% by mass or less (more preferably 30% by mass or less) based on the total mass of the linear polypropylene. It is preferably 1% by mass to 30% by mass, and particularly preferably 5% by mass to 20% by mass.
  • the content of the linear polypropylene in the propylene polymer is preferably 90% by mass or more, more preferably 95% by mass or more, and more preferably 95% by mass to the total mass of the propylene polymer. More preferably, it is 99.3% by mass.
  • the content of the linear polypropylene is in the above range, the average fiber diameter tends to be smaller. Moreover, it exists in the tendency which is excellent by the balance of spinnability, fiber strength, the collection efficiency of fine particles, and the filtration flow rate.
  • a propylene polymer means the polymer whose content rate of propylene with respect to all the structural units of a polymer is 50 mass% or more.
  • the resin composition preferably further includes a long-chain branched polypropylene from the viewpoint of further improving the collection efficiency. It is more preferable that both a straight-chain polypropylene and a long-chain branched polypropylene are included from the viewpoint of conversion.
  • the long-chain branched polypropylene means a polypropylene having a long-chain branched structure in the molecule.
  • the “long-chain branched structure” means a side chain structure in which the side chain length of polypropylene is 10 or more in carbon number.
  • the longest portion may have 10 or more carbon atoms.
  • the main chain of polypropylene means a portion extended by a reaction between polymerizable unsaturated groups. Further, the side chain means a chain bonded to the main chain of the polymer.
  • Examples of commercially available products of long-chain branched polypropylene include trade name: Weymax (Nippon Polypro Co., Ltd.).
  • the length of the side chain in the propylene-based polymer can be confirmed by a method of measuring strain hardening due to the rheological properties of the resin.
  • Examples of the measurement method include the method described in Sugimoto, Masataka, et al. “Melt rheology of long-chain-branched polypropylenes.” Rheologica acta 46.1 (2006): 33-44.
  • the weight average molecular weight (Mw) of the long-chain branched polypropylene is preferably 30,000 to 500,000, more preferably 80,000 to 300,000, from the viewpoint of improving the collection efficiency by reducing the 5-fold fiber. preferable.
  • the weight average molecular weight (Mw) of the long chain branched polypropylene can be determined by the same method as the weight average molecular weight (Mw) of the linear polypropylene described above.
  • the melt flow rate (MFR) of the long-chain branched polypropylene is preferably 1 g / 10 min to 20 g / 10 min, more preferably 1 g / 10 min to 10 g / 10 min from the viewpoint of film forming properties. .
  • the melt flow rate (MFR) of the long chain branched polypropylene can be determined by the same method as the melt flow rate (MFR) of the linear polypropylene described above.
  • the content of the long-chain branched polypropylene is a viewpoint that a smaller average fiber diameter can be obtained. Therefore, the content is preferably 0.7% by mass to 5% by mass with respect to the total mass of the resin composition. From the above viewpoint, the content of the long-chain branched polypropylene is more preferably 0.7% by mass to 4% by mass with respect to the total mass of the resin composition, and 1% by mass to 2.5% by mass. More preferably it is. Long chain branched polypropylene may be used individually by 1 type, and may use 2 or more types together.
  • the content of the long-chain branched polypropylene with respect to the total mass of the propylene polymer is preferably 0.7% by mass to 5% by mass, more preferably 0.7% by mass to 4% by mass, and 1% by mass. More preferably, the content is from 2.5% to 2.5% by mass.
  • the content of the long-chain branched polypropylene is in the above range, the average fiber diameter tends to be small and the specific surface area tends to be large. Moreover, it exists in the tendency which is excellent in spinnability, fiber strength, the collection efficiency of fine particles, and the balance of filtration flow rate.
  • the fiber contained in the nonwoven fabric according to the present disclosure is a fiber formed from a resin composition
  • the total content of the high molecular weight polypropylene, the low molecular weight polypropylene, and the long chain branched polypropylene is based on the total mass of the fiber. It is preferably 95% by mass or more, more preferably 99% by mass or more, and further preferably 99.9% by mass or more. When it is in the above range, a smaller average fiber diameter is obtained, and the number of 5-fold fibers tends to be small, which is preferable.
  • the resin composition includes polyethylene (PE), polyester resin, polyolefin resin, polyetherimide (PEI), polyamide (PA), Polyetherketone (PEEK), polyvinyl chloride (PVC), polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), Other than polypropylene such as polypropylene (PP), polyacetal (POM), polycarbonate (PC), polysulfone (PSF), polyethersulfone (PES), polyphenylene sulfide (PPS), ultrahigh molecular weight polyethylene, etc.
  • the thermoplastic resin may contain one or more.
  • the fiber contained in the nonwoven fabric according to the present disclosure is a fiber formed from a resin composition
  • the resin composition includes, in addition to linear polypropylene, long-chain branched polypropylene, and other thermoplastic resins, antioxidants, weather resistance It may contain known additives such as stabilizers, light-resistant stabilizers, anti-blocking agents, lubricants, pigments, softeners, hydrophilic agents, auxiliaries, water repellents, fillers, antibacterial agents and the like.
  • the average fiber diameter (Da) of the fibers contained in the nonwoven fabric of the present disclosure is preferably 2.7 ⁇ m or less, more preferably 2.2 ⁇ m or less, from the viewpoint of improving collection efficiency, and 1.7 ⁇ m. More preferably, it is as follows. Further, from the viewpoint of maintaining strength when used as a filter, the average fiber diameter (Da) is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, and 0.8 ⁇ m or more. More preferably.
  • the ratio of fibers in which the fiber diameter is 5 times or more the average fiber diameter (Da) in the fibers contained in the nonwoven fabric is 20%. Or less, more preferably 17% or less, and still more preferably 14% or less.
  • the 5-fold fiber can be confirmed by observing the nonwoven fabric using an electron microscope (model number: S-3500N, manufactured by Hitachi, Ltd.) and measuring the fiber diameter.
  • the ratio (Dd / Da) of the standard deviation (Dd) of the average fiber diameter to the average fiber diameter (Da) is preferably 110 or less. 100 or less, more preferably 90 or less. From the same viewpoint, Dd / Da is preferably 70 or more. From the same viewpoint, Dd / Da is preferably 70 to 110, more preferably 70 to 100, and still more preferably 70 to 90.
  • the nonwoven fabric of the present disclosure may be used as a laminated nonwoven fabric obtained by laminating the nonwoven fabric of the present disclosure, or may be used as a laminated nonwoven fabric laminated with another nonwoven fabric.
  • Other nonwoven fabrics are not particularly limited. For example, spunbond nonwoven fabrics, meltblown nonwoven fabrics, wet nonwoven fabrics, spunlace nonwoven fabrics, dry nonwoven fabrics, dry pulp nonwoven fabrics, airlaid nonwoven fabrics, water jet nonwoven fabrics, flash spun nonwoven fabrics, spread nonwoven fabrics, needles
  • Various known short-fiber non-woven fabrics and long-fiber non-woven fabrics for example, long-fiber cellulose non-woven fabric
  • punched non-woven fabrics can be mentioned.
  • the nonwoven fabric of the present disclosure is a nonwoven fabric manufactured by the melt blown method described later (hereinafter also referred to as “melt blown nonwoven fabric”)
  • the nonwoven fabric preferably does not contain a solvent component.
  • a solvent component means the organic solvent component which can melt
  • the solvent component include dimethylformamide (DMF).
  • DMF dimethylformamide
  • the absence of a solvent component means that it is below the detection limit by the headspace gas chromatograph method.
  • the fibers of the nonwoven fabric of the present disclosure preferably have an entanglement point where the fibers are self-fused.
  • the self-bonded entanglement point is a branching in which the fibers are bonded together by fusing the resin composition constituting the fibers. It means a part, and is distinguished from an entanglement point formed by bonding fibers through a binder resin.
  • the self-bonded entanglement point is formed, for example, in the process of thinning the fibrous propylene polymer by the melt blown method. In addition, it can be confirmed by an electron micrograph whether or not the fibers have an entanglement point that is self-fused.
  • an adhesive component for bonding the fibers to each other may not be used.
  • the fibers contained in the nonwoven fabric according to the present disclosure are fibers formed from a resin composition, other than the resin composition constituting the fibers The resin component may not be contained.
  • the specific surface area of the nonwoven fabric from the viewpoint of further improving the collection efficiency, preferably from 2.0m 2 /g ⁇ 20.0m 2 / g, is 3.0m 2 /g ⁇ 15.0m 2 / g it is more preferable, and yet more preferably 3.5m 2 /g ⁇ 10.0m 2 / g.
  • the specific surface area of a nonwoven fabric is the value calculated
  • the average pore size of the nonwoven fabric of the present disclosure is preferably 10.0 ⁇ m or less, more preferably 3.0 ⁇ m or less, and even more preferably 2.5 ⁇ m or less. Moreover, it is preferable that the average hole diameter of a nonwoven fabric is 0.01 micrometer or more, and it is more preferable that it is 0.1 micrometer or more. When the average pore diameter is 0.01 ⁇ m or more, when a nonwoven fabric is used for the filter, the pressure loss is suppressed and the flow rate tends to be maintained.
  • the maximum pore diameter of the nonwoven fabric of the present disclosure is preferably 20.0 ⁇ m or less, more preferably 6.0 ⁇ m or less, and even more preferably 5.0 ⁇ m or less. Further, the minimum pore diameter of the nonwoven fabric is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • the pore size (average pore size, maximum pore size and minimum pore size) of the nonwoven fabric of the present disclosure can be measured by a bubble point method. Specifically, in accordance with JIS Z8703: 1983 (standard condition of the test place), a fluorine-based inert liquid (for example, 3M) is applied to a nonwoven fabric test piece in a temperature-controlled room at a temperature of 20 ⁇ 2 ° C. and a humidity of 65 ⁇ 2%. The product is impregnated with a product name: Fluorinert, and the pore diameter is measured with a capillary flow porometer (for example, Porous materials, Inc., product name: CFP-1200AE).
  • a capillary flow porometer for example, Porous materials, Inc., product name: CFP-1200AE
  • the basis weight of the nonwoven fabric of the present disclosure can be appropriately set depending on the application, and is usually 1 g / m 2 to 200 g / m 2 , and preferably 2 g / m 2 to 150 g / m 2 .
  • the porosity of the nonwoven fabric of the present disclosure is usually 40% or more, preferably in the range of 40% to 98%, and more preferably in the range of 60% to 95%.
  • the porosity of a nonwoven fabric means the porosity in the location except an embossing point.
  • part which has a porosity of 40% or more occupies among the nonwoven fabrics of this indication is 90% or more, and it is more preferable to have a porosity of 40% or more in almost all the sites.
  • the nonwoven fabric of this indication for a filter, it is preferable that it is not embossed or it is not embossed in almost all area
  • the nonwoven fabric of this indication is laminated
  • the air permeability of the nonwoven fabric is preferably 3 cm 3 / cm 2 / s to 30 cm 3 / cm 2 / s, more preferably 5 cm 3 / cm 2 / s to 20 cm 3 / cm 2 / s, and still more preferably 8 cm 3 / cm 2 / s to 12 cm 3 / cm 2 / s.
  • the method for producing the nonwoven fabric of the present disclosure is not particularly limited, and a known method such as an air-through method, a spunbond method, a needle punch method, a melt blown method, a card method, a thermal fusion method, a hydroentanglement method, a solvent bonding method, etc. is applied be able to.
  • a known method such as an air-through method, a spunbond method, a needle punch method, a melt blown method, a card method, a thermal fusion method, a hydroentanglement method, a solvent bonding method, etc.
  • the method for producing the nonwoven fabric is preferably a melt blown method or a spunbond method, The melt blown method is more preferable.
  • a resin composition is melted using an extruder, and the melted composition is melted using a spunbond nonwoven fabric molding machine having a plurality of spinnerets.
