WO2019187248A1 - 硬化封止体の反り防止用積層体、及び、硬化封止体の製造方法 - Google Patents

硬化封止体の反り防止用積層体、及び、硬化封止体の製造方法 Download PDF

Info

Publication number
WO2019187248A1
WO2019187248A1 PCT/JP2018/036811 JP2018036811W WO2019187248A1 WO 2019187248 A1 WO2019187248 A1 WO 2019187248A1 JP 2018036811 W JP2018036811 W JP 2018036811W WO 2019187248 A1 WO2019187248 A1 WO 2019187248A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin layer
curable resin
cured
mass
Prior art date
Application number
PCT/JP2018/036811
Other languages
English (en)
French (fr)
Inventor
明徳 佐藤
洋佑 高麗
高志 阿久津
康彦 垣内
岡本 直也
忠知 山田
中山 武人
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2020509574A priority Critical patent/JP7240377B2/ja
Priority to KR1020207015349A priority patent/KR102576309B1/ko
Priority to CN201880091673.9A priority patent/CN111902503A/zh
Publication of WO2019187248A1 publication Critical patent/WO2019187248A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection

Definitions

  • the present invention relates to a laminate for warping prevention of a cured encapsulant and a method for producing the cured encapsulant.
  • CSP Chip Scale Package
  • WLP Wafer Level Package
  • PLP Panel Level Package
  • WLP and PLP are classified into fan-in type and fan-out type.
  • fan-out type WLP hereinafter also referred to as “FOWLP”
  • PLP hereinafter also referred to as “FOPPL”
  • a sealing material so as to be an area larger than the chip size.
  • the re-wiring layer and the external electrode are formed not only on the circuit surface of the semiconductor chip but also on the surface region of the sealing material.
  • FOWLP and FOPLP are, for example, a placement step of placing a plurality of semiconductor chips on a temporary fixing sheet, a covering step of covering with a thermosetting sealing material, and curing the sealing material by thermosetting.
  • Patent Document 1 discloses a heat-peelable pressure-sensitive adhesive sheet for temporarily fixing when cutting an electronic component, in which a heat-expandable pressure-sensitive adhesive layer containing heat-expandable microspheres is provided on at least one surface of a base material.
  • a heat-expandable pressure-sensitive adhesive layer containing heat-expandable microspheres is provided on at least one surface of a base material.
  • FOWLP and FOPLP it is also conceivable to use the heat-peelable pressure-sensitive adhesive sheet described in Patent Document 1.
  • the present invention has a support layer and a curable resin layer, and can perform a sealing process by fixing an object to be sealed to the surface of the curable resin layer.
  • a cured resin layer as a warp prevention layer can be applied to the cured sealing body formed by processing and the sealing object is covered with the sealing material, the sealing object is flown by the flow of the sealing material. It is an object of the present invention to provide a warp-preventing laminate and a method for producing a cured sealing body using the warp-preventing laminate, which can prevent misalignment and inclination.
  • the present inventors have found that the above problems can be solved by setting the adhesive strength of the curable resin layer within a predetermined range, and the present invention has been completed. did. That is, the present invention provides the following [1] to [12].
  • the mirror surface of the measurement adherend is pressed and pasted onto the curable resin layer and measured at a speed of 200 ⁇ m / s, and is 20 N / (3 mm ⁇ 3 mm) or more, Warpage prevention of a cured sealing body produced by sealing a sealing object with a sealing material on the first surface of the curable resin layer (I) opposite to the support layer (II) Laminated body.
  • the curable resin layer (I) includes a first layer located on the support layer (II) side and a second layer located on the first surface side, The first layer is a first thermosetting resin layer (X1-1), The said 2nd layer is said 2nd thermosetting resin layer (X1-2) whose surface adhesive force is higher than 1st thermosetting resin layer (X1-1). Laminated body for warping prevention.
  • the curable resin layer (I) includes a first layer located on the support layer (II) side and a second layer located on the first surface side, The first layer is a thermosetting resin layer (X1-1), The layer for warpage prevention according to the above [1], wherein the second layer is an energy ray curable resin layer (X2).
  • the support layer (II) has a base material (Y) and an adhesive layer (V), and at least one of the base material (Y) and the adhesive layer (V) includes expandable particles, [1] to [5], wherein the expandable particles are separated at the interface between the support layer (II) and the cured resin layer (I ′) obtained by curing the curable resin layer (I) by the treatment of expanding the expandable particles.
  • the laminated body for warpage prevention as described in any one of these.
  • the substrate (Y) has a non-expandable substrate layer (Y2) and an expandable substrate layer (Y1)
  • the support layer (II) has a non-expandable base layer (Y2), an expandable base layer (Y1), and an adhesive layer (V) in this order,
  • the sealing material is injected along the first surface of the curable resin layer (I), and the sealing object and the curable resin layer (I at least in the periphery of the sealing object)
  • a sealing object can be fixed to the surface of the curable resin layer to perform a sealing process, and the cured sealing body formed by the sealing process can be used as a warp prevention layer.
  • a layer for warpage prevention that can provide a cured resin layer, and when the sealing object is coated with the sealing material, the sealing object can be displaced or tilted by the flow of the sealing material.
  • the manufacturing method of the hardening sealing body using the body and this curvature prevention laminated body can be provided.
  • the target layer is a “non-expandable layer” is determined by performing a treatment for expansion for 3 minutes and then calculating a volume change rate calculated from the following formula before and after the treatment. Is less than 5%, it is determined that the layer is a “non-intumescent layer”. On the other hand, when the volume change rate is 5% or more, it is determined that the layer is an “expandable layer”.
  • volume change rate (%) ⁇ (volume of the layer after treatment ⁇ volume of the layer before treatment) / volume of the layer before treatment ⁇ ⁇ 100
  • a heat treatment for 3 minutes may be performed at the expansion start temperature (t) of the thermally expandable particles.
  • the “active ingredient” refers to a component excluding a diluent solvent among components contained in a target composition.
  • the mass average molecular weight (Mw) is a value in terms of standard polystyrene measured by a gel permeation chromatography (GPC) method, specifically a value measured based on the method described in Examples. It is.
  • GPC gel permeation chromatography
  • (meth) acrylic acid indicates both “acrylic acid” and “methacrylic acid”, and the same applies to other similar terms.
  • the lower limit value and the upper limit value described in a stepwise manner can be independently combined for a preferable numerical range (for example, a range such as content). For example, from the description “preferably 10 to 90, more preferably 30 to 60”, “preferable lower limit (10)” and “more preferable upper limit (60)” are combined to obtain “10 to 60”. You can also.
  • energy beam means an electromagnetic wave or charged particle beam having energy quanta, and examples thereof include ultraviolet rays, radiation, and electron beams.
  • Ultraviolet rays can be irradiated by using, for example, a high-pressure mercury lamp, a fusion lamp, a xenon lamp, a black light, an LED lamp, or the like as an ultraviolet ray source.
  • the electron beam can be emitted by an electron beam accelerator or the like.
  • energy ray curable means a property that cures when irradiated with energy rays
  • non-energy ray curable means a property that does not cure even when irradiated with energy rays. To do.
  • the warpage preventing laminate of one embodiment of the present invention includes a curable resin layer (I) including a thermosetting resin layer (X1) and a support layer (II) that supports the curable resin layer (I). .
  • the warp preventing laminate may be simply referred to as a “laminate”.
  • the thermosetting resin layer (X1) is directly laminated on the support layer (II).
  • a silicon chip having a thickness of 350 ⁇ m having a mirror surface of 3 mm ⁇ 3 mm as the shear strength of the curable resin layer (I) to the measurement adherend is used as the measurement adherend, and the temperature is 70 ° C. and 130 gf for 1 second.
  • the value measured when the mirror surface of the adherend for measurement is pressed and pasted to the curable resin layer and measured at a speed of 200 ⁇ m / s is 20 N / (3 mm ⁇ 3 mm) or more.
  • This warp-preventing laminate is cured and sealed by sealing the object to be sealed with a sealing material on the first surface of the curable resin layer (I) opposite to the support layer (II). It is used to manufacture a body, and serves to prevent warpage of the cured sealing body during the manufacturing process.
  • FIGS. 1 to 5 are schematic cross-sectional views of the laminates showing the configurations of the warp preventing laminates according to the first to fifth aspects of the present invention.
  • the adhesive surface of the adhesive layer (V1) attached to a support (not shown) and the first surface (support layer) of the curable resin layer (I) From the standpoint of protecting the surface of the curable resin layer (I) and the support layer (II), a release material may be further laminated on the surface opposite to (II). The release material is peeled off and removed when the warp preventing laminate is used.
  • Laminate 1a, 1b is equipped with base material (Y) and support layer (II) which has an adhesive layer (V1), and curable resin layer (I), and base material (Y) and curable resin layer (I) and the direct lamination.
  • first surface the surface of the curable resin layer (I) opposite to the support layer (II)
  • second surface the surface on the support layer (II) side
  • the first surface of the curable resin layer (I) is an adhesive surface having a predetermined adhesive force. When the sealing object is placed, the sealing object can be fixed by the adhesive force.
  • the adhesive surface of an adhesive layer (V1) is affixed on the support body which is not shown in figure.
  • both the base material (Y) and the pressure-sensitive adhesive layer (V1) may be non-expandable, or at least one of the layers may be expandable. However, it is preferable that any one of the layers contains expandable particles and has expandability.
  • a base material (Y) has an expandable base material layer (Y1) containing an expandable particle.
  • the base material (Y) may be a single-layer base material composed of only the expandable base material layer (Y1) as in the laminate 1a shown in FIG. 1 (a), or FIG. 1 (b).
  • the base material of the multilayer structure which has an expandable base material layer (Y1) and a non-expandable base material layer (Y2) may be sufficient.
  • the base material (Y) which has an expandable base material layer (Y1) and a non-expandable base material layer (Y2) in the curvature prevention laminated body of a 1st aspect as shown in FIG.1 (b).
  • the non-intumescent base material layer (Y2) is laminated on the surface of the pressure-sensitive adhesive layer (V1), and the inflatable base material layer (Y1) is laminated on the surface of the non-intumescent base material layer (Y2). It is preferable to have.
  • the expandable particles contained in the expandable substrate layer (Y1) are expanded by expansion treatment by heating or the like, and irregularities are generated on the surface of the substrate (Y).
  • the contact area with the cured resin layer formed by curing the curable resin layer (I) decreases.
  • a layer obtained by curing a curable resin layer is referred to as a cured resin layer (I ′).
  • the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (V1) is stuck to a support (not shown).
  • the adhesive layer (V1) is affixed so as to be sufficiently adhered to the support, whereby the surface of the expandable substrate layer (Y1) on the pressure-sensitive adhesive layer (V1) side has a force to cause irregularities. Even if this occurs, a force repelling from the pressure-sensitive adhesive layer (V1) is likely to occur. Therefore, it is difficult for irregularities to be formed on the surface of the base material (Y) on the pressure-sensitive adhesive layer (V1) side. As a result, the laminated body 1a can be easily separated at once by a slight force at the interface P between the base material (Y) of the support layer (II) and the cured resin layer (I ′).
  • the interface between the curable resin layer (I) and the support layer (II) may also be referred to as “interface P”.
  • the base material (Y) is an expandable base material as in the laminate 1b shown in FIG. It is preferable to have a layer (Y1) and a non-expandable base material layer (Y2). Since the stress due to the expansion of the expandable particles of the expandable base layer (Y1) is suppressed by the non-expandable base layer (Y2), it is difficult to be transmitted to the pressure-sensitive adhesive layer (V1).
  • the surface of the pressure-sensitive adhesive layer (V1) on the support side is hardly uneven, and the adhesiveness between the pressure-sensitive adhesive layer (V1) and the support is almost unchanged before and after the expansion treatment by heating or the like, and has good adhesion. Can be held.
  • corrugation is easy to be formed in the surface at the side of the curable resin layer (I) of an expandable base material layer (Y1), As a result, the expandable base material layer (Y1) and cured resin layer of a support layer (II) At the interface P with (I ′), the separation can be easily performed with a slight force.
  • an expandable base material layer (Y1) and curable resin layer (I) directly laminate
  • the pressure-sensitive adhesive layer (V1) is preferably laminated on the surface opposite to the adhesive resin layer (I).
  • an adhesive layer or an anchor layer for adhering the two may be provided between the expandable base material layer (Y1) and the non-expandable base material layer (Y2), or may be directly laminated. .
  • the warp preventing laminate of the second aspect of the present invention include warp preventing laminates 2a and 2b shown in FIG.
  • the pressure-sensitive adhesive layer included in the support layer (II) includes the first pressure-sensitive adhesive layer (V1-1) and the second pressure-sensitive adhesive layer (V1-2), and the first pressure-sensitive adhesive layer ( V1-1) and the second pressure-sensitive adhesive layer (V1-2) sandwich the substrate (Y), and the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (V1-2) is bonded to the curable resin layer (I). It has a directly stacked configuration.
  • the pressure-sensitive adhesive layers when the support layer (II) includes a plurality of pressure-sensitive adhesive layers, and the pressure-sensitive adhesive layers when the support layer (II) includes a single pressure-sensitive adhesive layer are collectively referred to. It may be called an adhesive layer (V).
  • the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (V1-1) is attached to a support not shown.
  • the substrate (Y) preferably has an expandable substrate layer (Y1) containing expandable particles.
  • the base material (Y) may be a single-layer base material composed of only the expandable base material layer (Y1) as in the laminate 2a shown in FIG. 2 (a).
  • the base material of a multilayer structure which has an expandable base material layer (Y1) and a non-expandable base material layer (Y2) may be sufficient.
  • the substrate (Y) preferably has an expandable substrate layer (Y1) and a non-expandable substrate layer (Y2).
  • the base material (Y) which has an expandable base material layer (Y1) and a non-expandable base material layer (Y2) in the curvature prevention laminated body of a 2nd aspect, as shown in FIG.2 (b).
  • the second pressure-sensitive adhesive layer (V1-2) is laminated on the surface of the expandable base material layer (Y1), and the first pressure-sensitive adhesive layer (V1-1) is formed on the surface of the non-expandable base material layer (Y2). It is preferable to have a laminated structure.
  • the expandable particles in the expandable substrate layer (Y1) constituting the substrate (Y) are expanded by the expansion treatment by heating or the like, and the surface of the expandable substrate layer (Y1) Concavities and convexities occur on the surface.
  • the second pressure-sensitive adhesive layer (V1-2) is pushed up by the unevenness generated on the surface of the expandable base material layer (Y1), and unevenness is also formed on the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (V1-2). Therefore, the contact area between the second pressure-sensitive adhesive layer (V1-2) and the cured resin layer (I ′) is reduced.
  • the separation can be easily and collectively performed with a slight force at the interface P between the second pressure-sensitive adhesive layer (V1-2) and the cured resin layer (I ′) of the support layer (II).
  • the expandable group of the base material (Y) of the support layer (II) is preferably laminated directly.
  • the laminated body 3 shown in FIG. 3 has the 1st adhesive layer (V1) which is a non-expandable adhesive layer in the one surface side of a base material (Y), and the other side of a base material (Y).
  • V1 1st adhesive layer
  • Y base material
  • Y base material
  • V2 second pressure-sensitive adhesive layer
  • V2 curable resin layer
  • the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (V1) is attached to a support not shown.
  • the base material (Y) which the laminated body 3 of this 3rd aspect has is comprised from the non-expandable base material layer (Y2).
  • the expandable particles in the second pressure-sensitive adhesive layer (V2) which is an expandable pressure-sensitive adhesive layer
  • the expansion treatment such as heating
  • the second pressure-sensitive adhesive layer (V2) Asperities are formed on the surface, and the contact area between the second pressure-sensitive adhesive layer (V2) and the curable resin layer (I) decreases.
  • the surface on the base material (Y) side of the first pressure-sensitive adhesive layer (V1) is laminated on the base material (Y), it is difficult to produce irregularities.
  • the warp preventing laminate 4 of the fourth aspect of the present invention includes the warp preventing laminate 4 shown in FIG.
  • the laminate 4 shown in FIG. 4 has a configuration in which a non-expandable pressure-sensitive adhesive layer (V1), an expandable base material layer (Y1), and a curable resin layer (I) are stacked in this order.
  • the curable resin layer (I) is positioned on the side opposite to the first thermosetting resin layer (X1-1) positioned on the base (Y) side and the base (Y). It consists of a curable resin layer (I) provided with a second thermosetting resin layer (X1-2).
  • thermosetting resin layer (X1-1) and the second thermosetting resin layer (X1-2) are non-expandable.
  • the second thermosetting resin layer (X1-2) has higher surface adhesive strength than the first thermosetting resin layer (X1-1).
  • those having different characteristics can be used by constituting the curable resin layer (I) with two thermosetting resin layers.
  • a thermosetting resin layer containing a more adhesive composition is selected for the curable resin layer on the side opposite to the support layer (II), and the curable resin layer on the support layer (II) side, Those having better separability from the support layer (II) can be selected.
  • the laminate 5 for warpage prevention shown in FIG. 5 has a configuration in which a non-expandable pressure-sensitive adhesive layer (V1), an expandable base material layer (Y1), and a curable resin layer (I) are stacked in this order.
  • the curable resin layer (I) includes a thermosetting resin layer (X1-1) located on the base (Y) side and an energy ray curing located on the side opposite to the base (Y). It consists of curable resin layer (I) provided with curable resin layer (X2).
  • thermosetting resin layer (X1-1) and the energy beam curable resin layer (X2) are non-expandable.
  • the curable resin layer (I) is divided into an energy ray curable resin layer (X2) and a thermosetting resin layer (X1-1), and those having different characteristics are used. Can do.
  • an energy curable resin layer made of an energy ray curable composition that is easy to adjust so as to have a relatively high adhesive force is disposed, and on the support layer (II) side, A thermosetting resin layer having better separability from a sealing material described later can be disposed.
  • the laminate for warpage prevention of the present embodiment has a sealing object placed on the surface of the curable resin layer, and the sealing object and the thermosetting resin layer at least in the peripheral part of the sealing object.
  • the surface is covered with a sealing material, the sealing material is cured, and the cured sealing body including a sealing object is used for manufacturing a cured sealing body.
  • the specific aspect regarding manufacture of the hardening sealing body using the laminated body for curvature prevention is mentioned later.
  • the sealing object and its surroundings For example, after placing a sealing object on the adhesive surface of an adhesive laminate such as a general wafer mount tape as used in the manufacturing method described in Patent Document 1, the sealing object and its surroundings Consider the case where the adhesive surface of the part is covered with a sealing material, the sealing material is thermally cured, and a cured sealing body is manufactured.
  • the sealing material is thermally cured, the sealing material is subjected to a stress that tends to shrink.
  • the adhesive laminate is fixed to the support, the stress of the sealing material is suppressed.
  • the cured sealing body obtained by separating from the support and the adhesive laminate is difficult to suppress the stress to be contracted.
  • the amount of the sealing material is different between the surface side on the side where the object to be sealed is present and the opposite surface side, and therefore a difference in shrinkage stress is likely to occur.
  • the difference in shrinkage stress causes the warp that occurs in the cured sealing body.
  • the cured sealed body after heating is generally separated from the support and the adhesive laminate in a state of being heated to some extent. Therefore, even after the separation, curing of the sealing material proceeds and shrinkage due to natural cooling occurs, so that the cured sealing body is more likely to warp.
  • thermosetting resin layer is also thermoset.
  • the thermosetting resin layer is provided on the surface side on the side where the sealing object which is considered to have a small amount of the sealing material and the shrinkage stress due to the curing of the sealing material is small.
  • the shrinkage stress due to thermosetting of the thermosetting resin layer works. As a result, it is considered that a difference in shrinkage stress between the two surfaces of the cured sealing body can be reduced, and a cured sealing body in which warpage is effectively suppressed can be obtained.
  • thermosetting resin layer which has contributed to suppression of the curvature of a hardening sealing body can be made into a hardening resin layer by thermosetting. That is, by using the laminate for warpage prevention of one embodiment of the present invention, the cured resin layer can be simultaneously formed on one surface of the cured encapsulant by passing through the above-described sealing step. A process for forming the cured resin layer can be omitted, which contributes to an improvement in productivity.
  • the curable resin layer (I) in the warp-preventing laminate of one embodiment of the present invention includes a curable resin composition, but has a mirror surface with a shear strength of 3 mm ⁇ 3 mm for the measurement adherend.
  • a silicon chip having a thickness of 350 ⁇ m was used as the measurement adherend, and the mirror surface of the measurement adherend was pressed and pasted on the curable resin layer at a temperature of 70 ° C. for 1 second at 130 gf, and the speed was 200 ⁇ m / s. Since it is 20 N / (3 mm ⁇ 3 mm) or more when measured at, when the sealing object is covered with the sealing material, the sealing object is displaced or tilted by the flow of the sealing material. It can be prevented from occurring.
  • the curable resin layer (I) is a surface on which the sealing object is placed (first surface) from the viewpoint of improving the adhesion with the sealing object. Is preferably sticky.
  • the adhesive strength of the first surface of the curable resin layer (I) is determined by sticking the first surface to a glass plate at a temperature of 70 ° C., the curable property at a temperature of 23 ° C., a peeling angle of 180 °, and a peeling speed of 300 mm / min.
  • the value measured by peeling the resin layer is preferably 1.7 N / 25 mm or more, more preferably 2.3 N / 25 mm or more, still more preferably 3.0 N / 25 mm or more, and particularly preferably 4. N / 25 mm or more. It is 0 N / 25 mm or more, preferably 20 N / 25 mm or less, more preferably 15 N / 25 mm or less, and still more preferably 10 N / 25 mm or less.
  • the first surface of the curable resin layer (I) has an adhesive force of 1.7 N / 25 mm or more, the object to be sealed is fixed when the object to be sealed is fixed to the surface of the curable resin layer (I). It is possible to make it difficult for an object to be displaced. If the adhesive force of the 1st surface of curable resin layer (I) is 20 N / 25mm or less, material selection of curable resin layer (I) will become easy.
  • the curable resin layer (I) has an appropriate shearing force from the viewpoint of favorably holding the sealing object when the sealing object is sealed.
  • a silicon chip (mirror surface) having a thickness of 350 ⁇ m and a size of 3 mm ⁇ 3 mm is used as the above-mentioned measurement adherend and the shear strength for the measurement adherend of the curable resin layer (I) is 70 ° C.
  • the mirror surface of the measurement adherend is pressed and pasted onto the curable resin layer and measured at a speed of 200 ⁇ m / s, and is preferably 20 N / (3 mm ⁇ 3 mm) or more, preferably Is 25 N / (3 mm ⁇ 3 mm), more preferably 30 N / (3 mm ⁇ 3 mm) or more, preferably 100 N / (3 mm ⁇ 3 mm) or less, more preferably 90 N / (3 mm ⁇ 3 mm). It is as follows.
  • the sealing object is fixed to the surface of the curable resin layer (I) and sealed.
  • the object to be sealed is covered with the material, the object to be sealed is displaced or inclined due to the flow of the sealing material.
  • material selection of curable resin layer (I) becomes easy that the said shear strength is 100 N / (3 mm x 3 mm) or less.
  • the adhesive strength of the thermosetting resin layer (X1) is preferably 0.1 to 10.0 N / 25 mm, more preferably 0.2. It is ⁇ 8.0 N / 25 mm, more preferably 0.4 to 6.0 N / 25 mm, and still more preferably 0.5 to 4.0 N / 25 mm.
  • the laminate 4 shown in FIG. 4 has the first thermosetting resin layer (X1-1) and the second thermosetting resin layer (X1-2), each has the above-mentioned adhesive strength.
  • the adhesive force of the second thermosetting resin layer (X1-2) is preferably higher than the adhesive force of the first thermosetting resin layer (X1-1).
  • the adhesive force of the second thermosetting resin layer (X1-2) is preferably higher than the adhesive force of the first thermosetting resin layer (X1-1).
  • the adhesive strength of the energy ray curable resin layer (X2) alone at room temperature (23 ° C.) is preferably 0.1 to 10.0 N / 25 mm, more preferably 0.8. It is 2 to 8.0 N / 25 mm, more preferably 0.4 to 6.0 N / 25 mm, and still more preferably 0.5 to 4.0 N / 25 mm.
  • the pressure-sensitive adhesive layer (V) (first pressure-sensitive adhesive layer (V1) and second pressure-sensitive adhesive layer (V2)) of the support layer (II) at room temperature (23 ° C.).
  • the adhesive strength is preferably 0.1 to 10.0 N / 25 mm, more preferably 0.2 to 8.0 N / 25 mm, still more preferably 0.4 to 6.0 N / 25 mm, and still more preferably 0.5. -4.0 N / 25 mm.
  • the pressure-sensitive adhesive layer located on the curable resin layer (I) side is opposite to the first pressure-sensitive adhesive layer and the curable resin layer.
  • the pressure-sensitive adhesive layer located in the region may be referred to as a second pressure-sensitive adhesive layer.
  • the first pressure-sensitive adhesive layer (V1-1) ) Or (V1) and the adhesive strength of the second pressure-sensitive adhesive layer (V1-2) or (V2) are preferably in the above ranges, respectively, but the adhesion with the support is improved and the adhesive strength at the interface P is increased.
  • the adhesive force of the first adhesive layer (V1-1) or (V1) to be attached to the support is the second adhesive layer (V1-2) or (V2). It is more preferable that it is higher than the adhesive force of
  • the adhesive force of the 1st surface of curable resin layer (I) is measured in the following procedures. First, the laminated body for warpage prevention provided with the curable resin layer (I) and the support layer (II) is cut into 25 mm width ⁇ 250 mm length (MD direction is 250 mm) to produce a primary sample. Moreover, a glass plate (3 mm float plate glass (JIS R3202 product) manufactured by Yuko Trading Company) is prepared as an adherend.
  • a glass plate (3 mm float plate glass (JIS R3202 product) manufactured by Yuko Trading Company
  • a glass plate is attached so as to be in direct contact with the first surface of the curable resin layer (I) to obtain a test piece.
  • the roller temperature is 70 ° C.
  • the sticking speed is 0.2 m / min.
  • the test piece thus obtained was allowed to stand for 24 hours in an environment of 23 ° C.
  • the shearing force of the curable resin layer (I) is measured by the following procedure. First, a 350 ⁇ m-thick silicon chip having a 3 mm ⁇ 3 mm mirror surface is used as an adherend for measurement. Then, on the first surface of the curable resin layer (I) of each laminate obtained in each Example and Comparative Example described later, the mirror surface of the adherend for measurement is applied at a temperature of 70 ° C. for 1 second at 130 gf. Press and paste. Then, the shear force is measured at a speed of 200 ⁇ m / s using a universal bond tester (DAGE 4000, manufactured by Nordson Advanced Technology).
  • DAGE 4000 manufactured by Nordson Advanced Technology
  • thermosetting resin layer (X1), energy ray curable resin layer (X2) On the surface of the pressure-sensitive adhesive layer (V), thermosetting resin layer (X1) or energy ray-curable resin layer (X2) formed on the release film, a pressure-sensitive adhesive tape (product name “PL Shin” manufactured by Lintec Corporation) is used. ]). Then, the surface of the pressure-sensitive adhesive layer (V), the thermosetting resin layer (X1), or the energy ray curable resin layer (X2) exposed by peeling off the release film is coated with a glass plate (Yuko) as an adherend. It was attached to a float plate glass 3 mm (JIS R3202 product) manufactured by a trading company.
  • the sticking temperature of the pressure-sensitive adhesive layer (V) was 23 ° C.
  • the sticking temperatures of the thermosetting resin layer (X1) and the energy ray curable resin layer (X2) were 70 ° C.
  • 180 degree pulling was performed under the same environment based on JISZ0237: 2000.
  • the pressure-sensitive adhesive layer (V), the thermosetting resin layer (X1), or the energy beam curable resin layer (X2) is peeled off from the glass plate together with the pressure-sensitive adhesive tape at a pulling speed of 300 mm / min.
  • the adhesive strength at 23 ° C. is measured.
  • the support layer (II) and the curable resin are used from the viewpoint of sufficiently fixing the object to be sealed before the curable resin layer (I) is cured and before the expansion treatment so as not to adversely affect the sealing operation.
  • the adhesiveness with the layer (I) is preferably high. From the above viewpoint, in the laminate of one embodiment of the present invention, the interface P between the support layer (II) and the curable resin layer (I) before the curable resin layer (I) is cured and before the thermal expansion treatment is performed.
  • the separation force (F 0 ) at the time of separation is preferably 100 mN / 25 mm or more, more preferably 130 mN / 25 mm or more, still more preferably 160 mN / 25 mm or more, and preferably 50,000 mN / 25 mm or less. is there.
  • the release force (F 0) is a value measured by the following measuring methods. (Measurement of peel force (F 0 )) After the laminate was allowed to stand for 24 hours in an environment of 23 ° C.
  • the support layer (II) side of the laminate was placed on a glass plate (float made by Yuko Trading Company) via the adhesive layer Affix to plate glass 3 mm (JIS R3202 product)).
  • an adhesive tape product name “PL Thin” manufactured by Lintec Corporation
  • the end of the glass plate to which the laminate has been attached is fixed to the lower chuck of a universal tensile testing machine (product name “Tensilon UTM-4-100” manufactured by Orientec Co., Ltd.).
  • the laminate was stuck to the curable resin layer (I) of the laminate with an upper chuck of a universal tensile tester so as to be peeled off at the interface P between the support layer (II) of the laminate and the curable resin layer (I). Fix the end of the adhesive tape. Then, under the same environment as described above, the curable resin layer (I) and the adhesive tape are bonded to the support layer (II at the interface P at a tensile speed of 300 mm / min by a 180 ° peeling method based on JIS Z 0237: 2000.
  • the peeling force measured when peeling from ( 1 ) is defined as “peeling force (F 0 )”.
  • the laminate of one embodiment of the present invention includes a support layer (II), a curable resin layer (I), or a cured resin layer (I ′) obtained by curing the curable resin layer (I) by an expansion treatment. At the interface P, separation can be easily performed at a time with a slight force.
  • the curable resin layer (I) is cured to form the cured resin layer (I ′), and then the support layer (II) and the cured resin layer (I) are subjected to an expansion treatment.
  • the peeling force (F 1 ) when separating at the interface P with ') is usually 2,000 mN / 25 mm or less, preferably 1,000 mN / 25 mm or less, more preferably 500 mN / 25 mm or less, more preferably 150 mN / It is 25 mm or less, more preferably 100 mN / 25 mm or less, still more preferably 50 mN / 25 mm or less, and most preferably 0 mN / 25 mm.
  • the peel force (F 1 ) is a value measured by the following measurement method.
  • the support layer (II) side of the laminate is attached to a glass plate (float plate glass 3 mm (JIS R3202 product) manufactured by Yuko Trading Company) via an adhesive layer.
  • a glass plate float plate glass 3 mm (JIS R3202 product) manufactured by Yuko Trading Company
  • the glass plate and the laminate are heated at 130 ° C. for 2 hours to cure the curable resin layer (I) to form the cured resin layer (I ′).
  • the curable resin layer (I) includes the energy ray curable resin layer (X2) as in the laminate 4 in FIG. 4, the energy ray is applied after the thermosetting resin layer (X1-1) is thermally cured.
  • Irradiate energy rays that can cure the curable resin layer (X2) (in the case of ultraviolet rays, irradiate with an illuminance of 215 mW / cm 2 and a light amount of 187 mJ / cm 2 three times) to irradiate the energy ray curable resin layer (X2). Harden.
  • the expandable particles contained in the support layer (II) are expanded. Specifically, when the thermally expandable particles are used, the glass plate to which the laminate is attached is heated at 240 ° C. for 3 minutes, and the expandable base material layer (Y1) of the laminate or the expandable pressure-sensitive adhesive. The thermally expandable particles in the layer (V2) are expanded.
  • peeling force (F 1 ) The peeling force measured when peeling at the interface P between the layer (II) and the cured resin layer (I ′) is defined as “peeling force (F 1 )”.
  • the interface P When the cured resin layer (I ′) is completely separated and cannot be fixed for measurement, the measurement is terminated and the peeling force (F 1 ) at that time is set to “0 mN / 25 mm”. .
  • the base material (Y) which support layer (II) has is a non-adhesive base material.
  • the determination as to whether or not the substrate is a non-adhesive substrate has a probe tack value measured in accordance with JIS Z 0237: 1991 of less than 50 mN / 5 mm ⁇ with respect to the surface of the target substrate. Then, the said base material is judged as a "non-adhesive base material". On the other hand, if the probe tack value is 50 mN / 5 mm ⁇ or more, the substrate is determined to be an “adhesive substrate”.
  • the probe tack value on the surface of the substrate (Y) of the support layer (II) used in one embodiment of the present invention is usually less than 50 mN / 5 mm ⁇ , preferably less than 30 mN / 5 mm ⁇ , more preferably less than 10 mN / 5 mm ⁇ . More preferably, it is less than 5 mN / 5 mm ⁇ .
  • the probe tack value on the surface of the substrate (Y) is a value measured by the following measuring method. (Measurement of probe tack value) A substrate to be measured is cut into a square having a side of 10 mm and then left to stand for 24 hours in an environment of 23 ° C. and 50% RH (relative humidity) as a test sample.
  • the probe tack value on the surface of the test sample was measured according to JIS. Measured according to Z0237: 1991. Specifically, a stainless steel probe having a diameter of 5 mm is brought into contact with the surface of the test sample at a contact load of 0.98 N / cm 2 for 1 second, and then the probe is moved at a speed of 10 mm / sec. The force required to move away from the surface is measured and the value obtained is taken as the probe tack value for the test sample.
  • the warpage preventing laminate of one embodiment of the present invention has a curable resin layer (I) including a thermosetting resin layer (X1).
  • the curable resin layer (I) is cured to reduce the difference in shrinkage stress between the two surfaces of the cured encapsulant due to the curing of the encapsulant, and the warp that can occur in the resulting cured encapsulant Contributes to the suppression of
  • the curable resin layer (I) becomes a cured resin layer (I ′) by being cured.
  • the cured resin layer (I ′) is formed on one surface of the obtained cured sealing body.
  • the storage elastic modulus E ′ at 23 ° C. of the cured resin layer (I ′) is preferably 1. from the viewpoint of obtaining a warp-preventing laminate capable of producing a cured sealing body having a flat surface while suppressing warpage.
  • 0 ⁇ 10 7 Pa or more more preferably 1.0 ⁇ 10 8 Pa or more, further preferably 1.0 ⁇ 10 9 Pa or more, still more preferably 5.0 ⁇ 10 9 Pa or more, and preferably It is 1.0 ⁇ 10 13 Pa or less, more preferably 1.0 ⁇ 10 12 Pa or less, further preferably 5.0 ⁇ 10 11 Pa or less, and still more preferably 1.0 ⁇ 10 11 Pa or less.
  • the storage elastic modulus E ′ of the cured resin layer (I ′) is measured by the following procedure. First, after laminating the curable resin layer (I) so as to have a thickness of 200 ⁇ m, in a measurement using a state in which curing is substantially completed (differential scanning calorimeter (DSCQ2000, manufactured by TA Instruments), Curing is performed until the exothermic peak disappears at 130 ° C. In the case of the thermosetting resin layers (X1), (X1-1), and (X1-2), the resin is placed in an oven in an air atmosphere, and the resin is heated at 130 ° C. for 2 hours to give a heat of 200 ⁇ m in thickness. The curable resin layer is thermally cured.
  • the energy ray curable resin layer (X2) and the thermosetting resin layer (X1-1) are included, the energy ray is irradiated (in the case of ultraviolet rays, the illuminance is 215 mW / cm 2 and the light amount is 187 mJ / cm 2 three times. Irradiation) to cure the energy ray curable resin layer (X2), and then thermoset the thermosetting resin layer (X1-1) under the above conditions.
  • a dynamic viscoelasticity measuring apparatus (TA Instruments, product name “DMAQ800”)
  • the test start temperature is 0 ° C.
  • the test end temperature is 300 ° C.
  • the heating rate is 3 ° C./min
  • the frequency is 11 Hz.
  • the storage elastic modulus E ′ of the formed cured resin layer at 23 ° C. is measured under the condition of an amplitude of 20 ⁇ m.
  • the 1st surface which is the surface on the opposite side to a support layer of curable resin layer (I) has adhesiveness.
  • the adhesive force is applied to the glass plate by attaching the first surface at a temperature of 70 ° C., and peeling off the curable resin layer at a temperature of 23 ° C., a peeling angle of 180 °, and a peeling speed of 300 mm / min.
  • the value is preferably 1.7 N / 25 mm or more.
  • “applying at a temperature of 70 ° C.” means that the laminated body is a pressing body such as a pressure roller having a heat generation temperature of 70 ° C.
  • the sealing target By pressing on a glass plate, it means sticking a laminated body on a glass plate.
  • the sealing target is placed on the first surface of the curable resin layer (I)
  • the surface of the curable resin layer (I) has the above-described adhesiveness, so that it is in close contact with the sealing target.
  • the sealing object such as a semiconductor chip
  • the sealing object is tilted or the sealing object is disposed and then sealed against the curable resin layer (I). It is possible to prevent the position of the object to be stopped from deviating from the intended position.
  • the shear strength of the curable resin layer (I) with respect to the measurement adherend is a silicon chip (mirror surface) having a thickness of 350 ⁇ m and a size of 3 mm ⁇ 3 mm, and the temperature is 70 ⁇ m.
  • the mirror surface of the measurement adherend is pressed and pasted on the curable resin layer for 1 second and measured at a speed of 200 ⁇ m / s, which is 20 N / (3 mm ⁇ 3 mm) or more. .
  • the adhesive force of the first surface of the curable resin layer (I) and the shearing force of the curable resin layer (I) on the measurement adherend are the thermosetting resin composition constituting the curable resin layer (I). Or by adjusting the types and blending ratios of the components of the energy beam curable resin composition. Adhesive force and shear force vary depending on the composition and blending ratio of the resin composition, and shear force also varies depending on the configuration of the entire curable resin layer (I). It becomes easy to make it a high value by using the acrylic polymer mentioned later as a polymer component, using an epoxy resin as a thermosetting component, or using a coupling agent. Moreover, about a shear force, it becomes easy to make it a high value by increasing content of an inorganic filler and a crosslinking agent, for example.
  • the thickness of the curable resin layer (I) is preferably 1 to 500 ⁇ m, more preferably 5 to 300 ⁇ m, still more preferably 10 to 200 ⁇ m, and still more preferably 15 to 100 ⁇ m.
  • thermosetting resin layer (X1) The thermosetting resin layers (X1), (X1-1), and (X1-2) may be formed from a thermosetting resin composition containing the polymer component (A) and the thermosetting component (B). preferable.
  • the thermosetting resin layers (X1), (X1-1), and (X1-2) are sometimes collectively referred to as a thermosetting resin layer (X1).
  • the curable resin composition may further contain one or more selected from a colorant (C), a coupling agent (D), and an inorganic filler (E). It is preferable to contain at least an inorganic filler (E) from the viewpoint of suppressing the warpage and obtaining a warp-preventing laminate capable of producing a cured sealing body having a flat surface.
  • the curing start temperature of the thermosetting resin layer (X1) is preferably 80 to 200 ° C, more preferably 90 to 160 ° C, and further preferably 100 to 150 ° C.
  • a thermosetting resin layer (X1) having a curing start temperature lower than the expansion start temperature of the thermally expandable particles is used.
  • the curing start temperature of the thermosetting resin layer (X1) is preferably 5 ° C. or less, more preferably 10 ° C. or less, and further preferably 20 ° C. or less than the expansion start temperature of the thermally expandable particles.
  • the thickness of the thermosetting resin layer (X1) may be in the same numerical range as the thickness of the curable resin layer (I).
  • the total thickness is curable. What is necessary is just to make it become the numerical value range similar to the thickness of resin layer (I).
  • the thickness of the thin layer among these layers is preferably 10% or more, more preferably 20% or more, and further preferably 30% or more of the thickness of the thick layer.
  • the polymer component (A) contained in the thermosetting resin composition means a compound having a mass average molecular weight of 20,000 or more and having at least one repeating unit.
  • the thermosetting resin composition contains the polymer component (A)
  • the thermosetting resin layer to be formed has flexibility and film-forming properties, and the property maintaining property of the laminate is improved. be able to.
  • the mass average molecular weight (Mw) of the polymer component (A) is preferably 20,000 or more, more preferably 20,000 to 3,000,000, more preferably 50,000 to 2,000,000, and even more preferably 100,000 to 1,500,000. More preferably, it is 200,000 to 1,000,000.
  • the content of the component (A) is preferably 5 to 50% by mass, more preferably 8 to 40% by mass, and still more preferably 10% with respect to the total amount (100% by mass) of the active ingredients of the thermosetting resin composition. ⁇ 30% by mass.
  • polymer component (A) examples include acrylic polymers, polyesters, phenoxy resins, polycarbonates, polyethers, polyurethanes, polysiloxanes, rubber polymers, and the like. These polymer components (A) may be used alone or in combination of two or more.
  • the acrylic polymer having an epoxy group and the phenoxy resin having an epoxy group have thermosetting properties, but these have a mass average molecular weight of 20,000 or more and at least 1 Any compound having a repeating unit of a seed is included in the concept of the polymer component (A).
  • a polymer component (A) contains an acrylic polymer (A1).
  • the content of the acrylic polymer (A1) in the polymer component (A) is preferably from 60 to the total amount (100% by mass) of the polymer component (A) contained in the thermosetting resin composition.
  • the amount is 100% by mass, more preferably 70 to 100% by mass, still more preferably 80 to 100% by mass, and still more preferably 90 to 100% by mass.
  • the mass average molecular weight (Mw) of the acrylic polymer (A1) is preferably 20,000 to 3,000,000, more preferably 10 from the viewpoint of imparting flexibility and film forming property to the thermosetting resin layer to be formed. It is 10,000 to 1,500,000, more preferably 150,000 to 1,200,000, still more preferably 250,000 to 1,000,000.
  • the glass transition temperature (Tg) of the acrylic polymer (A1) is produced using a viewpoint of imparting good adhesiveness to the surface of the thermosetting resin layer to be formed, and a warp preventing laminate. From the viewpoint of improving the reliability of the cured encapsulant with a cured resin layer, it is preferably ⁇ 60 to 50 ° C., more preferably ⁇ 50 to 30 ° C., further preferably ⁇ 40 to 10 ° C., and still more preferably ⁇ 35 to 5 ° C.
  • acrylic polymer (A1) examples include polymers having an alkyl (meth) acrylate as a main component. Specifically, the alkyl (meth) acrylate (a1 ′) having an alkyl group having 1 to 18 carbon atoms.
  • An acrylic polymer containing the structural unit (a1) derived from hereinafter also referred to as “monomer (a1 ′)” is preferred, and the functional group-containing monomer (a2 ′) (hereinafter referred to as “monomer ( An acrylic copolymer containing the structural unit (a2) derived from “a2 ′)” is more preferable.
  • Acrylic polymer (A1) may be used independently and may use 2 or more types together.
  • the form of the copolymer may be any of a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer. Good.
  • the number of carbon atoms of the alkyl group contained in the monomer (a1 ′) is preferably 1 to 18, more preferably 1 to 12, more preferably 1 to 12, from the viewpoint of imparting flexibility and film forming property to the thermosetting resin layer to be formed. Preferably, it is 1-8.
  • the alkyl group may be a straight chain alkyl group or a branched chain alkyl group. These monomers (a1 ′) may be used alone or in combination of two or more.
  • the monomer (a1 ′) is an alkyl (meth) having an alkyl group having 1 to 3 carbon atoms.
  • An acrylate is preferably contained, and a methyl (meth) acrylate is more preferably contained.
  • the content of the structural unit (a11) derived from the alkyl (meth) acrylate having an alkyl group having 1 to 3 carbon atoms is based on the total structural unit (100% by mass) of the acrylic polymer (A1).
  • the content is preferably 1 to 80% by mass, more preferably 5 to 80% by mass, and still more preferably 10 to 80% by mass.
  • the monomer (a1 ′) preferably contains an alkyl (meth) acrylate having an alkyl group having 4 or more carbon atoms, and more preferably contains an alkyl (meth) acrylate having an alkyl group having 4 to 6 carbon atoms. More preferably, butyl (meth) acrylate is included.
  • the content of the structural unit (a12) derived from the alkyl (meth) acrylate having an alkyl group having 4 or more carbon atoms is the acrylic polymer (A1). Is preferably 1 to 70% by mass, more preferably 5 to 65% by mass, and still more preferably 10 to 60% by mass with respect to all the structural units (100% by mass).
  • the content of the structural unit (a1) is preferably 50% by mass or more, more preferably 50 to 99% by mass, and still more preferably 55% with respect to the total structural unit (100% by mass) of the acrylic polymer (A1). It is -90 mass%, More preferably, it is 60-90 mass%.
  • the monomer (a2 ′) is preferably at least one selected from hydroxy group-containing monomers and epoxy group-containing monomers.
  • a monomer (a2 ') may be used independently and may use 2 or more types together.
  • hydroxy group-containing monomer examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl ( Examples thereof include hydroxyalkyl (meth) acrylates such as meth) acrylate and 4-hydroxybutyl (meth) acrylate; unsaturated alcohols such as vinyl alcohol and allyl alcohol. Among these, as the hydroxy group-containing monomer, hydroxyalkyl (meth) acrylate is preferable, and 2-hydroxyethyl (meth) acrylate is more preferable.
  • Examples of the epoxy-containing monomer include glycidyl (meth) acrylate, ⁇ -methylglycidyl (meth) acrylate, (3,4-epoxycyclohexyl) methyl (meth) acrylate, and 3-epoxycyclo-2-hydroxypropyl (meth) acrylate.
  • Epoxy group-containing (meth) acrylates such as glycidyl crotonate and allyl glycidyl ether.
  • an epoxy-containing monomer an epoxy group-containing (meth) acrylate is preferable, and glycidyl (meth) acrylate is more preferable.
  • the content of the structural unit (a2) is preferably 1 to 50% by weight, more preferably 5 to 45% by weight, and still more preferably based on the total structural unit (100% by weight) of the acrylic polymer (A1). It is 10 to 40% by mass, more preferably 10 to 30% by mass.
  • the acrylic polymer (A1) may have a structural unit derived from another monomer other than the structural units (a1) and (a2) as long as the effects of the present invention are not impaired.
  • examples of other monomers include vinyl acetate, styrene, ethylene, ⁇ -olefin and the like.
  • thermosetting component (B) plays a role of thermosetting the formed thermosetting resin layer to form a hard cured resin layer, and is a compound having a mass average molecular weight of less than 20,000.
  • the mass average molecular weight (Mw) of the thermosetting component (B) is preferably 10,000 or less, more preferably 100 to 10,000.
  • thermosetting component (B) an epoxy compound (B1), which is a compound having an epoxy group, from the viewpoint of making a cured sealing body having a flat surface while suppressing warpage, which can be produced.
  • an epoxy compound (B1) which is a compound having an epoxy group, from the viewpoint of making a cured sealing body having a flat surface while suppressing warpage, which can be produced.
  • a thermosetting agent (B2) and it is more preferable that a curing accelerator (B3) is further included together with the epoxy compound (B1) and the thermosetting agent (B2).
  • Examples of the epoxy compound (B1) include polyfunctional epoxy resins, bisphenol A diglycidyl ether and hydrogenated products thereof, orthocresol novolac epoxy resins, dicyclopentadiene type epoxy resins, biphenyl type epoxy resins, and bisphenol A type epoxy resins. And epoxy compounds having a bifunctional or higher functionality in the molecule such as a bisphenol F type epoxy resin and a phenylene skeleton type epoxy resin and having a mass average molecular weight of less than 20,000.
  • An epoxy compound (B1) may be used independently and may use 2 or more types together.
  • the content of the epoxy compound (B1) is a polymer contained in the thermosetting resin composition from the viewpoint of making a laminate for warpage prevention capable of producing a cured sealing body having a flat surface while suppressing warpage.
  • the amount is preferably 1 to 500 parts by mass, more preferably 3 to 300 parts by mass, still more preferably 10 to 150 parts by mass, and still more preferably 20 to 120 parts by mass with respect to 100 parts by mass of the component (A).
  • the thermosetting agent (B2) functions as a curing agent for the epoxy compound (B1).
  • the compound which has 2 or more of functional groups which can react with an epoxy group in 1 molecule is preferable.
  • the functional group include phenolic hydroxyl groups, alcoholic hydroxyl groups, amino groups, carboxyl groups, and acid anhydrides.
  • a phenolic hydroxyl group, an amino group, or an acid anhydride is preferable from the viewpoint of forming a pressure-sensitive adhesive laminate with a cured resin layer having a flat surface while suppressing warpage, An amino group is more preferable, and an amino group is more preferable.
  • thermosetting agent having a phenol group examples include polyfunctional phenolic resins, biphenols, novolac type phenolic resins, dicyclopentadiene type phenolic resins, zylock type phenolic resins, and aralkylphenolic resins.
  • phenolic thermosetting agent having a phenol group examples include polyfunctional phenolic resins, biphenols, novolac type phenolic resins, dicyclopentadiene type phenolic resins, zylock type phenolic resins, and aralkylphenolic resins.
  • amine-based thermosetting agent having an amino group examples include dicyandiamide. These thermosetting agents (B2) may be used independently and may use 2 or more types together.
  • the content of the thermosetting agent (B2) is 100 masses of the epoxy compound (B1) from the viewpoint of producing a pressure-sensitive adhesive laminate with a cured resin layer having a flat surface while suppressing warpage.
  • the amount is preferably 0.1 to 500 parts by mass, more preferably 1 to 200 parts by mass with respect to parts.
  • the curing accelerator (B3) is a compound having a function of increasing the rate of thermosetting when the thermosetting resin layer to be formed is thermoset.
  • the curing accelerator (B3) include tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole, Imidazoles such as 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole; tributylphosphine, diphenylphosphine, triphenylphosphine, etc.
  • the content of the curing accelerator (B3) is such that the epoxy compound (B1) and the thermosetting agent (from the viewpoint of making a cured sealing body having a flat surface while suppressing warpage can be produced.
  • the total amount of B2) is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 6 parts by mass, and still more preferably 0.3 to 4 parts by mass with respect to 100 parts by mass.
  • thermosetting resin composition used in one embodiment of the present invention may further contain a colorant (C).
  • a colorant C
  • the thermosetting resin layer formed from the thermosetting resin composition containing the colorant (C) is thermoset to obtain a cured resin layer, it is easy to determine whether the cured resin layer is stuck or not in appearance.
  • an effect such as blocking infrared rays generated from surrounding devices and preventing malfunction of a sealing object (such as a semiconductor chip).
  • colorant (C) organic or inorganic pigments and dyes can be used.
  • the dye for example, any dye such as an acid dye, a reactive dye, a direct dye, a disperse dye, and a cationic dye can be used. Moreover, it does not restrict
  • black pigments are preferable from the viewpoint of good shielding properties against electromagnetic waves and infrared rays. Examples of the black pigment include carbon black, iron oxide, manganese dioxide, aniline black, activated carbon, and the like. From the viewpoint of improving the reliability of the semiconductor chip, carbon black is preferable.
  • these coloring agents (C) may be used independently and may use 2 or more types together.
  • the content of the colorant (C) is 8% by mass with respect to the total amount (100% by mass) of the active ingredients of the thermosetting resin composition. It is preferable that it is less than. If content of a coloring agent (C) is less than 8 mass%, it can be set as the laminated body for the curvature prevention which can confirm the presence or absence of the crack of the surface of a chip
  • the content of the colorant (C) is effective for the thermosetting resin composition.
  • it is 0.01 mass% or more with respect to the whole quantity (100 mass%) of a component, More preferably, it is 0.05 mass% or more, More preferably, it is 0.10 mass% or more, More preferably, it is 0.15 mass% That's it.
  • thermosetting resin composition used in one embodiment of the present invention may further contain a coupling agent (D).
  • the thermosetting resin layer formed from the thermosetting resin composition containing the coupling agent (D) can improve the adhesion with the sealing object when the sealing object is placed.
  • the cured resin layer obtained by thermosetting the thermosetting resin layer can also improve water resistance without impairing heat resistance.
  • the compound which reacts with the functional group which a component (A) or a component (B) has is preferable, and a silane coupling agent is specifically preferable.
  • the silane coupling agent include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3- (methacryloxy) Propyl) trimethoxysilane, 3-aminopropyltrimethoxysilane, N-6- (aminoethyl) -3-aminopropyltrimethoxysilane, N-6- (aminoethyl) -3-aminopropylmethyldiethoxysilane, N -Phenyl-3-aminopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptoprop
  • the molecular weight of the coupling agent (D) is preferably 100 to 15,000, more preferably 125 to 10,000, more preferably 150 to 5,000, still more preferably 175 to 3,000, still more preferably. 200 to 2,000.
  • the content of the component (D) is preferably 0.01 to 10% by mass, more preferably 0.05 to 7% by mass, based on the total amount (100% by mass) of the active ingredients of the thermosetting resin composition. More preferably, it is 0.10 to 4% by mass, and still more preferably 0.15 to 2% by mass.
  • thermosetting resin composition used in one embodiment of the present invention is an inorganic filler (E) from the viewpoint of a warp-preventing laminate capable of producing a cured sealing body having a flat surface while suppressing warpage.
  • thermosetting resin layer formed from a thermosetting resin composition containing an inorganic filler (E) when the sealing material is thermoset, the shrinkage stress between the two surfaces of the cured encapsulant is reduced.
  • the degree of thermosetting of the thermosetting resin layer can be adjusted so as to reduce the difference. As a result, it is possible to manufacture a cured sealing body having a flat surface while suppressing warpage.
  • thermosetting the thermosetting resin layer to be formed can be adjusted to an appropriate range, and the reliability of the object to be sealed can be improved. Moreover, the moisture absorption rate of the said cured resin layer can also be reduced.
  • Examples of the inorganic filler (E) include powders of silica, alumina, talc, calcium carbonate, titanium oxide, iron oxide, silicon carbide, boron nitride, and the like, beads formed by spheroidizing these, single crystal fibers, and glass fibers. Non-thermally expandable particles can be mentioned. These inorganic fillers (E) may be used alone or in combination of two or more. Among these, silica or alumina is preferable from the viewpoint of suppressing the warpage to obtain a warp-preventing laminate capable of producing a cured sealing body having a flat surface.
  • the average particle diameter of the inorganic filler (E) is preferably 0.01 to 50 ⁇ m, more preferably from the viewpoint of improving the gloss value of the cured resin layer formed by thermosetting the thermosetting resin layer to be formed.
  • the thickness is 0.1 to 30 ⁇ m, more preferably 0.3 to 30 ⁇ m, and particularly preferably 0.5 to 10 ⁇ m.
  • the content of the component (E) is the total amount of effective components of the thermosetting resin composition from the viewpoint of a warp-preventing laminate capable of producing a cured sealing body having a flat surface while suppressing warpage ( 100% by mass), preferably 25 to 80% by mass, more preferably 30 to 70% by mass, still more preferably 40 to 65% by mass, and still more preferably 45 to 60% by mass.
  • thermosetting resin composition used in one embodiment of the present invention may further contain other additives other than the above components (A) to (E) as long as the effects of the present invention are not impaired.
  • additives include a crosslinking agent, a leveling agent, a plasticizer, an antistatic agent, an antioxidant, an ion scavenger, a gettering agent, and a chain transfer agent.
  • the total content of additives other than the components (A) to (E) is preferably 0 to 20% by mass with respect to the total amount (100% by mass) of the active ingredients of the thermosetting resin composition. More preferably, it is 0 to 10% by mass, and still more preferably 0 to 5% by mass.
  • the curable resin layer (I) is composed of a single layer of the thermosetting resin layer (X1) as shown in FIGS. 1, 2, and 3, this single thermosetting resin layer (X1) Has the above configuration.
  • the curable resin layer (I) has a first thermosetting resin layer (X1-1) located on the support layer (II) side and the side opposite to the support layer (II) ( In the case where the second thermosetting resin layer (X1-2) located on the first surface side) is included, it is preferable that at least these adhesive forces are different, particularly the second heat located on the first surface side.
  • the curable resin layer (X1-2) may be a second thermosetting resin layer (X1-2) having a higher surface adhesion than the first thermosetting resin layer (X1-1). preferable.
  • thermosetting resin layer higher than the adhesive force of the first thermosetting resin layer
  • higher adhesive force is generated.
  • the former may be increased by making the shear force of the first thermosetting resin layer (X1-1) different from the shear force of the second thermosetting resin layer (X1-2).
  • the shear force is made larger than that of the second thermosetting resin layer (X1-2). can do.
  • the curable resin layer (I) may include a thermosetting resin layer (X1-1) and an energy beam curable resin layer (X2).
  • the curable resin layer (I) includes a first layer located on the support layer side and a second layer located on the first surface side, and the first layer is a thermosetting resin layer (X1- 1), and the second layer is preferably an energy ray curable resin layer (X2).
  • the thermosetting resin layer (X1-1) has the above-described configuration.
  • the energy ray curable resin layer (X2) is preferably formed from an energy ray curable pressure sensitive adhesive composition containing an energy ray curable pressure sensitive resin and a photopolymerization initiator.
  • the energy ray curable resin layer (X2) is easier to adjust to increase the adhesive force than the thermosetting resin layer, it is easy to reliably fix the object to be sealed to the first surface.
  • the energy ray curable resin layer using such an energy ray curable pressure-sensitive adhesive layer by irradiating it with energy rays, it is possible to cure the encapsulating material as will be described later. Curing shrinkage of the resin layer can be made difficult to occur, which is advantageous in preventing warpage of the cured sealing body.
  • thermosetting pressure-sensitive adhesive composition when heated at a high temperature, it softens mainly in the initial stage of curing, which may cause chip misalignment, whereas the energy ray-curable pressure-sensitive adhesive composition is In addition, since it is not softened by curing with energy beam irradiation, it is possible to avoid the occurrence of chip misalignment associated with curing.
  • energy rays include ultraviolet rays, electron beams, and radiation, but ultraviolet rays are preferable from the viewpoint of availability of the curable resin composition and ease of handling of the energy ray irradiation apparatus.
  • the energy ray-curable pressure-sensitive adhesive composition includes an energy ray-curable pressure-sensitive adhesive resin in which a polymerizable functional group such as a (meth) acryloyl group or a vinyl group is introduced into the side chain of the above-mentioned pressure-sensitive adhesive resin. It may be a product, and may be a composition containing a monomer or oligomer having a polymerizable functional group. In addition, it is preferable that these compositions contain a photoinitiator further.
  • photopolymerization initiator examples include 1-hydroxy-cyclohexyl-phenyl-ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzyl phenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyrol. Nitrile, dibenzyl, diacetyl, 8-chloroanthraquinone and the like can be mentioned. These photoinitiators may be used independently and may use 2 or more types together.
  • the content of the photopolymerization initiator is preferably 0.01 to 10 parts by mass, more preferably 0 to 100 parts by mass of the energy ray-curable adhesive resin or 100 parts by mass of the monomer or oligomer having a polymerizable functional group. 0.03 to 5 parts by mass, more preferably 0.05 to 3 parts by mass, and particularly preferably 0.1 to 3 parts by mass.
  • thermosetting resin layer (X1-1) By increasing the shear force of the thermosetting resin layer (X1-1) to be greater than the shear force of the energy ray curable resin layer (X2), the shear force of the entire curable resin layer (I) is increased. May be.
  • the support layer (II) included in the laminate of one embodiment of the present invention includes a base material (Y) and an adhesive layer (V), and at least one of the base material (Y) and the adhesive layer (V) is expanded. It is preferable that it contains a conductive particle.
  • support layer (II) is a layer isolate
  • the support layer (II) used in one embodiment of the present invention includes a case where the layer containing expandable particles is included in the configuration of the base material (Y) and a case where the layer is included in the configuration of the pressure-sensitive adhesive layer (V).
  • -1st aspect of support layer (II) Support layer (II) provided with the base material (Y) which has the expandable base material layer (Y1) containing an expandable particle.
  • the substrate (Y) has an expandable substrate layer (Y1) containing expandable particles.
  • the pressure-sensitive adhesive layer (V) is preferably a non-expandable pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive layer (V1) is A non-intumescent adhesive layer is preferred.
  • both the first pressure-sensitive adhesive layer (V1-1) and the second pressure-sensitive adhesive layer (V1-2) are non-intumescent. It is preferable that it is an adhesive layer. Since the base material (Y) has the expandable base material layer (Y1) as in the first embodiment of the support layer (II), the pressure-sensitive adhesive layer (V1) does not need to be expandable, and is expandable. It is not constrained by the composition, composition and process for imparting. Thereby, in designing the pressure-sensitive adhesive layer (V1), for example, it is possible to design with priority given to performances other than expansibility, such as performance such as adhesiveness, productivity, economy, etc. V) The degree of freedom in design can be improved.
  • the thickness of the base material (Y) before the expansion treatment is preferably 10 to 1,000 ⁇ m, more preferably 20 to 700 ⁇ m, still more preferably 25 to 500 ⁇ m, and still more.
  • the thickness is preferably 30 to 300 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer (V) before the expansion treatment in the first aspect of the support layer (II) is preferably 1 to 60 ⁇ m, more preferably 2 to 50 ⁇ m, still more preferably 3 to 40 ⁇ m, and even more preferably. Is 5 to 30 ⁇ m.
  • the above-mentioned “thickness of the pressure-sensitive adhesive layer (V)” indicates the respective pressure-sensitive adhesive layers. It means the thickness of the adhesive layer (in FIG. 2, the thickness of each of the first adhesive layer (V1-1) and the second adhesive layer (V1-2)). Moreover, in this specification, the thickness of each layer which comprises a laminated body means the value measured by the method as described in an Example.
  • the thickness ratio [(Y1) / (V)] between the expandable substrate layer (Y1) and the pressure-sensitive adhesive layer (V) before the expansion treatment is as follows: Preferably it is 1,000 or less, More preferably, it is 200 or less, More preferably, it is 60 or less, More preferably, it is 30 or less. If the thickness ratio is 1,000 or less, a laminate that can be easily and collectively separated by a slight force at the interface P between the support layer (II) and the cured resin layer (I ′) by expansion treatment. It can be.
  • the thickness ratio is preferably 0.2 or more, more preferably 0.5 or more, still more preferably 1.0 or more, and still more preferably 5.0 or more.
  • the base material (Y) may be composed only of the expandable base material layer (Y1) as shown in FIG.
  • the curable resin layer (I) has an expandable base layer (Y1) and the pressure-sensitive adhesive layer (V) has a non-expandable base layer (Y2). You may have.
  • the thickness ratio [(Y1) / (Y2)] of the expandable substrate layer (Y1) and the non-expandable substrate layer (Y2) before the expansion treatment Is preferably 0.02 to 200, more preferably 0.03 to 150, and still more preferably 0.05 to 100.
  • the thickness of the support layer (II) is preferably 0.02 to 200 ⁇ m, more preferably 0.03 to 150 ⁇ m, still more preferably 0.05 to 100 ⁇ m.
  • the 1st adhesive layer (V1) which is a non-expandable adhesive layer is arrange
  • a second pressure-sensitive adhesive layer (V2) that is an expandable pressure-sensitive adhesive layer containing expandable particles is disposed.
  • the second pressure-sensitive adhesive layer (V2), which is an expandable pressure-sensitive adhesive layer, and the curable resin layer (I) are in direct contact.
  • the substrate (Y) is preferably a non-intumescent substrate.
  • the non-expandable base material is preferably composed only of the non-expandable base material layer (Y2).
  • the second pressure-sensitive adhesive layer (V2) which is an expandable pressure-sensitive adhesive layer and the first pressure-sensitive adhesive layer (non-expandable pressure-sensitive adhesive layer) before the expansion treatment
  • the thickness ratio [(V2) / (V1)] to V1) is preferably 0.1 to 80, more preferably 0.3 to 50, and still more preferably 0.5 to 15.
  • the thickness ratio [(V2 ) / (Y)] is preferably 0.05 to 20, more preferably 0.1 to 10, and still more preferably 0.2 to 3.
  • the thickness of the support layer (II) is preferably 0.05 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m, still more preferably 0.2 to 3 ⁇ m.
  • the expandable particles used in one embodiment of the present invention may expand themselves by an external stimulus, thereby forming irregularities on the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (V2) and reducing the adhesive force with the adherend.
  • the expandable fine particles include thermally expandable particles that expand by heating, energy ray expandable fine particles that expand by irradiation with energy rays, and the like, from the viewpoint of versatility and handleability, by a predetermined heat expansion treatment.
  • the thermally expandable particles are expanded. The average particle diameter before expansion at 23 ° C.
  • the average particle diameter of the expandable particles before expansion is the volume-median particle diameter (D 50 ), and a laser diffraction particle size distribution measuring device (for example, product name “Mastersizer 3000” manufactured by Malvern) is used.
  • D 50 volume-median particle diameter
  • a laser diffraction particle size distribution measuring device for example, product name “Mastersizer 3000” manufactured by Malvern
  • the particle distribution of the expandable particles before expansion measured by use it means the particle diameter corresponding to 50% of the cumulative volume frequency calculated from the smaller particle diameter of the expandable particles before expansion.
  • the 90% particle diameter (D 90 ) before expansion at 23 ° C. of the expandable particles used in one embodiment of the present invention is preferably 10 to 150 ⁇ m, more preferably 20 to 100 ⁇ m, still more preferably 25 to 90 ⁇ m, and more. More preferably, it is 30 to 80 ⁇ m.
  • the 90% particle diameter (D 90 ) before expansion of the expandable particles is measured using a laser diffraction particle size distribution measuring apparatus (for example, product name “Mastersizer 3000” manufactured by Malvern), before expansion. Mean particle diameter corresponding to 90% of the cumulative volume frequency calculated from the smaller particle diameter of the expandable particles before expansion.
  • the heat-expandable particles used in one embodiment of the present invention may be particles that do not expand when the sealing material is cured, and have an expansion start temperature (t) higher than the curing temperature of the sealing material. Specifically, it is preferably a thermally expandable particle having an expansion start temperature (t) adjusted to 60 to 270 ° C.
  • the expansion start temperature (t) is appropriately selected according to the curing temperature of the sealing material to be used.
  • the expansion start temperature (t) of a thermally expansible particle means the value measured based on the method as described in an Example.
  • the thermally expandable particles include a microencapsulated foaming agent composed of an outer shell made of a thermoplastic resin and an encapsulated component encapsulated in the outer shell and vaporized when heated to a predetermined temperature.
  • a microencapsulated foaming agent composed of an outer shell made of a thermoplastic resin and an encapsulated component encapsulated in the outer shell and vaporized when heated to a predetermined temperature.
  • the thermoplastic resin constituting the outer shell of the microencapsulated foaming agent include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
  • Examples of the inclusion component contained in the outer shell include propane, butane, pentane, hexane, heptane, octane, nonane, decane, isobutane, isopentane, isohexane, isoheptane, isooctane, isononane, isodecane, cyclopropane, cyclobutane, cyclopentane.
  • the maximum volume expansion coefficient when heated to a temperature equal to or higher than the expansion start temperature (t) of the thermally expandable particles used in one embodiment of the present invention is preferably 1.5 to 100 times, more preferably 2 to 80 times, Preferably it is 2.5 to 60 times, and more preferably 3 to 40 times.
  • the expandable base material layer (Y1) included in the support layer (II) used in one embodiment of the present invention is a layer that contains expandable particles and can be expanded by an expansion treatment such as a predetermined heat treatment.
  • the surface of the expandable base material layer (Y1) is a surface by an oxidation method, an unevenness forming method, or the like.
  • Treatment, easy adhesion treatment, or primer treatment may be performed.
  • the oxidation method include corona discharge treatment, plasma discharge treatment, chromic acid treatment (wet), hot air treatment, ozone, and ultraviolet irradiation treatment.
  • the unevenness method include sand blast method and solvent treatment method. Etc.
  • the expandable substrate layer (Y1) when the expandable substrate layer (Y1) includes thermally expandable particles, the expandable substrate layer (Y1) preferably satisfies the following requirement (1).
  • the storage elastic modulus E ′ of the expandable base material layer (Y1) at a predetermined temperature means a value measured by the method described in the examples.
  • the requirement (1) can be said to be an index indicating the rigidity of the expandable base material layer (Y1) immediately before the thermally expandable particles expand.
  • the expandable base material layer (Y1) satisfying the above requirement (1) becomes sufficiently large by expansion of the thermally expandable particles at the expansion start temperature (t), and the curable resin layer (I) is laminated. Unevenness is likely to be formed on the surface of the support layer (II) on the outer side. As a result, a laminate that can be easily separated with a slight force at the interface P between the support layer (II) and the cured resin layer (I ′) can be obtained.
  • the storage elastic modulus E ′ (t) of the expandable base material layer (Y1) defined by requirement (1) is preferably 9.0 ⁇ 10 6 Pa or less, more preferably 8.0 ⁇ 10. 6 Pa or less, more preferably 6.0 ⁇ 10 6 Pa or less, and even more preferably 4.0 ⁇ 10 6 Pa or less. Moreover, the flow of the expanded expansible particles is suppressed, and the shape maintaining property of the unevenness formed on the surface of the support layer (II) on the side where the curable resin layer (I) is laminated is improved.
  • the storage elastic modulus E ′ (t) of the expandable base material layer (Y1) defined by the requirement (1) is preferably 1.0 ⁇ 10 3 Pa from the viewpoint of enabling easy separation with a slight force. As mentioned above, More preferably, it is 1.0 * 10 ⁇ 4 > Pa or more, More preferably, it is 1.0 * 10 ⁇ 5 > Pa or more.
  • the expandable base layer (Y1) is preferably formed from a resin composition (y) containing a resin and expandable particles.
  • the substrate additive include an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, a slip agent, an antiblocking agent, and a colorant.
  • These base material additives may be used alone or in combination of two or more. When these base material additives are contained, the content of each base material additive is preferably 0.0001 to 20 parts by mass, more preferably 0.001 to about 100 parts by mass of the resin. 10 parts by mass.
  • the content of the expandable particles is preferably 1 to 40 with respect to the total mass (100% by mass) of the expandable base material layer (Y1) or the total amount (100% by mass) of the active ingredients of the resin composition (y).
  • the amount is 5% by mass, more preferably 5 to 35% by mass, still more preferably 10 to 30% by mass, and still more preferably 15 to 25% by mass.
  • the resin contained in the resin composition (y) that is a material for forming the expandable base material layer (Y1) may be a non-adhesive resin or an adhesive resin. That is, even if the resin contained in the resin composition (y) is an adhesive resin, the adhesive resin is polymerizable in the process of forming the expandable substrate layer (Y1) from the resin composition (y).
  • the resin obtained by polymerization reaction with the compound may be a non-adhesive resin, and the expandable base material layer (Y1) containing the resin may be non-adhesive.
  • the mass average molecular weight (Mw) of the resin contained in the resin composition (y) is preferably 1,000 to 1,000,000, more preferably 1,000 to 700,000, and still more preferably 1,000 to 500,000. It is.
  • the form of the copolymer is not particularly limited, and any of a block copolymer, a random copolymer, and a graft copolymer It may be.
  • the content of the resin is preferably 50 to 99 mass with respect to the total mass (100 mass%) of the expandable base material layer (Y1) or the total amount of active ingredients (100 mass%) of the resin composition (y). %, More preferably 60 to 95% by mass, still more preferably 65 to 90% by mass, and still more preferably 70 to 85% by mass.
  • the resin contained in the resin composition (y) is selected from acrylic urethane resins and olefin resins. It is preferable to contain seeds or more.
  • acrylic urethane type resin acrylic urethane type resin (U1) formed by superposing
  • urethane prepolymer (UP) serving as the main chain of the acrylic urethane resin (U1) include a reaction product of a polyol and a polyvalent isocyanate.
  • the urethane prepolymer (UP) is preferably obtained by further subjecting it to a chain extension reaction using a chain extender.
  • Examples of the polyol used as a raw material for the urethane prepolymer (UP) include alkylene type polyols, ether type polyols, ester type polyols, ester amide type polyols, ester / ether type polyols, and carbonate type polyols. These polyols may be used independently and may use 2 or more types together.
  • the polyol used in one embodiment of the present invention is preferably a diol, more preferably an ester diol, an alkylene diol, and a carbonate diol, and even more preferably an ester diol and a carbonate diol.
  • ester type diols include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol; ethylene glycol, propylene glycol, One or more selected from diols such as alkylene glycols such as diethylene glycol and dipropylene glycol; phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, diphenylmethane-4 , 4'-dicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, het acid, maleic acid, fumaric acid, itaconic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1,4-dicarbox
  • alkylene type diol examples include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol; ethylene glycol, propylene glycol, And alkylene glycols such as diethylene glycol and dipropylene glycol; polyalkylene glycols such as polyethylene glycol, polypropylene glycol, and polybutylene glycol; polyoxyalkylene glycols such as polytetramethylene glycol; and the like.
  • alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol
  • ethylene glycol, propylene glycol And alkylene glycols such as diethylene glycol and dipropylene glycol
  • Examples of the carbonate type diol include 1,4-tetramethylene carbonate diol, 1,5-pentamethylene carbonate diol, 1,6-hexamethylene carbonate diol, 1,2-propylene carbonate diol, and 1,3-propylene carbonate diol. 2,2-dimethylpropylene carbonate diol, 1,7-heptamethylene carbonate diol, 1,8-octamethylene carbonate diol, 1,4-cyclohexane carbonate diol, and the like.
  • polyvalent isocyanate used as a raw material for the urethane prepolymer (UP) examples include aromatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates. These polyvalent isocyanates may be used alone or in combination of two or more. These polyisocyanates may be a trimethylolpropane adduct type modified product, a burette type modified product reacted with water, or an isocyanurate type modified product containing an isocyanurate ring.
  • the polyisocyanate used in one embodiment of the present invention is preferably diisocyanate, and 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (2,4-TDI), 2,6 More preferred is at least one selected from tolylene diisocyanate (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanate.
  • MDI 4,4′-diphenylmethane diisocyanate
  • 2,4-TDI 2,4-tolylene diisocyanate
  • 2,6 More preferred is at least one selected from tolylene diisocyanate (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanate.
  • alicyclic diisocyanate examples include 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane.
  • IPDI isophorone diisocyanate
  • Examples include diisocyanate, methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, and isophorone diisocyanate (IPDI) is preferred.
  • the urethane prepolymer (UP) serving as the main chain of the acrylic urethane resin (U1) is a reaction product of a diol and a diisocyanate, and is a straight chain having ethylenically unsaturated groups at both ends.
  • a urethane prepolymer is preferred.
  • an NCO group at the end of the linear urethane prepolymer obtained by reacting a diol and a diisocyanate compound, and a hydroxyalkyl (meth) acrylate And a method of reacting with.
  • hydroxyalkyl (meth) acrylate examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxy Examples thereof include butyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate.
  • the (meth) acrylic acid ester is preferably one or more selected from alkyl (meth) acrylates and hydroxyalkyl (meth) acrylates, and more preferably used in combination with alkyl (meth) acrylates and hydroxyalkyl (meth) acrylates.
  • the proportion of hydroxyalkyl (meth) acrylate to 100 parts by mass of alkyl (meth) acrylate is preferably 0.1 to 100 parts by mass, The amount is preferably 0.5 to 30 parts by mass, more preferably 1.0 to 20 parts by mass, and still more preferably 1.5 to 10 parts by mass.
  • the carbon number of the alkyl group of the alkyl (meth) acrylate is preferably 1 to 24, more preferably 1 to 12, still more preferably 1 to 8, and still more preferably 1 to 3.
  • hydroxyalkyl (meth) acrylate the same thing as the hydroxyalkyl (meth) acrylate used in order to introduce
  • vinyl compounds other than (meth) acrylic acid esters include aromatic hydrocarbon vinyl compounds such as styrene, ⁇ -methylstyrene, and vinyl toluene; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; vinyl acetate and vinyl propionate.
  • Polar group-containing monomers such as (meth) acrylonitrile, N-vinylpyrrolidone, (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, and meta (acrylamide). These may be used alone or in combination of two or more.
  • the content of the (meth) acrylic acid ester in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, and still more preferably based on the total amount (100% by mass) of the vinyl compound. It is 80 to 100% by mass, more preferably 90 to 100% by mass.
  • the total content of alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass with respect to the total amount (100% by mass) of the vinyl compound. It is 100% by mass, more preferably 80 to 100% by mass, and still more preferably 90 to 100% by mass.
  • the content ratio of the structural unit (u11) derived from the urethane prepolymer (UP) and the structural unit (u12) derived from the vinyl compound [(u11 ) / (U12)] is preferably 10/90 to 80/20, more preferably 20/80 to 70/30, still more preferably 30/70 to 60/40, and still more preferably 35 by mass ratio. / 65 to 55/45.
  • the olefin resin suitable as the resin contained in the resin composition (y) is a polymer having at least a structural unit derived from an olefin monomer.
  • the olefin monomer is preferably an ⁇ -olefin having 2 to 8 carbon atoms, and specifically includes ethylene, propylene, butylene, isobutylene, 1-hexene and the like. Among these, ethylene and propylene are preferable.
  • olefinic resins for example, ultra low density polyethylene (VLDPE, density: 880 kg / m 3 or more 910 kg / m less than 3), low density polyethylene (LDPE, density: 910 kg / m 3 or more 915 kg / m less than 3 ), Medium density polyethylene (MDPE, density: 915 kg / m 3 or more and less than 942 kg / m 3 ), high density polyethylene (HDPE, density: 942 kg / m 3 or more), linear low density polyethylene, etc .; polypropylene resin (PP); polybutene resin (PB); ethylene-propylene copolymer; olefin elastomer (TPO); poly (4-methyl-1-pentene) (PMP); ethylene-vinyl acetate copolymer (EVA); Vinyl alcohol copolymer (EVOH); ethylene-propylene Olefinic terpolymers such as-(5-ethylidene-2-norborn
  • the olefin resin may be a modified olefin resin further modified by one or more selected from acid modification, hydroxyl group modification, and acrylic modification.
  • an acid-modified olefin resin obtained by subjecting an olefin resin to acid modification a modified polymer obtained by graft polymerization of the above-mentioned unmodified olefin resin with an unsaturated carboxylic acid or its anhydride.
  • unsaturated carboxylic acid or anhydride thereof include maleic acid, fumaric acid, itaconic acid, citraconic acid, glutaconic acid, tetrahydrophthalic acid, aconitic acid, (meth) acrylic acid, maleic anhydride, itaconic anhydride.
  • Glutaconic anhydride citraconic anhydride, aconitic anhydride, norbornene dicarboxylic anhydride, tetrahydrophthalic anhydride, and the like.
  • unsaturated carboxylic acid or its anhydride may be used independently, and may use 2 or more types together.
  • an acrylic modified olefin resin obtained by subjecting an olefin resin to acrylic modification a modification obtained by graft polymerization of an alkyl (meth) acrylate as a side chain to the above-mentioned unmodified olefin resin as a main chain.
  • a polymer is mentioned.
  • the number of carbon atoms of the alkyl group contained in the alkyl (meth) acrylate is preferably 1 to 20, more preferably 1 to 16, and still more preferably 1 to 12.
  • the same thing as the compound which can be selected as a below-mentioned monomer (a1 ') is mentioned, for example.
  • Examples of the hydroxyl group-modified olefin resin obtained by subjecting an olefin resin to hydroxyl group modification include a modified polymer obtained by graft polymerization of a hydroxyl group-containing compound to the above-mentioned unmodified olefin resin, which is the main chain.
  • Examples of the hydroxyl group-containing compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxybutyl.
  • Examples thereof include hydroxyalkyl (meth) acrylates such as (meth) acrylate and 4-hydroxybutyl (meth) acrylate; unsaturated alcohols such as vinyl alcohol and allyl alcohol.
  • the resin composition (y) may contain a resin other than the acrylic urethane-based resin and the olefin-based resin as long as the effects of the present invention are not impaired.
  • Such resins include vinyl resins such as polyvinyl chloride, polyvinylidene chloride, and polyvinyl alcohol; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer Polycarbonate; Polyurethane not applicable to acrylic urethane resin; Polysulfone; Polyetheretherketone; Polyethersulfone; Polyphenylene sulfide; Polyimide resin such as polyetherimide and polyimide; Polyamide resin; Acrylic resin; Fluorine resin etc. are mentioned.
  • vinyl resins such as polyvinyl chloride, polyvinylidene chloride, and polyvinyl alcohol
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate
  • polystyrene acrylonitrile-butadiene-styren
  • the content ratio of the resin other than the acrylic urethane resin and the olefin resin in the resin composition (y) is smaller. preferable.
  • the content ratio of the resin other than the acrylic urethane-based resin and the olefin-based resin is preferably less than 30 parts by weight, more preferably 20 parts by weight with respect to 100 parts by weight of the total amount of the resin contained in the resin composition (y). Less than 10 parts by weight, more preferably less than 10 parts by weight, even more preferably less than 5 parts by weight, and even more preferably less than 1 part by weight.
  • solvent-free resin composition (y1) As the resin composition (y) used in one embodiment of the present invention, an oligomer having an ethylenically unsaturated group having a mass average molecular weight (Mw) of 50,000 or less, an energy ray polymerizable monomer, and the above-mentioned expandable particles A solventless resin composition (y1) that is blended and does not contain a solvent is mentioned. In the solventless resin composition (y1), no solvent is added, but the energy beam polymerizable monomer contributes to the improvement of the plasticity of the oligomer. By irradiating the coating film formed from the solventless resin composition (y1) with energy rays, it is easy to form an expandable base material layer (Y1) that satisfies the above requirement (1).
  • Mw mass average molecular weight
  • the type, shape, and blending amount (content) of the expandable particles blended in the solventless resin composition (y1) are as described above.
  • the mass average molecular weight (Mw) of the oligomer contained in the solventless resin composition (y1) is 50,000 or less, preferably 1,000 to 50,000, more preferably 20,000 to 40. 3,000, more preferably 3,000 to 35,000, and still more preferably 4,000 to 30,000.
  • oligomer As said oligomer, what is necessary is just to have an ethylenically unsaturated group whose mass mean molecular weight is 50,000 or less among resin contained in the above-mentioned resin composition (y). Polymer (UP) is preferred. As the oligomer, a modified olefin resin having an ethylenically unsaturated group can also be used.
  • the total content of the oligomer and the energy beam polymerizable monomer in the solventless resin composition (y1) is preferably 50 to 100% based on the total amount (100% by mass) of the solventless resin composition (y1). It is 99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 90% by mass, and still more preferably 70 to 85% by mass.
  • Examples of the energy ray polymerizable monomer include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxy (meth) acrylate, cyclohexyl (meth) acrylate, adamantane ( Cycloaliphatic polymerizable compounds such as (meth) acrylate and tricyclodecane acrylate; Aromatic polymerizable compounds such as phenylhydroxypropyl acrylate, benzyl acrylate and phenol ethylene oxide modified acrylate; Tetrahydrofurfuryl (meth) acrylate, morpholine acrylate, N- And heterocyclic polymerizable compounds such as vinylpyrrolidone and N-vinylcaprolactam. These energy beam polymerizable monomers may be used independently and may use 2 or more types together.
  • the mixing ratio of the oligomer to the energy beam polymerizable monomer is preferably 20/80 to 90/10, more preferably 30/70 to 85/15, and still more preferably 35/65. ⁇ 80/20.
  • the solventless resin composition (y1) is further blended with a photopolymerization initiator.
  • a photopolymerization initiator By containing the photopolymerization initiator, the curing reaction can be sufficiently advanced even by irradiation with a relatively low energy beam.
  • photopolymerization initiator examples include 1-hydroxy-cyclohexyl-phenyl-ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzyl phenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyrol. Nitrile, dibenzyl, diacetyl, 8-chloroanthraquinone and the like can be mentioned. These photoinitiators may be used independently and may use 2 or more types together.
  • the blending amount of the photopolymerization initiator is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 4 parts by mass with respect to the total amount (100 parts by mass) of the oligomer and energy beam polymerizable monomer.
  • the amount is preferably 0.02 to 3 parts by mass.
  • Non-expandable base material layer (Y2) Examples of the material for forming the non-intumescent base material layer (Y2) constituting the base material (Y) include paper materials, resins, metals, and the like. You can choose.
  • the expandable substrate layer (Y1) on the non-expandable substrate layer (Y2) side is provided.
  • Y2) preferably has a rigidity that does not deform due to expansion of the expandable particles.
  • the storage elastic modulus E ′ (t) of the non-expandable base material layer (Y2) at the temperature (t) at the start of expansion of the expandable particles is 1.1 ⁇ 10 7 Pa or more. Is preferred.
  • Examples of the paper material include thin paper, medium quality paper, high quality paper, impregnated paper, coated paper, art paper, sulfate paper, glassine paper, and the like.
  • Examples of the resin include polyolefin resins such as polyethylene and polypropylene; vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol copolymer; polyethylene terephthalate, poly Polyester resins such as butylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; cellulose triacetate; polycarbonate; urethane resin such as polyurethane and acrylic modified polyurethane; polymethylpentene; polysulfone; polyether ether ketone; Polyethersulfone; Polyphenylene sulfide; Polyimide resin such as poly
  • These forming materials may be composed of one kind or in combination of two or more kinds.
  • a non-intumescent substrate layer (Y2) using two or more kinds of forming materials in combination a paper film is laminated with a thermoplastic resin such as polyethylene, and a metal film is formed on the surface of a resin film or sheet containing the resin. And the like.
  • a method for forming the metal layer for example, the above metal is deposited by a PVD method such as vacuum deposition, sputtering, or ion plating, or a metal foil made of the above metal is attached using a general adhesive. And the like.
  • the non-expandable base layer (Y2) contains a resin
  • the non-expandable base layer Also on the surface of (Y2) similarly to the above-mentioned expandable base material layer (Y1), a surface treatment by an oxidation method, a concavo-convex method, an easy adhesion treatment, or a primer treatment may be performed.
  • the non-intumescent base material layer (Y2) contains a resin
  • it may contain the above-mentioned base material additive that can be contained in the resin composition (y) together with the resin.
  • a non-expandable base material layer (Y2) is a non-expandable layer judged based on the above-mentioned method. Therefore, the volume change rate (%) of the non-intumescent substrate layer (Y2) calculated from the above formula is less than 5% by volume, preferably less than 2% by volume, more preferably less than 1% by volume. More preferably, it is less than 0.1 volume%, More preferably, it is less than 0.01 volume%.
  • a non-expandable base material layer (Y2) may contain an expandable particle.
  • the volume change rate can be adjusted to the above range even if the expandable particles are contained.
  • the non-expandable base material layer (Y2) does not contain expandable particles.
  • the non-expandable base material layer (Y2) contains inflatable particles, the content is preferably as small as possible, and the specific content of the inflatable particles is as follows.
  • the pressure-sensitive adhesive layer (V) of the support layer (II) used in one embodiment of the present invention can be formed from a pressure-sensitive adhesive composition (v) containing a pressure-sensitive resin.
  • the pressure-sensitive adhesive composition (v) may contain pressure-sensitive adhesive additives such as a crosslinking agent, a tackifier, a polymerizable compound, and a polymerization initiator, if necessary.
  • pressure-sensitive adhesive additives such as a crosslinking agent, a tackifier, a polymerizable compound, and a polymerization initiator, if necessary.
  • the first pressure-sensitive adhesive layer (V1-1) or (V1) and the second pressure-sensitive adhesive layer (V1-2) or (V2) can also be formed from the pressure-sensitive adhesive composition (v) containing the following components.
  • the resin alone is preferably a polymer having adhesiveness and a mass average molecular weight (Mw) of 10,000 or more.
  • the mass average molecular weight (Mw) of the adhesive resin used in one embodiment of the present invention is preferably 10,000 to 2,000,000, more preferably 20,000 to 1,500,000, and even more preferably 30,000, from the viewpoint of improving adhesive force. ⁇ 1 million.
  • the adhesive resin examples include rubber resins such as acrylic resins, urethane resins, and polyisobutylene resins, polyester resins, olefin resins, silicone resins, and polyvinyl ether resins. These adhesive resins may be used independently and may use 2 or more types together. In addition, when these adhesive resins are copolymers having two or more kinds of structural units, the form of the copolymer is not particularly limited, and a block copolymer, a random copolymer, and a graft copolymer are not limited. Any of polymers may be used.
  • the adhesive resin preferably contains an acrylic resin from the viewpoint of exhibiting excellent adhesive strength.
  • the curable resin layer I As the first pressure-sensitive adhesive layer (V1-1) or (V1) in contact with) contains an acrylic resin, irregularities are formed on the surface of the first pressure-sensitive adhesive layer (V1-1) or (V1). It can be made easy.
  • the content of the acrylic resin in the adhesive resin is preferably from 30 to the total amount (100% by mass) of the adhesive resin contained in the adhesive composition (v) or the adhesive layer (V). It is 100% by mass, more preferably 50 to 100% by mass, still more preferably 70 to 100% by mass, and still more preferably 85 to 100% by mass.
  • the content of the adhesive resin is preferably 35 to 100 with respect to the total amount (100% by mass) of the active ingredients of the adhesive composition (v) or the total mass (100% by mass) of the adhesive layer (V).
  • the mass is more preferably 50 to 100% by mass, still more preferably 60 to 98% by mass, and still more preferably 70 to 95% by mass.
  • the pressure-sensitive adhesive composition (v) preferably further contains a cross-linking agent when it contains a pressure-sensitive adhesive resin having a functional group.
  • the said crosslinking agent reacts with the adhesive resin which has a functional group, and bridge
  • crosslinking agent examples include an isocyanate crosslinking agent, an epoxy crosslinking agent, an aziridine crosslinking agent, and a metal chelate crosslinking agent. These crosslinking agents may be used independently and may use 2 or more types together. Among these crosslinking agents, an isocyanate-based crosslinking agent is preferable from the viewpoints of increasing cohesive force and improving adhesive force, and availability.
  • the content of the crosslinking agent is appropriately adjusted depending on the number of functional groups that the adhesive resin has, but is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the adhesive resin having a functional group, The amount is more preferably 0.03 to 7 parts by mass, still more preferably 0.05 to 5 parts by mass.
  • the pressure-sensitive adhesive composition (v) may further contain a tackifier from the viewpoint of further improving the adhesive strength.
  • the “tackifier” is a component that assists in improving the adhesive strength of the above-mentioned adhesive resin, and refers to an oligomer having a mass average molecular weight (Mw) of less than 10,000. It is distinguished from a functional resin.
  • the weight average molecular weight (Mw) of the tackifier is preferably 400 to 10,000, more preferably 500 to 8,000, and still more preferably 800 to 5,000.
  • Examples of the tackifier are obtained by copolymerizing C5 fractions such as rosin resin, terpene resin, styrene resin, pentene, isoprene, piperine, 1,3-pentadiene generated by thermal decomposition of petroleum naphtha.
  • C9 petroleum resin obtained by copolymerizing C9 fractions such as indene generated by thermal decomposition of petroleum naphtha and vinyltoluene, and hydrogenated resins obtained by hydrogenating these.
  • the softening point of the tackifier is preferably 60 to 170 ° C, more preferably 65 to 160 ° C, and further preferably 70 to 150 ° C.
  • the “softening point” of the tackifier means a value measured according to JIS K2531.
  • a tackifier may be used independently and may use 2 or more types from which a softening point, a structure, etc. differ. And when using 2 or more types of several tackifier, it is preferable that the weighted average of the softening point of these several tackifier belongs to the said range.
  • the content of the tackifier is preferably 0.01 to the total amount (100% by mass) of the active ingredient in the adhesive composition (v) or the total mass (100% by mass) of the adhesive layer (V). It is 65% by mass, more preferably 0.1 to 50% by mass, still more preferably 1 to 40% by mass, and still more preferably 2 to 30% by mass.
  • the pressure-sensitive adhesive composition (v) contains an additive for pressure-sensitive adhesives used for general pressure-sensitive adhesives in addition to the above-mentioned additives, as long as the effects of the present invention are not impaired. You may do it.
  • adhesive additives include antioxidants, softeners (plasticizers), rust inhibitors, pigments, dyes, retarders, reaction accelerators (catalysts), ultraviolet absorbers, antistatic agents, and the like. Is mentioned.
  • These pressure-sensitive adhesive additives may be used alone or in combination of two or more.
  • the content of each pressure-sensitive adhesive additive is preferably 0.0001 to 20 parts by mass, more preferably 0.001 to 100 parts by mass of the adhesive resin. ⁇ 10 parts by mass.
  • the 2nd adhesive layer (V2) which is an expandable adhesive layer Is formed from the above-mentioned pressure-sensitive adhesive composition (v) and the expandable pressure-sensitive adhesive composition (v22) further containing expandable particles.
  • the expandable particles are as described above.
  • the content of the expandable particles is preferably 1 with respect to the total amount (100% by mass) of the active ingredient in the expandable pressure-sensitive adhesive composition (v22) or the total mass (100% by mass) of the expandable pressure-sensitive adhesive layer. It is ⁇ 70% by mass, more preferably 2 to 60% by mass, further preferably 3 to 50% by mass, and still more preferably 5 to 40% by mass.
  • the pressure-sensitive adhesive composition (v) which is a material for forming the non-expandable pressure-sensitive adhesive layer preferably does not contain expandable particles.
  • the content is preferably as small as possible, and the total amount (100% by mass) of the active ingredient in the pressure-sensitive adhesive composition (v) or the total mass (100% by mass) of the pressure-sensitive adhesive layer (V).
  • it is preferably less than 1% by mass, more preferably less than 0.1% by mass, further preferably less than 0.01% by mass, and still more preferably less than 0.001% by mass.
  • a support layer having a first pressure-sensitive adhesive layer (V1-1) and a second pressure-sensitive adhesive layer (V1-2), which are non-intumescent pressure-sensitive adhesive layers.
  • the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (V1-1), which is a non-expandable pressure-sensitive adhesive layer at 23 ° C. is preferably 1.0 ⁇ 10 8. Pa or less, more preferably 5.0 ⁇ 10 7 Pa or less, and even more preferably 1.0 ⁇ 10 7 Pa or less.
  • the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (V1-1), which is a non-expandable pressure-sensitive adhesive layer is 1.0 ⁇ 10 8 Pa or less, for example, the laminate shown in FIG.
  • the first pressure-sensitive adhesive layer that is in contact with the cured resin layer (I ′) due to the expansion of the expandable particles in the expandable base material layer (Y1) by the heat expansion treatment when the configuration is as in 2a and 2b Unevenness is easily formed on the surface of (V1-1). As a result, it is possible to obtain a laminate that can be easily separated in a lump with a slight force at the interface P between the support layer (II) and the cured resin layer (I ′).
  • the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (V1-1), which is a non-expandable pressure-sensitive adhesive layer, at 23 ° C. is preferably 1.0 ⁇ 10 4 Pa or more, and more preferably Is 5.0 ⁇ 10 4 Pa or more, more preferably 1.0 ⁇ 10 5 Pa or more.
  • the light transmittance at a wavelength of 365 nm of the support layer (II) included in the laminate of one embodiment of the present invention is preferably 30% or more, more preferably 50% or more, and further preferably 70% or more.
  • the curing degree of the curable resin layer (I) is further improved when the curable resin layer (I) is irradiated with energy rays (ultraviolet rays) via the support layer (II).
  • the upper limit of the light transmittance at a wavelength of 365 nm is not particularly limited, but can be, for example, 95% or less.
  • the substrate (Y) and the pressure-sensitive adhesive layer (V) included in the support layer (II) preferably do not contain a colorant.
  • the content is preferably as small as possible, and is based on the total amount (100% by mass) of the active ingredients of the pressure-sensitive adhesive composition (v) or the total mass (100% by mass) of the pressure-sensitive adhesive layer (V).
  • the content of the colorant is preferably less than 1% by mass with respect to the total amount (100% by mass) of the active ingredients of the resin composition (y) or the total mass (100% by mass) of the substrate (Y).
  • it is less than 0.1 mass%, More preferably, it is less than 0.01 mass%, More preferably, it is less than 0.001 mass%.
  • sealing object examples of the sealing object placed on a part of the surface of the curable resin layer (I) include a semiconductor chip, a semiconductor wafer, a compound semiconductor, a semiconductor package, an electronic component, a sapphire substrate, a display, a panel substrate, and the like. Is mentioned.
  • a semiconductor chip with a cured resin layer can be manufactured by using the warp preventing laminate of one embodiment of the present invention.
  • a conventionally known semiconductor chip can be used as the semiconductor chip, and an integrated circuit composed of circuit elements such as transistors, resistors, and capacitors is formed on the circuit surface.
  • a semiconductor chip is mounted so that the back surface on the opposite side to a circuit surface may be covered with the surface of a thermosetting resin layer. In this case, the circuit surface of the semiconductor chip is exposed after placement.
  • a known device such as a flip chip bonder or a die bonder can be used. The layout and number of semiconductor chips may be determined as appropriate according to the target package form, number of production, and the like.
  • the laminate for warpage prevention can be produced by the following method. First, a curable resin layer (I) is formed on a release film by applying and drying a curable resin composition. When the curable resin layer (I) is composed of two layers, each curable resin composition is formed on a separate release film and laminated so that both layers are in direct contact with each other. A resin layer is produced. The first curable resin composition is coated on the release film and dried to form the first curable resin layer (X1-1). Next, the first curable resin layer (X1-1) is formed on the release film. A laminated curable resin layer can also be produced by applying and drying the second curable resin layer (X1-2) or (X2).
  • the support layer (II) is formed by applying and drying the pressure-sensitive adhesive composition on the release film to form the pressure-sensitive adhesive layer (V), and then applying the resin material constituting the base material layer to the pressure-sensitive adhesive layer. It can be produced by coating and drying on top or attaching a sheet-like base material to the pressure-sensitive adhesive layer to form the base material layer.
  • the base material layer is composed of a plurality of layers
  • the resin material constituting the second base material layer is applied and dried on the first base material layer, and then the second base material layer is formed.
  • the base material layer is formed.
  • the pressure-sensitive adhesive composition is applied and dried on the second base material layer to form the second pressure-sensitive adhesive layer.
  • the first aspect of the method for producing a cured encapsulant of the present invention is a method for producing a cured encapsulant using the laminate of one aspect of the present invention, comprising the following steps (i) to (iv): Have.
  • FIG. 6 is a schematic cross-sectional view showing a process for producing a cured encapsulant with a cured resin layer, and more specifically, a cured encapsulant using a warp-preventing laminate 1a shown in FIG. 1 (b). It is the cross-sectional schematic diagram which showed the process of manufacturing. Hereinafter, each process described above will be described with reference to FIG. 6 as appropriate.
  • FIG. 6A shows a state where the adhesive surface of the pressure-sensitive adhesive layer (V1) of the support layer (II) is attached to the support 50 using the warp-preventing laminate 1b
  • FIG. These show a mode that the sealing target object 60 is mounted in a part of surface of curable resin layer (I).
  • 6 shows an example in which the laminate 1b shown in FIG. 1B is used.
  • the support is similarly used. Then, the warp preventing laminate and the sealing object are laminated or placed in this order.
  • the temperature condition in the step (i) when thermally expandable particles are used as the expandable particles, it is preferably performed at a temperature at which the thermally expandable particles do not expand, for example, in an environment of 0 to 80 ° C. (however, When the expansion start temperature (t) is 60 to 80 ° C., it is preferably performed in an environment less than the expansion start temperature (t).
  • the irradiation device is stopped or at a position away from the irradiation device, as necessary, so that the energy rays that contribute to particle expansion are not irradiated.
  • Step (i) is performed under a filter or mask for cutting energy rays.
  • the support is preferably attached to the entire pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (V1) of the laminate. Therefore, the support is preferably plate-shaped. Moreover, as shown in FIG. 6, it is preferable that the area of the adhesive surface of the adhesive layer (V1) and the surface of the support on the side to be attached is equal to or larger than the area of the adhesive surface of the adhesive layer (V1).
  • the material constituting the support depending on the type of sealing object, the type of sealing material used in step (ii), etc., considering the required properties such as mechanical strength and heat resistance, it is appropriate Selected.
  • Specific materials constituting the support include, for example, metal materials such as SUS; non-metallic inorganic materials such as glass and silicon wafers; epoxy resins, ABS resins, acrylic resins, engineering plastics, super engineering plastics, polyimide resins, Examples thereof include resin materials such as polyamideimide resin; composite materials such as glass epoxy resin, and among these, SUS, glass, silicon wafer and the like are preferable.
  • Examples of engineering plastics include nylon, polycarbonate (PC), and polyethylene terephthalate (PET).
  • Examples of super engineering plastics include polyphenylene sulfide (PPS), polyether sulfone (PES), and polyether ether ketone (PEEK).
  • the thickness of a support body is suitably selected according to the kind of sealing target object, the kind of sealing material used at process (ii), etc., Preferably it is 20 micrometers or more and 50 mm or less, More preferably, it is 60 micrometers or more. 20 mm or less.
  • examples of the sealing object placed on a part of the surface of the curable resin layer (I) include, for example, semiconductor chips, semiconductor wafers, compound semiconductors, semiconductor packages, electronic components, sapphire substrates, displays, and panels. Examples include substrates. In the following description, a case where a semiconductor chip is used as the sealing object 60 will be described as an example.
  • a semiconductor chip with a cured resin layer can be manufactured by using the stacked body of one embodiment of the present invention.
  • a conventionally known semiconductor chip can be used as the semiconductor chip, and an integrated circuit composed of circuit elements such as transistors, resistors, and capacitors is formed on the circuit surface.
  • a semiconductor chip is mounted so that the back surface on the opposite side to a circuit surface may be covered with the surface of curable resin layer (I). In this case, the circuit surface of the semiconductor chip is exposed after placement.
  • a known device such as a flip chip bonder or a die bonder can be used for mounting the semiconductor chip.
  • the layout and number of semiconductor chips may be determined as appropriate according to the target package form, number of production, and the like.
  • the surface of the curable resin layer (I) of this embodiment (in the example of FIG. 6, the surface of the non-expandable thermosetting resin layer (X1) opposite to the support layer (II)) is curable.
  • the first surface is affixed to a glass plate at a temperature of 70 ° C. and cured at a temperature of 23 ° C., a peeling angle of 180 °, and a peeling speed of 300 mm / min. Bonding of the semiconductor chip 60 as an object to be sealed to the surface of the curable resin layer (I) by setting the value to 1.7 N / 25 mm or more as measured when the resin layer (I) is peeled off. At this time, the semiconductor chip 60 is securely fixed, and displacement can be prevented.
  • tilt misalignment misalignment that rotates around an axis in a direction perpendicular to the warp preventing laminate 1b, which is difficult to discriminate as compared to a simple misalignment in the plane direction.
  • a region larger than the chip size is covered with a sealing material, such as FOWLP and FOPLP, so that not only the circuit surface of the semiconductor chip but also the sealing material is used.
  • a sealing material such as FOWLP and FOPLP
  • the semiconductor chip is placed on a part of the surface of the curable resin layer (I), and the plurality of semiconductor chips are placed on the surface in a state where they are aligned at a predetermined interval.
  • the plurality of semiconductor chips be mounted on the surface in a state where they are arranged in a matrix of a plurality of rows and a plurality of columns with a certain interval. The interval between the semiconductor chips may be determined as appropriate according to the form of the target package.
  • ⁇ Process (ii)> In the step (ii), the sealing object placed on the curable resin layer (I) and the first surface of the curable resin layer (I) at least around the sealing object are heated. Cover with a curable sealing material (hereinafter also referred to as “coating treatment”). In the coating process, first, the sealing object and at least the peripheral part of the sealing object on the surface of the curable resin layer (I) are covered with a sealing material. Specifically, as shown in FIG. 6C, a laminated body 1b that is affixed on a support 50 and on which a semiconductor chip 60 that is an object to be sealed is placed on the curable resin layer (I) is provided. The molding die 70 is disposed so as to be positioned in the molding die 70.
  • the sealing material is injected through the injection hole 71 into the forming space 72 formed between the forming die 70, the laminate 1 b and the sealing object 60.
  • the sealing material fills the gaps between the plurality of semiconductor chips while covering the entire exposed surface of the semiconductor chip 60 that is the object to be sealed.
  • the sealing material 80 is injected into the molding space 72 using a resin molding method in which a resin material is injected into a mold, represented by the transfer molding method, the curable resin (I)
  • the flow of the sealing material 80 is generated in the direction along the surface (see the arrow in FIG. 6C).
  • the sealing object 60 is fixed by the curable resin layer (I), and the shear strength of the curable resin layer (I) with respect to the measurement adherend is as described above.
  • a silicon chip (mirror surface) having a thickness of 350 ⁇ m and a size of 3 mm ⁇ 3 mm is used as the above-mentioned measurement adherend, and at a temperature of 70 ° C., the mirror surface of the measurement adherend is pressed against the curable resin layer (I) at 130 gf for 1 second. Since the value when measured at a speed of 200 ⁇ m / s is 20 N / (3 mm ⁇ 3 mm) or more, the sealing object 60 is prevented from being displaced or inclined.
  • the sealing material has a function of protecting the object to be sealed and its accompanying elements from the external environment.
  • the sealing material 80 used in the manufacturing method of one embodiment of the present invention is a thermosetting sealing material containing a thermosetting resin.
  • the sealing material may be a solid such as a granule, a pellet, or a film at room temperature, or a liquid in the form of a composition. From the viewpoint of workability, a sealing resin film that is a film-like sealing material is preferable.
  • a coating method besides the transfer molding method, it can be appropriately selected and applied according to the type of the sealing material from methods applied in the conventional sealing process, for example, a roll laminating method.
  • a vacuum pressing method, a vacuum laminating method, a spin coating method, a die coating method, a compression molding mold method, or the like can be applied.
  • the encapsulant after the coating treatment is thermally cured to form a cured encapsulant including an object to be encapsulated.
  • the curable resin layer (I) is also cured to form the cured resin layer (I ′).
  • a cured sealing body 85 in which the semiconductor chip 60 that is an object to be sealed is covered with the cured sealing material 81 by curing the sealing material 80. Get. As a result, the semiconductor chip 60 is protected by the hard material while maintaining the layout.
  • thermosetting resin layer (X1) is used as the curable resin layer (I)
  • the curing start temperature of the thermosetting sealing material 80 starts to be cured.
  • generation of the hardened thermosetting resin layer (X1 ')) can be advanced simultaneously. Therefore, in these cases, the number of heating steps for curing can be reduced, and the manufacturing process can be simplified.
  • the difference of the shrinkage stress between the two surfaces of the obtained cured sealing body 85 can be made small, and hardening is carried out. Warpage generated in the sealing body 85 can be effectively suppressed.
  • thermosetting the thermosetting resin layer (X1) simultaneously with the thermosetting of the encapsulant the difference in shrinkage stress between the two surfaces of the cured encapsulant 85 is reduced even in the curing process. And warpage is more effectively suppressed.
  • the heating temperature for curing in step (iii) is lower than the heating temperature for expansion in step (iv).
  • FIG. 6 (f) shows that the expandable base material layer (Y1) becomes an expandable base material layer (Y1 ′) by the treatment for expanding the expandable particles, and the cured resin layer (I ′) and the support layer expanded.
  • separated in the interface with (II ') is shown. As shown in FIG.
  • the sealing body 200 can be obtained.
  • the presence of the cured resin layer (I ′) has a function capable of effectively suppressing the warpage generated in the cured sealed body, and contributes to the improvement of the reliability of the sealed object.
  • the “expanding process” in the step (iv) is a process of expanding the thermally expandable particles by heating at an expansion start temperature (t) or higher when thermally expandable particles are used as the expandable particles.
  • an expansion start temperature (t) or higher when thermally expandable particles are used as the expandable particles.
  • irregularities are generated on the surface of the support layer (II) on the cured resin layer (I ′) side.
  • the separation can be easily performed at the interface P with a slight force.
  • the “temperature above the expansion start temperature (t)” for expanding the heat expandable particles is “expansion start temperature (t) + 10 ° C.” or more and “expansion start temperature” It is preferably (t) + 60 ° C.
  • the cured encapsulant 200 with a cured resin layer thus obtained is further subjected to necessary processing.
  • the cured resin layer as the warp correction layer is removed by grinding or the like while the semiconductor device is finally manufactured, and does not remain in the final semiconductor device.
  • the second aspect of the method for producing a cured encapsulant of the present invention is a method for producing a cured encapsulant using the laminate of one aspect of the present invention, which comprises the following steps (i ′) to (iv): Have Step (i ′): A part of the surface opposite to the first layer of the energy ray curable resin layer (X2), which is the first surface of the curable resin layer of the laminate for warpage prevention, Place the object to be sealed. Step (ii ′)-1: The energy beam curable resin layer (X2) is cured by irradiating energy beams.
  • Step (ii ′)-2 The object to be sealed and the first surface of the curable resin layer at least in the periphery of the object to be sealed are covered with a thermosetting sealing material.
  • FIG. 7 (a) shows that the curable resin layer (I) has a thermosetting resin layer (X1-1) on the support layer (II) side and an energy ray curable property on the side opposite to the support layer (II).
  • the state where the adhesive surface of the pressure-sensitive adhesive layer (V1) of the support layer (II) is stuck to the support 50 using the warp-preventing laminate 5 (see FIG. 5) consisting of the resin layer (X2) is shown in FIG. 7 (b) shows a state in which the sealing object 60 is placed on a part of the surface of the curable resin layer (I).