  • a method in which the long fibers formed by spinning are cooled and stretched as necessary, and then deposited on the collecting surface of a spunbond nonwoven fabric forming machine, and heated and pressurized with an embossing roll.
  • the method of cooling and stretching includes, for example, an open-type spunbond method produced by stretching melt-spun long fibers disclosed in Japanese Patent Publication No. 48-28386 while being cooled in the atmosphere, for example, A hermetic spunbond method disclosed in Japanese Patent No. 3442896 is widely known.
  • melt blown nonwoven fabric examples include a production method having the following steps. 1) A step of forming a molten resin composition (for example, a mixture of linear polypropylene and long-chain branched polypropylene) from a spinneret with a heated gas into a fibrous form by a melt blown method 2) Fibrous The process of collecting the resin composition in the form of a web
  • the meltblown method is one of the fleece formation methods in the production of meltblown nonwoven fabrics.
  • the heated compressed gas is applied from both sides to the molten discharged material, and the diameter of the discharged material is reduced by accompanying the heated compressed gas. Can do.
  • a resin composition as a raw material is melted using an extruder or the like.
  • the molten resin composition is introduced into a spinneret connected to the tip of the extruder, and discharged from the spinning nozzle of the spinnerette in a fibrous form.
  • a high-temperature gas for example, air
  • the ejected fibrous molten resin composition is pulled down to a diameter of usually 1.4 ⁇ m or less, preferably 1.0 ⁇ m or less, by being pulled by a high-temperature gas.
  • the fibrous molten resin composition is refined to the limit of the high temperature gas.
  • a high voltage may be applied to the refined fibrous molten resin composition to further refine it.
  • a high voltage is applied, the fibrous molten resin composition is pulled toward the collection side by the attractive force of the electric field and is thinned.
  • the voltage to be applied is not particularly limited, and may be 1 kV to 300 kV.
  • the fibrous molten resin composition may be further refined by irradiation with heat rays.
  • heat rays By irradiating with heat rays, it is possible to remelt the fibrous resin composition that has been reduced in size and reduced in fluidity.
  • the melt viscosity of the fibrous resin composition can be further lowered by irradiating with heat rays. Therefore, even when a propylene-based polymer having a large molecular weight is used as a spinning raw material, sufficiently fine fibers can be obtained, and a high-strength melt blown nonwoven fabric can be obtained.
  • the heat ray means an electromagnetic wave having a wavelength of 0.7 ⁇ m to 1000 ⁇ m, and particularly a near infrared ray having a wavelength of 0.7 ⁇ m to 2.5 ⁇ m.
  • the intensity of the heat ray and the irradiation amount are not particularly limited, and the fibrous molten propylene polymer may be remelted.
  • a near infrared lamp or a near infrared heater of 1V to 200V, preferably 1V to 20V can be used.
  • the fibrous molten resin composition is collected in a web shape. In general, it is collected and deposited in a collector. Thereby, a melt blown nonwoven fabric is manufactured.
  • collectors include perforated belts, perforated drums and the like.
  • the collector may have an air collection part, and this may accelerate
  • the fibers may be collected in a web form on a desired base material provided in advance on the collector.
  • the base material provided in advance include melt-blown nonwoven fabrics, spunbond nonwoven fabrics, other nonwoven fabrics such as needle punching and spunlace nonwoven fabrics, and woven fabrics, knitted fabrics, papers, and the like.
  • melt blown nonwoven fabric laminated body used with a high performance filter, a wiper, etc. can also be obtained.
  • melt blown nonwoven manufacturing equipment The manufacturing apparatus for manufacturing the melt blown nonwoven fabric of the present disclosure is not particularly limited as long as the melt blown nonwoven fabric of the present disclosure can be manufactured.
  • melt blown nonwoven manufacturing equipment include: 1) an extruder that melts and conveys the resin composition; 2) A spinneret for discharging the molten resin composition conveyed from the extruder into a fibrous form; 3) a gas nozzle for injecting high temperature gas at the bottom of the spinneret; 4) a collector for collecting the fibrous molten resin composition discharged from the spinneret into a web shape;
  • the manufacturing apparatus which comprises can be mentioned.
  • the extruder is not particularly limited, and may be a single screw extruder or a multi-screw extruder.
  • the solid resin composition charged from the hopper is melted in the compression section.
  • the spinneret is disposed at the tip of the extruder.
  • the spinneret usually includes a plurality of spinning nozzles. For example, a plurality of spinning nozzles are arranged in a row.
  • the diameter of the spinning nozzle is preferably 0.05 mm to 0.38 mm.
  • the molten resin composition is conveyed to a spinneret by an extruder and introduced into a spinning nozzle.
  • a fibrous molten resin composition is discharged from the opening of the spinning nozzle.
  • Discharge pressure of the molten resin composition is usually in the range of 0.01kg / cm 2 ⁇ 200kg / cm 2, preferably in the range of 10kg / cm 2 ⁇ 30kg / cm 2. This will increase the discharge volume and realize mass production.
  • the gas nozzle injects high-temperature gas at the bottom of the spinneret, more specifically near the opening of the spinning nozzle.
  • the propellant gas can be air. It is preferable to provide a gas nozzle in the vicinity of the opening of the spinning nozzle and inject a high-temperature gas onto the resin composition immediately after discharge from the nozzle opening.
  • the speed of the gas to be injected is not particularly limited, and may be 4 Nmm 3 / min / m to 30 Nmm 3 / min / m.
  • the temperature of the gas to be injected is usually 5 ° C. to 400 ° C. or less, preferably 250 ° C. to 350 ° C.
  • the type of gas to be injected is not particularly limited, and compressed air may be used.
  • the apparatus for producing a melt blown nonwoven fabric may further include voltage applying means for applying a voltage to the fibrous molten resin composition discharged from the spinneret. Moreover, you may further comprise the heat ray irradiation means to irradiate the molten molten resin composition discharged from the spinneret with heat rays.
  • the collector (collector) that collects in a web shape is not particularly limited.
  • the fibers may be collected on a perforated belt.
  • the mesh width of the porous belt is preferably 5 mesh to 200 mesh.
  • an air collection part may be provided on the back side of the fiber collection surface of the perforated belt to facilitate collection.
  • the distance from the collecting surface of the collector to the nozzle opening of the spinning nozzle is preferably 3 cm to 55 cm.
  • the nonwoven fabric of this indication may use the nonwoven fabric of this indication as filters, such as a gas filter (air filter) and a liquid filter, for example.
  • filters such as a gas filter (air filter) and a liquid filter, for example.
  • the nonwoven fabric of the present disclosure is used as a filter, the collection efficiency is excellent because the ratio of the 5-fold fiber is small and the average fiber diameter is small.
  • the meltblown nonwoven fabric includes 1) no solvent component, 2) no adhesive component for bonding fibers together, and 3) not embossed. When at least one of 1) to 3) is satisfied, the content of impurities is reduced. Therefore, such a nonwoven fabric has high cleanliness and filtering performance, and is suitably used as a high performance filter.
  • the liquid filter may be composed of a single layer of non-woven fabric or a laminate of two or more layers of non-woven fabric. When a laminate of two or more layers of nonwoven fabric is used as the liquid filter, two or more layers of nonwoven fabric may be simply stacked. In addition, the liquid filter may be combined with another nonwoven fabric in accordance with the purpose and the liquid to be applied. In order to increase the strength of the liquid filter, a spunbond nonwoven fabric may be used, or a spunbond nonwoven fabric and a net-like material may be laminated.
  • the liquid filter may be calendered using a pair of flat rolls provided with a clearance between the flat rolls in order to control the pore size to be small.
  • the clearance between the flat rolls needs to be changed as appropriate according to the thickness of the nonwoven fabric so that there are no voids between the fibers of the nonwoven fabric.
  • the roll surface temperature is heat-welded in a temperature range of 15 ° C. to 50 ° C. lower than the melting point of the fiber formed from the resin composition.
  • the roll surface temperature is 15 ° C. or more lower than the melting point of the resin formed from the resin composition, film formation on the surface of the meltblown nonwoven fabric is suppressed, and the deterioration of the filter performance tends to be suppressed.
  • Example 1 99.0 parts by mass of Achieve 6936G2 (product name) (manufactured by ExxonMobil, weight-average molecular weight: 55,000 propylene polymer, MFR; 1550 g / 10 min) as linear polypropylene 1 (high molecular weight linear polypropylene) As a long-chain branched polypropylene (LCBPP), 1.0 part by mass of Waymax MFX3 (product name) (manufactured by Nippon Polypro Co., Ltd., MFR; 9, long-chain branched polypropylene having a branched structure having 10 or more carbon atoms)
  • the resin composition was obtained by melting and mixing.
  • Table 1 shows the shear viscosity, uniaxial elongation viscosity, and ratio of the uniaxial elongation viscosity to the shear viscosity (uniaxial elongation viscosity / shear viscosity) of the obtained resin composition.
  • the uniaxial elongation viscosity and shear viscosity were measured by the above-mentioned method.
  • the resin composition obtained above is supplied to a die, and heated air (12.5 mg / min per nozzle single hole) blown from both sides of the nozzle from a die having a set temperature of 230 ° C. and a nozzle diameter of 0.12 mm ( The resin composition was discharged together with 280 ° C. and 300 m 3 / second) to obtain a melt blown nonwoven fabric.
  • the melt-blown nonwoven fabric obtained had the same shear viscosity and uniaxial extension viscosity as before spinning, and the shear viscosity was 16 (Pa ⁇ S) and the uniaxial extension viscosity was 623 (Pa ⁇ S).
  • the ratio of the fibers whose fiber diameter is 5 times or more of the average fiber diameter (5 times the fiber diameter ratio), and the ratio of the standard deviation (Dd) of the fiber diameter to the average fiber diameter (Da) ( Dd / Da) is shown in Table 1.
  • the average fiber diameter (Da) and the 5-fold fiber diameter ratio were measured and calculated by the method described above.
  • Example 1 (Examples 2 to 4 and Comparative Examples 1 to 3, Comparative Example 5 and Comparative Example 6)
  • the melt blown nonwoven fabric was obtained by performing the same operation as Example 1 except having changed into the composition ratio of the resin composition shown in Table 1.
  • Table 1 shows the physical properties of the obtained resin composition and melt blown nonwoven fabric. The uniaxial elongation viscosity, shear viscosity, and average fiber diameter were measured and calculated by the methods described above.
  • Example 4 In Example 1, instead of 1 part by mass of long-chain branched polypropylene (LCBPP), 1 part by mass of linear polypropylene 2 (product name; J105G, MFR; 9 g / 10 min, manufactured by Prime Polymer Co., Ltd.) was used. Except for the above, the same operation as in Example 1 was performed to obtain a meltblown nonwoven fabric. Table 1 shows the physical properties of the obtained resin composition and melt blown nonwoven fabric. The uniaxial elongation viscosity, shear viscosity, and average fiber diameter were measured by the methods described above.
  • LCBPP long-chain branched polypropylene
  • linear polypropylene 2 product name; J105G, MFR; 9 g / 10 min, manufactured by Prime Polymer Co., Ltd.
  • linear polypropylene 3 (low molecular weight linear polypropylene); weight average molecular weight: 7700, manufactured by Mitsui Chemicals, Inc., trade name: NP055)
  • unspinable means that spinning is impossible.
  • the melt blown nonwoven fabric of the example has a ratio of 5 times the fiber diameter and a smaller average fiber diameter than the melt blown nonwoven fabric of the comparative example. Further, the fiber diameter distribution, that is, the standard deviation of average fiber diameter / average fiber diameter is small. For this reason, when the melt-blown nonwoven fabric of an Example is used as a filter, it turns out that it is excellent in the collection efficiency of microparticles

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonwoven Fabrics (AREA)
  • Filtering Materials (AREA)
  • Artificial Filaments (AREA)

Abstract

繊維を含む不織布であって、前記繊維は、伸長歪み速度2.5×10(1/秒)及び160℃の条件で測定した一軸伸長粘度が、430Pa・s~1200Pa・sであり、かつ、せん断歪み速度2.5×10(1/秒)及び160℃の条件で測定したせん断粘度(Pa・s)に対する、前記一軸伸長粘度(Pa・s)の割合が35~65である、不織布。

Description

不織布及びフィルタ
 本開示は、不織布及びフィルタに関する。
 メルトブロー法により製造された不織布(以下、「メルトブロー不織布」又は「メルトブローン不織布」ともいう。)は、一般的なスパンボンド不織布と比べて、不織布を構成する繊維を細化できることから、柔軟性、均一性、及び緻密性に優れている。このためメルトブローン不織布は、単独で、又は他の不織布等と積層して、液体フィルタ、エアフィルタ等のフィルタ、衛生材、メディカル材、農業用被覆材、土木材、建材、油吸着材、自動車材、電子材料、セパレータ、衣類、包装材、吸音材などに用いられている。
 不織布を構成する繊維としては、ポリプロピレン、ポリエチレン等の熱可塑性樹脂の繊維が知られている。
 一般的に、フィルタは、液体、気体等の中に存在する微粒子を捕集し、該液体、気体等から微粒子を取り除く目的で使用されている。フィルタの微粒子を捕集する効率(以下、「捕集効率」ともいう。)は、フィルタを構成する不織布の繊維の平均繊維径が小さいと優れる傾向にあることが知られている。また、微粒子の粒子径が小さいほど、捕集効率が低下することが知られている。
 例えば、国際公開第2000/22219号及び国際公開第2015/093451号には、平均繊維径が小さい不織布としては、例えば、ポリエチレンとポリエチレンワックスとを含む樹脂組成物をメルトブロー法で成形して得られる不織布が提案されている。
 また、例えば、国際公開第2012/111724号には、ポリエチレンとポリエチレンワックスとを含む樹脂組成物をメルトブロー法で成形して得られる不織布を、ポリエステルとエチレン系重合体とから形成される複合繊維からなるスパンボンド不織布と積層した不織布積層体が提案されている。
 本発明者らが検討したところ、国際公開第2000/22219号、国際公開第2015/093451号及び国際公開第2012/111724号に記載された不織布をフィルタとして用いた場合、捕集効率の更なる向上が求められる場合があることがわかった。
 本発明者らが更に検討したところ、平均繊維径が同じである不織布をフィルタとして用いても捕集効率が異なる場合があった。さらに、繊維径が平均繊維径の5倍以上である繊維(以下、「5倍繊維」ともいう。)の割合が多いと、捕集効率に劣る場合があることがわかった。
 そこで、本開示の一実施形態は、集効率に優れる、すなわち平均繊維径が小さくかつ5倍繊維の割合が少ない不織布、又は該不織布を用いたフィルタを提供する。
 本開示には、以下の実施形態が含まれる。
<1> 繊維を含む不織布であって、
 前記繊維は、伸長歪み速度2.5×10(1/秒)及び160℃の条件で測定した一軸伸長粘度が、430Pa・s~1200Pa・sであり、かつ、
 せん断歪み速度2.5×10(1/秒)及び160℃の条件で測定したせん断粘度(Pa・s)に対する、前記一軸伸長粘度(Pa・s)の割合が35~65である、不織布。
<2> 前記せん断粘度は、10Pa・s~20Pa・sである、<1>に記載の不織布。
<3> 前記繊維は、樹脂組成物から形成された繊維である、<1>又は<2>に記載の不織布。
<4> 前記樹脂組成物は、長鎖分岐ポリプロピレンを含む、<3>に記載の不織布。
<5> 前記長鎖分岐ポリプロピレンの含有率は、前記樹脂組成物の全質量に対して0.7質量%~5質量%である、<4>に記載の不織布。
<6>前記樹脂組成物は、直鎖ポリプロピレンを更に含む、<3>又は<4>に記載の不織布。
<7> 前記直鎖ポリプロピレンの含有率は、前記樹脂組成物の全質量に対して95質量%~99.3質量%である、<6>に記載の不織布
<8> 前記直鎖ポリプロピレンが、重量平均分子量が2万以上である直鎖ポリプロピレンを含む、<6>又は<7>に記載の不織布。
<9> 前記重量平均分子量が2万以上である直鎖ポリプロピレンの含有率が、直鎖ポリプロピレンの全質量に対して50質量%以上である、<8>に記載の不織布。
<10> 前記直鎖ポリプロピレンが、重量平均分子量が2万未満である直鎖ポリプロピレンを含む、<6>~<9>のいずれか1つに記載の不織布。
<11> 前記重量平均分子量が2万未満である直鎖ポリプロピレンの含有率が、直鎖ポリプロピレンの全質量に対して50質量%以下である、<10>に記載の不織布。
<12> 前記繊維の平均繊維径(Da)は2.7μm以下である、<1>~<11>のいずれか1つに記載の不織布。
<13> 前記平均繊維径(Da)に対する、前記平均繊維径の標準偏差(Dd)の割合(Dd/Da)が70~100である、<12>に記載の不織布。
<14> 前記繊維において、繊維径が平均繊維径の5倍以上である繊維の割合が、20質量%以下である、<1>~<13>のいずれか1つに記載の不織布。
<15> メルトブローン不織布である、<1>~<14>のいずれか1つに記載の不織布。
<16> <1>~<15>のいずれか1つに記載の不織布を含むフィルタ。
 本開示の一実施形態によれば、捕集効率に優れる、すなわち平均繊維径が小さくかつ5倍繊維の割合が少ない不織布、又は該不織布を用いたフィルタを提供することができる。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する該複数の物質の合計量を意味する。
 本明細書において、好ましい態様の組み合わせは、より好ましい態様である。
《不織布》
 本開示の不織布は、繊維を含む不織布であって、該繊維の伸長歪み速度2.5×10(1/秒)及び160℃の条件で測定した一軸伸長粘度が、430Pa・s~1200Pa・sであり、かつ、
 せん断歪み速度2.5×10(1/秒)及び160℃の条件で測定したせん断粘度(Pa・s)に対する、前記一軸伸長粘度(Pa・s)の割合(一軸伸長粘度/せん断粘度)が35~65である。
 本開示の不織布は、繊維を含み、該繊維が、せん断歪み速度2.5×10(1/秒)及び160℃の条件で測定したせん断粘度(Pa・s)に対する、伸長歪み速度2.5×10(1/秒)及び160℃の条件で測定した一軸伸長粘度(Pa・s)の比(一軸伸長粘度/せん断粘度)が35~65であるため、5倍繊維が少なく、かつ、平均繊維径が小さい。そのため、かかる不織布は、5倍繊維が少なく、かつ、平均繊維径が小さくなり、捕集効率に優れる。
 発明者らは、一軸伸長粘度及びせん断粘度に対する一軸伸長粘度の比が所定範囲であると、繊維の5倍繊維が少なく、かつ、平均繊維径が小さい理由を、以下のように推測している。
 繊維の紡糸時において樹脂又は樹脂組成物は、細いノズルから吐出され、高速気流により延伸される。繊維の一軸伸長粘度及びせん断粘度に対する一軸伸長粘度の比が所定範囲であると、細繊維化に必要な高い延伸倍率条件としたときであっても、延伸中に繊維径が一時的に太くなったり、細くなったりする繊維径の変化(以下、「繊維径の太化及び細化」ともいう。)を周期的に繰り返す現象が抑制されるため、得られる繊維の平均繊維径が細く、繊維径分布が均一になりやすいものと考えられる。
 なお、繊維が樹脂組成物から形成された繊維である場合、繊維の一軸伸長粘度及びせん断粘度は、繊維を形成する前の樹脂組成物の一軸伸長粘度及びせん断粘度と同じである。
 本開示に係る不織布に含まれる繊維は、伸長歪み速度2.5×10(1/秒)及び160℃の条件で測定した一軸伸長粘度が、430Pa・s~1200Pa・sである。
 繊維の伸長歪み速度2.5×10(1/秒)及び160℃の条件で測定される一軸伸長粘度が430Pa・s以上であると、延伸中に繊維径の太化及び細化を周期的に繰り返す現象が抑制されるため、得られる不織布における5倍繊維の割合を少なくでき、捕集効率を向上させることができる。また、繊維の一軸伸長粘度が1200Pa・s以下であると、高速気流によって延伸倍率を高くすることができるため、平均繊維径を小さくすることができ、また、捕集効率も向上させることができる。
 本開示において「伸長歪み速度」とは、溶融した繊維が一軸方向の変形したときの速度を表す。
 上記観点から一軸伸長粘度としては、好ましくは450Pa・s~1200Pa・sであり、より好ましくは550Pa・s~1000Pa・sである。
 せん断歪み速度2.5×10(1/秒)及び160℃の条件で測定されるせん断粘度としては、平均繊維径をより小さくする観点から、10Pa・s~100Pa・sであることが好ましく、10Pa・s~20Pa・sであることがより好ましい。
 せん断歪み速度が上記範囲内であると、ノズルからの射出が安定し、平均繊維径をより小さくできる傾向にある。
 本開示において「せん断歪み速度」とは、溶融した繊維が三次元変形したときの平均速度を表す。
 せん断歪み速度2.5×10(1/秒)及び160℃の条件で測定されるせん断粘度としては、平均繊維径をより小さくする観点から、10Pa・s~100Pa・sであることが好ましく、10Pa・s~20Pa・sであることがより好ましい。
 せん断歪み速度が上記範囲内であると、高速気流によって延伸倍率を高くすることができるため、平均繊維径をより小さくできる傾向にある。
 本開示において「せん断歪み速度」とは、溶融した樹脂が三次元で定義したひずみの時間変化する割合、すなわち、ひずみの時間微分を表す。