  • the surface of the curable resin layer (I) of the present embodiment (in the example of FIG. 7, the surface opposite to the support layer (II) of the energy ray curable resin layer (X2)) is curable.
  • the adhesive strength is that the first surface is attached to a glass plate at a temperature of 70 ° C., and the curable resin layer (I) is peeled off at a temperature of 23 ° C., a peeling angle of 180 °, and a peeling speed of 300 mm / min. If the measured value is 1.7 N / 25 mm or more, the sealing object 60 is securely fixed when the sealing object 60 is bonded to the surface of the curable resin layer (I). This makes it easy to prevent positional deviation including tilt deviation.
  • Step (ii ′)-1 irradiates the energy ray curable resin layer (X2) with energy rays to form a cured resin layer (I * ) formed by curing the energy ray curable resin layer (X2). It is a process to do.
  • FIG. 7C is partially cured by forming a cured energy beam curable resin layer (X2 ′) by curing the energy beam curable resin layer (X2) in this step ( That is, it shows a state in which a cured resin layer (I * ) in which the first surface side layer is cured) is formed.
  • the type of energy beam and the irradiation conditions are not particularly limited as long as the energy beam curable resin layer (X2) is cured to such an extent that it sufficiently exhibits its function. What is necessary is just to select suitably according to the process to perform.
  • an ultraviolet curable resin composition is used as a material constituting the energy ray curable resin layer (X2)
  • a wide range of materials can be selected, and it is easily available as an energy ray source for curing the composition. It is possible to use an ultraviolet irradiation device that is excellent in handleability.
  • the illuminance of the energy rays at the time of curing of the energy ray curable resin layer (X2) is preferably 4 to 280 mW / cm 2 , and the light amount of the energy rays at the time of curing is 3 to 1,000 mJ / cm 2. 2 is preferable.
  • step (iii ′) including thermosetting Prior to the step (iii ′) including thermosetting, irradiation of energy rays in the step (ii ′)-1 prevents the energy ray curable resin from being cleaved by heating and causing a curing reaction to proceed.
  • the curing reaction by the line can be efficiently advanced. Moreover, it can also prevent that the low molecular component (photopolymerization initiator etc.) contained in energy-beam curable resin volatilizes by heating, and contaminates a sealing target object.
  • the energy ray curable resin layer with energy rays prior to thermosetting the energy ray curable resin (X2) is prevented from being cured and contracted by heating for thermosetting, and the sealing resin. And the adhesiveness between the energy ray curable resin (X2) can be prevented from being lowered.
  • step (ii ′)-2 After the sealing object 60 is arranged and the energy beam curable resin layer (X2 ′) cured by irradiating the energy beam is formed, in step (ii ′)-2, FIG.
  • the sealing material 80 is injected using a molding die (not shown). At this time, although the flow of the sealing material is generated in the surface direction, the sealing object 60 is fixed by the cured energy ray curable resin layer (X2 ′) and is used for measuring the curable resin layer (I).
  • a silicon chip with a thickness of 350 ⁇ m having a mirror surface of 3 mm ⁇ 3 mm as the shear strength for the adherend is used as the adherend for measurement, and the mirror surface of the adherend for measurement is curable at 130 gf for 1 second at a temperature of 70 ° C. Since it is 20 N / (3 mm ⁇ 3 mm) or more as measured at a speed of 200 ⁇ m / s and pressed onto the resin layer (I), it prevents the sealing object 60 from being displaced or inclined. can do.
  • the surface of the cured object 60 and the surrounding energy ray curable resin layer (X2 ′) is covered with the sealing material 80 as shown in FIG. Is called.
  • the encapsulant after the coating treatment is thermally cured to form a cured encapsulant including an object to be encapsulated.
  • the thermosetting resin layer (X1-1) is also cured to form a cured thermosetting resin layer (X1-1 ′), and both the first layer and the second layer are cured resin layers ( I ′).
  • thermosetting resin layer (X1-1) is used as the curable resin layer (I)
  • the thermosetting sealing material 80 and the curing start temperature are set to the same level. If the curing start temperature is different, or by heating to a higher curing start temperature or higher, the sealing material and the thermosetting resin layer can be cured simultaneously by one heating. be able to.
  • FIG. 7 (f) shows that the expandable base material layer (Y1) becomes the expandable base material layer (Y1 ′) by the treatment for expanding the expandable particles, and the cured resin layer (I ′) and the expanded support layer (II ′). It shows a state of separation at the interface with).
  • the necessary processing is performed on the cured sealing body 201 with the cured resin layer.
  • the curable resin layer (I) refers to both the “energy ray curable resin layer (X2)” and the “thermosetting resin layers (X1-1), (X1-2)”. Shall mean.
  • the physical-property value in the following manufacture examples and Examples is a value measured by the following method.
  • the expansion start temperature (t) of the thermally expandable particles used in each example was measured by the following method. To an aluminum cup having a diameter of 6.0 mm (inner diameter 5.65 mm) and a depth of 4.8 mm, 0.5 mg of thermally expandable particles to be measured is added, and an aluminum lid (diameter 5.6 mm, thickness 0. 1 mm) is prepared. Using a dynamic viscoelasticity measuring device, the height of the sample is measured from the upper part of the aluminum lid while a force of 0.01 N is applied to the sample by a pressurizer.
  • the displacement start temperature be the expansion start temperature (t).
  • the maximum expansion temperature refers to a temperature at which the displacement amount becomes maximum.
  • thermosetting resin layer On the surface of the thermosetting resin layer formed on the release film, an adhesive tape (manufactured by Lintec Corporation, product name “PL Shin”) was laminated. Then, the release film was removed, and the surface of the exposed thermosetting resin layer was attached to the smooth surface of a glass plate (float plate glass 3 mm (JIS R3202 product) manufactured by Yuko Trading Co., Ltd.) as an adherend.
  • the application temperature of the thermosetting resin layer (X1) was 70 ° C.
  • the release materials used in the following production examples are as follows. Heavy release film: manufactured by Lintec Corporation, product name “SP-PET382150”, polyethylene terephthalate (PET) film provided with a release agent layer formed from a silicone release agent on one side, thickness: 38 ⁇ m
  • Light release film manufactured by Lintec Corporation, product name “SP-PET381031”, a PET film provided with a release agent layer formed from a silicone release agent on one side, thickness: 38 ⁇ m
  • the roller temperature was set to 70 ° C., and the sticking speed was set to 0.2 m / min.
  • the curable resin layer 2 located on the first surface side is in direct contact with the glass plate
  • the curable resin layer 3 located on the first surface side is in direct contact with the glass plate. Affixed to.
  • the comparative example 2 it stuck so that an adhesive layer might contact
  • the test piece thus obtained was allowed to stand for 24 hours in an environment of 23 ° C. and 50% RH (relative humidity), and then, under the same environment, a tensile load measuring machine (A & A) based on JIS Z 0237: 2000.
  • the laminate for measurement was peeled from the glass plate at a peeling angle of 180 °, a peeling speed of 300 mm / min, and a peeling temperature of 23 ° C., and the adhesive strength was measured.
  • ⁇ Measurement of shear force of curable resin layer (I)> A silicon chip with a thickness of 350 ⁇ m having a mirror surface of 3 mm ⁇ 3 mm was used as an adherend for measurement. Then, on the first surface of the curable resin layer (I) of each laminate obtained in each Example and Comparative Example described later, the mirror surface of the adherend for measurement is applied at a temperature of 70 ° C. for 1 second at 130 gf. Pressed and pasted. Then, the shear force was measured at a speed of 200 ⁇ m / s using an all-purpose bond tester (manufactured by Nordson Advanced Technology, DAGE4000).
  • ⁇ Chip displacement evaluation 1> The curable resin layer (I) used for each Example and Comparative Example to be described later was attached to a glass plate (float plate glass 3 mm (JIS R3202 product) manufactured by Yuko Trading Co., Ltd.) to prepare a bonded surface. At this time, the first thermosetting resin layer was applied to Example 3 and the thermosetting resin layer was applied to Example 4 so as to be in direct contact with the glass plate. On the other hand, a bonding chip was prepared by dicing a Si wafer (6 inches, 350 ⁇ m thickness, mirror surface) into a size of 2 mm ⁇ 2 mm.
  • the bonding chip was bonded to the bonding surface using a manual bonding apparatus (manufactured by Daisy Japan Co., Ltd., EDB-65) with the mirror surface facing the bonding surface.
  • the bonding temperature was 70 ° C.
  • the pressing force during bonding was 130 gf
  • the bonding time was 1 s.
  • the curable resin layer (I) used for each Example and Comparative Example to be described later was attached to a glass plate (float plate glass 3 mm (JIS R3202 product) manufactured by Yuko Trading Co., Ltd.) to prepare a bonded surface.
  • the first thermosetting resin layer was applied to Example 3 and the thermosetting resin layer was applied to Example 4 so as to be in direct contact with the glass plate.
  • a bonding chip was prepared by dicing a Si wafer (6 inches, 350 ⁇ m thickness, mirror surface) into a size of 3 mm ⁇ 3 mm.
  • the bonding chip was bonded using a manual bonding apparatus (manufactured by Daisy Japan Co., Ltd., EDB-65) so that the mirror surface was directed to the surface to be bonded.
  • the bonding temperature was 70 ° C.
  • the pressing force during bonding was 130 gf
  • the bonding time was 1 s.
  • the glass plate workpiece with the chips adhered and fixed to the bonding surface was left on a metal experimental table for 5 seconds to cool the workpiece including the chips.
  • an arbitrary chip was selected immediately after cooling, and the side surface was lightly pressed with tweezers to confirm whether the chip was displaced.
  • Example 4 after cooling, after irradiating ultraviolet rays having an illuminance of 215 mW / cm 2 and a light amount of 187 mJ / cm 2 three times to cure the energy ray curable resin layer, the same procedure as described above was performed. It was confirmed whether the chip was displaced. For each of the examples and comparative examples, the above-described operation was performed twice on 10 workpieces, and the rate of occurrence of misalignment was determined to obtain a chip misalignment evaluation of 2.
  • thermosetting resin layers of the warp-preventing laminates of Examples 1 to 5 and Comparative Example 2 were respectively attached to a 12-inch 100- ⁇ m-thick silicon wafer, opposite to the case where the thermosetting resin layer was attached.
  • the epoxy resin composition was applied to a thickness of 30 ⁇ m on this surface.
  • the layer of the said epoxy resin composition and the thermosetting resin layer of each laminated body were heated and hardened.
  • a silicon wafer with a cured resin layer was placed on a horizontal table, and then visually observed, and the presence or absence of warpage was evaluated based on the following criteria.
  • B The amount of warpage is greater than 3 mm and less than 15 mm.
  • the amount of warpage is 15 mm or more.
  • the epoxy resin composition a mixture of “Epofix Resin” manufactured by Struers and a curing agent “Epofix Hardener” manufactured by the same company was used. In this evaluation, a silicon wafer with a large diameter is used as an adherend to simplify the experimental procedure, while an epoxy resin layer is provided on the back side of the adherend so that warpage is likely to occur. By doing so, the evaluation of warpage was made appropriate.
  • thermosetting resin layer 1 On the release-treated surface of the light release film, the solution of the thermosetting resin composition prepared in Production Example 1 (1) was applied to form a coating film, and the coating The film was dried at 120 ° C. for 2 minutes to form a thermosetting resin layer having a thickness of 25 ⁇ m. This is designated as a curable resin layer 1.
  • the adhesive force of the formed thermosetting resin layer 1 was 0.5 N / 25 mm.
  • the thermosetting resin layer 1 can be cured within 2 hours by heating to 130 ° C. or higher, which is the curing start temperature.
  • thermosetting resin layer 2 On the release-treated surface of the light release film, the solution of the thermosetting resin composition prepared in Production Example 2 (1) was applied to form a coating film, and the coating The film was dried at 120 ° C. for 2 minutes to form a thermosetting resin layer having a thickness of 25 ⁇ m. This is designated as a curable resin layer 2.
  • the thermosetting resin layer 2 can be cured within 2 hours by heating to 130 ° C. or higher, which is the curing start temperature.
  • blending amount 17.6 parts by mass polyfunctional UV curable resin (product name "KAYARAD DPHA” manufactured by Nippon Kayaku Co., Ltd.)
  • thermosetting resin layer 4 On the release-treated surface of the light release film, a solution of the thermosetting resin composition prepared in Production Example 4 (1) was applied to form a coating film, and the coating The film was dried at 120 ° C. for 2 minutes to form a thermosetting resin layer having a thickness of 25 ⁇ m. This is designated as a curable resin layer 4.
  • the thermosetting resin layer 4 can be cured within 2 hours by heating to 130 ° C. or higher, which is the curing start temperature.
  • Production Example 5 (1) Production of Support Layer Supporting a heat-peeling laminate (product name “NITTO 3195” manufactured by Nitto Denko Corporation) having a structure in which a heat-peeling adhesive layer is provided on a polyester film substrate. Used as a layer. This is designated as support layer 1.
  • the release liner provided in the surface of the heat-peeling adhesive layer was peeled off and used.
  • the support layer 1 has a pressure-sensitive adhesive layer containing a base material and thermally expandable particles, and the heat-expandable particles expand by being heated to an expansion start temperature of 170 ° C. or more, whereby the surface of the pressure-sensitive adhesive layer This produces a fine uneven shape.
  • the following isocyanate-based crosslinking agent (i) 5.0 parts by mass (solid)
  • the pressure-sensitive adhesive composition (2) having a solid content concentration (active ingredient concentration) of 25% by mass was prepared by mixing with water, diluting with toluene, and stirring uniformly.
  • Acrylic copolymer (i): having a structural unit derived from a raw material monomer consisting of 2-ethylhexyl acrylate (2EHA) / 2-hydroxyethyl acrylate (HEA) 80.0 / 20.0 (mass ratio), An acrylic copolymer having a mass average molecular weight of 600,000.
  • the pressure-sensitive adhesive composition (1) is applied to the surface of the release layer of the light release film to form a coating film, and the coating film is formed at 100 ° C for 60 seconds. It dried and formed the adhesive layer (1) of thickness 5 micrometers.
  • (6) Formation of pressure-sensitive adhesive layer (2) The pressure-sensitive adhesive composition (2) is applied to the surface of the release layer of the heavy release film to form a coating film, and the coating film is formed at 100 ° C for 60 seconds. It dried and formed the 10-micrometer-thick adhesive layer (2).
  • an anchor layer having a thickness of 40 ⁇ m.
  • an isocyanate-based crosslinking agent product name “Coronate L”, solid content concentration: 75% by mass, manufactured by Tosoh Corporation.
  • the resin composition containing the thermally expandable particles is applied onto the anchor layer to form a coating film, and the coating film is dried by heating at 100 ° C. for 2 minutes to a thickness of 35 ⁇ m. Formed.
  • the pressure-sensitive adhesive layer (1) was pasted on the thermally expandable layer.
  • a support layer having a release film laminated on the front and back was prepared. This is designated as support layer 2.
  • the support layer 2 has a base material including a pressure-sensitive adhesive layer and thermally expandable particles. When heated to 208 ° C. or higher, the thermally expandable particles expand, and the surface of the support layer has a fine uneven shape. Cause it to occur.
  • Example 1 The peeling film laminated
  • the substrate / pressure-sensitive adhesive layer / thermosetting resin layer / release film was laminated in this order to obtain a laminate for preventing warpage with a release film.
  • Example 2 The peeling film laminated
  • the substrate / pressure-sensitive adhesive layer / thermosetting resin layer / release film was laminated in this order to obtain a laminate for preventing warpage with a release film.
  • Example 3 The peeling film laminated
  • the release film laminated on the curable resin layer 1 of this laminate was removed, and the exposed curable resin layer 1 and the surface of the curable resin layer 2 formed in Production Example 2 were bonded together. (Second thermosetting resin layer).
  • a laminate for warpage prevention with a release film was obtained in which the base material / adhesive layer / first thermosetting resin layer / second thermosetting resin layer / release film were laminated in this order.
  • Example 4 The peeling film laminated
  • the release film laminated on the curable resin layer 1 of this laminate was removed, and the exposed curable resin layer 1 was bonded to the surface of the curable resin layer 3 formed in Production Example 3. .
  • a laminate for warpage prevention with a release film was obtained in which the base material / adhesive layer / thermosetting resin layer / ultraviolet curable resin layer / release film were laminated in this order.
  • Example 5 The peeling film laminated
  • the shear force of the first surface, which is the surface opposite to the support layer, of the curable resin layer is 20 N / (3 mm ⁇ 3 mm) or more.
  • the evaluation of chip deviation 2 was good, and it was confirmed that there was no chip deviation and the occurrence of warpage could be suppressed.
  • Comparative Example 1 since Comparative Example 1 has a problem in chip retainability, it was determined that the assembly for warpage prevention was rejected before the determination of the presence or absence of warpage, and the warpage was not evaluated.
  • Comparative Example 2 using an adhesive laminate having a shearing force of 20 N / (3 mm ⁇ 3 mm) or more, which does not have a curable resin layer, the evaluation of chip displacement 2 was above the standard. A large warp 5 times or more that of Examples 1 to 5 occurred.
  • the adhesive force of the first surface, which is the surface opposite to the support layer, of the curable resin layer is 1.7 N / 25 mm or more.
  • the chip shift 1 was evaluated well, there was no chip shift, and the occurrence of warpage could be suppressed.
  • Example 4 when the adhesive strength was measured, the backing layer was destroyed due to the strong adhesive strength of the first surface of the curable resin layer (I). Although it was confirmed that the distance was 25 mm or more, an accurate numerical value could not be measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Adhesive Tapes (AREA)
  • Gasket Seals (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Table Devices Or Equipment (AREA)

Abstract

熱硬化性樹脂層(X1)を含む硬化性樹脂層(I)と、硬化性樹脂層(I)を支持する支持層(II)と、を有し、熱硬化性樹脂層(X1)は支持層(II)に直接積層しており、硬化性樹脂層(I)の測定用被着体に対するせん断強度が、3mm×3mmの鏡面を備えた厚さ350μmのシリコンチップを前記測定用被着体とし、温度70℃において、130gfで1秒間前記測定用被着体の鏡面を前記硬化性樹脂層に押圧して貼り付け、速度200μm/sで測定したときの値で、20N/(3mm×3mm)以上であり、硬化性樹脂層(I)の、支持層(II)とは反対側の表面である第1表面において、封止対象物を封止材で封止して製造される硬化封止体の反り防止用積層体。

Description

硬化封止体の反り防止用積層体、及び、硬化封止体の製造方法
 本発明は、硬化封止体の反り防止用積層体、及び、硬化封止体の製造方法に関する。
 近年、電子機器の小型化、軽量化及び高機能化が進んでおり、半導体チップは、そのサイズに近いパッケージに実装されることがある。このようなパッケージは、CSP(Chip Scale Package)と称されることもある。CSPとしては、ウエハサイズでパッケージ最終工程まで処理して完成させるWLP(Wafer Level Package)、ウエハサイズよりも大きいパネルサイズでパッケージ最終工程まで処理して完成させるPLP(Panel Level Package)等が挙げられる。
 WLP及びPLPは、ファンイン(Fan-In)型とファンアウト(Fan-Out)型に分類される。ファンアウト型のWLP(以下、「FOWLP」ともいう)及びPLP(以下、「FOPLP」ともいう)においては、半導体チップを、チップサイズよりも大きな領域となるように封止材で覆って半導体チップの硬化封止体を形成し、再配線層及び外部電極を、半導体チップの回路面だけでなく封止材の表面領域においても形成する。
 FOWLP及びFOPLPは、例えば、複数の半導体チップを仮固定用シート上に載置する載置工程と、熱硬化性の封止材で被覆する被覆工程と、該封止材を熱硬化させて硬化封止体を得る硬化工程と、該硬化封止体と仮固定用シートとを分離する分離工程と、表出した半導体チップ側の表面に再配線層を形成する再配線層形成工程と、を経て製造される(以下、被覆工程及び硬化工程で行う加工を「封止加工」とも称する)。
 特許文献1には、基材の少なくとも片面に、熱膨張性微小球を含有する熱膨張性粘着層が設けられた、電子部品切断時の仮固定用加熱剥離型粘着シートが開示されている。FOWLP及びFOPLPの製造において、特許文献1に記載の加熱剥離型粘着シートを用いることも考えられる。
特開2001-131507号公報
 しかしながら、特許文献1に記載された粘着シートを仮固定用シートとして用いて硬化封止体を作製すると、硬化封止体が熱収縮によって反る傾向にある。これは、硬化封止体中に封止された半導体チップが、仮固定用シートに接する面側に偏って存在しているため、硬化封止体中において、熱膨張係数が小さい半導体チップの存在比率が相対的に高い側の領域と、熱膨張係数が大きい硬化樹脂の存在比率が相対的に高い側の領域と、が発生し、両領域の熱収縮率の差によって応力が発生するためと考えられる。この問題は、FOWLP、FOPLP等、パッケージサイズが大きくなるにつれて顕著になる傾向にある。
 反りが生じた硬化封止体は、例えば、次工程で硬化封止体の研削を行った場合に、割れが発生し易くなる、硬化封止体を装置によって搬送する際にアームによる硬化封止体の受け渡し時に不具合が発生し易くなるなどの弊害が生じ得る。
 本発明は、上記問題に鑑み、支持層と硬化性樹脂層とを有し、封止対象物を前記硬化性樹脂層の表面に固定して封止加工を行うことができるとともに、該封止加工によって形成された硬化封止体に反り防止層としての硬化樹脂層を付与することができ、かつ封止材によって封止対象物を被覆する際に、封止材の流れによって封止対象物が位置ズレや傾きを生じることを防ぐことができる、反り防止用積層体、及び、この反り防止用積層体を用いた硬化封止体の製造方法を提供することを課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、硬化性樹脂層の粘着力を所定の範囲に設定することにより、上記課題を解決し得ることを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[12]を提供するものである。
[1]熱硬化性樹脂層(X1)を含む硬化性樹脂層(I)と、
 硬化性樹脂層(I)を支持する支持層(II)と、を有し、
 熱硬化性樹脂層(X1)は支持層(II)に直接積層しており、
 硬化性樹脂層(I)の測定用被着体に対するせん断強度が、3mm×3mmの鏡面を備えた厚さ350μmのシリコンチップを前記測定用被着体とし、温度70℃において、130gfで1秒間前記測定用被着体の鏡面を前記硬化性樹脂層に押圧して貼り付け、速度200μm/sで測定したときの値で、20N/(3mm×3mm)以上であり、
 硬化性樹脂層(I)の、支持層(II)とは反対側の表面である第1表面において、封止対象物を封止材で封止して製造される硬化封止体の反り防止用積層体。
[2]硬化性樹脂層(I)が単層の熱硬化性樹脂層(X1)である、上記[1]に記載の反り防止用積層体。
[3]硬化性樹脂層(I)が、支持層(II)側に位置する第1層と、前記第1表面側に位置する第2層とを含み、
 前記第1層は、第1の熱硬化性樹脂層(X1-1)であり、
 前記第2層は、第1の熱硬化性樹脂層(X1-1)よりも、表面の粘着力が高い第2の熱硬化性樹脂層(X1-2)である、上記[1]に記載の反り防止用積層体。
[4]硬化性樹脂層(I)が、支持層(II)側に位置する第1層と、前記第1表面側に位置する第2層とを含み、
 前記第1層は、熱硬化性樹脂層(X1-1)であり、
 前記第2層は、エネルギー線硬化性樹脂層(X2)である、上記[1]に記載の反り防止用積層体。
[5]硬化性樹脂層(I)の厚さが、1~500μmである、上記[1]~[4]のいずれか一つに記載の反り防止用積層体。
[6]支持層(II)が、基材(Y)及び粘着剤層(V)を有し、基材(Y)及び粘着剤層(V)の少なくとも一方が膨張性粒子を含み、
 前記膨張性粒子を膨張させる処理によって、支持層(II)と硬化性樹脂層(I)を硬化してなる硬化樹脂層(I’)との界面で分離する、上記[1]~[5]のいずれか一つに記載の反り防止用積層体。
[7]基材(Y)が、前記膨張性粒子を含む膨張性基材層(Y1)を有する、上記[6]に記載の反り防止用積層体。
[8]粘着剤層(V)が、非膨張性の粘着剤層(V1)である、上記[7]に記載の反り防止用積層体。
[9]基材(Y)が、非膨張性基材層(Y2)と膨張性基材層(Y1)とを有し、
 支持層(II)が、非膨張性基材層(Y2)、膨張性基材層(Y1)、及び、粘着剤層(V)をこの順で有し、
 粘着剤層(V)と熱硬化性樹脂層(X1)とが直接積層されてなる、上記[7]又は[8]に記載の反り防止用積層体。
[10]上記[1]~[9]のいずれか一つに記載の反り防止用積層体を用いて硬化封止体を製造する方法であって、
 前記反り防止用積層体が有する硬化性樹脂層(I)の前記第1表面の一部に、封止対象物を載置し、
 前記封止対象物と、当該封止対象物の少なくとも周辺部の硬化性樹脂層(I)の前記第1表面とを熱硬化性の封止材で被覆し、
 前記封止材を熱硬化させて、前記封止対象物を含む硬化封止体を形成するとともに、硬化性樹脂層(I)も熱硬化させ、硬化樹脂層(I’)を形成して、硬化樹脂層付き硬化封止体を得る、硬化封止体の製造方法。
[11]上記[4]に記載の反り防止用積層体を用いて硬化封止体を製造する方法であって、
 前記反り防止用積層体が有する硬化性樹脂層(I)の前記第1表面である、エネルギー線硬化性樹脂層(X2)の、前記第1層とは反対側の表面の一部に、封止対象物を載置し、
 エネルギー線を照射してエネルギー線硬化性樹脂層(X2)を硬化させ、
 前記封止対象物と、当該封止対象物の少なくとも周辺部の硬化性樹脂層(I)の表面とを熱硬化性の封止材で被覆し、
 前記封止材を熱硬化させて、前記封止対象物を含む硬化封止体を形成するとともに、硬化性樹脂層(I)も熱硬化させ、硬化樹脂層(I’)を形成して、硬化樹脂層付き硬化封止体を得る、硬化封止体の製造方法。
[12]前記封止材を硬化性樹脂層(I)の前記第1表面に沿って射出して、前記封止対象物と、当該封止対象物の少なくとも周辺部の硬化性樹脂層(I)の前記第1表面とを封止材で被覆する、上記[10]又は[11]に記載の硬化封止体の製造方法。
 本発明によれば、封止対象物を前記硬化性樹脂層の表面に固定して封止加工を行うことができるとともに、該封止加工によって形成された硬化封止体に反り防止層としての硬化樹脂層を付与することができ、かつ封止材によって封止対象物を被覆する際に、封止材の流れによって封止対象物が位置ズレや傾きを生じることができる、反り防止用積層体、及び、この反り防止用積層体を用いた硬化封止体の製造方法を提供することができる。
本発明の第一態様の反り防止用積層体の構成を示す、当該積層体の断面模式図である。 本発明の第二態様の反り防止用積層体の構成を示す、当該積層体の断面模式図である。 本発明の第三態様の反り防止用積層体の構成を示す、当該積層体の断面模式図である。 本発明の第四態様の反り防止用積層体の構成を示す、当該積層体の断面模式図である。 本発明の第五態様の反り防止用積層体の構成を示す、当該積層体の断面模式図である。 硬化樹脂層付き硬化封止体を製造する工程を示す断面模式図である。 硬化樹脂層付き硬化封止体の他の製造工程を示す断面模式図である。
 初めに、本明細書で用いる用語について説明する。
 本明細書において、対象となる層が「非膨張性層」であるか否かは、膨張させるための処理を3分間行った後、当該処理の前後での下記式から算出される体積変化率が5%未満である場合、当該層は「非膨張性層」であると判断する。一方、上記体積変化率が5%以上である場合、当該層は「膨張性層」であると判断する。
・体積変化率(%)={(処理後の前記層の体積-処理前の前記層の体積)/処理前の前記層の体積}×100
 なお、「膨張させるための処理」としては、例えば、熱膨張性粒子を含む層である場合、当該熱膨張性粒子の膨張開始温度(t)で3分間の加熱処理を行えばよい。
 本明細書において、「有効成分」とは、対象となる組成物に含まれる成分のうち、希釈溶媒を除いた成分を指す。
 本明細書において、質量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定される標準ポリスチレン換算の値であり、具体的には実施例に記載の方法に基づいて測定した値である。
 本明細書において、例えば、「(メタ)アクリル酸」とは、「アクリル酸」と「メタクリル酸」の双方を示し、他の類似用語も同様である。
 本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。
 本明細書において、「エネルギー線」とは、電磁波又は荷電粒子線の中でエネルギー量子を有するものを意味し、その例として、紫外線、放射線、電子線等が挙げられる。紫外線は、例えば、紫外線源として高圧水銀ランプ、ヒュージョンランプ、キセノンランプ、ブラックライト又はLEDランプ等を用いることで照射できる。電子線は、電子線加速器等によって発生させたものを照射できる。
 本明細書において、「エネルギー線硬化性」とは、エネルギー線を照射することにより硬化する性質を意味し、「非エネルギー線硬化性」とは、エネルギー線を照射しても硬化しない性質を意味する。
 以下、本発明の実施形態(以下、「本実施形態」と称することがある)について説明する。
[反り防止用積層体]
 本発明の一態様の反り防止用積層体は、熱硬化性樹脂層(X1)を含む硬化性樹脂層(I)と、硬化性樹脂層(I)を支持する支持層(II)とを有する。なお、以下の説明において、反り防止用積層体を単に「積層体」と称することがある。
 熱硬化性樹脂層(X1)は、支持層(II)に直接積層している。
 硬化性樹脂層(I)の測定用被着体に対するせん断強度が、3mm×3mmの鏡面を備えた厚さ350μmのシリコンチップを前記測定用被着体とし、温度70℃において、130gfで1秒間前記測定用被着体の鏡面を前記硬化性樹脂層に押圧して貼り付け、速度200μm/sで測定したときの値で、20N/(3mm×3mm)以上である。
 この反り防止用積層体は、硬化性樹脂層(I)の、支持層(II)とは反対側の表面である第1表面において封止対象物を封止材で封止して硬化封止体を製造するのに用いられ、この製造の過程で硬化封止体に反りが発生するのを防止する役目を果たす。
<反り防止用積層体の構成>
 本実施形態の反り防止用積層体の構成を、図面を用いて説明する。
 図1~5は、本発明の第一態様~第五態様の反り防止用積層体の構成を示す、当該積層体の断面模式図である。なお、以下の第一態様~第五態様の積層体において、図示しない支持体に貼付される粘着剤層(V1)の粘着表面、及び、硬化性樹脂層(I)の第1表面(支持層(II)とは反対側の表面)には、硬化性樹脂層(I)や支持層(II)の表面を保護する等の観点から、さらに剥離材を積層した構成としてもよい。なお、この剥離材は、反り防止用積層体の使用時には剥離されて除去される。
[第一態様の反り防止用積層体]
 本発明の第一態様の反り防止用積層体としては、図1に示す積層体1a、1bが挙げられる。
 積層体1a、1bは、基材(Y)及び粘着剤層(V1)を有する支持層(II)と、硬化性樹脂層(I)とを備え、基材(Y)と、硬化性樹脂層(I)とが直接積層した構成を有する。
 以下の説明において、硬化性樹脂層(I)の、支持層(II)とは反対側の表面を「第1表面」、支持層(II)側の表面を「第2表面」ということがある。
 硬化性樹脂層(I)の第1表面は、所定の粘着力を有する粘着表面であり、封止対象物が載置されるとその粘着力によって封止対象物を固定することができる。
 なお、積層体1a、1bにおいて、粘着剤層(V1)の粘着表面は、図示しない支持体に貼付される。
 支持層(II)は、基材(Y)及び粘着剤層(V1)がいずれも非膨張性のものであってもよいし、少なくともいずれかの層が膨張性を有するものであってもよいが、いずれかの層が膨張性粒子を含有し、膨張性を有するものであることが好ましい。図1(a)の積層体1aにおいては、基材(Y)が、膨張性粒子を含有する膨張性基材層(Y1)を有する。
 基材(Y)は、図1(a)に示す積層体1aのように、膨張性基材層(Y1)のみからなる単層構成の基材であってもよいし、図1(b)に示す積層体1bのように、膨張性基材層(Y1)及び非膨張性基材層(Y2)を有する複層構成の基材であってもよい。
 なお、第一態様の反り防止用積層体において、膨張性基材層(Y1)及び非膨張性基材層(Y2)を有する基材(Y)を用いる場合、図1(b)に示すように、粘着剤層(V1)の表面に非膨張性基材層(Y2)が積層し、さらに、非膨張性基材層(Y2)の表面に膨張性基材層(Y1)が積層した構成を有することが好ましい。
 図1(a)に示す積層体1aは、加熱等による膨張処理によって、膨張性基材層(Y1)に含有される膨張性粒子が膨張し、基材(Y)の表面に凹凸が生じ、硬化性樹脂層(I)を硬化してなる硬化樹脂層との接触面積が減少する。なお、以下の説明において、硬化性樹脂層を硬化させて得られた層を硬化樹脂層(I’)と称する。
 このとき、粘着剤層(V1)の粘着表面は支持体(図示せず)に貼付されている。粘着剤層(V1)が支持体に十分に密着するように貼付されることで、膨張性基材層(Y1)の粘着剤層(V1)側の表面に、凹凸を生じさせようとする力が発生しても、粘着剤層(V1)から反発する力が生じ易い。そのため、基材(Y)の粘着剤層(V1)側の表面には、凹凸が形成され難い。
 その結果、積層体1aは、支持層(II)の基材(Y)と硬化樹脂層(I’)との界面Pで、わずかな力で一括して容易に分離可能となる。
 なお、積層体1aが有する粘着剤層(V1)を、支持体に対する粘着力が高くなるような粘着剤組成物で形成することで、界面Pにおいて、より容易に分離可能とすることも可能である。以下の説明においては、硬化性樹脂層(I)と支持層(II)との界面も「界面P」という場合がある。
 なお、膨張性粒子による応力を粘着剤層(V1)側に伝達することを抑制する観点から、図1(b)に示す積層体1bのように、基材(Y)が、膨張性基材層(Y1)及び非膨張性基材層(Y2)を有するものであることが好ましい。
 膨張性基材層(Y1)の膨張性粒子の膨張による応力は、非膨張性基材層(Y2)にて抑制されるため、粘着剤層(V1)に伝達され難い。
 そのため、粘着剤層(V1)の支持体側の表面に凹凸は生じ難く、粘着剤層(V1)と支持体との密着性は、加熱等による膨張処理の前後でほとんど変わらず、良好な密着性を保持することができる。これにより、膨張性基材層(Y1)の硬化性樹脂層(I)側の表面に凹凸が形成され易く、その結果、支持層(II)の膨張性基材層(Y1)と硬化樹脂層(I’)との界面Pで、わずかな力で一括して容易に分離可能となる。
 なお、図1(b)に示す積層体1bのように、膨張性基材層(Y1)と硬化性樹脂層(I)とが直接積層し、非膨張性基材層(Y2)の、硬化性樹脂層(I)とは反対側の表面に粘着剤層(V1)が積層した構成であることが好ましい。
 また、膨張性基材層(Y1)と非膨張性基材層(Y2)との間には、両者を接着するための接着層やアンカー層を設けてもよいし、直接積層させてもよい。
[第二態様の反り防止用積層体]
 本発明の第二態様の反り防止用積層体としては、図2に示す反り防止用積層体2a、2bが挙げられる。
 積層体2a、2bは、支持層(II)が有する粘着剤層が、第1粘着剤層(V1-1)及び第2粘着剤層(V1-2)を有し、第1粘着剤層(V1-1)及び第2粘着剤層(V1-2)により基材(Y)が挟まれており、第2粘着剤層(V1-2)の粘着表面が、硬化性樹脂層(I)と直接積層した構成を有する。以下、支持層(II)が複数の粘着剤層を備えている場合の各粘着剤層、及び、支持層(II)が単独の粘着剤層を備えている場合の粘着剤層を総称して粘着剤層(V)ということがある。
 なお、本第二態様の反り防止用積層体において、第1粘着剤層(V1-1)の粘着表面は、図示しない支持体に貼付される。
 本第二態様の反り防止用積層体においても、基材(Y)が、膨張性粒子を含有する膨張性基材層(Y1)を有するものであることが好ましい。
 基材(Y)は、図2(a)に示す積層体2aのように、膨張性基材層(Y1)のみからなる単層構成の基材であってもよく、図2(b)に示す積層体2bのように、膨張性基材層(Y1)及び非膨張性基材層(Y2)を有する複層構成の基材であってもよい。
 ただし、上述のとおり、加熱等による膨張処理の前後で第1粘着剤層(V1-1)と支持体との密着性を良好に保持し得る積層体とする観点から、図2(b)に示すように、基材(Y)が、膨張性基材層(Y1)及び非膨張性基材層(Y2)を有するものであることが好ましい。
 なお、第二態様の反り防止用積層体において、膨張性基材層(Y1)及び非膨張性基材層(Y2)を有する基材(Y)を用いる場合、図2(b)に示すように、膨張性基材層(Y1)の表面に第2粘着剤層(V1-2)が積層し、非膨張性基材層(Y2)の表面に第1粘着剤層(V1-1)が積層した構成を有することが好ましい。
 第二態様の積層体は、加熱等による膨張処理によって、基材(Y)を構成する膨張性基材層(Y1)中の膨張性粒子が膨張し、膨張性基材層(Y1)の表面に凹凸が生じる。
 そして、膨張性基材層(Y1)の表面に生じた凹凸によって第2粘着剤層(V1-2)が押し上げられ、第2粘着剤層(V1-2)の粘着表面にも凹凸が形成されるため、第2粘着剤層(V1-2)と硬化樹脂層(I’)との接触面積が減少する。その結果、支持層(II)の第2粘着剤層(V1-2)と硬化樹脂層(I’)との界面Pで、わずかな力で一括して容易に分離可能となる。
 なお、本第二態様の積層体において、界面Pでよりわずかな力で一括して容易に分離可能な積層体とする観点から、支持層(II)が有する基材(Y)の膨張性基材層(Y1)と、第2粘着剤層(V1-2)とが直接積層した構成であることが好ましい。
[第三態様の反り防止用積層体]
 本発明の第三態様の反り防止用積層体としては、図3に示す反り防止用積層体3が挙げられる。
 図3に示す積層体3は、基材(Y)の一方の表面側に、非膨張性の粘着剤層である第1粘着剤層(V1)を有し、基材(Y)の他方の表面側に、膨張性粒子を含有する膨張性の粘着剤層である第2粘着剤層(V2)を有した支持層(II)を備え、第2粘着剤層(V2)と硬化性樹脂層(I)とが直接積層した構成を有する。
 積層体3において、第1粘着剤層(V1)の粘着表面は、図示しない支持体に貼付される。
 なお、本第三態様の積層体3が有する基材(Y)は、非膨張性基材層(Y2)から構成されていることが好ましい。
 本第三態様の積層体3は、加熱等の膨張処理によって、膨張性の粘着剤層である第2粘着剤層(V2)中の膨張性粒子が膨張し、第2粘着剤層(V2)の表面に凹凸が生じ、第2粘着剤層(V2)と硬化性樹脂層(I)との接触面積が減少する。
 一方で、第1粘着剤層(V1)の基材(Y)側の表面は、基材(Y)に積層しているため、凹凸を生じ難い。
 そのため、加熱等の膨張処理によって、第2粘着剤層(V2)の硬化性樹脂層(I)側の表面に凹凸が形成され易く、その結果、支持層(II)の第2粘着剤層(V2)と硬化樹脂層(I’)との界面Pで、わずかな力で一括して容易に分離可能となる。
[第四態様の反り防止用積層体]
 本発明の第四態様の反り防止用積層体としては、図4に示す反り防止用積層体4が挙げられる。
 図4に示す積層体4は、非膨張性の粘着剤層(V1)と、膨張性基材層(Y1)と、硬化性樹脂層(I)とを、この順に積層した構成を備える。
 積層体4において、硬化性樹脂層(I)は、基材(Y)側に位置する第1の熱硬化性樹脂層(X1-1)と、基材(Y)とは反対側に位置する第2の熱硬化性樹脂層(X1-2)とを備える硬化性樹脂層(I)からなる。第1の熱硬化性樹脂層(X1-1)及び第2の熱硬化性樹脂層(X1-2)はともに非膨張性である。
 ここで、第2の熱硬化性樹脂層(X1-2)は、第1の熱硬化性樹脂層(X1-1)よりも表面の粘着力が高い。積層体4においては、硬化性樹脂層(I)を2つの熱硬化性樹脂層で構成することで、互いに異なる特性のものを用いることができる。例えば、支持層(II)とは反対側の硬化性樹脂層にはより粘着性の高い組成物を含む熱硬化性樹脂層を選択し、支持層(II)側の硬化性樹脂層には、支持層(II)との分離性がより良好なものを選択することができる。
[第五態様の反り防止用積層体]
 本発明の第五態様の反り防止用積層体としては、図5に示す反り防止用積層体5が挙げられる。
 図5に示す積層体5は、非膨張性の粘着剤層(V1)と、膨張性基材層(Y1)と、硬化性樹脂層(I)とをこの順に積層した構成を備える。
 積層体5において、硬化性樹脂層(I)は、基材(Y)側に位置する熱硬化性樹脂層(X1-1)と、基材(Y)とは反対側に位置するエネルギー線硬化性樹脂層(X2)とを備える、硬化性樹脂層(I)からなる。第1の熱硬化性樹脂層(X1-1)及びエネルギー線硬化性樹脂層(X2)はともに非膨張性である。
 積層体5においては、硬化性樹脂層(I)を、エネルギー線硬化性樹脂層(X2)と、熱硬化性樹脂層(X1-1)とに分けることで、互いに異なる特性のものを用いることができる。例えば、支持層(II)とは反対側に、比較的高粘着力を持つように調整しやすいエネルギー線硬化性組成物からなるエネルギー硬化性樹脂層を配置し、支持層(II)側に、後述する封止材との分離性がより良好な熱硬化性樹脂層を配置することができる。
[反り防止用積層体の用途]
 本実施形態の反り防止用積層体は、硬化性樹脂層の表面に封止対象物を載置し、この封止対象物と、この封止対象物の少なくとも周辺部の熱硬化性樹脂層の表面とを封止材で被覆し、当該封止材を硬化させ、封止対象物を含む硬化封止体とする、硬化封止体の製造に用いられる。
 なお、反り防止用積層体を用いた硬化封止体の製造に関する具体的な態様については後述する。
 例えば、特許文献1に記載の製造方法で用いられているような、一般的なウエハマウントテープ等の粘着積層体の粘着表面に、封止対象物を載置後、封止対象物及びその周辺部の粘着表面を封止材で被覆して、封止材を熱硬化させ、硬化封止体を製造する場合を考える。
 封止材を熱硬化させた際、封止材は収縮しようとする応力が働くが、粘着積層体が支持体に固定されているため、封止材の応力は抑制されている。
 しかしながら、支持体及び粘着積層体から分離して得られた硬化封止体は、収縮しようとする応力を抑制し難くなる。分離後の硬化封止体は、封止対象物が存在する側の表面側と、その反対の表面側とで、封止材の存在量が異なるため、収縮応力に差が生じ易い。その収縮応力の差が硬化封止体に生じる反りの原因となる。
 また、生産性の観点から、加熱後の硬化封止体は、ある程度の熱を帯びた状態で、支持体及び粘着積層体から分離されることが一般的である。そのため、分離後も、封止材の硬化は進行するとともに、自然冷却に伴う収縮も生じるため、硬化封止体に反りがより生じ易い状態となる。
 一方で、本発明の一態様の反り防止用積層体を用いる場合、以下の理由から、反りを効果的に抑制した硬化封止体を得ることができる。
 つまり、本発明の一態様の反り防止用積層体の熱硬化性樹脂層の表面に封止対象物を載置し、封止材で被覆して、封止材を熱硬化させると、同時に、熱硬化性樹脂層も熱硬化する。この際、封止材の存在量が少なく、封止材の硬化による収縮応力が小さいと考えられる封止対象物が存在する側の表面側には、熱硬化性樹脂層が設けられているため、熱硬化性樹脂層の熱硬化による収縮応力が働く。
 その結果、硬化封止体の2つの表面間の収縮応力の差を小さくすることができ、反りが効果的に抑制された硬化封止体を得ることができると考えられる。
 また、硬化封止体の反りの抑制に寄与している熱硬化性樹脂層は、熱硬化することで硬化樹脂層とすることができる。
 つまり、本発明の一態様の反り防止用積層体を用いて、上述の封止工程を経ることで、同時に、硬化封止体の一方の表面上に硬化樹脂層を形成することができるため、硬化樹脂層を形成するための工程を省略することができ、生産性の向上にも寄与する。
 さらに、本発明の一態様の反り防止用積層体における硬化性樹脂層(I)は、硬化性樹脂組成物を含むものであるが、測定用被着体に対するせん断強度が、3mm×3mmの鏡面を備えた厚さ350μmのシリコンチップを前記測定用被着体とし、温度70℃において、130gfで1秒間前記測定用被着体の鏡面を前記硬化性樹脂層に押圧して貼り付け、速度200μm/sで測定したときの値で、20N/(3mm×3mm)以上であるため、封止材によって封止対象物を被覆する際に、封止材の流れによって封止対象物が位置ズレや傾きを生じることを防ぐことができる。
<積層体の各種物性>
(硬化性樹脂層(I)の第1表面の粘着力)
 本発明の一態様の積層体において、封止対象物との密着性を良好とする観点から、硬化性樹脂層(I)は封止対象物が載置される側の表面(第1表面)が粘着性を有することが好ましい。
 硬化性樹脂層(I)の第1表面の粘着力は、ガラス板に前記第1表面を70℃の温度で貼付し、温度23℃、剥離角度180°、剥離速度300mm/minで前記硬化性樹脂層を剥離して測定したときの値で、1.7N/25mm以上であることが好ましく、より好ましくは2.3N/25mm以上、さらに好ましくは3.0N/25mm以上、特に好ましくは4.0N/25mm以上であり、また、好ましくは20N/25mm以下、より好ましくは15N/25mm以下、さらに好ましくは10N/25mm以下である。
 硬化性樹脂層(I)の第1表面の粘着力が、1.7N/25mm以上であると、封止対象物が硬化性樹脂層(I)の表面に固定される際に、封止対象物が位置ズレを生じにくくすることができる。硬化性樹脂層(I)の第1表面の粘着力が、20N/25mm以下であれば、硬化性樹脂層(I)の材料選定が容易になる。
(硬化性樹脂層(I)のせん断力)
 本発明の一態様の積層体において、封止対象物を封止する際に封止対象物を良好に保持する観点から、硬化性樹脂層(I)は適切なせん断力を有している。具体的には、硬化性樹脂層(I)の測定用被着体に対するせん断強度が、厚さ350μm、サイズ3mm×3mmのシリコンチップ(鏡面)を上記測定用被着体とし、温度70℃において、130gfで1秒間前記測定用被着体の鏡面を前記硬化性樹脂層に押圧して貼り付け、速度200μm/sで測定したときの値で、20N/(3mm×3mm)以上であり、好ましくは25N/(3mm×3mm)であり、より好ましくは30N/(3mm×3mm)以上であり、また、好ましくは100N/(3mm×3mm)以下であり、より好ましくは90N/(3mm×3mm)以下である。
 硬化性樹脂層(I)の測定用被着体に対するせん断強度が、20N/(3mm×3mm)未満であると、封止対象物を硬化性樹脂層(I)の表面に固定し、封止材によって封止対象物を被覆する際に、封止材の流れによって封止対象物が位置ズレや傾きを生じる。また、上記せん断強度が、100N/(3mm×3mm)以下であると、硬化性樹脂層(I)の材料選定が容易となる。
(熱硬化性樹脂層(X1)の粘着力)
 本発明の一態様の積層体において、室温(23℃)における、熱硬化性樹脂層(I)単独の粘着力としては、好ましくは0.1~10.0N/25mm、より好ましくは0.2~8.0N/25mm、さらに好ましくは0.4~6.0N/25mm、よりさらに好ましくは0.5~4.0N/25mmである。
 図4に示す積層体4のように、第1の熱硬化性樹脂層(X1-1)と第2の熱硬化性樹脂層(X1-2)を有する場合、各々が上記の粘着力を有することが好ましく、特に、第2の熱硬化性樹脂層(X1-2)の粘着力を、第1の熱硬化性樹脂層(X1-1)の粘着力よりも高くすることが好ましい。第2の熱硬化性樹脂層(X1-2)の粘着力を、第1の熱硬化性樹脂層(X1-1)の粘着力よりも高くすることで、より確実に封止対象物を硬化性樹脂層(I)の第1表面に固定することができる。
(エネルギー線硬化性樹脂層(X2)の粘着力)
 本発明の一態様の積層体において、室温(23℃)における、エネルギー線硬化性樹脂層(X2)単独の粘着力としては、好ましくは0.1~10.0N/25mm、より好ましくは0.2~8.0N/25mm、さらに好ましくは0.4~6.0N/25mm、よりさらに好ましくは0.5~4.0N/25mmである。
(粘着剤層(V)の粘着力)
 本発明の一態様の積層体において、室温(23℃)における、支持層(II)が有する粘着剤層(V)(第1粘着剤層(V1)及び第2粘着剤層(V2))の粘着力としては、好ましくは0.1~10.0N/25mm、より好ましくは0.2~8.0N/25mm、さらに好ましくは0.4~6.0N/25mm、よりさらに好ましくは0.5~4.0N/25mmである。なお、以下の説明において、粘着剤層が単独か複数であるかに関わらず、硬化性樹脂層(I)側に位置する粘着剤層を第1粘着剤層、硬化性樹脂層とは反対側に位置する粘着剤層を第2粘着剤層ということがある。
 支持層(II)が第1粘着剤層(V1-1)又は(V1)と、第2粘着剤層(V1-2)又は(V2)とを有する場合、第1粘着剤層(V1-1)又は(V1)と、第2粘着剤層(V1-2)又は(V2)の粘着力は、それぞれ上記範囲であることが好ましいが、支持体との密着性を向上させ、界面Pで一括してより容易に分離可能とする観点から、支持体と貼付される第1粘着剤層(V1-1)又は(V1)の粘着力が、第2粘着剤層(V1-2)又は(V2)の粘着力よりも高いことがより好ましい。
(硬化性樹脂層(I)の第1表面の粘着力の測定)
 本願明細書において、硬化性樹脂層(I)の第1表面の粘着力は以下の手順で測定される。
 まず、硬化性樹脂層(I)と支持層(II)と備える反り防止用積層体を、25mm幅×250mm長にカットして(MD方向が250mm)、一次試料を作製する。また、被着体として、ガラス板(ユーコウ商会社製フロート板ガラス3mm(JIS R3202品))を準備する。ラミネーター装置(大成ラミネーター株式会社製、VA-400型)を用いて、硬化性樹脂層(I)の第一表面に直接接するようにガラス板を貼付して試験片とする。このとき、ローラ温度を70℃とし、貼付速度を0.2m/minの条件とする。こうして得られた試験片を、23℃、50%RH(相対湿度)の環境下で、24時間静置した後、同じ環境下で、JIS Z 0237:2000に基づき、引張荷重測定機(エーアンドデー社製、テンシロン)にて、剥離角度180°、剥離速度300mm/min、剥離温度23℃の条件で、試験片をガラス板から剥離してその粘着力を測定し、その測定値を硬化性樹脂層(I)の第1表面の粘着力とする。
(硬化性樹脂層(I)のせん断力の測定)
 本願明細書において、硬化性樹脂層(I)のせん断力は以下の手順で測定される。
 まず、3mm×3mmの鏡面を備えた厚さ350μmのシリコンチップを測定用被着体として用いる。そして、後述する各実施例及び比較例で得られた各積層体の硬化性樹脂層(I)の第1表面に、温度70℃において、130gfで1秒間、上記測定用被着体の鏡面を押圧して貼り付ける。そして、万能型ボンドテスター(ノードソン・アドバンスト・テクノロジー社製、DAGE4000)を用いて、速度200μm/sでせん断力を測定する。
(粘着剤層(V)、熱硬化性樹脂層(X1)、エネルギー線硬化性樹脂層(X2)の粘着力の測定)
 剥離フィルム上に形成した粘着剤層(V)、熱硬化性樹脂層(X1)、又は、エネルギー線硬化性樹脂層(X2)の表面に、粘着テープ(リンテック株式会社製、製品名「PLシン」)を積層する。
 そして、剥離フィルムを剥がして露出した、粘着剤層(V)、熱硬化性樹脂層(X1)、又は、エネルギー線硬化性樹脂層(X2)の表面を、被着体であるガラス板(ユーコウ商会社製フロート板ガラス3mm(JIS R3202品))に貼付した。このとき、粘着剤層(V)の貼付温度は23℃、熱硬化性樹脂層(X1)及びエネルギー線硬化性樹脂層(X2)の貼付温度は70℃とした。そして、各層が貼付された上記ガラス板を、23℃、50%RH(相対湿度)の環境下で、24時間静置した後、同じ環境下で、JIS Z 0237:2000に基づき、180°引き剥がし法により、引っ張り速度300mm/分にて、上記ガラス板から、粘着剤層(V)、熱硬化性樹脂層(X1)、又は、エネルギー線硬化性樹脂層(X2)を粘着テープとともに剥離することで、23℃における粘着力を測定する。
(膨張処理を行う前の剥離力(F))
 硬化性樹脂層(I)の硬化前かつ膨張処理前において、封止対象物を十分に固定して、封止作業に悪影響を及ぼさないようにする観点から、支持層(II)と硬化性樹脂層(I)との密着性は高いことが好ましい。
 上記観点から、本発明の一態様の積層体において、硬化性樹脂層(I)の硬化前かつ加熱膨張処理を行う前における、支持層(II)と硬化性樹脂層(I)との界面Pで分離する際の剥離力(F)としては、好ましくは100mN/25mm以上、より好ましくは130mN/25mm以上、さらに好ましくは160mN/25mm以上であり、また、好ましくは50,000mN/25mm以下である。
 なお、剥離力(F)は下記測定方法によって測定される値である。
(剥離力(F)の測定)
 積層体を23℃、50%RH(相対湿度)の環境下で、24時間静置した後、積層体の支持層(II)側を、粘着剤層を介してガラス板(ユーコウ商会社製フロート板ガラス3mm(JIS R3202品))に貼付する。また、積層体の第1表面側に、粘着テープ(リンテック株式会社製、製品名「PLシン」)を貼付する。次いで、積層体が貼付された上記ガラス板の端部を、万能引張試験機(株式会社オリエンテック製、製品名「テンシロン UTM-4-100」)の下部チャックへ固定する。
 続いて、積層体の支持層(II)と硬化性樹脂層(I)との界面Pで剥離するように、万能引張試験機の上部チャックで積層体の硬化性樹脂層(I)に貼付した粘着テープの端部を固定する。そして、上記と同じ環境下で、JIS Z 0237:2000に基づき、180°引き剥がし法により、引張速度300mm/分で、硬化性樹脂層(I)及び粘着テープを、界面Pで支持層(II)から剥離する際に測定される剥離力を「剥離力(F)」とする。
(膨張処理後の剥離力(F))
 本発明の一態様の積層体は、膨張処理によって、支持層(II)と、硬化性樹脂層(I)、又は、硬化性樹脂層(I)を硬化させた硬化樹脂層(I’)との界面Pで、わずかな力で一括して容易に分離可能となる。
 ここで、本発明の一態様の積層体において、硬化性樹脂層(I)を硬化させて硬化樹脂層(I’)とした後に、膨張処理によって、支持層(II)と硬化樹脂層(I’)との界面Pで分離する際の剥離力(F)としては、通常2,000mN/25mm以下、好ましくは1,000mN/25mm以下、より好ましくは500mN/25mm以下、より好ましくは150mN/25mm以下、さらに好ましくは100mN/25mm以下、よりさらに好ましくは50mN/25mm以下、最も好ましくは0mN/25mmである。
 剥離力(F)が0mN/25mmである場合には、剥離力を測定しようとしても、剥離力が小さ過ぎるために測定不可となる場合も含まれる。
 なお、剥離力(F)は下記測定方法によって測定される値である。
(剥離力(F)の測定)
 積層体の支持層(II)側を、粘着剤層を介してガラス板(ユーコウ商会社製フロート板ガラス3mm(JIS R3202品))に貼付する。次いで、上記ガラス板及び積層体を、130℃で2時間加熱することにより硬化性樹脂層(I)を硬化させて、硬化樹脂層(I’)を形成する。図4の積層体4のように、硬化性樹脂層(I)が、エネルギー線硬化性樹脂層(X2)を含む場合は、熱硬化性樹脂層(X1-1)の熱硬化後に、エネルギー線硬化性樹脂層(X2)を硬化し得るエネルギー線を照射(紫外線の場合は、照度215mW/cm、光量187mJ/cmを3回照射)して、エネルギー線硬化性樹脂層(X2)を硬化する。
 次に、支持層(II)に含まれる膨張性粒子を膨張させる。具体的には、熱膨張性粒子を用いている場合、積層体が貼付されたガラス板を、240℃で3分間加熱し、積層体の膨張性基材層(Y1)又は膨張性の粘着剤層(V2)中の熱膨張性粒子を膨張させる。その後、積層体の第1表面側に、粘着テープ(リンテック株式会社製、製品名「PLシン」)を貼付し、上述の剥離力(F)の測定と同様にし、上記条件にて、支持層(II)と硬化樹脂層(I’)との界面Pで剥離した際に測定された剥離力を「剥離力(F)」とする。
 なお、剥離力(F)の測定において、万能引張試験機の上部チャックで、積層体の硬化樹脂層(I’)に貼付されている粘着テープの端部を固定しようとした際、界面Pで硬化樹脂層(I’)が完全に分離してしまい、測定のための固定が行えない場合には、測定を終了し、その際の剥離力(F)は「0mN/25mm」とする。
(基材(Y)のプローブタック値)
 支持層(II)が有する基材(Y)は、非粘着性の基材である。