 一軸伸長粘度(ηe)及びせん断粘度(η)は、キャピラリーレオメーター(製品名;キャピログラフ1D PMD-C、(株)東洋精機製作所製)を用いて、繊維又は後述の樹脂組成物を下記条件で測定及び計算して求められる。
[測定条件]
 測定機器:キャピログラフ1D PMD-C ((株)東洋精機製作所製)
 キャピラリー内径:Φ=0.2[mm]
 測定温度:160℃
 キャピラリー長さ/キャピラリー内径(L/D):0.25及び10
 ピストン速度:2.5×10(1/秒)
 せん断粘度(η)(Pa・s)は、上記L/Dが10のときの見かけのせん断応力及びせん断歪み速度の各値から、下記式で算出される。
Figure JPOXMLDOC01-appb-M000001
 式中、τ(Pa)は見かけのせん断応力を表し、γドット(Pa)(γの上部にドット(・)が記された記号;以下、単に「γ」ともいう。)は、せん断歪み速度を表す。
 見かけのせん断応力τ(Pa)は、ピストン荷重p(Pa)とキャピラリー内径D(mm)、キャピラリー長さL(mm)からτ=pD/π4Lで表され、せん断応力γ(Pa)は、体積流量Q(mm/s)を用いてγ=32Q/πDで表される。
 一軸伸長粘度(ηe)は、上記L/Dが10のときの見かけのせん断応力及びせん断歪み速度の各値および上記L/Dが0.2のときの各値から、Cogswell法により下記式を用いて算出される。
 Cogswell法は、例えば、「Cogswell, F. N. "Stretching flow instabilities at the exits of extrusion dies." Journal of Non-Newtonian Fluid Mechanics 2.1 (1977): 37-47 」の記載を参照することができる。
Figure JPOXMLDOC01-appb-M000002
 式中、nは、パワーロー指数を表し、γドット(γの上部にドット(・)が記された記号;以下、単に「γ」ともいう。)は、せん断歪み速度を表し、ηは、L/Dが10のときのせん断粘度(η)を表し、ΔP はキャピラリー長が0のときにダイで生じる圧力損失の2乗を表し、Baglay補正により求めることができる。
 Bagleyのキャピラリー長の補正については、例えば、「Bagley, E. B. "The separation of elastic and viscous effects in polymer flow." Transactions of the Society of Rheology 5.1 (1961): 355-368.」を参照することができる。
 せん断粘度(Pa・s)に対する一軸伸長粘度(Pa・s)の割合(一軸伸長粘度/せん断粘度)は35~65である。
 一軸伸長粘度/せん断粘度が35~65であると、平均繊維径が小さく、かつ、5倍繊維の割合が少なく、かかる不織布は、捕集効率に優れる。
 上記観点から、一軸伸長粘度/せん断粘度としては、35~60であることが好ましく、35~50であることがより好ましい。
<樹脂組成物>
 本開示に係る不織布における繊維としては、所定の条件における一軸伸長粘度及び一軸伸長粘度/せん断粘度が既述範囲を満たせば、特に制限されず、樹脂から形成された繊維であってもよく、樹脂組成物から形成された繊維であってもよい。
 所定の条件における一軸伸長粘度及び一軸伸長粘度/せん断粘度が既述範囲に調整しやすくする観点から、本開示の不織布における繊維としては、樹脂組成物から形成された繊維であることが好ましい。
 本開示に係る不織布に含まれる繊維が、樹脂組成物から形成された繊維である場合、樹脂組成物は、平均繊維径を小さくして捕集効率を向上させる観点から、直鎖ポリプロピレンを含むことが好ましい。
 直鎖ポリプロピレンとは、長鎖分岐構造を有さないポリプロピレンを意味する。長鎖分岐構造については、後述の長鎖分岐ポリプロピレンにおいて詳述する。
 直鎖ポリプロピレンとしては、特に制限はなく、直鎖プロピレンの単独重合体であってもよく、直鎖プロピレンとα-オレフィンとの共重合体であってもよい。
 共重合するα-オレフィンは、炭素数が2以上のα-オレフィンであることが好ましく、炭素数が2又は4~8のα-オレフィンであることがより好ましい。
 共重合するα-オレフィンとして、具体的には、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテン等が挙げられる。
 直鎖ポリプロピレンとしては、重量平均分子量が2万以上である直鎖ポリプロピレン(以下、「高分子量直鎖ポリプロピレン」ともいう。)を含んでいてもよく、重量平均分子量が2万未満である直鎖ポリプロピレン(以下、「低分子量直鎖ポリプロピレン」ともいう。)を含んでいてもよく、高分子量直鎖ポリプロピレン及び低分子量直鎖ポリプロピレンの両方を含んでいてもよい。
 直鎖ポリプロピレンとして高分子量直鎖ポリプロピレンを含む不織布は、紡糸が安定化され、5倍繊維が少ない傾向にあり好ましい。
 直鎖ポリプロピレンとして低分子量直鎖ポリプロピレンを含む不織布は、紡糸時の粘度を低下でき高速気流によって延伸倍率を高くすることができるため、細線維化できる傾向にあり、好ましい。
 直鎖ポリプロピレンとして高分子量直鎖ポリプロピレン及び低分子量直鎖ポリプロピレンの両方を含む不織布は、紡糸が安定化される範囲で紡糸時の粘度を低下できる傾向にあるため、平均繊維径が細く、かつ、5倍繊維が少なくなる傾向にあり、より好ましい。
 高分子量直鎖ポリプロピレンの重量平均分子量(Mw)は、2万以上であることが好ましく、3万以上であることがより好ましく、4万以上であることが更に好ましい。
 また、高分子量直鎖ポリプロピレンの重量平均分子量(Mw)としては、8万以下であることが好ましく、7万以下であることがより好ましく、6.5万以下であることが更に好ましい。
 高分子量直鎖ポリプロピレンの重量平均分子量(Mw)が上記範囲内であると、平均繊維径が小さくなる傾向にあるため好ましい。
 上記観点から、高分子量直鎖ポリプロピレンの重量平均分子量(Mw)は、2万~8万であることが好ましく、3万~7万であることがより好ましく、4万~6.5万であることが更に好ましい。
 低分子量直鎖ポリプロピレンの重量平均分子量(Mw)は、2万未満であることが好ましく、1.5万以下であることがより好ましく、1.3万以下であることが更に好ましい。低分子量直鎖ポリプロピレンの重量平均分子量(Mw)が2万未満である場合、低分子量直鎖ポリプロピレンは、分子量が比較的低いため、ワックス状の重合体であってもよい。
 また、低分子量直鎖ポリプロピレンの重量平均分子量(Mw)としては、400以上であることが好ましく、1,000以上であることがより好ましく、2,000以上であることが更に好ましく、6,000以上であることが特に好ましい。
 低分子量直鎖ポリプロピレンの重量平均分子量(Mw)が上記範囲内であると、平均繊維径が小さくなる傾向にあるため好ましい。
 上記観点から、低分子量直鎖ポリプロピレンの重量平均分子量(Mw)は、400以上2万未満であることが好ましく、400~1.5万であることがより好ましく、1,000~1.4万であることが更に好ましく、6,000~1.3万であることが特に好ましい。
 直鎖ポリプロピレンの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法により、下記の装置及び条件で測定したポリスチレン換算の重量平均分子量をいう。
[GPC測定装置]
 カラム :TOSO GMHHR-H(S)HT(東ソー(株)製)
 検出器 :液体クロマトグラム用RI検出器 WATERS 150C(ウォーターズ社製)
[測定条件]
 溶媒 :1,2,4-トリクロロベンゼン
 測定温度 :145℃
 流速 :1.0ml/分
 試料濃度 :2.2mg/ml
 注入量 :160μl
 検量線 :Universal Calibration
 解析プログラム:HT-GPC(Ver.1.0)
 高分子量直鎖ポリプロピレンの密度は特に限定されるものではなく、例えば、0.870g/cm~0.980g/cmであってもよく、好ましくは0.900g/cm~0.980g/cmであり、より好ましくは0.920g/cm~0.975g/cmであり、更に好ましくは0.940g/cm~0.970g/cmである。
 低分子量直鎖ポリプロピレンの密度は特に限定されるものではなく、例えば、0.890g/cm~0.980g/cmであってもよく、好ましくは0.910g/cm~0.980g/cmであり、より好ましくは0.920g/cm~0.980g/cmであり、更に好ましくは0.940g/cm~0.980g/cmである。
 なお、本明細書において、ポリプロピレンの密度とは、25℃、1atm(1013.25hPa)で測定したときの値である。
 高分子量直鎖ポリプロピレンの密度が0.870g/cm以上であると、得られる不織布の、耐久性、耐熱性、強度、及び経時での安定性がより向上する傾向がある。他方、高分子量直鎖ポリプロピレンの密度が0.980g/cm以下であると、得られる不織布の、ヒートシール性及び柔軟性がより向上する傾向がある。
 低分子量直鎖ポリプロピレンの密度が上記範囲内であると、高分子量直鎖ポリプロピレンとの混練性に優れ、かつ、紡糸性及び経時での安定性に優れる傾向にある。
 なお、本開示において、直鎖ポリプロピレンの密度(g/cm)は、190℃における2.16kg荷重でのメルトフローレート(MFR)測定時に得られるストランドを、120℃で1時間熱処理し、1時間かけて室温(25℃)まで徐冷した後、JIS K7112:1999に準拠し密度勾配管で測定して得た値をいう。
 直鎖ポリプロピレンのメルトフローレート(MFR)は、後述の長鎖分岐ポリプロピレンと併用して不織布を製造し得る限り特に限定されない。