 本発明の一態様において、非粘着性の基材か否かの判断は、対象となる基材の表面に対して、JIS Z 0237:1991に準拠して測定したプローブタック値が50mN/5mmφ未満であれば、当該基材を「非粘着性の基材」と判断する。一方、上記プローブタック値が50mN/5mmφ以上であれば、当該基材を「粘着性の基材」と判断する。
 本発明の一態様で用いる支持層(II)が有する基材(Y)の表面におけるプローブタック値は、通常50mN/5mmφ未満であるが、好ましくは30mN/5mmφ未満、より好ましくは10mN/5mmφ未満、さらに好ましくは5mN/5mmφ未満である。
 基材(Y)の表面におけるプローブタック値は、下記測定方法によって測定される値である。
(プローブタック値の測定)
 測定対象となる基材を一辺10mmの正方形に切断した後、23℃、50%RH(相対湿度)の環境下で24時間静置したものを試験サンプルとする。23℃、50%RH(相対湿度)の環境下で、タッキング試験機(日本特殊測器株式会社製、製品名「NTS-4800」)を用いて、試験サンプルの表面におけるプローブタック値を、JIS Z0237:1991に準拠して測定する。具体的には、直径5mmのステンレス鋼製のプローブを、1秒間、接触荷重0.98N/cmで試験サンプルの表面に接触させた後、当該プローブを10mm/秒の速度で、試験サンプルの表面から離すのに必要な力を測定し、得られた値を、その試験サンプルのプローブタック値とする。
 次に、本発明の一態様の反り防止用積層体を構成する各層について説明する。
<硬化性樹脂層(I)>
 本発明の一態様の反り防止用積層体は、熱硬化性樹脂層(X1)を含む硬化性樹脂層(I)を有する。
 硬化性樹脂層(I)は硬化されることによって、封止材の硬化に伴う、硬化封止体の2つの表面間の収縮応力の差を小さくし、得られる硬化封止体に生じ得る反りの抑制に寄与する。
 硬化性樹脂層(I)は、硬化することによって硬化樹脂層(I’)となる。硬化樹脂層(I’)は、得られる硬化封止体の一方の表面上に形成される。
 反りを抑制して平坦な表面を有する硬化封止体を製造可能な反り防止用積層体とする観点から、硬化樹脂層(I’)の23℃における貯蔵弾性率E’は、好ましくは1.0×10Pa以上、より好ましくは1.0×10Pa以上、さらに好ましくは1.0×10Pa以上、よりさらに好ましくは5.0×10Pa以上であり、また、好ましくは1.0×1013Pa以下、より好ましくは1.0×1012Pa以下、さらに好ましくは5.0×1011Pa以下、よりさらに好ましくは1.0×1011Pa以下である。
 硬化樹脂層(I’)の貯蔵弾性率E’は、以下の手順で測定される。
 まず、硬化性樹脂層(I)を厚さ200μmになるように積層した後、硬化が実質的に完了した状態(示差走査熱量分析装置(TAインスツルメント社製DSCQ2000)を用いた測定において、130℃で発熱ピークが消失した時点)になるまで硬化させる。熱硬化性樹脂層(X1)、(X1-1)、(X1-2)の場合は、大気雰囲気下でオーブン内に入れ、樹脂の130℃で、2時間加熱して、厚さ200μmの熱硬化性樹脂層を熱硬化させる。エネルギー線硬化性樹脂層(X2)と熱硬化性樹脂層(X1-1)とを含む場合は、エネルギー線を照射(紫外線の場合は、照度215mW/cm、光量187mJ/cmを3回照射)してエネルギー線硬化性樹脂層(X2)を硬化させた後、上記の条件で熱硬化性樹脂層(X1-1)熱硬化させる。
 次に、動的粘弾性測定装置(TAインスツルメント社製,製品名「DMAQ800」)を用いて、試験開始温度0℃、試験終了温度300℃、昇温速度3℃/分、振動数11Hz、振幅20μmの条件で、23℃における、形成した硬化樹脂層の貯蔵弾性率E’を測定する。
 硬化性樹脂層(I)の、支持層とは反対側の表面である第1表面は粘着性を有している。そして、その粘着力は、上述したように、ガラス板に上記第1表面を70℃の温度で貼付し、温度23℃、剥離角度180°、剥離速度300mm/minで前記硬化性樹脂層を剥離して測定したときの値で、好ましくは1.7N/25mm以上である。
 なお、本明細書において、硬化性樹脂層(I)の粘着力の測定において、「70℃の温度で貼付する」とは、発熱温度が70℃の加圧ローラ等の押圧体で積層体をガラス板に押し付けることで、積層体をガラス板に貼付することを意味する。
 硬化性樹脂層(I)の上記第1表面には封止対象物が載置されるが、硬化性樹脂層(I)の表面が上記の粘着性を有するため、封止対象物との密着性が良好となり、半導体チップ等の封止対象物を上記第1表面に配置する際に、封止対象物が傾いたり、封止対象物を配置した後に、硬化性樹脂層(I)に対する封止対象物の位置が所期の位置からずれてしまったりすることが防止される。
 また、硬化性樹脂層(I)の測定用被着体に対するせん断強度は、上述したように、厚さ350μm、サイズ3mm×3mmのシリコンチップ(鏡面)を上記測定用被着体とし、温度70℃において、130gfで1秒間前記測定用被着体の鏡面を前記硬化性樹脂層に押圧して貼り付け、速度200μm/sで測定したときの値で、20N/(3mm×3mm)以上である。
 硬化性樹脂層(I)の第1表面の粘着力や、硬化性樹脂層(I)の測定用被着体に対するせん断力は、硬化性樹脂層(I)を構成する熱硬化性樹脂組成物やエネルギー線硬化性樹脂組成物の成分の種類や配合比を調整することで上記数値範囲とすることができる。粘着力やせん断力は、樹脂組成物の成分や配合比等によって変化し、また、せん断力は硬化性樹脂層(I)の層全体の構成によっても変化するが、粘着力については、例えば、後述するアクリル系重合体を重合体成分として用いたり、熱硬化性成分としてエポキシ樹脂を用いたり、カップリング剤を用いたりすることで、高い値にしやすくなる。また、せん断力については、例えば、無機充填材や架橋剤の含有量を多くすることで高い値にしやすくなる。
 硬化性樹脂層(I)の厚さは、好ましくは1~500μm、より好ましくは5~300μm、さらに好ましくは10~200μm、よりさらに好ましくは15~100μmである。
(熱硬化性樹脂層(X1))
 熱硬化性樹脂層(X1)、(X1-1)、(X1-2)は、重合体成分(A)及び熱硬化性成分(B)を含む熱硬化性樹脂組成物から形成されることが好ましい。熱硬化性樹脂層(X1)、(X1-1)、(X1-2)を総称して、熱硬化性樹脂層(X1)ということがある。
 硬化性樹脂組成物は、さらに、着色剤(C)、カップリング剤(D)、及び無機充填材(E)から選ばれる1種以上を含有してもよい。反りを抑制して平坦な表面を有する硬化封止体を製造可能な反り防止用積層体とする観点から、少なくとも無機充填材(E)を含有することが好ましい。
 熱硬化性樹脂層(X1)の硬化開始温度は、好ましくは80~200℃、より好ましくは90~160℃、さらに好ましくは100~150℃である。
 支持層(II)が熱膨張性粒子を含む場合には、熱硬化性樹脂層(X1)として、その硬化開始温度が熱膨張性粒子の膨張開始温度より低い温度のものを用いる。熱硬化性樹脂層(X1)の硬化開始温度は、熱膨張性粒子の膨張開始温度より、好ましくは5℃以下、より好ましくは10℃以下、さらに好ましくは20℃以下である。
 熱硬化性樹脂層(X1)の厚さは、硬化性樹脂層(I)の厚さと同様の数値範囲とすればよい。
 熱硬化性樹脂層(X1)が、熱硬化性樹脂層(X1-1)及び(X1-2)のように、2つの層を含む場合、それらの厚さは、合計の厚さが硬化性樹脂層(I)の厚さと同様の数値範囲となるようにすればよい。また、これらの層のうち薄い層の厚さが、厚い層の厚さの、好ましくは10%以上、より好ましくは20%以上、さらに好ましくは30%以上である。
(重合体成分(A))
 熱硬化性樹脂組成物に含まれる重合体成分(A)は、質量平均分子量が2万以上であり、少なくとも1種の繰り返し単位を有する化合物を意味する。
 熱硬化性樹脂組成物が、重合体成分(A)を含有することで、形成される熱硬化性樹脂層が可とう性及び造膜性を有し、積層体の性状維持性を良好とすることができる。
 重合体成分(A)の質量平均分子量(Mw)としては、好ましくは2万以上、より好ましくは2万~300万、より好ましくは5万~200万、さらに好ましくは10万~150万、よりさらに好ましくは20万~100万である。
 成分(A)の含有量は、熱硬化性樹脂組成物の有効成分の全量(100質量%)に対して、好ましくは5~50質量%、より好ましくは8~40質量%、さらに好ましくは10~30質量%である。
 重合体成分(A)としては、例えば、アクリル系重合体、ポリエステル、フェノキシ系樹脂、ポリカーボネート、ポリエーテル、ポリウレタン、ポリシロキサン、ゴム系重合体等が挙げられる。
 これらの重合体成分(A)は、単独で用いてもよく、2種以上を併用してもよい。
 なお、本明細書において、エポキシ基を有するアクリル系重合体や、エポキシ基を有するフェノキシ樹脂は、熱硬化性を有しているが、これらが、質量平均分子量が2万以上であり、少なくとも1種の繰り返し単位を有する化合物であれば、重合体成分(A)の概念に含まれるものとする。
 これらの中でも、重合体成分(A)は、アクリル系重合体(A1)を含むことが好ましい。
 重合体成分(A)中のアクリル系重合体(A1)の含有割合は、熱硬化性樹脂組成物に含まれる重合体成分(A)の全量(100質量%)に対して、好ましくは60~100質量%、より好ましくは70~100質量%、さらに好ましくは80~100質量%、よりさらに好ましくは90~100質量%である。
(アクリル系重合体(A1))
 アクリル系重合体(A1)の質量平均分子量(Mw)は、形成される熱硬化性樹脂層に可とう性及び造膜性を付与する観点から、好ましくは2万~300万、より好ましくは10万~150万、さらに好ましくは15万~120万、よりさらに好ましくは25万~100万である。
 アクリル系重合体(A1)のガラス転移温度(Tg)は、形成される熱硬化性樹脂層の表面に良好な粘着性を付与する観点、及び、反り防止用積層体を用いて製造される、硬化樹脂層付き硬化封止体の信頼性を向上させる観点から、好ましくは-60~50℃、より好ましくは-50~30℃、さらに好ましくは-40~10℃、よりさらに好ましくは-35~5℃である。
 アクリル系重合体(A1)としては、アルキル(メタ)アクリレートを主成分とする重合体が挙げられ、具体的には、炭素数1~18のアルキル基を有するアルキル(メタ)アクリレート(a1’)(以下、「モノマー(a1’)」ともいう)に由来する構成単位(a1)を含むアクリル系重合体が好ましく、構成単位(a1)とともに官能基含有モノマー(a2’)(以下、「モノマー(a2’)」ともいう)に由来する構成単位(a2)を含むアクリル系共重合体がより好ましい。
 アクリル系重合体(A1)は、単独で用いてもよく、2種以上を併用してもよい。
 なお、アクリル系重合体(A1)が共重合体である場合、当該共重合体の形態は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよい。
 モノマー(a1’)が有するアルキル基の炭素数は、形成される熱硬化性樹脂層に可とう性及び造膜性を付与する観点から、好ましくは1~18、より好ましくは1~12、さらに好ましくは1~8である。当該アルキル基は、直鎖アルキル基であってもよく、分岐鎖アルキル基であってもよい。
 これらのモノマー(a1’)は、単独で用いてもよく、2種以上を併用してもよい。
 反り防止用積層体を用いて製造される、硬化樹脂層付き硬化封止体の信頼性を向上させる観点から、モノマー(a1’)が、炭素数1~3のアルキル基を有するアルキル(メタ)アクリレートを含むことが好ましく、メチル(メタ)アクリレートを含むことがより好ましい。
 上記観点から、炭素数1~3のアルキル基を有するアルキル(メタ)アクリレートに由来する構成単位(a11)の含有量は、アクリル系重合体(A1)の全構成単位(100質量%)に対して、好ましくは1~80質量%、より好ましくは5~80質量%、さらに好ましくは10~80質量%である。
 また、モノマー(a1’)が、炭素数4以上のアルキル基を有するアルキル(メタ)アクリレートを含むことが好ましく、炭素数4~6のアルキル基を有するアルキル(メタ)アクリレートを含むことがより好ましく、ブチル(メタ)アクリレートを含むことがさらに好ましい。
 上記観点から、炭素数4以上(好ましくは4~6、さらに好ましくは4)のアルキル基を有するアルキル(メタ)アクリレートに由来する構成単位(a12)の含有量は、アクリル系重合体(A1)の全構成単位(100質量%)に対して、好ましくは1~70質量%、より好ましくは5~65質量%、さらに好ましくは10~60質量%である。
 構成単位(a1)の含有量は、アクリル系重合体(A1)の全構成単位(100質量%)に対して、好ましくは50質量%以上、より好ましくは50~99質量%、さらに好ましくは55~90質量%、さらに好ましくは60~90質量%である。
 モノマー(a2’)としては、ヒドロキシ基含有モノマー及びエポキシ基含有モノマーから選ばれる1種以上が好ましい。
 なお、モノマー(a2’)は、単独で用いてもよく、2種以上を併用してもよい。
 ヒドロキシ基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;ビニルアルコール、アリルアルコール等の不飽和アルコール類等が挙げられる。
 これらの中でも、ヒドロキシ基含有モノマーとしては、ヒドロキシアルキル(メタ)アクリレートが好ましく、2-ヒドロキシエチル(メタ)アクリレートがより好ましい。
 エポキシ含有モノマーとしては、例えば、グリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)アクリレート、(3,4-エポキシシクロヘキシル)メチル(メタ)アクリレート、3-エポキシシクロ-2-ヒドロキシプロピル(メタ)アクリレート等のエポキシ基含有(メタ)アクリレート;グリシジルクロトネート、アリルグリシジルエーテル等が挙げられる。
 これらの中でも、エポキシ含有モノマーとしては、エポキシ基含有(メタ)アクリレートが好ましく、グリシジル(メタ)アクリレートがより好ましい。
 構成単位(a2)の含有量は、アクリル系重合体(A1)の全構成単位(100質量%)に対して、好ましくは1~50質量%、より好ましくは5~45質量%、さらに好ましくは10~40質量%、よりさらに好ましくは10~30質量%である。
 なお、アクリル系重合体(A1)は、本発明の効果を損なわない範囲において、上記の構成単位(a1)及び(a2)以外の他のモノマーに由来する構成単位を有していてもよい。
 その他のモノマーとしては、例えば、酢酸ビニル、スチレン、エチレン、α-オレフィン等が挙げられる。
(熱硬化性成分(B))
 熱硬化性成分(B)は、形成される熱硬化性樹脂層を熱硬化させて、硬質の硬化樹脂層とする役割を担うものであり、質量平均分子量が2万未満の化合物である。
 熱硬化性成分(B)の質量平均分子量(Mw)は、好ましくは10,000以下、より好ましくは100~10,000である。
 熱硬化性成分(B)としては、反りを抑制して平坦な表面を有する硬化封止体を製造可能である反り防止用積層体とする観点から、エポキシ基を有する化合物であるエポキシ化合物(B1)及び熱硬化剤(B2)を含むことが好ましく、エポキシ化合物(B1)及び熱硬化剤(B2)とともに、さらに硬化促進剤(B3)を含むことがより好ましい。
 エポキシ化合物(B1)としては、例えば、多官能系エポキシ樹脂、ビスフェノールAジグリシジルエーテル及びその水添物、オルソクレゾールノボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェニレン骨格型エポキシ樹脂等の分子中に2官能以上有し、質量平均分子量が2万未満であるエポキシ化合物等が挙げられる。
 エポキシ化合物(B1)は、単独で用いてもよく、2種以上を併用してもよい。
 エポキシ化合物(B1)の含有量は、反りを抑制して平坦な表面を有する硬化封止体を製造可能である反り防止用積層体とする観点から、熱硬化性樹脂組成物に含まれる重合体成分(A)100質量部に対して、好ましくは1~500質量部、より好ましくは3~300質量部、さらに好ましくは10~150質量部、よりさらに好ましくは20~120質量部である。
 熱硬化剤(B2)は、エポキシ化合物(B1)に対する硬化剤として機能する。
 熱硬化剤としては、1分子中にエポキシ基と反応し得る官能基を2個以上有する化合物が好ましい。
 当該官能基としてはフェノール性水酸基、アルコール性水酸基、アミノ基、カルボキシル基、及び酸無水物等が挙げられる。これらの中でも、反りを抑制して平坦な表面を有する硬化樹脂層付き硬化封止体を製造可能な粘着性積層体とする観点から、フェノール性水酸基、アミノ基、又は酸無水物が好ましく、フェノール性水酸基、又はアミノ基がより好ましく、アミノ基がさらに好ましい。
 フェノール基を有するフェノール系熱硬化剤としては、例えば、多官能系フェノール樹脂、ビフェノール、ノボラック型フェノール樹脂、ジシクロペンタジエン系フェノール樹脂、ザイロック型フェノール樹脂、アラルキルフェノール樹脂等が挙げられる。
 アミノ基を有するアミン系熱硬化剤としては、例えば、ジシアンジアミド等が挙げられる。
 これらの熱硬化剤(B2)は、単独で用いてもよく、2種以上を併用してもよい。
 熱硬化剤(B2)の含有量は、反りを抑制して平坦な表面を有する硬化樹脂層付きの硬化封止体を製造可能な粘着性積層体とする観点から、エポキシ化合物(B1)100質量部に対して、好ましくは0.1~500質量部、より好ましくは1~200質量部である。
 硬化促進剤(B3)は、形成される熱硬化性樹脂層を熱硬化させる際に、熱硬化の速度を高める機能を有する化合物である。
 硬化促進剤(B3)としては、例えば、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン類;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類;トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン等の有機ホスフィン類;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート等のテトラフェニルボロン塩等が挙げられる。
 これらの硬化促進剤(B3)は、単独で用いてもよく、2種以上を併用してもよい。
 硬化促進剤(B3)の含有量は、反りを抑制して平坦な表面を有する硬化封止体を製造可能である反り防止用積層体とする観点から、エポキシ化合物(B1)及び熱硬化剤(B2)の合計量100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.1~6質量部、さらに好ましくは0.3~4質量部である。
(着色剤(C))
 本発明の一態様で用いる熱硬化性樹脂組成物は、さらに着色剤(C)を含有してもよい。
 着色剤(C)を含む熱硬化性樹脂組成物から形成した熱硬化性樹脂層は、熱硬化して硬化樹脂層とした際に、当該硬化樹脂層の貼付の有無を外観上判断しやすくする効果を付与できるほか、周囲の装置から発生する赤外線等を遮蔽して、封止対象物(半導体チップ等)の誤作動を防止するなどの効果を付与することができる。
 着色剤(C)としては、有機又は無機の顔料及び染料を用いることができる。
 染料としては、例えば、酸性染料、反応染料、直接染料、分散染料、カチオン染料等のいずれの染料であっても用いることが可能である。
 また、顔料としては、特に制限されず、公知の顔料から適宜選択して用いることができる。
 これらの中でも、電磁波や赤外線の遮蔽性が良好であるという観点から、黒色顔料が好ましい。
 黒色顔料としては、例えば、カーボンブラック、酸化鉄、二酸化マンガン、アニリンブラック、活性炭等が挙げられるが、半導体チップの信頼性を高める観点から、カーボンブラックが好ましい。
 なお、これらの着色剤(C)は、単独で用いてもよく、2種以上を併用してもよい。
 ただし、本発明の一態様で用いる熱硬化性樹脂組成物において、着色剤(C)の含有量は、熱硬化性樹脂組成物の有効成分の全量(100質量%)に対して、8質量%未満であることが好ましい。
 着色剤(C)の含有量が8質量%未満であれば、チップの表面のクラックの有無や、チッピングを目視でも確認可能となる反り防止用積層体とすることができる。
 上記観点から、本発明の一態様で用いる熱硬化性樹脂組成物において、着色剤(C)の含有量は、熱硬化性樹脂組成物の有効成分の全量(100質量%)に対して、好ましくは5質量%未満、より好ましくは2質量%未満、さらに好ましくは1質量%未満、よりさらに好ましくは0.5質量%未満である。
 また、形成される熱硬化性樹脂層を熱硬化してなる硬化樹脂層に赤外線等を遮蔽する効果を発現させる観点から、着色剤(C)の含有量は、熱硬化性樹脂組成物の有効成分の全量(100質量%)に対して、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、さらに好ましくは0.10質量%以上、よりさらに好ましくは0.15質量%以上である。
(カップリング剤(D))
 本発明の一態様で用いる熱硬化性樹脂組成物は、さらにカップリング剤(D)を含有してもよい。
 カップリング剤(D)を含む熱硬化性樹脂組成物から形成した熱硬化性樹脂層は、封止対象物を載置する際の、封止対象物との接着性を向上させることができる。また、熱硬化性樹脂層を熱硬化させてなる硬化樹脂層は、耐熱性を損なうことなく、耐水性を向上させることもできる。
 カップリング剤(D)としては、成分(A)や成分(B)が有する官能基と反応する化合物が好ましく、具体的には、シランカップリング剤が好ましい。
 シランカップリング剤としては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-(メタクリロキシプロピル)トリメトキシシラン、3-アミノプロピルトリメトキシシラン、N-6-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-6-(アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、イミダゾールシラン等が挙げられる。
 これらのカップリング剤(D)は、単独で用いてもよく、2種以上を併用してもよい。
 カップリング剤(D)の分子量としては、好ましくは100~15,000、より好ましくは125~10,000、より好ましくは150~5,000、さらに好ましくは175~3,000、よりさらに好ましくは200~2,000である。
 成分(D)の含有量は、熱硬化性樹脂組成物の有効成分の全量(100質量%)に対して、好ましくは0.01~10質量%、より好ましくは0.05~7質量%、さらに好ましくは0.10~4質量%、よりさらに好ましくは0.15~2質量%である。
(無機充填材(E))
 本発明の一態様で用いる熱硬化性樹脂組成物は、反りを抑制して平坦な表面を有する硬化封止体を製造可能である反り防止用積層体とする観点から、さらに無機充填材(E)を含有することが好ましい。
 無機充填材(E)を含む熱硬化性樹脂組成物から形成した熱硬化性樹脂層とすることで、封止材を熱硬化させる際に、硬化封止体の2つの表面間の収縮応力の差を小さくなるように、当該熱硬化性樹脂層の熱硬化の程度を調整することができる。その結果、反りを抑制して平坦な表面を有する硬化封止体を製造することが可能となる。
 また、形成される熱硬化性樹脂層を熱硬化してなる硬化樹脂層の熱膨張係数を適度な範囲に調整することでき、封止対象物の信頼性を向上させることができる。また、当該硬化樹脂層の吸湿率を低減させることもできる。
 無機充填材(E)としては、例えば、シリカ、アルミナ、タルク、炭酸カルシウム、酸化チタン、酸化鉄、炭化珪素、窒化ホウ素等の粉末、これらを球形化したビーズ、単結晶繊維及びガラス繊維等の非熱膨張性粒子が挙げられる。
 これらの無機充填材(E)は、単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、反りを抑制して平坦な表面を有する硬化封止体を製造可能である反り防止用積層体とする観点から、シリカ、又はアルミナが好ましい。
 無機充填材(E)の平均粒子径としては、形成される熱硬化性樹脂層を熱硬化してなる硬化樹脂層のグロス値を向上させる観点から、好ましくは0.01~50μm、より好ましくは0.1~30μm、さらに好ましくは0.3~30μm、特に好ましくは0.5~10μmである。
 成分(E)の含有量は、反りを抑制して平坦な表面を有する硬化封止体を製造可能である反り防止用積層体とする観点から、熱硬化性樹脂組成物の有効成分の全量(100質量%)に対して、好ましくは25~80質量%、より好ましくは30~70質量%、さらに好ましくは40~65質量%、よりさらに好ましくは45~60質量%である。
(その他の添加剤)
 本発明の一態様で用いる熱硬化性樹脂組成物は、本発明の効果を損なわない範囲で、さらに、上述の成分(A)~(E)以外の他の添加剤を含有してもよい。
 他の添加剤としては、例えば、架橋剤、レベリング剤、可塑剤、帯電防止剤、酸化防止剤、イオン捕捉剤、ゲッタリング剤、連鎖移動剤等が挙げられる。
 ただし、成分(A)~(E)以外の他の添加剤の合計含有量としては、熱硬化性樹脂組成物の有効成分の全量(100質量%)に対して、好ましくは0~20質量%、より好ましくは0~10質量%、さらに好ましくは0~5質量%である。
 硬化性樹脂層(I)が、図1、図2、図3に示すように、熱硬化性樹脂層(X1)の単層からなる場合は、この単層の熱硬化性樹脂層(X1)が上記構成を有している。硬化性樹脂層(I)が、図4に示すように、支持層(II)側に位置する第1の熱硬化性樹脂層(X1-1)と、支持層(II)とは反対側(第1表面側)に位置する第2の熱硬化性樹脂層(X1-2)とを含む場合は、少なくともこれらの粘着力が異なることが好ましく、特に第1表面側に位置する第2の熱硬化性樹脂層(X1-2)が、第1の熱硬化性樹脂層(X1-1)よりも、表面の粘着力が高い第2の熱硬化性樹脂層(X1-2)とすることが好ましい。なお、第2の熱硬化性樹脂層の粘着力を第1の熱硬化性樹脂層の粘着力より高くするための方法としては、例えば、カップリング剤の種類を変えてより高い粘着力を生じさせるものを選ぶ、無機充填材の添加割合を少なくすること等が挙げられる。
 また、第1の熱硬化性樹脂層(X1-1)のせん断力と第2の熱硬化性樹脂層(X1-2)のせん断力とを異ならせ、前者を大きくするようにしてもよい。この場合、例えば、第1の熱硬化性樹脂層(X1-1)に添加する無機充填材の量を多くするなどにより、せん断力を第2の熱硬化性樹脂層(X1-2)より大きくすることができる。
(エネルギー線硬化性樹脂層)
 図5に示すように、硬化性樹脂層(I)が、熱硬化性樹脂層(X1-1)とエネルギー線硬化性樹脂層(X2)とを備えていてもよい。
 この場合、硬化性樹脂層(I)が、支持層側に位置する第1層と、第1表面側に位置する第2層とを含み、上記第1層が熱硬化性樹脂層(X1-1)であり、上記第2層がエネルギー線硬化性樹脂層(X2)であることが好ましい。熱硬化性樹脂層(X1-1)は、上述した構成を備えている。
 エネルギー線硬化性樹脂層(X2)は、エネルギー線硬化型の粘着性樹脂及び光重合開始剤を含有するエネルギー線硬化型粘着剤組成物から形成されることが好ましい。
 エネルギー線硬化性樹脂層(X2)は、熱硬化性樹脂層に比べて、粘着力を高めるための調整を行いやすいため、封止対象物を第1表面により確実に固定しやすい。
 このようなエネルギー線硬化型粘着剤組成物を用いたエネルギー線硬化性樹脂層に対してエネルギー線を照射して硬化させておくことにより、後述する封止材の熱硬化の際に、硬化性樹脂層の硬化収縮を生じにくくすることができ、硬化封止体に反りが発生するのを防止するのに有利となる。また、熱硬化型粘着剤組成物は、高温で加熱されると、主に硬化の初期段階において軟化するため、チップズレを招く可能性があるのに対して、エネルギー線硬化型粘着剤組成物は、エネルギー線照射による硬化では軟化しないので、硬化に伴うチップズレの発生を回避できる。
 なお、エネルギー線としては、紫外線、電子線、放射線等が挙げられるが、硬化性樹脂組成物の入手容易性や、エネルギー線照射装置の取扱いの容易性の観点から、紫外線が好ましい。
 エネルギー線硬化型粘着剤組成物としては、上記の粘着性樹脂の側鎖に、(メタ)アクリロイル基、ビニル基等の重合性官能基を導入したエネルギー線硬化型の粘着性樹脂を含有する組成物であってもよく、重合性官能基を有するモノマー又はオリゴマーを含有する組成物であってもよい。
 なお、これらの組成物には、さらに光重合開始剤を含有することが好ましい。
 光重合開始剤としては、例えば、1-ヒドロキシ-シクロへキシル-フェニル-ケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンジルフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロルニトリル、ジベンジル、ジアセチル、8-クロールアンスラキノン等が挙げられる。
 これらの光重合開始剤は、単独で用いてもよく、2種以上を併用してもよい。
 光重合開始剤の含有量は、エネルギー線硬化型粘着性樹脂100質量部もしくは重合性官能基を有するモノマー又はオリゴマー100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~5質量部、さらに好ましくは0.05~3質量部、特に好ましくは0.1~3質量部である。
 熱硬化性樹脂層(X1-1)のせん断力を、エネルギー線硬化性樹脂層(X2)のせん断力よりも大きくすることで、硬化性樹脂層(I)全体のせん断力を大きくするようにしてもよい。
<支持層(II)>
 本発明の一態様の積層体が有する支持層(II)は、基材(Y)及び粘着剤層(V)を有し、基材(Y)及び粘着剤層(V)の少なくとも一方が膨張性粒子を含有するものであることが好ましい。上記のとおり、支持層(II)は、膨張処理等によって、硬化性樹脂層(I)から分離される層であり、仮固定層としての役割を担う層である。
 膨張性粒子を含有する層が、基材(Y)の構成に含まれる場合と、粘着剤層(V)の構成に含まれる場合とで、本発明の一態様で用いる支持層(II)は、以下の態様に分けられる。
・支持層(II)の第一の態様:膨張性粒子を含有する膨張性基材層(Y1)を有する基材(Y)を備える支持層(II)。
・支持層(II)の第二の態様:基材(Y)の一方の面に、膨張性粒子を含有する膨張性の粘着剤層である第2粘着剤層(V2)が設けられ、他方の面に、非膨張性の粘着剤層である第1粘着剤層(V1)を有する支持層(II)。
(支持層(II)の第一の態様)
 支持層(II)の第一の態様としては、図1~2、4、5に示すように、基材(Y)が、膨張性粒子を含有する膨張性基材層(Y1)を有するものが挙げられる。
界面Pでわずかな力で一括して容易に分離可能とする観点から、粘着剤層(V)は、非膨張性の粘着剤層であることが好ましい。
 具体的には、図1に示す積層体1a、1b、図4に示す積層体4、及び、図5に示す積層体5が有する支持層(II)においては、粘着剤層(V1)が、非膨張性の粘着剤層であることが好ましい。
 また、図2に示す積層体2a、2bが有する支持層(II)においては、第1粘着剤層(V1-1)及び第2粘着剤層(V1-2)の両方が、非膨張性の粘着剤層であることが好ましい。
 支持層(II)の第一の態様のように、基材(Y)が膨張性基材層(Y1)を有することで、粘着剤層(V1)は膨張性を有する必要がなくなり、膨張性を付与するための組成、構成及びプロセスに拘束されない。これにより、粘着剤層(V1)を設計するに当たって、例えば、粘着性等の性能、生産性、経済性等、膨張性以外の所望する性能を優先した設計が可能となるため、粘着剤層(V)の設計自由度を向上させることができる。
 支持層(II)の第一の態様の、膨張処理前の基材(Y)の厚さは、好ましくは10~1,000μm、より好ましくは20~700μm、さらに好ましくは25~500μm、よりさらに好ましくは30~300μmである。
 支持層(II)の第一の態様の、膨張処理前の粘着剤層(V)の厚さは、好ましくは1~60μm、より好ましくは2~50μm、さらに好ましくは3~40μm、よりさらに好ましくは5~30μmである。
 なお、本明細書において、例えば、図2に示すように、支持層(II)が、複数の粘着剤層を有する場合、上記の「粘着剤層(V)の厚さ」は、それぞれの粘着剤層の厚さ(図2では、第1粘着剤層(V1-1)及び第2粘着剤層(V1-2)のそれぞれの厚さ)を意味する。
 また、本明細書において、積層体を構成する各層の厚さは、実施例に記載の方法により測定された値を意味する。
 支持層(II)の第一の態様において、膨張処理前における、膨張性基材層(Y1)と、粘着剤層(V)との厚さ比〔(Y1)/(V)〕としては、好ましくは1,000以下、より好ましくは200以下、さらに好ましくは60以下、よりさらに好ましくは30以下である。
 当該厚さ比が1,000以下であれば、膨張処理によって、支持層(II)と硬化樹脂層(I’)との界面Pでわずかな力で一括して容易に分離可能となる積層体とすることができる。
 なお、当該厚さ比は、好ましくは0.2以上、より好ましくは0.5以上、さらに好ましくは1.0以上、よりさらに好ましくは5.0以上である。
 また、支持層(II)の第一の態様では、基材(Y)が、図1(a)に示すような、膨張性基材層(Y1)のみから構成されたものであってもよく、図1(b)に示すような、硬化性樹脂層(I)側に膨張性基材層(Y1)を有し、粘着剤層(V)側に非膨張性基材層(Y2)を有するものであってもよい。
 支持層(II)の第一の態様において、膨張処理前における、膨張性基材層(Y1)と非膨張性基材層(Y2)との厚さ比〔(Y1)/(Y2)〕としては、好ましくは0.02~200、より好ましくは0.03~150、さらに好ましくは0.05~100である。
 支持層(II)の第一の態様において、支持層(II)の厚みは、好ましくは0.02~200μm、より好ましくは0.03~150μm、さらに好ましくは0.05~100μmである。
(支持層(II)の第二の態様)
 支持層(II)の第二の態様としては、図3に示すように、基材(Y)の一方の表面に、非膨張性の粘着剤層である第1粘着剤層(V1)が配置され、他方の表面に、膨張性粒子を含有する膨張性の粘着剤層である第2粘着剤層(V2)が配置されたものが挙げられる。
 なお、支持層(II)の第二の態様は、膨張性の粘着剤層である第2粘着剤層(V2)と、硬化性樹脂層(I)とが直接接触する。
 支持層(II)の第二の態様において、基材(Y)は、非膨張性基材であることが好ましい。非膨張性基材は、非膨張性基材層(Y2)のみから構成されたものであることが好ましい。
 支持層(II)の第二の態様において、膨張処理前における、膨張性の粘着剤層である第2粘着剤層(V2)と、非膨張性の粘着剤層である第1粘着剤層(V1)との厚さ比〔(V2)/(V1)〕としては、好ましくは0.1~80、より好ましくは0.3~50、さらに好ましくは0.5~15である。
 また、支持層(II)の第二の態様において、膨張処理前における、膨張性の粘着剤層である第2粘着剤層(V2)と、基材(Y)との厚さ比〔(V2)/(Y)〕としては、好ましくは0.05~20、より好ましくは0.1~10、さらに好ましくは0.2~3である。
 支持層(II)の第二の態様において、支持層(II)の厚みは、好ましくは0.05~20μm、より好ましくは0.1~10μm、さらに好ましくは0.2~3μmである。
 以下、支持層(II)を構成するいずれかの層に含有され得る膨張性粒子について説明した上で、基材(Y)を構成する膨張性基材層(Y1)、非膨張性基材層(Y2)、及び粘着剤層(V)に関して詳述する。
(膨張性粒子)
 本発明の一態様で用いる膨張性粒子は、外部刺激によって、それ自体が膨張することで粘着剤層(V2)の粘着表面に凹凸を形成し、被着体との接着力を低下させることができるものであれば特に限定されない。
 膨張性微粒子としては、例えば、加熱によって膨張する熱膨張性粒子、エネルギー線の照射によって膨張するエネルギー線膨張性微粒子等が挙げられるが、汎用性及び取り扱い性の観点から、所定の加熱膨張処理によって膨張する熱膨張性粒子であることが好ましい。
 本発明の一態様で用いる、膨張性粒子の23℃における膨張前の平均粒子径は、好ましくは3~100μm、より好ましくは4~70μm、さらに好ましくは6~60μm、よりさらに好ましくは10~50μmである。
 なお、膨張性粒子の膨張前の平均粒子径とは、体積中位粒子径(D50)であり、レーザ回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した、膨張前の膨張性粒子の粒子分布において、膨張前の膨張性粒子の粒子径の小さい方から計算した累積体積頻度が50%に相当する粒子径を意味する。
 本発明の一態様で用いる、膨張性粒子の23℃における膨張前の90%粒子径(D90)としては、好ましくは10~150μm、より好ましくは20~100μm、さらに好ましくは25~90μm、よりさらに好ましくは30~80μmである。
 なお、膨張性粒子の膨張前の90%粒子径(D90)とは、レーザ回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した、膨張前の膨張性粒子の粒子分布において、膨張前の膨張性粒子の粒子径の小さい方から計算した累積体積頻度が90%に相当する粒子径を意味する。
 本発明の一態様で用いる熱膨張性粒子は、封止材を硬化させる際には膨張せず、封止材の硬化温度よりも高い膨張開始温度(t)を有する粒子であればよく、具体的には、膨張開始温度(t)が60~270℃に調整された熱膨張性粒子であることが好ましい。
 なお、膨張開始温度(t)は、使用する封止材の硬化温度に応じて適宜選択される。
 また、本明細書において、熱膨張性粒子の膨張開始温度(t)は、実施例に記載の方法に基づき測定された値を意味する。
 熱膨張性粒子としては、熱可塑性樹脂から構成された外殻と、当該外殻に内包され、かつ所定の温度まで加熱されると気化する内包成分とから構成される、マイクロカプセル化発泡剤であることが好ましい。
 マイクロカプセル化発泡剤の外殻を構成する熱可塑性樹脂としては、例えば、塩化ビニリデン-アクリロニトリル共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホン等が挙げられる。
 外殻に内包された内包成分としては、例えば、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、イソブタン、イソペンタン、イソヘキサン、イソヘプタン、イソオクタン、イソノナン、イソデカン、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、ネオペンタン、ドデカン、イソドデカン、シクロトリデカン、ヘキシルシクロヘキサン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、ナノデカン、イソトリデカン、4-メチルドデカン、イソテトラデカン、イソペンタデカン、イソヘキサデカン、2,2,4,4,6,8,8-ヘプタメチルノナン、イソヘプタデカン、イソオクタデカン、イソナノデカン、2,6,10,14-テトラメチルペンタデカン、シクロトリデカン、ヘプチルシクロヘキサン、n-オクチルシクロヘキサン、シクロペンタデカン、ノニルシクロヘキサン、デシルシクロヘキサン、ペンタデシルシクロヘキサン、ヘキサデシルシクロヘキサン、ヘプタデシルシクロヘキサン、オクタデシルシクロヘキサン等が挙げられる。
 これらの内包成分は、単独で用いてもよく、2種以上を併用してもよい。
 熱膨張性粒子の膨張開始温度(t)は、内包成分の種類を適宜選択することで調整可能である。
 本発明の一態様で用いる熱膨張性粒子の膨張開始温度(t)以上の温度まで加熱した際の体積最大膨張率は、好ましくは1.5~100倍、より好ましくは2~80倍、さらに好ましくは2.5~60倍、よりさらに好ましくは3~40倍である。
<膨張性基材層(Y1)>
 本発明の一態様で用いる支持層(II)が有する膨張性基材層(Y1)は、膨張性粒子を含有し、所定の加熱処理等の膨張処理によって、膨張し得る層である。
 なお、膨張性基材層(Y1)と積層する他の層との層間密着性を向上させる観点から、膨張性基材層(Y1)の表面に対して、酸化法、凹凸化法等による表面処理、易接着処理、あるいはプライマー処理を施してもよい。
 酸化法としては、例えば、コロナ放電処理、プラズマ放電処理、クロム酸処理(湿式)、熱風処理、オゾン、及び紫外線照射処理等が挙げられ、凹凸化法としては、例えば、サンドブラスト法、溶剤処理法等が挙げられる。
 本発明の一態様において、膨張性基材層(Y1)が熱膨張性粒子を含むものである場合、膨張性基材層(Y1)は下記要件(1)を満たすものであることが好ましい。
・要件(1):熱膨張性粒子の膨張開始温度(t)における、膨張性基材層(Y1)の貯蔵弾性率E’(t)が、1.0×10Pa以下である。
 なお、本明細書において、所定の温度における膨張性基材層(Y1)の貯蔵弾性率E’は、実施例に記載の方法により測定された値を意味する。
 上記要件(1)は、熱膨張性粒子が膨張する直前の膨張性基材層(Y1)の剛性を示す指標といえる。
 支持層(II)と硬化樹脂層(I’)との界面Pでわずかな力で容易に分離可能とするためには、膨張開始温度(t)以上の温度まで加熱した際に、支持層(II)の硬化性樹脂層(I)と積層している側の表面に、凹凸が形成され易くする必要がある。
 つまり、上記要件(1)を満たす膨張性基材層(Y1)は、膨張開始温度(t)で熱膨張性粒子が膨張して十分に大きくなり、硬化性樹脂層(I)が積層している側の支持層(II)の表面に、凹凸が形成され易くなる。
 その結果、支持層(II)と硬化樹脂層(I’)との界面Pでわずかな力で容易に分離可能となる積層体となり得る。
 要件(1)で規定する、膨張性基材層(Y1)の貯蔵弾性率E’(t)は、上記観点から、好ましくは9.0×10Pa以下、より好ましくは8.0×10Pa以下、さらに好ましくは6.0×10Pa以下、よりさらに好ましくは4.0×10Pa以下である。
 また、膨張した膨張性粒子の流動を抑制し、硬化性樹脂層(I)が積層している側の支持層(II)の表面に形成される凹凸の形状維持性を向上させ、界面Pでわずかな力でより容易に分離可能とする観点から、要件(1)で規定する、膨張性基材層(Y1)の貯蔵弾性率E’(t)は、好ましくは1.0×10Pa以上、より好ましくは1.0×10Pa以上、さらに好ましくは1.0×10Pa以上である。