 直鎖ポリプロピレンのメルトフローレート(MFR)は、平均繊維径の細さ、紡糸性等の観点から、好ましくは1000g/10分~2500g/10分であり、より好ましくは1200g/10分~2000g/10分であり、更に好ましくは1300g/10分~1800g/10分である。
 本開示において、直鎖ポリプロピレンのメルトフローレート(MFR)は、ASTM D1238に準拠し、荷重2.16kg、190℃の条件で測定して得た値をいう。
 本開示に係る不織布に含まれる繊維が樹脂組成物から形成された繊維である場合、直鎖ポリプロピレンの含有率は、平均繊維径を小さくして捕集効率を向上させる観点、及び、紡糸をより安定にする観点から、樹脂組成物の全質量に対して、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、95質量%~99.3質量%であることが更に好ましい。
 また、直鎖ポリプロピレンは、1種を単独で用いても、2種以上を併用してもよい。
 本開示に係る不織布に含まれる繊維が樹脂組成物から形成された繊維である場合、高分子量直鎖ポリプロピレンの含有率は、平均繊維径を小さくして捕集効率を向上させる観点、及び、紡糸をより安定にする観点から、直鎖ポリプロピレンの全質量に対して50質量%~100質量%が好ましく、70質量%~100質量%がより好ましく、70質量%~99質量%が更に好ましく、80質量%~95質量%が特に好ましい。
 本開示に係る不織布に含まれる繊維が樹脂組成物から形成された繊維である場合、低分子量直鎖ポリプロピレンの含有率は、平均繊維径を小さくして捕集効率を向上させる観点、及び、紡糸をより安定にする観点から、直鎖ポリプロピレンの全質量に対して0質量%を超えて50質量%以下が好ましく、0質量%を超えて30質量%以下がより好ましく、1質量%~30質量%が更に好ましく、5質量%~20質量%が特に好ましい。
 本開示に係る不織布が直鎖ポリプロピレンとして高分子量直鎖ポリプロピレン及び低分子量直鎖ポリプロピレンの両方を含む場合、平均繊維径を小さくして捕集効率を向上させる観点、及び、紡糸をより安定にする観点から、高分子量直鎖ポリプロピレンの含有率が、直鎖ポリプロピレンの全質量に対して50質量%以上(より好ましくは70質量%以上、更に好ましくは70質量%~99質量であり、特に好ましくは80質量%~95質量%である。)であり、かつ、低分子量直鎖ポリプロピレンの含有率が直鎖ポリプロピレンの全質量に対して50質量%以下(より好ましくは30質量%以下であり、更に好ましくは1質量%~30質量%であり、特に好ましくは5質量%~20質量%である。)であることが好ましい。
 プロピレン系重合体における直鎖ポリプロピレンの含有率としては、プロピレン系重合体の全質量に対して、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、95質量%~99.3質量%であることが更に好ましい。
 直鎖ポリプロピレンの含有率が上記範囲の場合は、平均繊維径がより小さくなる傾向がある。また、紡糸性、繊維強度、微粒子の捕集効率、及び濾過流量のバランスにより優れる傾向にある。
 なお、本明細書において、プロピレン系重合体とは、重合体の全構成単位に対するプロピレンの含有率が50質量%以上である重合体を意味する。
<長鎖分岐ポリプロピレン>
 本開示に係る不織布に含まれる繊維が樹脂組成物から形成された繊維である場合、樹脂組成物は、捕集効率をより向上させる観点から、長鎖分岐ポリプロピレンを更に含むことが好ましく、細繊化の観点から、直鎖ポリプロピレン及び長鎖分岐ポリプロピレンの両方を含むことがより好ましい。
 本明細書において、長鎖分岐ポリプロピレンとは、分子内に長鎖分岐構造を有するポリプロピレンを意味する。「長鎖分岐構造」とは、ポリプロピレンの側鎖の長さが炭素数で10以上である側鎖の構造を意味する。側鎖が分岐構造を更に有している場合は、最も長い部分の炭素数が10以上であればよい。
 本明細書においてポリプロピレンの主鎖とは、重合性不飽和基同士の反応により伸長した部分を意味する。また、側鎖とは、ポリマーの主鎖に結合する鎖を意味する。
 長鎖分岐ポリプロピレンの市販品としては、例えば、商品名:ウェイマックス(日本ポリプロ(株)社)等を挙げることができる。
 プロピレン系重合体における側鎖の長さは、樹脂のレオロジー特性によるひずみ硬化を測定する方法によって確認することができる。
 上記測定方法としては、例えば、Sugimoto, Masataka, et al. "Melt rheology of long-chain-branched polypropylenes." Rheologica acta 46.1 (2006): 33-44.に記載された方法が挙げられる。
 長鎖分岐ポリプロピレンの重量平均分子量(Mw)としては、5倍繊維を減らして捕集効率を向上させる観点から、3万~50万であることが好ましく、8万~30万であることがより好ましい。
 長鎖分岐ポリプロピレンの重量平均分子量(Mw)は、既述の直鎖ポリプロピレンの重量平均分子量(Mw)と同様の方法により求めることができる。
 長鎖分岐ポリプロピレンのメルトフローレート(MFR)は、製膜性の観点から、1g/10分~20g/10分であることが好ましく、1g/10分~10g/10分であることがより好ましい。
 長鎖分岐ポリプロピレンのメルトフローレート(MFR)は既述の直鎖ポリプロピレンのメルトフローレート(MFR)と同様の方法により求めることができる。
 長鎖分岐ポリプロピレンの製造方法としては、特に制限はなく、例えば、直接重合法、電子線照射法、過酸化物法等の公知公用の方法により製造することができる。
 本開示に係る不織布に含まれる繊維が樹脂組成物から形成された繊維であり、かつ、長鎖分岐ポリプロピレンを含む場合、長鎖分岐ポリプロピレンの含有率としては、より小さい平均繊維径が得られる観点から、樹脂組成物の全質量に対して0.7質量%~5質量%であることが好ましい。
 上記観点から、長鎖分岐ポリプロピレンの含有率としては、樹脂組成物の全質量に対して、0.7質量%~4質量%であることがより好ましく、1質量%~2.5質量%であることが更に好ましい。
 長鎖分岐ポリプロピレンは、1種を単独で用いてもよいし、2種以上を併用してもよい。
 プロピレン系重合体の全質量に対する長鎖分岐ポリプロピレンの含有率は、0.7質量%~5質量%であることが好ましく、0.7質量%~4質量%であることがより好ましく、1質量%~2.5質量%であることが更に好ましい。
 長鎖分岐ポリプロピレンの含有率が上記範囲の場合は、平均繊維径が小さくかつ比表面積が大きくなる傾向がある。また、紡糸性、繊維強度、微粒子の捕集効率、及び濾過流量のバランスに優れる傾向にある。
 本開示に係る不織布に含まれる繊維が樹脂組成物から形成された繊維である場合、上述の高分子量ポリプロピレン、低分子量ポリプロピレンおよび長鎖分岐ポリプロピレンの合計の含有量は、繊維の総質量に対して95質量%以上であることが好ましく、99質量%以上であることがより好ましく、99.9質量%以上であることがさらに好ましい。上記範囲であると、より小さい平均繊維径が得られ、かつ、5倍繊維が少ない傾向にあり、好ましい。
 本開示に係る不織布に含まれる繊維が樹脂組成物から形成された繊維である場合、樹脂組成物は、ポリエチレン(PE)、ポリエステル樹脂、ポリオレフィン樹脂、ポリエーテルイミド(PEI)、ポリアミド(PA)、ポリエーテルケトン(PEEK)、ポリ塩化ビニル(PVC)、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリプロピレン(PP)、ポリアセタール(POM)、ポリカーボネート(PC)、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリフェニレンサルファイド(PPS)、超高分子量ポリエチレン等のポリプロピレン以外の熱可塑性樹脂を1種以上含んでいてもよい。
 本開示に係る不織布に含まれる繊維が樹脂組成物から形成された繊維である場合、樹脂組成物は、直鎖ポリプロピレン、長鎖分岐ポリプロピレン及びその他の熱可塑性樹脂の他に、酸化防止剤、耐候安定剤、耐光安定剤、ブロッキング防止剤、滑剤、顔料、柔軟剤、親水剤、助剤、撥水剤、フィラー、抗菌剤等の公知の添加剤を含んでいてもよい。
 本開示の不織布に含まれる繊維の平均繊維径(Da)は、捕集効率を向上させる観点から、2.7μm以下であることが好ましく、2.2μm以下であることがより好ましく、1.7μm以下であることが更に好ましい。
 また、フィルタとしたときの強度を保持する観点から、平均繊維径(Da)としては、0.3μm以上であることが好ましく、0.5μm以上であることがより好ましく、0.8μm以上であることが更に好ましい。
 上記平均繊維径(Da)は、電子顕微鏡(型番;S-3500N、(株)日立製作所製)を用いて、不織布の表面を、倍率1000倍の写真を撮影し、撮影された写真から、任意に繊維100本(n=100)を選び、選択した繊維の直径(幅)を測定し、その算術平均値を平均繊維径として求めることができる。
 また、平均繊維径の標準偏差(Dd)は、上記平均繊維径(Da)を用いて求めることができる。
 捕集効率を向上させる観点から、不織布に含まれる繊維において、繊維径が平均繊維径(Da)の5倍以上である繊維(以下、「5倍繊維」ともいう。)の割合は、20%以下であることが好ましく、17%以下であることがより好ましく、14%以下が更に好ましい。
 5倍繊維は、不織布を電子顕微鏡(型番;S-3500N、(株)日立製作所製)を用いて観察し、繊維の直径を測定することで、確認することができる。
 また、5倍繊維の割合は、電子顕微鏡を用いて、不織布の表面を、倍率1000倍で撮影し、撮影された写真から任意に繊維100本(n=100)を選び、選択した繊維の直径を測定し、下記の式より求めた値を示す。
 