 膨張性基材層(Y1)は、樹脂及び膨張性粒子を含有する樹脂組成物(y)から形成することが好ましい。
 なお、樹脂組成物(y)には、本発明の効果を損なわない範囲で、必要に応じて、基材用添加剤を含有してもよい。
 基材用添加剤としては、例えば、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、スリップ剤、アンチブロッキング剤、着色剤等が挙げられる。
 なお、これらの基材用添加剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
 これらの基材用添加剤を含有する場合、それぞれの基材用添加剤の含有量は、上記樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。
 膨張性粒子の含有量は、膨張性基材層(Y1)の全質量(100質量%)又は樹脂組成物(y)の有効成分の全量(100質量%)に対して、好ましくは1~40質量%、より好ましくは5~35質量%、さらに好ましくは10~30質量%、よりさらに好ましくは15~25質量%である。
 膨張性基材層(Y1)の形成材料である樹脂組成物(y)に含有される樹脂は、非粘着性樹脂であってもよく、粘着性樹脂であってもよい。
 つまり、樹脂組成物(y)に含有される樹脂が粘着性樹脂であっても、樹脂組成物(y)から膨張性基材層(Y1)を形成する過程において、当該粘着性樹脂が重合性化合物と重合反応し、得られる樹脂が非粘着性樹脂となり、当該樹脂を含有する膨張性基材層(Y1)が非粘着性となればよい。
 樹脂組成物(y)に含有される上記樹脂の質量平均分子量(Mw)としては、好ましくは1,000~100万、より好ましくは1,000~70万、さらに好ましくは1,000~50万である。
 また、当該樹脂が2種以上の構成単位を有する共重合体である場合、当該共重合体の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。
 上記樹脂の含有量は、膨張性基材層(Y1)の全質量(100質量%)又は樹脂組成物(y)の有効成分の全量(100質量%)に対して、好ましくは50~99質量%、より好ましくは60~95質量%、さらに好ましくは65~90質量%、よりさらに好ましくは70~85質量%である。
 なお、上記要件(1)を満たす膨張性基材層(Y1)を形成する観点から、樹脂組成物(y)に含有される上記樹脂としては、アクリルウレタン系樹脂及びオレフィン系樹脂から選ばれる1種以上を含有することが好ましい。
 また、上記アクリルウレタン系樹脂としては、ウレタンプレポリマー(UP)と、(メタ)アクリル酸エステルを含むビニル化合物とを重合してなるアクリルウレタン系樹脂(U1)が好ましい。
(アクリルウレタン系樹脂(U1))
 アクリルウレタン系樹脂(U1)の主鎖となるウレタンプレポリマー(UP)としては、ポリオールと多価イソシアネートとの反応物が挙げられる。
 なお、ウレタンプレポリマー(UP)は、さらに鎖延長剤を用いた鎖延長反応を施して得られたものであることが好ましい。
 ウレタンプレポリマー(UP)の原料となるポリオールとしては、例えば、アルキレン型ポリオール、エーテル型ポリオール、エステル型ポリオール、エステルアミド型ポリオール、エステル・エーテル型ポリオール、カーボネート型ポリオール等が挙げられる。
 これらのポリオールは、単独で用いてもよく、2種以上を併用してもよい。
 本発明の一態様で用いるポリオールとしては、ジオールが好ましく、エステル型ジオール、アルキレン型ジオール及びカーボネート型ジオールがより好ましく、エステル型ジオール、カーボネート型ジオールがさらに好ましい。
 エステル型ジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のアルカンジオール;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレングリコール;等のジオール類から選択される1種又は2種以上と、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、4,4-ジフェニルジカルボン酸、ジフェニルメタン-4,4’-ジカルボン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ヘット酸、マレイン酸、フマル酸、イタコン酸、シクロヘキサン-1,3-ジカルボン酸、シクロヘキサン-1,4-ジカルボン酸、ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸、メチルヘキサヒドロフタル酸等のジカルボン酸及びこれらの無水物から選択される1種又は2種以上と、の縮重合体が挙げられる。
 具体的には、ポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリヘキサメチレンアジペートジオール、ポリヘキサメチレンイソフタレートジオール、ポリネオペンチルアジペートジオール、ポリエチレンプロピレンアジペートジオール、ポリエチレンブチレンアジペートジオール、ポリブチレンヘキサメチレンアジペートジオール、ポリジエチレンアジペートジオール、ポリ(ポリテトラメチレンエーテル)アジペートジオール、ポリ(3-メチルペンチレンアジペート)ジオール、ポリエチレンアゼレートジオール、ポリエチレンセバケートジオール、ポリブチレンアゼレートジオール、ポリブチレンセバケートジオール及びポリネオペンチルテレフタレートジオール等が挙げられる。
 アルキレン型ジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のアルカンジオール;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレングリコール;ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等のポリアルキレングリコール;ポリテトラメチレングリコール等のポリオキシアルキレングリコール;等が挙げられる。
 カーボネート型ジオールとしては、例えば、1,4-テトラメチレンカーボネートジオール、1,5-ペンタメチレンカーボネートジオール、1,6-ヘキサメチレンカーボネートジオール、1,2-プロピレンカーボネートジオール、1,3-プロピレンカーボネートジオール、2,2-ジメチルプロピレンカーボネートジオール、1,7-ヘプタメチレンカーボネートジオール、1,8-オクタメチレンカーボネートジオール、1,4-シクロヘキサンカーボネートジオール等が挙げられる。
 ウレタンプレポリマー(UP)の原料となる多価イソシアネートとしては、芳香族ポリイソシアネート、脂肪族ポリイソシアネート、脂環式ポリイソシアネート等が挙げられる。
 これらの多価イソシアネートは、単独で用いてもよく、2種以上を併用してもよい。
 また、これらの多価イソシアネートは、トリメチロールプロパンアダクト型変性体、水と反応させたビュウレット型変性体、イソシアヌレート環を含有させたイソシアヌレート型変性体であってもよい。
 これらの中でも、本発明の一態様で用いる多価イソシアネートとしては、ジイソシアネートが好ましく、4,4’-ジフェニルメタンジイソシアネート(MDI)、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)、ヘキサメチレンジイソシアネート(HMDI)、及び脂環式ジイソシアネートから選ばれる1種以上がより好ましい。
 脂環式ジイソシアネートとしては、例えば、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート、IPDI)、1,3-シクロペンタンジイソシアネート、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート等が挙げられるが、イソホロンジイソシアネート(IPDI)が好ましい。
 本発明の一態様において、アクリルウレタン系樹脂(U1)の主鎖となるウレタンプレポリマー(UP)としては、ジオールとジイソシアネートとの反応物であり、両末端にエチレン性不飽和基を有する直鎖ウレタンプレポリマーが好ましい。
 当該直鎖ウレタンプレポリマーの両末端にエチレン性不飽和基を導入する方法としては、ジオールとジイソシアネート化合物とを反応してなる直鎖ウレタンプレポリマーの末端のNCO基と、ヒドロキシアルキル(メタ)アクリレートとを反応させる方法が挙げられる。
 ヒドロキシアルキル(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。
 アクリルウレタン系樹脂(U1)の側鎖となる、ビニル化合物としては、少なくとも(メタ)アクリル酸エステルを含有する。
 (メタ)アクリル酸エステルとしては、アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートから選ばれる1種以上が好ましく、アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートを併用することがより好ましい。
 アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートを併用する場合、アルキル(メタ)アクリレート100質量部に対する、ヒドロキシアルキル(メタ)アクリレートの配合割合としては、好ましくは0.1~100質量部、より好ましくは0.5~30質量部、さらに好ましくは1.0~20質量部、よりさらに好ましくは1.5~10質量部である。
 当該アルキル(メタ)アクリレートが有するアルキル基の炭素数としては、好ましくは1~24、より好ましくは1~12、さらに好ましくは1~8、よりさらに好ましくは1~3である。
 また、ヒドロキシアルキル(メタ)アクリレートとしては、上述の直鎖ウレタンプレポリマーの両末端にエチレン性不飽和基を導入するために用いられるヒドロキシアルキル(メタ)アクリレートと同じものが挙げられる。
 (メタ)アクリル酸エステル以外のビニル化合物としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン等の芳香族炭化水素系ビニル化合物;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;酢酸ビニル、プロピオン酸ビニル、(メタ)アクリロニトリル、N-ビニルピロリドン、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、メタ(アクリルアミド)等の極性基含有モノマー;等が挙げられる。
 これらは単独で用いてもよく、2種以上を併用してもよい。
 ビニル化合物中の(メタ)アクリル酸エステルの含有量としては、当該ビニル化合物の全量(100質量%)に対して、好ましくは40~100質量%、より好ましくは65~100質量%、さらに好ましくは80~100質量%、よりさらに好ましくは90~100質量%である。
 ビニル化合物中のアルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートの合計含有量としては、当該ビニル化合物の全量(100質量%)に対して、好ましくは40~100質量%、より好ましくは65~100質量%、さらに好ましくは80~100質量%、よりさらに好ましくは90~100質量%である。
 本発明の一態様で用いるアクリルウレタン系樹脂(U1)において、ウレタンプレポリマー(UP)に由来の構成単位(u11)と、ビニル化合物に由来する構成単位(u12)との含有量比〔(u11)/(u12)〕としては、質量比で、好ましくは10/90~80/20、より好ましくは20/80~70/30、さらに好ましくは30/70~60/40、よりさらに好ましくは35/65~55/45である。
(オレフィン系樹脂)
 樹脂組成物(y)に含有される樹脂として好適な、オレフィン系樹脂としては、オレフィンモノマーに由来の構成単位を少なくとも有する重合体である。
 上記オレフィンモノマーとしては、炭素数2~8のα-オレフィンが好ましく、具体的には、エチレン、プロピレン、ブチレン、イソブチレン、1-ヘキセン等が挙げられる。
 これらの中でも、エチレン及びプロピレンが好ましい。
 具体的なオレフィン系樹脂としては、例えば、超低密度ポリエチレン(VLDPE、密度:880kg/m以上910kg/m未満)、低密度ポリエチレン(LDPE、密度:910kg/m以上915kg/m未満)、中密度ポリエチレン(MDPE、密度:915kg/m以上942kg/m未満)、高密度ポリエチレン(HDPE、密度:942kg/m以上)、直鎖状低密度ポリエチレン等のポリエチレン樹脂;ポリプロピレン樹脂(PP);ポリブテン樹脂(PB);エチレン-プロピレン共重合体;オレフィン系エラストマー(TPO);ポリ(4-メチルー1-ペンテン)(PMP);エチレン-酢酸ビニル共重合体(EVA);エチレンービニルアルコール共重合体(EVOH);エチレン-プロピレン-(5-エチリデン-2-ノルボルネン)等のオレフィン系三元共重合体;等が挙げられる。
 本発明の一態様において、オレフィン系樹脂は、さらに酸変性、水酸基変性、及びアクリル変性から選ばれる1種以上の変性を施した変性オレフィン系樹脂であってもよい。
 例えば、オレフィン系樹脂に対して酸変性を施してなる酸変性オレフィン系樹脂としては、上述の無変性のオレフィン系樹脂に、不飽和カルボン酸又はその無水物を、グラフト重合させてなる変性重合体が挙げられる。
 上記の不飽和カルボン酸又はその無水物としては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、グルタコン酸、テトラヒドロフタル酸、アコニット酸、(メタ)アクリル酸、無水マレイン酸、無水イタコン酸、無水グルタコン酸、無水シトラコン酸、無水アコニット酸、ノルボルネンジカルボン酸無水物、テトラヒドロフタル酸無水物等が挙げられる。
 なお、不飽和カルボン酸又はその無水物は、単独で用いてもよく、2種以上を併用してもよい。
 オレフィン系樹脂に対してアクリル変性を施してなるアクリル変性オレフィン系樹脂としては、主鎖である上述の無変性のオレフィン系樹脂に、側鎖として、アルキル(メタ)アクリレートをグラフト重合させてなる変性重合体が挙げられる。
 上記のアルキル(メタ)アクリレートが有するアルキル基の炭素数としては、好ましくは1~20、より好ましくは1~16、さらに好ましくは1~12である。
 上記のアルキル(メタ)アクリレートとしては、例えば、後述のモノマー(a1’)として選択可能な化合物と同じものが挙げられる。
 オレフィン系樹脂に対して水酸基変性を施してなる水酸基変性オレフィン系樹脂としては、主鎖である上述の無変性のオレフィン系樹脂に、水酸基含有化合物をグラフト重合させてなる変性重合体が挙げられる。
 上記の水酸基含有化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;ビニルアルコール、アリルアルコール等の不飽和アルコール類等が挙げられる。
(アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂)
 本発明の一態様において、樹脂組成物(y)には、本発明の効果を損なわない範囲で、アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂を含有してもよい。
 そのような樹脂としては、例えば、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール等のビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン;アクリロニトリル-ブタジエン-スチレン共重合体;三酢酸セルロース;ポリカーボネート;アクリルウレタン系樹脂には該当しないポリウレタン;ポリスルホン;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルイミド、ポリイミド等のポリイミド系樹脂;ポリアミド系樹脂;アクリル樹脂;フッ素系樹脂等が挙げられる。
 ただし、上記要件(1)を満たす膨張性基材層(Y1)を形成する観点から、樹脂組成物(y)中のアクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂の含有割合は、少ない方が好ましい。
 アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂の含有割合としては、樹脂組成物(y)中に含有される樹脂の全量100質量部に対して、好ましくは30質量部未満、より好ましくは20質量部未満、より好ましくは10質量部未満、さらに好ましくは5質量部未満、よりさらに好ましくは1質量部未満である。
(無溶剤型樹脂組成物(y1))
 本発明の一態様で用いる樹脂組成物(y)として、質量平均分子量(Mw)が50,000以下のエチレン性不飽和基を有するオリゴマーと、エネルギー線重合性モノマーと、上述の膨張性粒子を配合してなり、溶剤を配合しない、無溶剤型樹脂組成物(y1)が挙げられる。
 無溶剤型樹脂組成物(y1)では、溶剤を配合しないが、エネルギー線重合性モノマーが、上記オリゴマーの可塑性の向上に寄与するものである。
 無溶剤型樹脂組成物(y1)から形成した塗膜に対して、エネルギー線を照射することで、上記要件(1)を満たす膨張性基材層(Y1)を形成し易い。
 なお、無溶剤型樹脂組成物(y1)に配合される膨張性粒子の種類、形状及び配合量(含有量)については、上述のとおりである。
 無溶剤型樹脂組成物(y1)に含有される上記オリゴマーの質量平均分子量(Mw)は、50,000以下であるが、好ましくは1,000~50,000、より好ましくは20,00~40,000、さらに好ましくは3,000~35,000、よりさらに好ましくは4,000~30,000である。
 また、上記オリゴマーとしては、上述の樹脂組成物(y)に含有される樹脂のうち、質量平均分子量が50,000以下のエチレン性不飽和基を有するものであればよいが、上述のウレタンプレポリマー(UP)が好ましい。
 なお、当該オリゴマーとしては、エチレン性不飽和基を有する変性オレフィン系樹脂も使用し得る。
 無溶剤型樹脂組成物(y1)中における、上記オリゴマー及びエネルギー線重合性モノマーの合計含有量は、無溶剤型樹脂組成物(y1)の全量(100質量%)に対して、好ましくは50~99質量%、より好ましくは60~95質量%、さらに好ましくは65~90質量%、よりさらに好ましくは70~85質量%である。
 エネルギー線重合性モノマーとしては、例えば、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシ(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、アダマンタン(メタ)アクリレート、トリシクロデカンアクリレート等の脂環式重合性化合物;フェニルヒドロキシプロピルアクリレート、ベンジルアクリレート、フェノールエチレンオキシド変性アクリレート等の芳香族重合性化合物;テトラヒドロフルフリル(メタ)アクリレート、モルホリンアクリレート、N-ビニルピロリドン、N-ビニルカプロラクタム等の複素環式重合性化合物等が挙げられる。
 これらのエネルギー線重合性モノマーは、単独で用いてもよく、2種以上を併用してもよい。
 上記オリゴマーとエネルギー線重合性モノマーの配合比(上記オリゴマー/エネルギー線重合性モノマー)は、好ましくは20/80~90/10、より好ましくは30/70~85/15、さらに好ましくは35/65~80/20である。
 本発明の一態様において、無溶剤型樹脂組成物(y1)は、さらに光重合開始剤を配合してなることが好ましい。
 光重合開始剤を含有することで、比較的低エネルギーのエネルギー線の照射によっても、十分に硬化反応を進行させることができる。
 光重合開始剤としては、例えば、1-ヒドロキシ-シクロへキシル-フェニル-ケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンジルフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロルニトリル、ジベンジル、ジアセチル、8-クロールアンスラキノン等が挙げられる。
 これらの光重合開始剤は、単独で用いてもよく、2種以上を併用してもよい。
 光重合開始剤の配合量は、上記オリゴマー及びエネルギー線重合性モノマーの全量(100質量部)に対して、好ましくは0.01~5質量部、より好ましくは0.01~4質量部、さらに好ましくは0.02~3質量部である。
<非膨張性基材層(Y2)>
 基材(Y)を構成する非膨張性基材層(Y2)の形成材料としては、例えば、紙材、樹脂、金属等が挙げられ、本発明の一態様の積層体の用途に応じて適宜選択することができる。
 ここで、本発明の一態様において、膨張性基材層(Y1)に含まれる膨張性粒子が膨張した際に、膨張性基材層(Y1)の非膨張性基材層(Y2)側の表面に凹凸が形成されるのを抑制して、膨張性基材層(Y1)の粘着剤層(V1)側の表面において凹凸を優占的に形成する観点から、非膨張性基材層(Y2)は、膨張性粒子の膨張により変形しない程度の剛性を備えることが好ましい。具体的には、膨張性粒子の膨張開始時の温度(t)における、非膨張性基材層(Y2)の貯蔵弾性率E’(t)が、1.1×10Pa以上であることが好ましい。
 紙材としては、例えば、薄葉紙、中質紙、上質紙、含浸紙、コート紙、アート紙、硫酸紙、グラシン紙等が挙げられる。
 樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体等のビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン;アクリロニトリル-ブタジエン-スチレン共重合体;三酢酸セルロース;ポリカーボネート;ポリウレタン、アクリル変性ポリウレタン等のウレタン樹脂;ポリメチルペンテン;ポリスルホン;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルイミド、ポリイミド等のポリイミド系樹脂;ポリアミド系樹脂;アクリル樹脂;フッ素系樹脂等が挙げられる。
 金属としては、例えば、アルミニウム、スズ、クロム、チタン等が挙げられる。
 これらの形成材料は、1種から構成されていてもよく、2種以上を併用してもよい。
 2種以上の形成材料を併用した非膨張性基材層(Y2)としては、紙材をポリエチレン等の熱可塑性樹脂でラミネートしたもの、樹脂を含有する樹脂フィルム又はシートの表面に金属膜を形成したもの等が挙げられる。
 なお、金属層の形成方法としては、例えば、上記金属を真空蒸着、スパッタリング、イオンプレーティング等のPVD法により蒸着する方法、又は、上記金属からなる金属箔を一般的な粘着剤を用いて貼付する方法等が挙げられる。
 なお、非膨張性基材層(Y2)と積層する他の層との層間密着性を向上させる観点から、非膨張性基材層(Y2)が樹脂を含有する場合、非膨張性基材層(Y2)の表面に対しても、上述の膨張性基材層(Y1)と同様に、酸化法、凹凸化法等による表面処理、易接着処理、あるいはプライマー処理を施してもよい。
 また、非膨張性基材層(Y2)が樹脂を含有する場合、当該樹脂とともに、樹脂組成物(y)にも含有し得る、上述の基材用添加剤を含有してもよい。
 非膨張性基材層(Y2)は、上述の方法に基づき判断される、非膨張性の層である。
 そのため、上述の式から算出される非膨張性基材層(Y2)の体積変化率(%)としては、5体積%未満であるが、好ましくは2体積%未満、より好ましくは1体積%未満、さらに好ましくは0.1体積%未満、よりさらに好ましくは0.01体積%未満である。
 また、非膨張性基材層(Y2)は、体積変化率が上記範囲である限り、膨張性粒子を含有してもよい。例えば、非膨張性基材層(Y2)に含有される樹脂を選択することで、膨張性粒子が含有されていたとしても、体積変化率を上記範囲に調整することは可能である。
 ただし、非膨張性基材層(Y2)は膨張性粒子を含有しないことが好ましい。非膨張性基材層(Y2)が膨張性粒子を含有する場合、その含有量は、少ないほど好ましく、具体的な膨張性粒子の含有量としては、非膨張性基材層(Y2)の全質量(100質量%)に対して、通常3質量%未満、好ましくは1質量%未満、より好ましくは0.1質量%未満、さらに好ましくは0.01質量%未満、よりさらに好ましくは0.001質量%未満である。
<粘着剤層(V)>
 本発明の一態様で用いる支持層(II)が有する粘着剤層(V)は、粘着性樹脂を含有する粘着剤組成物(v)から形成することができる。
 また、粘着剤組成物(v)は、必要に応じて、架橋剤、粘着付与剤、重合性化合物、重合開始剤等の粘着剤用添加剤を含有してもよい。
 以下、粘着剤組成物(v)に含有される各成分について説明する。
 なお、支持層(II)が、第1粘着剤層(V1-1)又は(V1)と、第2粘着剤層(V1-2)又は(V2)を有する場合においても、第1粘着剤層(V1-1)又は(V1)、及び、第2粘着剤層(V1-2)又は(V2)も、以下に示す各成分を含有する粘着剤組成物(v)から形成することができる。
(粘着性樹脂)
 本発明の一態様で用いる粘着性樹脂としては、当該樹脂単独で粘着性を有し、質量平均分子量(Mw)が1万以上の重合体であることが好ましい。
 本発明の一態様で用いる粘着性樹脂の質量平均分子量(Mw)としては、粘着力の向上の観点から、好ましくは1万~200万、より好ましくは2万~150万、さらに好ましくは3万~100万である。
 具体的な粘着性樹脂としては、例えば、アクリル系樹脂、ウレタン系樹脂、ポリイソブチレン系樹脂等のゴム系樹脂、ポリエステル系樹脂、オレフィン系樹脂、シリコーン系樹脂、ポリビニルエーテル系樹脂等が挙げられる。
 これらの粘着性樹脂は、単独で用いてもよく、2種以上を併用してもよい。
 また、これらの粘着性樹脂が、2種以上の構成単位を有する共重合体である場合、当該共重合体の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。
 本発明の一態様において、優れた粘着力を発現させる観点から、粘着性樹脂が、アクリル系樹脂を含有することが好ましい。
 なお、第1粘着剤層(V1-1)又は(V1)と、第2粘着剤層(V1-2)又は(V2)とを有する支持層(II)を用いる場合、硬化性樹脂層(I)と接触している第1粘着剤層(V1-1)又は(V1)にアクリル系樹脂が含まれることで、第1粘着剤層(V1-1)又は(V1)の表面に凹凸を形成させ易くすることができる。
 粘着性樹脂中のアクリル系樹脂の含有割合としては、粘着剤組成物(v)又は粘着剤層(V)に含有される粘着性樹脂の全量(100質量%)に対して、好ましくは30~100質量%、より好ましくは50~100質量%、さらに好ましくは70~100質量%、よりさらに好ましくは85~100質量%である。
 粘着性樹脂の含有量としては、粘着剤組成物(v)の有効成分の全量(100質量%)又は粘着剤層(V)の全質量(100質量%)に対して、好ましくは35~100質量%、より好ましくは50~100質量%、さらに好ましくは60~98質量%、よりさらに好ましくは70~95質量%である。
(架橋剤)
 本発明の一態様において、粘着剤組成物(v)は、官能基を有する粘着性樹脂を含有する場合、さらに架橋剤を含有することが好ましい。
 当該架橋剤は、官能基を有する粘着性樹脂と反応して、当該官能基を架橋起点として、粘着性樹脂同士を架橋するものである。
 架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤等が挙げられる。
 これらの架橋剤は、単独で用いてもよく、2種以上を併用してもよい。
 これらの架橋剤の中でも、凝集力を高めて粘着力を向上させる観点、及び入手し易さ等の観点から、イソシアネート系架橋剤が好ましい。
 架橋剤の含有量は、粘着性樹脂が有する官能基の数により適宜調整されるものであるが、官能基を有する粘着性樹脂100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~7質量部、さらに好ましくは0.05~5質量部である。
(粘着付与剤)
 本発明の一態様において、粘着剤組成物(v)は、粘着力をより向上させる観点から、さらに粘着付与剤を含有してもよい。
 本明細書において、「粘着付与剤」とは、上述の粘着性樹脂の粘着力を補助的に向上させる成分であって、質量平均分子量(Mw)が1万未満のオリゴマーを指し、上述の粘着性樹脂とは区別されるものである。
 粘着付与剤の質量平均分子量(Mw)は、好ましくは400~10,000、より好ましくは500~8,000、さらに好ましくは800~5,000である。
 粘着付与剤としては、例えば、ロジン系樹脂、テルペン系樹脂、スチレン系樹脂、石油ナフサの熱分解で生成するペンテン、イソプレン、ピペリン、1,3-ペンタジエン等のC5留分を共重合して得られるC5系石油樹脂、石油ナフサの熱分解で生成するインデン、ビニルトルエン等のC9留分を共重合して得られるC9系石油樹脂、及びこれらを水素化した水素化樹脂等が挙げられる。
 粘着付与剤の軟化点は、好ましくは60~170℃、より好ましくは65~160℃、さらに好ましくは70~150℃である。
 なお、本明細書において、粘着付与剤の「軟化点」は、JIS K 2531に準拠して測定した値を意味する。
 粘着付与剤は、単独で用いてもよく、軟化点、構造等が異なる2種以上を併用してもよい。
 そして、2種以上の複数の粘着付与剤を用いる場合、それら複数の粘着付与剤の軟化点の加重平均が、上記範囲に属することが好ましい。
 粘着付与剤の含有量は、粘着剤組成物(v)の有効成分の全量(100質量%)又は粘着剤層(V)の全質量(100質量%)に対して、好ましくは0.01~65質量%、より好ましくは0.1~50質量%、さらに好ましくは1~40質量%、よりさらに好ましくは2~30質量%である。
(粘着剤用添加剤)
 本発明の一態様において、粘着剤組成物(v)は、本発明の効果を損なわない範囲で、上述の添加剤以外にも、一般的な粘着剤に使用される粘着剤用添加剤を含有していてもよい。
 このような粘着剤用添加剤としては、例えば、酸化防止剤、軟化剤(可塑剤)、防錆剤、顔料、染料、遅延剤、反応促進剤(触媒)、紫外線吸収剤、帯電防止剤等が挙げられる。
 なお、これらの粘着剤用添加剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
 これらの粘着剤用添加剤を含有する場合、それぞれの粘着剤用添加剤の含有量は、粘着性樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。
 なお、膨張性の粘着剤層である第2粘着剤層(V2)を有する上述の第三態様の支持層(II)を用いる場合、膨張性の粘着剤層である第2粘着剤層(V2)の形成材料としては、上述の粘着剤組成物(v)に、さらに膨張性粒子を含有する膨張性粘着剤組成物(v22)から形成される。
 当該膨張性粒子は、上述のとおりである。
 膨張性粒子の含有量としては、膨張性粘着剤組成物(v22)の有効成分の全量(100質量%)又は膨張性の粘着剤層の全質量(100質量%)に対して、好ましくは1~70質量%、より好ましくは2~60質量%、さらに好ましくは3~50質量%、よりさらに好ましくは5~40質量%である。
 一方、粘着剤層(V)が非膨張性の粘着剤層である場合、非膨張性の粘着剤層の形成材料である粘着剤組成物(v)は、膨張性粒子を含有しないことが好ましい。
 膨張性粒子を含有する場合、その含有量は極力少ないほど好ましく、粘着剤組成物(v)の有効成分の全量(100質量%)又は粘着剤層(V)の全質量(100質量%)に対して、好ましくは1質量%未満、より好ましくは0.1質量%未満、さらに好ましくは0.01質量%未満、よりさらに好ましくは0.001質量%未満である。
 なお、図2に示す積層体2a、2bのように、非膨張性の粘着剤層である、第1粘着剤層(V1-1)及び第2粘着剤層(V1-2)を有する支持層(II)を用いる場合、23℃における、非膨張性の粘着剤層である第1粘着剤層(V1-1)の貯蔵せん断弾性率G’(23)は、好ましくは1.0×10Pa以下、より好ましくは5.0×10Pa以下、さらに好ましくは1.0×10Pa以下である。
 非膨張性の粘着剤層である第1粘着剤層(V1-1)の貯蔵せん断弾性率G’(23)が1.0×10Pa以下であれば、例えば、図2に示す積層体2a、2bのような構成とした際に、加熱膨張処理による膨張性基材層(Y1)中の膨張性粒子の膨張により、硬化樹脂層(I’)と接触している第1粘着剤層(V1-1)の表面に凹凸が形成され易くなる。
 その結果、支持層(II)と硬化樹脂層(I’)との界面Pでわずかな力で一括して容易に分離可能となる積層体とすることができる。
 なお、23℃における、非膨張性の粘着剤層である第1粘着剤層(V1-1)の貯蔵せん断弾性率G’(23)は、好ましくは1.0×10Pa以上、より好ましくは5.0×10Pa以上、さらに好ましくは1.0×10Pa以上である。
 本発明の一態様の積層体が有する支持層(II)の、波長365nmの光透過率は、好ましくは30%以上、より好ましくは50%以上、さらに好ましくは70%以上である。光透過率が上記範囲であると、支持層(II)を介して硬化性樹脂層(I)にエネルギー線(紫外線)を照射しときに、硬化性樹脂層(I)の硬化度がより向上する。波長365nmの光透過率の上限値は特に限定されないが、例えば、95%以下とすることが可能である。
 上記の光透過率を達成する観点から、支持層(II)が有する基材(Y)及び粘着剤層(V)は、着色剤を含有しないことが好ましい。
 着色剤を含有する場合、その含有量は極力少ないほど好ましく、粘着剤組成物(v)の有効成分の全量(100質量%)又は粘着剤層(V)の全質量(100質量%)に対して、好ましくは1質量%未満、より好ましくは0.1質量%未満、さらに好ましくは0.01質量%未満、よりさらに好ましくは0.001質量%未満であり、また、基材(Y)中の着色剤の含有量は、樹脂組成物(y)の有効成分の全量(100質量%)又は基材(Y)の全質量(100質量%)に対して、好ましくは1質量%未満、より好ましくは0.1質量%未満、さらに好ましくは0.01質量%未満、よりさらに好ましくは0.001質量%未満である。
(封止対象物)
 硬化性樹脂層(I)の表面の一部に載置される封止対象物としては、例えば、半導体チップ、半導体ウエハ、化合物半導体、半導体パッケージ、電子部品、サファイア基板、ディスプレイ、パネル用基板等が挙げられる。
 例えば、封止対象物が半導体チップである場合、本発明の一態様の反り防止用積層体を用いることで、硬化樹脂層付き半導体チップを製造することができる。
 半導体チップは、従来公知のものを使用することができ、その回路面には、トランジスタ、抵抗、コンデンサー等の回路素子から構成される集積回路が形成されている。
 そして、半導体チップは、回路面とは反対側の裏面が、熱硬化性樹脂層の表面で覆われるように載置されることが好ましい。この場合、載置後、半導体チップの回路面が表出した状態となる。
 半導体チップの載置には、フリップチップボンダー、ダイボンダー等の公知の装置を用いることができる。
 半導体チップの配置のレイアウト、配置数等は、目的とするパッケージの形態、生産数等に応じて適宜決定すればよい。
[反り防止用積層体の製造方法]
 反り防止用積層体は、以下の方法で製造することができる。
 まず、剥離フィルム上に、硬化性樹脂組成物を塗布し乾燥することで硬化性樹脂層(I)を形成する。
 硬化性樹脂層(I)が2つの層で構成される場合は、各硬化性樹脂組成物を別々の剥離フィルム上に形成し、両層が直接接するように重ねて合せて積層型の硬化性樹脂層を作製する。剥離フィルム上に第1の硬化性樹脂組成物を塗布乾燥して第1の硬化性樹脂層(X1-1)を形成し、次にこの第1の硬化性樹脂層(X1-1)上に、第2の硬化性樹脂層(X1-2)又は(X2)を塗布乾燥することにより、積層型の硬化性樹脂層を作製することもできる。
 支持層(II)が有する粘着剤層(V)を、上記の硬化性樹脂層(I)に貼付することにより、あるいは、支持層(II)とは別の粘着剤層を介して、硬化性樹脂層(I)と支持層(II)とを貼付することによって、反り防止用積層体を得ることができる。
 支持層(II)は、剥離フィルム上に、粘着剤組成物を塗布乾燥して粘着剤層(V)を形成し、次に、粘着剤層に基材層を構成する樹脂材料を粘着剤層上に塗布乾燥したり、シート状の基材を粘着剤層に貼り付けたりして、基材層を形成することによって作製できる。基材層が複数の層から構成される場合は、第1の基材層を形成した後に第2の基材層を構成する樹脂材料を第1の基材層上に塗布乾燥して第2の基材層を形成する。第2の基材層上に第2の粘着剤層を有する支持層の場合は、上記第2の基材層上に、粘着剤組成物を塗布乾燥して第2の粘着剤層を形成する。
[硬化封止体の第1の製造方法]
 本発明の、硬化封止体の製造方法の第一態様は、本発明の一態様の積層体を用いて硬化封止体を製造する方法であって、下記工程(i)~(iv)を有する。
工程(i):反り防止用積層体が有する硬化性樹脂層(I)の第1表面の一部に、封止対象物を載置する。
工程(ii):封止対象物と、当該封止対象物の少なくとも周辺部の硬化性樹脂層(I)の第1表面とを熱硬化性の封止材で被覆する。
工程(iii):上記封止材を熱硬化させて、前記封止対象物を含む硬化封止体を形成するとともに、硬化性樹脂層(I)も熱硬化させ、硬化樹脂層(I’)を形成して、硬化封止体を得る。
工程(iv):膨張性粒子を膨張させる処理によって、硬化樹脂層(I’)と支持層(II)とを、その界面で分離して、硬化樹脂層付き硬化封止体を得る。
 図6は、硬化樹脂層付き硬化封止体を製造する工程を示す断面模式図であり、より具体的には、図1(b)に示す反り防止用積層体1aを用いて硬化封止体を製造する工程を示した断面模式図である。以下、図6を適宜参照しながら、上述の各工程について説明する。
<工程(i)>
 工程(i)においては、本発明の一態様の反り防止用積層体が有する硬化性樹脂層(I)の表面の一部に、封止対象物を載置する。
 図6(a)には、反り防止用積層体1bを用いて、支持層(II)の粘着剤層(V1)の粘着表面を支持体50に貼付した状態を示し、図6(b)には、硬化性樹脂層(I)の表面の一部に、封止対象物60を載置する様子を示している。
 なお、図6においては、図1(b)に示す積層体1bを用いた例を示しているが、本発明の他の態様の反り防止用積層体を用いる場合においても、同様に、支持体、反り防止用積層体、及び封止対象物をこの順で積層又は載置する。
 工程(i)における温度条件としては、膨張性粒子として熱膨張性粒子を用いる場合、この熱膨張性粒子が膨張しない温度で行われることが好ましく、例えば、0~80℃の環境下(但し、膨張開始温度(t)が60~80℃である場合には、膨張開始温度(t)未満の環境下)で行われることが好ましい。なお、エネルギー線膨張性粒子を用いる場合は、粒子の膨張に寄与するエネルギー線が照射されないように、照射装置を停止させた状態で、あるいは、照射装置から離れた位置で、必要に応じて上記エネルギー線をカットするフィルターやマスクの下で工程(i)を行う。
 支持体は、積層体の粘着剤層(V1)の粘着表面の全面に貼付されることが好ましい。
 したがって、支持体は、板状であることが好ましい。また、粘着剤層(V1)の粘着表面と貼付される側の支持体の表面の面積は、図6に示すように、粘着剤層(V1)の粘着表面の面積以上であることが好ましい。
 支持体を構成する材質としては、封止対象物の種類、工程(ii)で使用する封止材の種類等に応じて、機械強度、耐熱性等の要求される特性を考慮の上、適宜選択される。
 具体的な支持体を構成する材質としては、例えば、SUS等の金属材料;ガラス、シリコンウエハ等の非金属無機材料;エポキシ樹脂、ABS樹脂、アクリル樹脂、エンジニアリングプラスチック、スーパーエンジニアリングプラスチック、ポリイミド樹脂、ポリアミドイミド樹脂等の樹脂材料;ガラスエポキシ樹脂等の複合材料等が挙げられ、これらの中でも、SUS、ガラス、及びシリコンウエハ等が好ましい。
 なお、エンジニアリングプラスチックとしては、ナイロン、ポリカーボネート(PC)、及びポリエチレンテレフタレート(PET)等が挙げられる。
 スーパーエンジニアリングプラスチックとしては、ポリフェニレンスルファイド(PPS)、ポリエーテルサルフォン(PES)、及びポリエーテルエーテルケトン(PEEK)等が挙げられる。
 支持体の厚さは、封止対象物の種類、工程(ii)で使用する封止材の種類等に応じて適宜選択されるが、好ましくは20μm以上50mm以下であり、より好ましくは60μm以上20mm以下である。
 一方、硬化性樹脂層(I)の表面の一部に載置される封止対象物としては、例えば、半導体チップ、半導体ウエハ、化合物半導体、半導体パッケージ、電子部品、サファイア基板、ディスプレイ、パネル用基板等が挙げられる。以下の説明においては、封止対象物60として、半導体チップを用いる場合を例にとって説明する。
 封止対象物が半導体チップである場合、本発明の一態様の積層体を用いることで、硬化樹脂層付き半導体チップを製造することができる。
 半導体チップは、従来公知のものを使用することができ、その回路面には、トランジスタ、抵抗、コンデンサー等の回路素子から構成される集積回路が形成されている。
 そして、半導体チップは、回路面とは反対側の裏面が、硬化性樹脂層(I)の表面で覆われるように載置されることが好ましい。この場合、載置後、半導体チップの回路面が表出した状態となる。
 半導体チップの載置には、フリップチップボンダー、ダイボンダー等の公知の装置を用いることができる。
 半導体チップの配置のレイアウト、配置数等は、目的とするパッケージの形態、生産数等に応じて適宜決定すればよい。
 本実施形態の硬化性樹脂層(I)の表面(図6の例では、非膨張性の熱硬化性樹脂層(X1)の、支持層(II)とは反対側の表面)は、硬化性を有するものであるが、その粘着力を、上述したように、ガラス板に前記第1表面を70℃の温度で貼付し、温度23℃、剥離角度180°、剥離速度300mm/minで硬化性樹脂層(I)を剥離して測定したときの値で、1.7N/25mm以上とすることにより、硬化性樹脂層(I)の上記表面への封止対象物としての半導体チップ60のボンディングの際に、半導体チップ60が確実に固定され、位置ズレを防止することができる。特に、単純な平面方向の位置ズレに比べて判別することが難しい、反り防止用積層体1bに対して垂直な方向の軸を中心に回転するようなズレ(以下、チルトズレという)も確実に防止することができる。