 5倍繊維の割合(%)=繊維径が平均繊維径の5倍以上である繊維の本数/測定した繊維の全本数(n=100)×100
 
 捕集効率を向上させる観点から、不織布に含まれる繊維において、上記平均繊維径(Da)に対する、平均繊維径の標準偏差(Dd)の割合(Dd/Da)は、110以下であることが好ましく、100以下であることがより好ましく、90以下であることが更に好ましい。同様の観点から、Dd/Daは、70以上であることが好ましい。
 また、同様の観点から、Dd/Daとしては、70~110であることが好ましく、70~100であることがより好ましく、70~90であることが更に好ましい。
 本開示の不織布は、本開示の不織布を積層した積層不織布として用いてもよく、他の不織布と積層した積層不織布として用いてもよい。他の不織布としては、特に制限はなく、例えば、スパンボンド不織布、メルトブローン不織布、湿式不織布、スパンレース不織布、乾式不織布、乾式パルプ不織布、エアレイド不織布、ウォータージェット不織布、フラッシュ紡糸不織布、開繊不織布、ニードルパンチ不織布等、種々公知の短繊維不織布及び長繊維不織布(例えば長繊維セルロース不織布)が挙げられる。
 本開示の不織布が後述するメルトブローン法で製造された不織布(以下、「メルトブローン不織布」ともいう。)である場合、不織布は溶媒成分を含まないことが好ましい。溶媒成分とは、本開示に係る不織布に含まれる繊維が樹脂組成物から形成された繊維である場合、繊維を構成する樹脂組成物を溶解可能な有機溶媒成分を意味する。溶媒成分としては、ジメチルホルムアミド(DMF)などが挙げられる。
 溶媒成分を含まないとは、ヘッドスペースガスクロマトグラフ法によって検出限界以下であることを意味する。
 本開示の不織布の繊維は、繊維同士が自己融着した交絡点を有することが好ましい。自己融着した交絡点とは、本開示に係る不織布に含まれる繊維が樹脂組成物から形成された繊維である場合、繊維を構成する樹脂組成物が融着することで繊維同士が結合した枝分かれ部位を意味し、繊維同士がバインダ樹脂を介して接着してできた交絡点とは区別される。
 自己融着した交絡点は、例えば、メルトブローン法による繊維状プロピレン系重合体の細化の過程で形成される。
 なお、繊維同士が自己融着した交絡点を有するか否かは、電子顕微鏡写真により確認することができる。
 本開示の不織布の繊維同士が自己融着による交絡点を有する場合、繊維同士を接着させるための接着成分を用いなくともよい。例えば、繊維同士が自己融着による交絡点を有するメルトブローン不織布の場合には、本開示に係る不織布に含まれる繊維が樹脂組成物から形成された繊維である場合、繊維を構成する樹脂組成物以外の樹脂成分を含有しなくてもよい。
 不織布の比表面積は、捕集効率をより向上させる観点から、2.0m/g~20.0m/gであることが好ましく、3.0m/g~15.0m/gであることがより好ましく、3.5m/g~10.0m/gであることが更に好ましい。
 不織布の比表面積は、JIS Z8830:2013に準拠して求めた値である。
 不織布の平均繊維径と比表面積とを上記範囲内にすることで、フィルタとして用いると捕集効率により優れる。
 本開示の不織布の平均孔径は10.0μm以下であることが好ましく、3.0μm以下であることがより好ましく、2.5μm以下であることが更に好ましい。
 また、不織布の平均孔径は0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。平均孔径が0.01μm以上であると、不織布をフィルタに用いた場合に、圧損が抑えられ、流量を維持できる傾向にある。
 本開示の不織布の最大孔径は、20.0μm以下であることが好ましく、6.0μm以下であることがより好ましく、5.0μm以下であることが更に好ましい。
 また、不織布の最小孔径は、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。
 本開示の不織布の孔径(平均孔径、最大孔径及び最小孔径)は、バブルポイント法により測定することができる。具体的には、JIS Z8703:1983(試験場所の標準状態)に準拠し、温度20±2℃、湿度65±2%の恒温室内で、不織布の試験片にフッ素系不活性液体(例えば、3M社製、商品名:フロリナート)を含浸させ、キャピラリー・フロー・ポロメーター(例えば、Porous materials,Inc社製、製品名:CFP-1200AE)で孔径を測定する。
 本開示の不織布の目付は、用途により適宜設定することができ、通常、1g/m~200g/mであり、2g/m~150g/mの範囲にあることが好ましい。
 本開示の不織布の空隙率は、通常40%以上であり、40%~98%の範囲にあることが好ましく、60%~95%の範囲にあることがより好ましい。
 本開示の不織布がエンボス加工されている場合には、不織布の空隙率は、エンボス点を除く箇所における空隙率を意味する。
 また、本開示の不織布のうち、40%以上の空隙率を有する部位の占める体積が90%以上であることが好ましく、ほぼ全ての部位で40%以上の空隙率を有することがより好ましい。本開示の不織布をフィルタに用いる場合には、エンボス加工されていないか、又はほとんど全ての領域でエンボス加工されていないことが好ましい。
 エンボス加工されていない場合には、フィルタに流体を通過させたときの圧力損失が抑えられ、かつ、フィルタ流路長が長くなるためフィルタリング性能が向上する傾向にある。
 なお、本開示の不織布が他の不織布に積層されている場合に、他の不織布はエンボス加工されていてもよい。
 不織布の通気度は、好ましくは3cm/cm/s~30cm/cm/sであり、より好ましくは5cm/cm/s~20cm/cm/sであり、更に好ましくは8cm/cm/s~12cm/cm/sである。
<不織布の製造方法>
 本開示の不織布の製造方法は特に制限されず、エアスルー法、スパンボンド法、ニードルパンチ法、メルトブローン法、カード法、熱融着法、水流交絡法、溶剤接着法等の公知の方法を適用することができる。
 これらの中でも、軽量性、均一性、強度、柔軟性及びバリア性の総合的な性能に優れる不織布が得られる観点から、不織布の製造方法としては、メルトブローン法又はスパンボンド法であることが好ましく、メルトブローン法であることがより好ましい。
 スパンボンド不織布を製造する際の一般的な方法としては、例えば、樹脂組成物を、押出機を用い溶融し、溶融した組成物を、複数の紡糸口金を有するスパンボンド不織布成形機を用いて溶融紡糸し、紡糸により形成された長繊維を必要に応じて冷却し延伸させた後、スパンボンド不織布成形機の捕集面上に堆積させ、エンボスロールで加熱加圧処理する方法が挙げられる。
 冷却と延伸の方法は、例えば、特公昭48-28386号公報に開示された溶融紡糸された長繊維が大気中で冷却されながら延伸されることで製造される開放式スパンボンド法と、例えば、特許第3442896号公報に開示された密閉式スパンボンド法が広く知られている。
 メルトブローン不織布は、例えば、以下の工程を有する製造方法を挙げることができる。
 1)メルトブローン法により、溶融した樹脂組成物(例えば、直鎖ポリプロピレンと長鎖分岐ポリプロピレンとの混合物である)を紡糸口金から加熱ガスと共に吐出して、繊維状に形成する工程
 2)繊維状の樹脂組成物を、ウェブ状に捕集する工程
 メルトブローン法とは、メルトブローン不織布の製造におけるフリース形成法の一つである。溶融した樹脂組成物を、紡糸口金から繊維状に吐出させるときに、溶融状態の吐出物に両側面から加熱圧縮ガスをあてるとともに、加熱圧縮ガスを随伴させることで吐出物の径を小さくすることができる。
 メルトブローン法は、具体的には、例えば、原料となる樹脂組成物を、押出機などを用いて溶融する。溶融した樹脂組成物は、押出機の先端に接続された紡糸口金に導入され、紡糸口金の紡糸ノズルから、繊維状に吐出される。吐出された繊維状の溶融した樹脂組成物を高温ガス(例えば、空気)で牽引することにより、繊維状の溶融した樹脂組成物が細化される。
 吐出された繊維状の溶融した樹脂組成物は、高温ガスに牽引されることで、通常1.4μm以下、好ましくは1.0μm以下の直径にまで細化される。好ましくは、高温ガスによる限界まで繊維状の溶融した樹脂組成物を細化する。
 細化した繊維状の溶融した樹脂組成物に、高電圧を印加して、更に細化してもよい。高電圧を印加すると、電場の引力により繊維状の溶融した樹脂組成物が捕集側に引っ張られて細化する。印加する電圧は特に制限されず、1kV~300kVであってもよい。
 また、繊維状の溶融した樹脂組成物に、熱線を照射して、更に細化してもよい。熱線を照射することで細化し、流動性の低下した繊維状の樹脂組成物を再溶融することができる。また、熱線を照射することで、繊維状の樹脂組成物の溶融粘度をより下げることもできる。そのため、分子量の大きいプロピレン系重合体を紡糸原料としても、十分に細化された繊維を得ることができ、高強度のメルトブローン不織布が得られうる。
 熱線とは、波長0.7μm~1000μmの電磁波を意味し、特に波長0.7μm~2.5μmである近赤外線を意味する。熱線の強度や照射量は特に制限されず、繊維状溶融プロピレン系重合体が再溶融されればよい。例えば、1V~200V、好ましくは1V~20Vの近赤外線ランプ又は近赤外線ヒータを用いることができる。
 繊維状の溶融した樹脂組成物は、ウェブ状に捕集される。一般には、捕集器(コレクター)に捕集されて堆積される。これにより、メルトブローン不織布が製造される。コレクターの例には、多孔ベルト、多孔ドラムなどが含まれる。また、コレクターは空気捕集部を有していてもよく、これにより繊維の捕集を促進してもよい。
 コレクター上に予め設けた所望の基材上に、繊維をウェブ状に捕集してもよい。予め設けておく基材の例には、メルトブローン不織布、スパンボンド不織布、ニードルパンチング及びスパンレース不織布などの他の不織布、並びに織物、編物、紙などが含まれる。これにより、高性能フィルタ、ワイパーなどで使用するメルトブローン不織布積層体を得ることもできる。
<メルトブローン不織布の製造装置>
 本開示のメルトブローン不織布を製造するための製造装置は、本開示のメルトブローン不織布を製造することができれば特に限定されない。
 メルトブローン不織布の製造装置としては、例えば、
 1)樹脂組成物を溶融して搬送する押出機と、
 2)押出機から搬送された溶融した樹脂組成物を、繊維状に吐出する紡糸口金と、
 3)紡糸口金の下部に、高温ガスを噴射するガスノズルと、
 4)紡糸口金から吐出された繊維状の溶融した樹脂組成物をウェブ状に捕集する捕集器と、
 を具備する製造装置を挙げることができる。
 押出機は、特に限定されず、一軸押出機であっても多軸押出機であってもよい。ホッパーから投入された固体の樹脂組成物が、圧縮部で溶融される。
 紡糸口金は、押出機の先端に配置されている。紡糸口金は、通常複数の紡糸ノズルを具備しており、例えば、複数の紡糸ノズルが列状に配列している。紡糸ノズルの直径は、0.05mm~0.38mmであることが好ましい。溶融した樹脂組成物が、押出機によって紡糸口金にまで搬送され、紡糸ノズルに導入される。紡糸ノズルの開口部から繊維状の溶融した樹脂組成物が吐出される。溶融した樹脂組成物の吐出圧力は、通常0.01kg/cm~200kg/cmの範囲であり、10kg/cm~30kg/cmの範囲であることが好ましい。これより吐出量を高めて、大量生産を実現する。
 ガスノズルは、紡糸口金の下部、より具体的には紡糸ノズルの開口部付近に、高温ガスを噴射する。噴射ガスは、空気でありうる。ガスノズルを紡糸ノズルの開口部の近傍に設けて、ノズル開口からの吐出直後の樹脂組成物に、高温ガスを噴射することが好ましい。
 噴射するガスの速度(吐出風量)は特に限定されず、4Nmm/分/m~30Nmm/分/mであってもよい。噴射するガスの温度は、通常5℃~400℃以下であり、好ましくは250℃~350℃の範囲である。噴射するガスの種類は特に限定されず、圧縮空気を用いてもよい。
 メルトブローン不織布の製造装置は、紡糸口金から吐出された繊維状の溶融した樹脂組成物に電圧を印加する電圧付与手段を、更に具備してもよい。
 また、紡糸口金から吐出された繊維状の溶融した樹脂組成物に熱線を照射する熱線照射手段を、更に具備してもよい。
 ウェブ状に捕集する捕集器(コレクター)は特に限定されず、例えば、多孔ベルトに繊維を捕集すればよい。多孔ベルトのメッシュ幅は5メッシュ~200メッシュであることが好ましい。さらに、多孔ベルトの繊維捕集面の裏側に空気捕集部を設けて、捕集を容易にしてもよい。捕集器の捕集面から、紡糸ノズルのノズル開口部までの距離は、3cm~55cmであることが好ましい。
<用途>
 本開示の不織布は、例えば、ガスフィルタ(エアフィルタ)、液体フィルタ等のフィルタとして用いてもよい。
 本開示の不織布をフィルタとして用いると、5倍繊維の割合が少なく、かつ、平均繊維径が小さいため、捕集効率に優れる。
 本開示の不織布がメルトブローン不織布である場合、メルトブローン不織布が、1)溶媒成分を含まず、2)繊維同士を接着させるための接着剤成分を含まず、3)エンボス加工が施されていない、これら1)~3)の少なくとも一つを満たす場合には、不純物の含有量が低減される。そのため、このような不織布は、清浄性とフィルタリング性能が高く、高性能フィルタとして好適に用いられる。
 液体用フィルタは、不織布の単層からなってもよく、又は不織布の2層以上の積層体からなってもよい。液体用フィルタとして、2層以上の不織布の積層体を用いる場合は、2層以上の不織布を単に重ねてもよい。
 また、液体用フィルタは、目的及び適用する液体に応じて、不織布に、他の不織布を組み合わせてもよい。また、液体用フィルタの強度を強めるために、スパンボンド不織布を用いてもよく、スパンボンド不織布と網状物などとを積層してもよい。
 液体フィルタは、例えば、孔径を小さく制御するためにフラットロール間にクリアランスを設けた一対のフラットロールを用いてカレンダー処理を行ってもよい。フラットロール間のクリアランスは、不織布の厚さに応じて、適宜変更して、不織布の繊維間にある空隙がなくならようにすることが必要である。
 カレンダー処理の際に、加熱処理を行う場合、ロール表面温度が樹脂組成物から形成された繊維の融点より15℃から50℃低い温度の範囲で熱圧接することが望ましい。ロール表面温度が樹脂組成物から形成された樹脂の融点より15℃以上低い場合は、メルトブローン不織布の表面のフィルム化が抑えられ、フィルタ性能の低下が抑制される傾向にある。
 以下、実施例に基づいて本開示を更に具体的に説明するが、本開示はこれらの実施例に限定されるものではない。
(実施例1)
 直鎖ポリプロピレン1(高分子量直鎖ポリプロピレン)としてAchieve 6936G2(製品名)(ExxonMobil社製、重量平均分子量:5.5万のプロピレン系重合体、MFR;1550g/10分)99.0質量部と、長鎖分岐ポリプロピレン(LCBPP)として、ウェイマックスMFX3(製品名)(日本ポリプロ(株)製、MFR;9、炭素数10以上の分岐構造を有する長鎖分岐ポリプロピレン)1.0質量部とを溶融及び混合し、樹脂組成物を得た。
 得られた樹脂組成物のせん断粘度、一軸伸長粘度、及び、せん断粘度に対する一軸伸長粘度の比(一軸伸長粘度/せん断粘度)を表1に示す。なお、一軸伸長粘度及びせん断粘度は既述の方法で測定した。
 上記で得られた樹脂組成物をダイに供給し、設定温度230℃、ノズルの直径が0.12mmであるダイスから、ノズル単孔あたり12.5mg/分で、ノズルの両側から吹き出す加熱エアー(280℃、300m/秒)と供に上記樹脂組成物を吐き出しメルトブローン不織布を得た。得られたメルトブローン不織布のせん断粘度及び一軸伸張粘度は、紡糸前と変わらず、せん断粘度は16(Pa・S)であり、一軸伸張粘度は623(Pa・S)であった。
 得られたメルトブローン不織布における、繊維径が平均繊維径の5倍以上である繊維の割合(5倍繊維径割合)、及び、繊維径の標準偏差(Dd)の平均繊維径(Da)に対する割合(Dd/Da)を表1に示す。
 なお、平均繊維径(Da)、及び5倍繊維径割合は既述の方法で測定し、算出した。
(実施例2~実施例4並びに比較例1~比較例3、比較例5及び比較例6)
 実施例1において、表1に示す樹脂組成物の組成の割合に変更した以外は、実施例1と同様の操作を行って、メルトブローン不織布を得た。得られた樹脂組成物及びメルトブローン不織布の物性値をそれぞれ表1に示す。
 なお、一軸伸長粘度、せん断粘度及び平均繊維径は既述の方法で測定し、算出した。
(比較例4)
 実施例1において、長鎖分岐ポリプロピレン(LCBPP)1質量部の代わりに、直鎖ポリプロピレン2(製品名;J105G、MFR;9g/10分、(株)プライムポリマー製)を1質量部用いたこと以外は実施例1と同様の操作を行い、メルトブローン不織布を得た。得られた樹脂組成物及びメルトブローン不織布の物性値をそれぞれ表1に示す。
 なお、一軸伸長粘度、せん断粘度及び平均繊維径は既述の方法で測定した。
Figure JPOXMLDOC01-appb-T000003
 表1中、直鎖ポリプロピレン3の詳細は以下のとおりである。
・直鎖ポリプロピレン3(低分子量直鎖ポリプロピレン);重量平均分子量:7700、三井化学(株)製、商品名:NP055)
 表1中、紡糸不可とは、紡糸できないことを意味する。
 表1から明らかなように、実施例のメルトブローン不織布では、比較例のメルトブローン不織布に比べて、5倍繊維径の割合が少なく、かつ、平均繊維径が小さい。また、繊維径分布、すなわち、平均繊維径/平均繊維径の標準偏差が小さい。
 このため、実施例のメルトブローン不織布をフィルタとして用いた際に微粒子の捕集効率に優れることが分かる。
 2018年3月29日に出願された日本国特許出願2018-066081号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。

Claims (16)

  1.  繊維を含む不織布であって、
     前記繊維は、伸長歪み速度2.5×10(1/秒)及び160℃の条件で測定した一軸伸長粘度が、430Pa・s~1200Pa・sであり、かつ、
     せん断歪み速度2.5×10(1/秒)及び160℃の条件で測定したせん断粘度(Pa・s)に対する、前記一軸伸長粘度(Pa・s)の割合が35~65である、不織布。
  2.  前記せん断粘度は、10Pa・s~20Pa・sである、請求項1に記載の不織布。
  3.  前記繊維は、樹脂組成物から形成された繊維である、請求項1又は請求項2に記載の不織布。
  4.  前記樹脂組成物は、長鎖分岐ポリプロピレンを含む、請求項3に記載の不織布。
  5.  前記長鎖分岐ポリプロピレンの含有率は、前記樹脂組成物の全質量に対して0.7質量%~5質量%である、請求項4に記載の不織布。
  6.  前記樹脂組成物は、直鎖ポリプロピレンを更に含む、請求項3~請求項5のいずれか1項に記載の不織布。
  7.  前記直鎖ポリプロピレンの含有率は、前記樹脂組成物の全質量に対して95質量%~99.3質量%である、請求項6に記載の不織布。
  8.  前記直鎖ポリプロピレンが、重量平均分子量が2万以上である直鎖ポリプロピレンを含む、請求項6又は請求項7に記載の不織布。
  9.  前記重量平均分子量が2万以上である直鎖ポリプロピレンの含有率が、直鎖ポリプロピレンの全質量に対して50質量%以上である、請求項8に記載の不織布。
  10.  前記直鎖ポリプロピレンが、重量平均分子量が2万未満である直鎖ポリプロピレンを含む、請求項6~請求項9のいずれか1項に記載の不織布。
  11.  前記重量平均分子量が2万未満である直鎖ポリプロピレンの含有率が、直鎖ポリプロピレンの全質量に対して50質量%以下である、請求項10に記載の不織布。
  12.  前記繊維の平均繊維径(Da)は2.7μm以下である、請求項1~請求項11のいずれか1項に記載の不織布。
  13.  前記平均繊維径(Da)に対する、前記平均繊維径の標準偏差(Dd)の割合(Dd/Da)が70~100である、請求項12に記載の不織布。
  14.  前記繊維において、繊維径が平均繊維径の5倍以上である繊維の割合が、20質量%以下である、請求項1~請求項13のいずれか1項に記載の不織布。
  15.  メルトブローン不織布である、請求項1~請求項14のいずれか1項に記載の不織布。
  16.  請求項1~請求項15のいずれか1項に記載の不織布を含むフィルタ。
PCT/JP2018/039982 2018-03-29 2018-10-26 不織布及びフィルタ WO2019187282A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019521860A JP6636215B1 (ja) 2018-03-29 2018-10-26 不織布及びフィルタ
EP18911499.4A EP3763862B1 (en) 2018-03-29 2018-10-26 Nonwoven fabric and filter
CN201880091887.6A CN111918995B (zh) 2018-03-29 2018-10-26 非织造布和过滤器
KR1020207029092A KR102380495B1 (ko) 2018-03-29 2018-10-26 부직포 및 필터
US17/042,433 US11491429B2 (en) 2018-03-29 2018-10-26 Nonwoven fabric and filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-066081 2018-03-29
JP2018066081 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019187282A1 true WO2019187282A1 (ja) 2019-10-03

Family

ID=68061033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039982 WO2019187282A1 (ja) 2018-03-29 2018-10-26 不織布及びフィルタ

Country Status (7)

Country Link
US (1) US11491429B2 (ja)
EP (1) EP3763862B1 (ja)
JP (1) JP6636215B1 (ja)
KR (1) KR102380495B1 (ja)
CN (1) CN111918995B (ja)
TW (1) TWI780248B (ja)
WO (1) WO2019187282A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210087542A (ko) * 2019-12-27 2021-07-12 시바우라 기카이 가부시키가이샤 저분자량 폴리머의 제조 방법, 멜트블로운 부직포의 제조 장치 및 제조 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7298087B2 (ja) * 2019-09-30 2023-06-27 三井化学株式会社 不織布及びフィルタ
US11180607B2 (en) * 2019-12-10 2021-11-23 Chang Chun Plastics Co., Ltd. Polyesters with ultra-high flowability and superior stability and meltblown fibers thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828386A (ja) 1971-08-16 1973-04-14
JPH06157666A (ja) * 1992-11-26 1994-06-07 Chisso Corp 高溶融張力ポリプロピレンおよびその製造方法と成形品
WO2000022219A1 (fr) 1998-10-09 2000-04-20 Mitsui Chemicals, Inc. Tissu non-tisse de polyethylene et stratifie de tissu non-tisse le contenant
JP3442896B2 (ja) 1994-04-22 2003-09-02 三井化学株式会社 不織布の製造方法及び装置
JP2004502797A (ja) * 2000-07-05 2004-01-29 アトフイナ・リサーチ・ソシエテ・アノニム 向上した特性を有するポリプロピレンの製造
WO2012111724A1 (ja) 2011-02-15 2012-08-23 三井化学株式会社 不織布積層体
WO2015093451A1 (ja) 2013-12-16 2015-06-25 三井化学株式会社 フィルタ
WO2017068106A1 (en) * 2015-10-21 2017-04-27 Borealis Ag Long-chain branched polypropylene composition with increased melt strength stability
JP2018066081A (ja) 2016-10-19 2018-04-26 株式会社アデランス 擬毛及び地毛の連結構造及び連結方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259561A (ja) * 1997-03-13 1998-09-29 Kureha Chem Ind Co Ltd ポリアリーレンスルフィドメルトブロー不織布
EP1383835A2 (en) * 2001-04-11 2004-01-28 Lucite International UK Limited Polymeric composition
WO2008101051A2 (en) * 2007-02-14 2008-08-21 Dow Global Technologies Inc. Polymer or oligomer fibers by solvent-free electrospinning
US9365953B2 (en) * 2007-06-08 2016-06-14 Honeywell International Inc. Ultra-high strength UHMWPE fibers and products
PL2325248T3 (pl) 2009-11-16 2012-11-30 Borealis Ag Włókna pneumotermiczne typu melt blown z kompozycji polipropylenowych
EP2839065A1 (en) * 2012-04-19 2015-02-25 The Procter & Gamble Company Fibrous elements comprising a non-hydroxyl polymer and methods for making same
CN107208338A (zh) * 2015-03-16 2017-09-26 东丽精细化工株式会社 无纺布及其制造方法
CN107345320A (zh) * 2016-05-05 2017-11-14 东丽纤维研究所(中国)有限公司 一种芯鞘复合纤维及其织物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828386A (ja) 1971-08-16 1973-04-14
JPH06157666A (ja) * 1992-11-26 1994-06-07 Chisso Corp 高溶融張力ポリプロピレンおよびその製造方法と成形品
JP3442896B2 (ja) 1994-04-22 2003-09-02 三井化学株式会社 不織布の製造方法及び装置
WO2000022219A1 (fr) 1998-10-09 2000-04-20 Mitsui Chemicals, Inc. Tissu non-tisse de polyethylene et stratifie de tissu non-tisse le contenant
JP2004502797A (ja) * 2000-07-05 2004-01-29 アトフイナ・リサーチ・ソシエテ・アノニム 向上した特性を有するポリプロピレンの製造
WO2012111724A1 (ja) 2011-02-15 2012-08-23 三井化学株式会社 不織布積層体
WO2015093451A1 (ja) 2013-12-16 2015-06-25 三井化学株式会社 フィルタ
WO2017068106A1 (en) * 2015-10-21 2017-04-27 Borealis Ag Long-chain branched polypropylene composition with increased melt strength stability
JP2018066081A (ja) 2016-10-19 2018-04-26 株式会社アデランス 擬毛及び地毛の連結構造及び連結方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BAGLEY, E. B.: "The separation of elastic and viscous effects in polymer flow", TRANSACTIONS OF THE SOCIETY OF RHEOLOGY, vol. 5, no. 1, 1961, pages 355 - 368
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, vol. 2, no. 1, 1977, pages 37 - 47
See also references of EP3763862A4
SUGIMOTOMASATAKA ET AL.: "Melt rheology of long-chain-branched polypropylenes", RHEOLOGICA ACTA, vol. 46, no. 1, 2006, pages 33 - 44, XP019473710

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210087542A (ko) * 2019-12-27 2021-07-12 시바우라 기카이 가부시키가이샤 저분자량 폴리머의 제조 방법, 멜트블로운 부직포의 제조 장치 및 제조 방법
KR102413232B1 (ko) 2019-12-27 2022-06-27 시바우라 기카이 가부시키가이샤 저분자량 폴리머의 제조 방법, 멜트블로운 부직포의 제조 장치 및 제조 방법

Also Published As

Publication number Publication date
TW201942433A (zh) 2019-11-01
CN111918995B (zh) 2022-09-23
EP3763862A4 (en) 2022-01-12
JPWO2019187282A1 (ja) 2020-04-30
KR20200130413A (ko) 2020-11-18
CN111918995A (zh) 2020-11-10
US11491429B2 (en) 2022-11-08
TWI780248B (zh) 2022-10-11
US20210077930A1 (en) 2021-03-18
JP6636215B1 (ja) 2020-01-29
EP3763862A1 (en) 2021-01-13
KR102380495B1 (ko) 2022-03-29
EP3763862B1 (en) 2023-03-15

Similar Documents

Publication Publication Date Title
JP6339124B2 (ja) 繊維不織布、およびその製造方法と製造装置
JP5560324B2 (ja) ポリオレフィン系分割型複合繊維とこれを用いた繊維集合物及び電池セパレータ、並びにその製造方法
JP6636215B1 (ja) 不織布及びフィルタ
JP6511595B1 (ja) メルトブローン不織布及びフィルタ
CN113906176B (zh) 熔喷非织造布、过滤器及熔喷非织造布的制造方法
KR102368947B1 (ko) 멜트블론 부직포, 필터, 및 멜트블론 부직포의 제조 방법
WO2008038536A1 (fr) Longue fibre composite du type fendu, tissu non tissé fait de longues fibres composites du type fendu, et tissu non tissé à fibres fendues
US20200330911A1 (en) Melt-blown nonwoven fabric, filter, and method of producing melt-blown nonwoven fabric
JP7298087B2 (ja) 不織布及びフィルタ
EP3640378B1 (en) Low leachable fibers and fiber structure
JP2020133053A (ja) メルトブロー不織布の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019521860

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207029092

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018911499

Country of ref document: EP

Effective date: 20201007