 ここで、本発明の一態様の積層体は、FOWLP、FOPLP等のように、半導体チップをチップサイズよりも大きな領域を封止材で覆って、半導体チップの回路面だけではなく、封止材の表面領域においても再配線層を形成するパッケージに適用されることが好ましい。
 そのため、半導体チップは、硬化性樹脂層(I)の表面の一部に載置されるものであり、複数の半導体チップが、一定の間隔を空けて整列された状態で、当該表面に載置されることが好ましく、複数の半導体チップが、一定の間隔を空けて、複数行かつ複数列のマトリックス状に整列された状態で当該表面に載置されることがより好ましい。
 半導体チップ同士の間隔は、目的とするパッケージの形態等に応じて適宜決定すればよい。
<工程(ii)>
 工程(ii)においては、硬化性樹脂層(I)上に載置された封止対象物と、当該封止対象物の少なくとも周辺部の硬化性樹脂層(I)の第1表面とを熱硬化性の封止材で被覆する(以下、「被覆処理」ともいう)。
 被覆処理においては、まず、封止対象物と、硬化性樹脂層(I)の表面の少なくとも封止対象物の周辺部とを封止材で被覆する。具体的には、図6(c)に示すように、支持体50上に貼付され、封止対象物である半導体チップ60が硬化性樹脂層(I)上に載置された積層体1bが、成形型70の型内に位置するように成形型70を配置する。そして、成形型70と、積層体1b及び封止対象物60との間に形成される成形空間72内に、注入孔71を介して封止材を注入する。
 封止材は、封止対象物である半導体チップ60の表出している面全体を覆いつつ、複数の半導体チップ同士の間隙にも充填される。
 封止樹脂の注入と樹脂成形が完了した後、成形型70を外すと、図6(d)に示すように、半導体チップ60及び硬化性樹脂層(I)の表面が全て封止材80で被覆される。
 なお、トランスファーモールディング法に代表される、成形型内に樹脂材料を注入するタイプの樹脂成形法を用いて、封止材80を成形空間内72内に注入する際、硬化性樹脂(I)の表面に沿う方向に封止材80の流れが生じることとなる(図6(c)の矢印を参照)。本態様の製造方法においては、封止対象物60は硬化性樹脂層(I)によって固定され、かつ、硬化性樹脂層(I)の測定用被着体に対するせん断強度が、上述したように、厚さ350μm、サイズ3mm×3mmのシリコンチップ(鏡面)を上記測定用被着体とし、温度70℃において、130gfで1秒間測定用被着体の鏡面を硬化性樹脂層(I)に押圧して貼り付け、速度200μm/sで測定したときの値で、20N/(3mm×3mm)以上であるため、封止対象物60がズレたり傾いたりすることが防止される。
 封止材は、封止対象物及びそれに付随する要素を外部環境から保護する機能を有するものである。
 本発明の一態様の製造方法で用いる封止材80は、熱硬化性樹脂を含む、熱硬化性の封止材である。
 また、封止材は、室温で、顆粒状、ペレット状、フィルム状等の固形であってもよく、組成物の形態となった液状であってもよい。作業性の観点からは、フィルム状の封止材である封止樹脂フィルムが好ましい。
 被覆方法としては、トランスファーモールディング法以外にも、従来の封止工程に適用されている方法の中から、封止材の種類に応じて適宜選択して適用することができ、例えば、ロールラミネート法、真空プレス法、真空ラミネート法、スピンコート法、ダイコート法、圧縮成形モールド法等を適用することができる。
<工程(iii)>
 工程(iii)においては、被覆処理を行った後の封止材を熱硬化させて、封止対象物を含む硬化封止体を形成する。また、硬化性樹脂層(I)も硬化させて硬化樹脂層(I’)を形成する。
 具体的には、図6(e)に示すように、封止材80を硬化させることにより、硬化した封止材81によって封止対象物である半導体チップ60が覆われた硬化封止体85を得る。これによって、半導体チップ60がレイアウトを保ったまま、硬質な材料で保護されることとなる。このとき、本態様の製造方法においては、硬化性樹脂層(I)として、熱硬化性樹脂層(X1)を用いているため、その硬化開始温度を熱硬化性の封止材80の硬化開始温度と同程度としておくことにより、あるいは、両者の硬化開始温度が異なる場合には、高い方の硬化開始温度以上に加熱することにより、一度の加熱で封止材の硬化と熱硬化性樹脂層の硬化(硬化した熱硬化性樹脂層(X1’)の生成)とを同時に進めることができる。したがって、これらの場合は、硬化のための加熱工程の回数を減らすことができ、製造工程を簡素化することができる。
 また、本態様の製造方法においては、硬化性樹脂層(I)が設けられていることにより、得られる硬化封止体85の2つの表面間の収縮応力の差を小さくすることができ、硬化封止体85に生じる反りを効果的に抑制することができる。特に、封止材の熱硬化と同時に熱硬化性樹脂層(X1)も熱硬化することで、硬化する過程においても、硬化封止体85の2つの表面間の収縮応力の差を小さくすることができ、反りがより効果的に抑制される。
 なお、上述したように、工程(iii)における硬化のための加熱温度は、工程(iv)における膨張のための加熱温度よりも低い。
<工程(iv)>
 工程(iv)においては、膨張性基材層(Y1)に含まれる膨張性粒子を膨張させる処理を行うことにより、硬化樹脂層(I’)と支持層(II)とを、その界面で分離して、硬化樹脂層付き硬化封止体を得る。
 図6(f)は、膨張性粒子を膨張させる処理によって、膨張性基材層(Y1)は膨張した膨張性基材層(Y1’)となり、硬化樹脂層(I’)と膨張した支持層(II’)との界面で分離した状態を示している。
 図6(f)に示すように、界面で分離させることで、封止対象物60が封止されてなる硬化封止体85と硬化樹脂層(I’)とを有する、硬化樹脂層付き硬化封止体200を得ることができる。
 なお、硬化樹脂層(I’)の存在は、硬化封止体に生じる反りが効果的に抑制し得る機能を有し、封止対象物の信頼性の向上に寄与する。
 工程(iv)での「膨張させる処理」は、膨張性粒子として熱膨張性の粒子を用いる場合は、膨張開始温度(t)以上での加熱によって、当該熱膨張性粒子を膨張させる処理であり、該処理によって硬化樹脂層(I’)側の支持層(II)の表面に凹凸が生じる。その結果、界面Pでわずかな力で一括して容易に分離することができる。
 膨張性粒子として熱膨張性粒子を用いる場合に、当該熱膨張性粒子を膨張させる「膨張開始温度(t)以上の温度」としては、「膨張開始温度(t)+10℃」以上「膨張開始温度(t)+60℃」以下であることが好ましく、「膨張開始温度(t)+15℃」以上「膨張開始温度(t)+40℃」以下であることがより好ましい。
 なお、熱膨張性粒子を膨張させるための加熱方法としては特に限定されず、例えば、ホットプレート、オーブン、焼成炉、赤外線ランプ、熱風送風機等による加熱方法が挙げられるが、支持層(II)と硬化樹脂層(I’)との界面Pで分離させ易くする観点から、加熱時の熱源を、支持体50側に設けることができる方法が好ましい。
 このようにして得られた、硬化樹脂層付き硬化封止体200は、この後、さらに、必要な加工が施される。反り矯正層としての硬化樹脂層は、最終的に半導体装置が製造される中で、研削等により除去され、最終製品である半導体装置には残らない。
[硬化封止体の第2の製造方法]
 本発明の、硬化封止体の製造方法の第二態様は、本発明の一態様の積層体を用いて硬化封止体を製造する方法であって、下記工程(i’)~(iv)を有する。
工程(i’):反り防止用積層体が有する硬化性樹脂層の第1表面である、エネルギー線硬化性樹脂層(X2)の、上記第1層とは反対側の表面の一部に、封止対象物を載置する。
工程(ii’)-1:エネルギー線を照射してエネルギー線硬化性樹脂層(X2)を硬化させる。
工程(ii’)-2:封止対象物と、当該封止対象物の少なくとも周辺部の硬化性樹脂層の第1表面とを熱硬化性の封止材で被覆する。
工程(iii’):封止材を熱硬化させて、前記封止対象物を含む硬化封止体を形成するとともに、硬化性樹脂層(I)も熱硬化させ、硬化樹脂層(I’)を形成して、硬化封止体を得る。
工程(iv):膨張性粒子を膨張させる処理によって、硬化樹脂層(I’)と支持層(II)とを、その界面で分離して、硬化樹脂層付き硬化封止体を得る。
 以下、各工程について詳述するが、冗長になるのを避けるため、上述した製造方法の第一態様と同様の工程や操作については、製造方法の第一態様で説明したものがそのまま当てはまるものとし、詳しい説明を省略する。
<工程(i’)>
 工程(i’)においては、本発明の一態様の反り防止用積層体が有する硬化性樹脂層(I)の表面の一部に、封止対象物を載置する。
 図7(a)には、硬化性樹脂層(I)が、支持層(II)側の熱硬化性樹脂層(X1-1)と、支持層(II)とは反対側のエネルギー線硬化性樹脂層(X2)とからなる反り防止用積層体5(図5参照)を用いて、支持層(II)の粘着剤層(V1)の粘着表面を支持体50に貼付した状態を示し、図7(b)には、硬化性樹脂層(I)の表面の一部に、封止対象物60を載置した状態を示している。
 本実施形態の硬化性樹脂層(I)の表面(図7の例では、エネルギー線硬化性樹脂層(X2)の、支持層(II)とは反対側の表面)は、硬化性を有するものであるが、その粘着力が、ガラス板に前記第1表面を70℃の温度で貼付し、温度23℃、剥離角度180°、剥離速度300mm/minで硬化性樹脂層(I)を剥離して測定したときの値で、1.7N/25mm以上であれば、硬化性樹脂層(I)の上記表面への封止対象物60のボンディングの際に、封止対象物60が確実に固定され、チルトズレを含む位置ズレを防止しやすくなる。
<工程(ii’)-1>
 工程(ii’)-1は、エネルギー線硬化性樹脂層(X2)にエネルギー線を照射して、該エネルギー線硬化性樹脂層(X2)が硬化してなる硬化樹脂層(I)を形成する工程である。
 図7(c)は、本工程にて、エネルギー線硬化性樹脂層(X2)を硬化することにより、硬化したエネルギー線硬化性樹脂層(X2’)を形成することで、一部硬化した(つまり、第1表面側の層が硬化した)硬化樹脂層(I)が形成された状態を示している。
 エネルギー線の種類及び照射条件は、エネルギー線硬化性樹脂層(X2)が十分にその機能を発揮する程度に硬化される種類及び条件であれば特に限定されず、公知の方法の中から、所望するプロセスに応じて適宜選択すればよい。
 エネルギー線硬化性樹脂層(X2)を構成する材料として、紫外線硬化性樹脂組成物を用いると、材料選択の幅が広く、また、組成物を硬化させるためのエネルギー線源として、入手が容易で取扱性にも優れる紫外線照射装置を使用することができる。
 エネルギー線硬化性樹脂層(X2)の硬化時における、エネルギー線の照度は、4~280mW/cmであることが好ましく、前記硬化時における、エネルギー線の光量は、3~1,000mJ/cmであることが好ましい。
 熱硬化を含む工程(iii’)に先立って、工程(ii’)-1においてエネルギー線を照射することにより、加熱によってエネルギー線硬化性樹脂が開裂して硬化反応が進むことが回避され、エネルギー線による硬化反応を効率よく進めることができる。また、エネルギー線硬化性樹脂に含有された低分子成分(光重合開始剤等)が加熱によって揮発し、封止対象物を汚染することを防ぐこともできる。さらに、熱硬化に先立ってエネルギー線硬化性樹脂層をエネルギー線によって硬化しておくことにより、熱硬化のための加熱によってエネルギー線硬化性樹脂(X2)が硬化収縮することを防ぎ、封止樹脂とエネルギー線硬化性樹脂(X2)との間の密着性が低下することを防止することができる。
<工程(ii’)-2>
 封止対象物60が配置され、エネルギー線を照射することにより、硬化したエネルギー線硬化性樹脂層(X2’)が形成された後、工程(ii’)-2においては、図6(d)で説明したのと同様に、図示しない成形型を用いて封止材80を注入する。このとき、面方向に封止材の流れが生じるが、封止対象物60は、硬化したエネルギー線硬化性樹脂層(X2’)によって固定され、かつ、硬化性樹脂層(I)の測定用被着体に対するせん断強度が、3mm×3mmの鏡面を備えた厚さ350μmのシリコンチップを上記測定用被着体とし、温度70℃において、130gfで1秒間測定用被着体の鏡面を硬化性樹脂層(I)に押圧して貼り付け、速度200μm/sで測定したときの値で、20N/(3mm×3mm)以上であるため、封止対象物60がズレたり傾いたりすることを防止することができる。
 封止樹脂の注入が完了すると、図7(d)に示すように、封止対象物60及びその周辺の、硬化したエネルギー線硬化性樹脂層(X2’)の表面が封止材80によって覆われる。
<工程(iii’)>
 工程(iii’)においては、被覆処理を行った後の封止材を熱硬化させて、封止対象物を含む硬化封止体を形成する。また、熱硬化性樹脂層(X1-1)も硬化させて、硬化した熱硬化性樹脂層(X1-1’)を形成し、第1層及び第2層の両方が硬化した硬化樹脂層(I’)を形成する。
 封止材80を硬化させることにより、図7(e)に示すように、硬化した封止材81によって封止対象物60が覆われた硬化封止体85となる。このとき、本製造例においては、硬化性樹脂層(I)として、熱硬化性樹脂層(X1-1)を用いているため、熱硬化性の封止材80と硬化開始温度を同程度としておくことにより、あるいは、硬化開始温度が異なっている場合には高い方の硬化開始温度以上に加熱することにより、一度の加熱で封止材の硬化と熱硬化性樹脂層の硬化とを同時に進めることができる。
<工程(iv)>
 工程(iv)においては、膨張性基材層(Y1)に含まれる膨張性粒子を膨張させる処理を行うことにより、硬化樹脂層(I’)と支持層(II)とを、その界面で分離して、硬化樹脂層付き硬化封止体を得る。
 図7(f)は、膨張性粒子を膨張させる処理によって、膨張性基材層(Y1)は膨張基材層(Y1’)となり、硬化樹脂層(I’)と膨張した支持層(II’)との界面で分離した状態を示している。
 図7(f)に示すように、界面で分離させることで、封止対象物60が封止されてなる硬化封止体85と硬化樹脂層(I’)とを有する、硬化樹脂層付き硬化封止体201を得ることができる。
 以上の手順で硬化封止体85が作製された後、硬化樹脂層付きの硬化封止体201に対して、必要な加工が施される。
 次に、本発明の具体的な実施例を説明するが、本発明は、これらの例によってなんら限定されるものではない。
 なお、以下の説明において、硬化性樹脂層(I)とは、「エネルギー線硬化性樹脂層(X2)」及び「熱硬化性樹脂層(X1-1)、(X1-2)」の両者を意味するものとする。
 なお、以下の製造例及び実施例における物性値は、以下の方法により測定した値である。
<質量平均分子量(Mw)>
 ゲル浸透クロマトグラフ装置(東ソー株式会社製、製品名「HLC-8020」)を用いて、下記の条件下で測定し、標準ポリスチレン換算にて測定した値を用いた。
(測定条件)
・カラム:「TSK guard column HXL-L」「TSK gel G2500HXL」「TSK gel G2000HXL」「TSK gel G1000HXL」(いずれも東ソー株式会社製)を順次連結したもの
・カラム温度:40℃
・展開溶媒:テトラヒドロフラン
・流速:1.0mL/min
<各層の厚さの測定>
 株式会社テクロック製の定圧厚さ測定器(型番:「PG-02J」、標準規格:JIS K6783、Z1702、Z1709に準拠)を用いて測定した。
<熱膨張性粒子の膨張開始温度(t)及び最大膨張温度の測定>
 各例で使用した熱膨張性粒子の膨張開始温度(t)は、下記方法によって測定した。
 直径6.0mm(内径5.65mm)、深さ4.8mmのアルミカップに、測定対象となる熱膨張性粒子0.5mgを加え、その上からアルミ蓋(直径5.6mm、厚さ0.1mm)をのせた試料を作製する。
 動的粘弾性測定装置を用いて、その試料にアルミ蓋上部から、加圧子により0.01Nの力を加えた状態で、試料の高さを測定する。そして、加圧子により0.01Nの力を加えた状態で、20℃から300℃まで10℃/minの昇温速度で加熱し、加圧子の垂直方向における変位量を測定し、正方向への変位開始温度を膨張開始温度(t)とする。
 また、最大膨張温度は、上記変位量が最大となる温度を指す。
<熱硬化性樹脂層の粘着力の測定>
 剥離フィルム上に形成した熱硬化性樹脂層の表面に、粘着テープ(リンテック株式会社製、製品名「PLシン」)を積層した。
 そして、剥離フィルムを除去し、表出した熱硬化性樹脂層の表面を、被着体であるガラス板(ユーコウ商会社製フロート板ガラス3mm(JIS R3202品))の平滑面に貼付した。熱硬化性樹脂層(X1)の貼付温度は70℃とした。そして、各層が貼付された上記ガラス板を、23℃、50%RH(相対湿度)の環境下で、24時間静置した後、同じ環境下で、JIS Z0237:2000に基づき、180°引き剥がし法により、引っ張り速度300mm/分にて、23℃における粘着力を測定した。
 なお、以下の製造例で使用した剥離材は以下のとおりである。
・重剥離フィルム:リンテック株式会社製、製品名「SP-PET382150」、ポリエチレンテレフタレート(PET)フィルムの片面に、シリコーン系剥離剤から形成した剥離剤層を設けたもの、厚さ:38μm
・軽剥離フィルム:リンテック株式会社製、製品名「SP-PET381031」、PETフィルムの片面に、シリコーン系剥離剤から形成した剥離剤層を設けたもの、厚さ:38μm
<硬化性樹脂層(I)の第1表面の粘着力の測定>
 後述する各実施例及び比較例で得られる積層体を、MD方向が250mmとなるように、25mm幅×250mm長にカットして、測定用の一次試料を作製した。
 また、被着体としてガラス板(ユーコウ商会社製フロート板ガラス3mm(JIS R3202品))を準備した。
 このガラス板の平滑面に、剥離フィルムを除去した上記各一次試料の硬化性樹脂層(I)が直接接するように、ラミネーター装置(大成ラミネーター株式会社製、VA-400型)を用いて貼付し、試験片とした。このとき、ローラ温度を70℃とし、貼付速度を0.2m/minの条件とした。なお、実施例3については第1表面側に位置する硬化性樹脂層2が、また、実施例4については、第1表面側に位置する硬化性樹脂層3が、それぞれガラス板に直接接するように貼付した。また、比較例2については、粘着剤層がガラス板に直接接するように貼付した。
 こうして得られた試験片を、23℃、50%RH(相対湿度)の環境下で、24時間静置した後、同じ環境下で、JIS Z 0237:2000に基づき、引張荷重測定機(エーアンドデー社製、テンシロン)にて、剥離角度180°、剥離速度300mm/min、剥離温度23℃で、測定用積層体をガラス板から剥離し、その粘着力を測定した。
<硬化性樹脂層(I)のせん断力の測定>
 3mm×3mmの鏡面を備えた厚さ350μmのシリコンチップを測定用被着体として用いた。そして、後述する各実施例及び比較例で得られた各積層体の硬化性樹脂層(I)の第1表面に、温度70℃において、130gfで1秒間、上記測定用被着体の鏡面を押圧して貼り付けた。そして、万能型ボンドテスター(ノードソン・アドバンスト・テクノロジー社製、DAGE4000)を用いて、速度200μm/sでせん断力を測定した。
<チップズレ評価1>
 後述する各実施例及び比較例に用いる硬化性樹脂層(I)を、ガラス板(ユーコウ商会社製フロート板ガラス3mm(JIS R3202品))に貼付し、被ボンディング面を準備した。このとき、実施例3については第1の熱硬化性樹脂層を、実施例4については熱硬化性樹脂層を、ガラス板に直接接するように貼付した。
 一方、Siウエハ(6インチ、350μm厚、鏡面)を2mm×2mmの大きさにダイシングすることにより、ボンディング用チップを準備した。
 次に、マニュアルボンディング装置(デイジ・ジャパン社製、EDB-65)を用いて、上記ボンディング用チップを鏡面が、上記被ボンディング面に向くようにして上記被ボンディング面にボンディングした。この時、ボンディング温度を70℃、ボンディング時の押圧力を130gf、ボンディング時間を1sの条件とした。
 5個のチップをボンディングした後に、チップが被ボンディング面に粘着固定されたガラス板のワークを金属製実験テーブルに5秒間載置して、チップを含むワークを冷却した。
 そして、後述する実施例1~3、5、及び、比較例1、2については冷却後すぐに、ボンディング用チップ面が下になるように上記ワークを反転させ、ガラス板の被ボンディング面とは反対側の面から指でたたくことで垂直方向に振動を与え、チップが被ボンディング面に対してズレたり、チップが被ボンディング面から脱離して落下したりするかどうかを調べた。後述する実施例4については、冷却後、照度215mW/cm、光量187mJ/cmの紫外線を3回照射し、エネルギー線硬化性樹脂層を硬化させた後、上述したのと同じ手順で、チップのズレや脱離の有無を調べた。各実施例及び比較例について、10個のワークに対して、上述した、振動を与えてズレや落下の有無を確認する操作を2回ずつ行い、ズレや落下が発生した割合を求めることで、チップズレの評価1とした。
<チップズレ評価2>
 後述する各実施例及び比較例に用いる硬化性樹脂層(I)を、ガラス板(ユーコウ商会社製フロート板ガラス3mm(JIS R3202品))に貼付し、被ボンディング面を準備した。このとき、実施例3については第1の熱硬化性樹脂層を、実施例4については熱硬化性樹脂層を、それぞれガラス板に直接接するように貼付した。
 一方、Siウエハ(6インチ、350μm厚、鏡面)を3mm×3mmの大きさにダイシングすることにより、ボンディング用チップを準備した。
 次に、マニュアルボンディング装置(デイジ・ジャパン社製、EDB-65)を用い、上記ボンディング用チップを鏡面が被ボンディング面に向くようにしてボンディングした。この時、ボンディング温度を70℃、ボンディング時の押圧力を130gf、ボンディング時間を1sの条件とした。
 5個のチップをボンディングした後に取り出し、チップが被ボンディング面に粘着固定されたガラス板のワークを金属製実験テーブルに5秒間放置して、チップを含むワークを冷却した。
 そして、後述する実施例1~3、5、及び、比較例1、2については冷却後すぐに、任意のチップを選択し、その側面をピンセットで軽く押して、チップがずれるかどうかを確認した。後述する実施例4については、冷却後、照度215mW/cm、光量187mJ/cmの紫外線を3回照射し、エネルギー線硬化性樹脂層を硬化させた後、上述したのと同じ手順で、チップがずれるかどうかを確認した。各実施例及び比較例について、10個のワークに対して、上述した操作を2回ずつ行い、ズレが発生した割合を求めることで、チップズレの評価2とした。
<反りの評価>
 12インチの厚さ100μmのシリコンウエハに、実施例1~5及び比較例2の反り防止用積層体の熱硬化性樹脂層をそれぞれ貼付し、熱硬化性樹脂層が貼付されたのとは反対の面にエポキシ樹脂組成物を30μmの厚さに塗布した。そして、上記エポキシ樹脂組成物の層と、各積層体の熱硬化性樹脂層とを加熱して硬化した。硬化完了後に、硬化樹脂層付きのシリコンウエハを水平台に載置した後、目視観察し、以下の基準に基づいて反りの有無を評価した。
 A:反り量が3mm以下である。
 B:反り量が3mmより大きく、15mm未満である。
 C:反り量が15mm以上である。
 上記エポキシ樹脂組成物としては、Struers社製「エポフィックスレジン」、及び、同社製硬化剤「エポフィックスハードナー」の混合物を用いた。なお、本評価においては、実験手順を簡素化するために大径のシリコンウエハを被着体として使用する一方、被着体の裏面側にエポキシ樹脂層を設けて反りが発生しやすい条件とすることで、反りの評価が適切なものとなるようにした。
製造例1
(1)硬化性樹脂組成物の調製
 下記に示す種類及び配合量(いずれも「有効成分比」)の各成分を配合し、さらにメチルエチルケトンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)61質量%の熱硬化性樹脂組成物の溶液を調製した。
・アクリル系重合体:配合量=21質量部
 n-ブチルアクリレート55質量部、メチルアクリレート10質量部、グリシジルメタクリレート20質量部、及び2-ヒドロキシエチルアクリレート15質量部を共重合してなるアクリル系重合体(質量平均分子量:80万、ガラス転移温度:-28℃)、上記成分(A1)に相当。
・エポキシ化合物(1):配合量=10質量部
 液状ビスフェノールA型エポキシ樹脂(日本触媒社製、製品名「BPA328」、エポキシ当量=220~240g/eq)、上記成分(B1)に相当。
・エポキシ化合物(2):配合量=2.0質量部
 固形ビスフェノールA型エポキシ樹脂(三菱化学社製、製品名「エピコート1055」、エポキシ当量=800~900g/eq)、上記成分(B1)に相当。
・エポキシ化合物(3):配合量=5.6質量部
 ジシクロペンタジエン型エポキシ樹脂(日本化薬社製、製品名「XD-1000L」、エポキシ当量=274~286g/eq)、上記成分(B1)に相当。
・熱硬化剤:配合量=0.5質量部
 ジシアンジアミド(ADEKA社製、製品名「アデカハードナーEH-3636AS」、活性水素量=21g/eq)、上記成分(B2)に相当。
・硬化促進剤:配合量=0.5質量部
 2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業株式会社製、製品名「キュアゾール2PHZ」)、上記成分(B3)に相当。
・シランカップリング剤:配合量=0.4質量部
 エポキシ基含有オリゴマー型シランカップリング剤(三菱化学社製、製品名「MSEP2」)、上記成分(D)に相当。
・無機充填材(1):配合量=6質量部
 球状シリカフィラー(アドマテックス社製、製品名「SC2050MA」、平均粒子径=0.5μm)、上記成分(E)に相当。
・無機充填材(2):配合量=54質量部
 球状シリカフィラー(タツモリ社製、製品名「SV-10」、平均粒子径=8μm)、上記成分(E)に相当。
(2)熱硬化性樹脂層の形成
 上記軽剥離フィルムの剥離処理面上に、製造例1(1)で調製した熱硬化性樹脂組成物の溶液を塗布して塗膜を形成し、当該塗膜を120℃で2分間乾燥させて、厚さ25μmの熱硬化性樹脂層を形成した。これを硬化性樹脂層1とする。
 なお、形成した熱硬化性樹脂層1の粘着力は0.5N/25mmであった。
 熱硬化性樹脂層1は、硬化開始温度である130℃以上に加熱することで2時間以内に硬化させることができる。
製造例2
(1)硬化性樹脂組成物の調製
 下記に示す種類及び配合量(いずれも「有効成分比」)の各成分を配合し、さらにメチルエチルケトンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)61質量%の熱硬化性樹脂組成物の溶液を調製した。
・アクリル系重合体:配合量=27質量部
 n-ブチルアクリレート10質量部、メチルアクリレート70質量部、グリシジルメタクリレート5質量部、及び2-ヒドロキシエチルアクリレート15質量部を共重合してなるアクリル系重合体(質量平均分子量:80万、ガラス転移温度:-28℃)、上記成分(A1)に相当。
・エポキシ化合物(1):配合量=10質量部
 液状ビスフェノールA型エポキシ樹脂(日本触媒社製、製品名「BPA328」、エポキシ当量=220~240g/eq)、上記成分(B1)に相当。
・エポキシ化合物(2):配合量=2.0質量部
 固形ビスフェノールA型エポキシ樹脂(三菱化学社製、製品名「エピコート1055」、エポキシ当量=800~900g/eq)、上記成分(B1)に相当。
・エポキシ化合物(3):配合量=5.0質量部
 ジシクロペンタジエン型エポキシ樹脂(DIC社製、製品名「HP-7200HH」、エポキシ当量=275~280g/eq)、上記成分(B1)に相当。
・熱硬化剤:配合量=0.4質量部
 ジシアンジアミド(ADEKA社製、製品名「アデカハードナーEH-3636AS」、活性水素量=21g/eq)、上記成分(B2)に相当。
・硬化促進剤:配合量=0.4質量部
 2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業株式会社製、製品名「キュアゾール2PHZ」)、上記成分(B3)に相当。
・シランカップリング剤(1):配合量=0.10質量部
 3-グリシドキシプロピルトリエトキシシラン(信越化学工業株式会社製、製品名「KBM403」)、分子量=236.64、上記成分(D)に相当。
・シランカップリング剤(2):配合量=0.15質量部
 γ-グリシドキシプロピルトリエトキシシラン(信越化学工業株式会社製、製品名「KBE403」)、分子量=278.4、上記成分(D)に相当。
・無機充填材(1):配合量=5.8質量部
 球状シリカフィラー(アドマテックス社製、製品名「SC2050MA」、平均粒子径=0.5μm)、上記成分(E)に相当。
・無機充填材(2):配合量=50質量部
 球状シリカフィラー(タツモリ社製、製品名「SV-10」、平均粒子径=8μm)、上記成分(E)に相当。
(2)熱硬化性樹脂層の形成
 上記軽剥離フィルムの剥離処理面上に、製造例2(1)で調製した熱硬化性樹脂組成物の溶液を塗布して塗膜を形成し、当該塗膜を120℃で2分間乾燥させて、厚さ25μmの熱硬化性樹脂層を形成した。これを硬化性樹脂層2とする。
 熱硬化性樹脂層2は、硬化開始温度である130℃以上に加熱することで2時間以内に硬化させることができる。
製造例3
(1)硬化性樹脂組成物の調製
 下記に示す種類及び配合量(いずれも「有効成分比」)の各成分を配合し、さらにメチルエチルケトンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)61質量%の紫外線硬化性樹脂組成物の溶液を調製した。
・アクリル系重合体:配合量=17質量部
 n-ブチルアクリレート55質量部、メチルアクリレート10質量部、グリシジルメタクリレート20質量部、及び2-ヒドロキシエチルアクリレート15質量部を共重合してなるアクリル系重合体(質量平均分子量:80万、ガラス転移温度:-28℃)、上記成分(A1)に相当。
・エポキシ化合物(1):配合量=16質量部
 液状ビスフェノールA型エポキシ樹脂(日本触媒社製、製品名「BPA328」、エポキシ当量=220~240g/eq)、上記成分(B1)に相当。
・エポキシ化合物(2):配合量=18質量部
 ジシクロペンタジエン型エポキシ樹脂(日本化薬社製、製品名「XD-1000L」、エポキシ当量=274~286g/eq)、上記成分(B1)に相当。
・エポキシ化合物(3):配合量=27質量部
 ジシクロペンタジエン型エポキシ樹脂(DIC社製、製品名「HP-7200HH」、エポキシ当量=275~280g/eq)、上記成分(B11)に相当。
・熱硬化剤:配合量=1.5質量部
 ジシアンジアミド(ADEKA社製、製品名「アデカハードナーEH-3636AS」、活性水素量=21g/eq)、上記成分(B2)に相当。
・硬化促進剤:配合量=1.5質量部
 2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業株式会社製、製品名「キュアゾール2PHZ」)、上記成分(B3)に相当。
・紫外線硬化性樹脂:配合量=17.6質量部
 多官能紫外線硬化性樹脂(日本化薬社製、製品名「KAYARAD DPHA」)
・光重合開始剤:配合量=0.5質量部
 光重合開始剤(BASF社製、製品名「IRGACURE-184」)
・架橋剤:配合量=0.5質量部
 TDI系架橋剤(トーヨーケム社製、製品名「BHS-8515」)
(2)紫外線線硬化性樹脂層の形成
 上記軽剥離フィルムの剥離処理面上に、製造例3(1)で調製した紫外線線硬化性樹脂組成物の溶液を塗布して塗膜を形成し、当該塗膜を120℃で2分間乾燥させて、厚さ25μmの紫外線線硬化性樹脂層を形成した。これを硬化性樹脂層3とする。
 硬化性樹脂層3は、照度215mW/cm、光量187mJ/cmの紫外線を3回照射することにより、硬化させることができる。
製造例4
(1)硬化性樹脂組成物の調製
 下記に示す種類及び配合量(いずれも「有効成分比」)の各成分を配合し、さらにメチルエチルケトンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)61質量%の熱硬化性樹脂組成物の溶液を調製した。
・アクリル系重合体:配合量=18質量部
 n-ブチルアクリレート1質量部、メチルアクリレート74質量部、グリシジルメタクリレート15質量部、及び2-ヒドロキシエチルアクリレート10質量部を共重合してなるアクリル系重合体(質量平均分子量:44万、ガラス転移温度:8℃)、上記成分(A1)に相当。
・エポキシ化合物(1):配合量=3質量部
 液状ビスフェノールA型エポキシ樹脂(日本触媒社製、製品名「BPA328」、エポキシ当量=220~240g/eq)、上記成分(B1)に相当。
・エポキシ化合物(2):配合量=20質量部
 固形ビスフェノールA型エポキシ樹脂(三菱化学社製、製品名「エピコート1055」、エポキシ当量=800~900g/eq)、上記成分(B1)に相当。
・エポキシ化合物(3):配合量=1.5質量部
 ジシクロペンタジエン型エポキシ樹脂(日本化薬社製、製品名「XD-1000L」、エポキシ当量=274~286g/eq)、上記成分(B1)に相当。
・熱硬化剤:配合量=0.5質量部
 ジシアンジアミド(ADEKA社製、製品名「アデカハードナーEH-3636AS」、活性水素量=21g/eq)、上記成分(B2)に相当。
・硬化促進剤:配合量=0.5質量部
 2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業株式会社製、製品名「キュアゾール2PHZ」)、上記成分(B3)に相当。
・シランカップリング剤:配合量=0.5質量部
 エポキシ基含有オリゴマー型シランカップリング剤(三菱化学社製、製品名「MSEP2」)、上記成分(D)に相当。
・無機充填材(1):配合量=6質量部
 球状シリカフィラー(アドマテックス社製、製品名「SC2050MA」、平均粒子径=0.5μm)、上記成分(E)に相当。
・無機充填材(2):配合量=50質量部
 球状シリカフィラー(タツモリ社製、製品名「SV-10」、平均粒子径=8μm)、上記成分(E)に相当。
(2)熱硬化性樹脂層の形成
 上記軽剥離フィルムの剥離処理面上に、製造例4(1)で調製した熱硬化性樹脂組成物の溶液を塗布して塗膜を形成し、当該塗膜を120℃で2分間乾燥させて、厚さ25μmの熱硬化性樹脂層を形成した。これを硬化性樹脂層4とする。
 熱硬化性樹脂層4は、硬化開始温度である130℃以上に加熱することで2時間以内に硬化させることができる。
製造例5
(1)支持層の作製
 ポリエステルフィルム基材上に熱剥離粘着剤層が設けられた構造を有する熱剥離型積層体(日東電工社製、製品名「リバアルファ(NITTO 3195)」)をそのまま支持層として用いた。これを支持層1とする。なお、後述する反り防止用積層体を作製する際には、熱剥離粘着剤層の表面に設けられた剥離ライナーを剥がして使用した。支持層1は、基材及び熱膨張性粒子を含む粘着剤層を有しており、膨張開始温度である170℃以上に加熱されることによって熱膨張性粒子が膨張し、粘着剤層の表面に微細な凹凸形状を生じさせる。
製造例6
(1)ウレタンプレポリマーの合成
 窒素雰囲気下の反応容器内に、質量平均分子量1,000のカーボネート型ジオール100質量部(固形分比)に対して、イソホロンジイソシアネートを、カーボネート型ジオールの水酸基とイソホロンジイソシアネートのイソシアネート基との当量比が1/1となるように配合し、さらにトルエン160質量部を加え、窒素雰囲気下にて、撹拌しながら、イソシアネート基濃度が理論量に到達するまで、80℃で6時間以上反応させた。
 次いで、2-ヒドロキシエチルメタクリレート(2-HEMA)1.44質量部(固形分比)をトルエン30質量部に希釈した溶液を添加して、両末端のイソシアネート基が消滅するまで、さらに80℃で6時間反応させ質量平均分子量2.9万のウレタンプレポリマーを得た。
(2)アクリルウレタン系樹脂の合成
 窒素雰囲気下の反応容器内に、製造例1で得たウレタンプレポリマー100質量部(固形分比)、メチルメタクリレート(MMA)117質量部(固形分比)、2-ヒドロキシエチルメタクリレート(2-HEMA)5.1質量部(固形分比)、1-チオグリセロール1.1質量部(固形分比)、及びトルエン50質量部を加え、撹拌しながら、105℃まで昇温した。
 そして、反応容器内に、さらにラジカル開始剤(株式会社日本ファインケム製、製品名「ABN-E」)2.2質量部(固形分比)をトルエン210質量部で希釈した溶液を、105℃に維持したまま4時間かけて滴下した。
 滴下終了後、105℃で6時間反応させ、質量平均分子量10.5万のアクリルウレタン系樹脂の溶液を得た。
(3)粘着剤組成物(1)の調製
 粘着性樹脂である、下記アクリル系共重合体(i)の固形分100質量部に、下記イソシアネート系架橋剤(i)5.0質量部(固形分比)を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)25質量%の粘着剤組成物(1)を調製した。
・アクリル系共重合体(i):2-エチルヘキシルアクリレート(2EHA)/2-ヒドロキシエチルアクリレート(HEA)=80.0/20.0(質量比)からなる原料モノマーに由来の構成単位を有する、質量平均分子量60万のアクリル系共重合体。
・イソシアネート架橋剤(i):東ソー株式会社製、製品名「コロネートL」、固形分濃度:75質量%。
(4)粘着剤組成物(2)の調製
 粘着性樹脂である、下記アクリル系共重合体(i)の固形分100質量部に、下記イソシアネート系架橋剤(i)5.0質量部(固形分比)を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)25質量%の粘着剤組成物(2)を調製した。
・アクリル系共重合体(i):2-エチルヘキシルアクリレート(2EHA)/2-ヒドロキシエチルアクリレート(HEA)=80.0/20.0(質量比)からなる原料モノマーに由来の構成単位を有する、質量平均分子量60万のアクリル系共重合体。
・イソシアネート架橋剤(i):東ソー株式会社製、製品名「コロネートL」、固形分濃度:75質量%。
(5)粘着剤層(1)の形成
 上記軽剥離フィルムの剥離剤層の表面に、上記粘着剤組成物(1)を塗布して塗膜を形成し、当該塗膜を100℃で60秒間乾燥して、厚さ5μmの粘着剤層(1)を形成した。
(6)粘着剤層(2)の形成
 上記重剥離フィルムの剥離剤層の表面に、上記粘着剤組成物(2)を塗布して塗膜を形成し、当該塗膜を100℃で60秒間乾燥して、厚さ10μmの粘着剤層(2)を形成した。
(7)支持層の作製
 基材である、厚さ50μmのポリエチレンテレフタレート(PET)フィルム(東洋紡株式会社製、製品名「コスモシャインA4100」)の片面に、上記粘着剤層(2)を貼付した。
 そして、上記PETフィルムの他面に、ポリエステル系粘着剤(ガラス転移温度:-50℃、質量平均分子量:21,000、OH価:4mgKOH/g)100質量部に、HDIヌレート架橋剤4質量部を添加した組成物を塗布し、100℃で1分間乾燥して、厚さ40μmのアンカー層を形成した。
 製造例5(2)で得たアクリルウレタン系樹脂の固形分100質量部に、イソシアネート系架橋剤(東ソー株式会社製、製品名「コロネートL」、固形分濃度:75質量%)を6.3質量部(固形分比)、触媒として、ジオクチルスズビス(2-エチルヘキサノエート)1.4質量部(固形分比)、及び上記熱膨張性粒子(株式会社クレハ製、製品名「S2640」、膨張開始温度(t)=208℃、平均粒子径(D50)=24μm、90%粒子径(D90)=49μm)を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)30質量%の樹脂組成物を調製した。得られた樹脂組成物中の有効成分の全量(100質量%)に対する、熱膨張性粒子の含有量は20質量%であった。
 この熱膨張性粒子を含む樹脂組成物を、上述のアンカー層上に塗布して塗膜を形成し、当該塗膜を100℃で2分間加熱して乾燥し、厚さ35μmの熱膨張性層を形成した。
 この熱膨張性層の上に、上記粘着剤層(1)を貼付した。こうして、表裏に剥離フィルムが積層された支持層を作製した。これを支持層2とする。
 支持層2は、粘着剤層及び熱膨張性粒子を含む基材を有しており、208℃以上に加熱されることによって熱膨張性粒子が膨張し、支持層の表面に微細な凹凸形状を生じさせる。
(実施例1)
 製造例5の支持層1の粘着剤層上に積層している剥離フィルムを除去し、表出した粘着剤層の粘着表面と、製造例1で形成した硬化性樹脂層1の表面とを貼り合せ、基材/粘着剤層/熱硬化性樹脂層/剥離フィルムをこの順で積層した、剥離フィルム付き反り防止用積層体を得た。
(実施例2)
 製造例5の支持層1の粘着剤層上に積層している剥離フィルムを除去し、表出した粘着剤層の粘着表面と、製造例2で形成した硬化性樹脂層2の表面とを貼り合せ、基材/粘着剤層/熱硬化性樹脂層/剥離フィルムをこの順で積層した、剥離フィルム付き反り防止用積層体を得た。
(実施例3)
 製造例5の支持層1の粘着剤層上に積層している剥離フィルムを除去し、表出した粘着剤層の粘着表面と、製造例1で形成した硬化性樹脂層1の表面とを貼り合せた(第1の熱硬化性樹脂層)。この積層体の硬化性樹脂層1上に積層している剥離フィルムを除去し、表出した硬化性樹脂層1上と、製造例2で形成した硬化性樹脂層2の表面とを貼り合せた(第2の熱硬化性樹脂層)。こうして、基材/粘着剤層/第1の熱硬化性樹脂層/第2の熱硬化性樹脂層/剥離フィルムをこの順で積層した、剥離フィルム付き反り防止用積層体を得た。
(実施例4)
 製造例5の支持層1の粘着剤層上に積層している剥離フィルムを除去し、表出した粘着剤層の粘着表面と、製造例1で形成した硬化性樹脂層1の表面とを貼り合せた。この積層体の硬化性樹脂層1上に積層している剥離フィルムを除去し、表出した硬化性樹脂層1上と、製造例3で形成した硬化性樹脂層3の表面とを貼り合せた。こうして、基材/粘着剤層/熱硬化性樹脂層/紫外線硬化性樹脂層/剥離フィルムをこの順で積層した、剥離フィルム付き反り防止用積層体を得た。
(実施例5)
 製造例6で得られた支持層2の第2粘着剤層上に積層している剥離フィルムを除去し、表出した第2粘着剤層の粘着表面と、製造例1で形成した硬化性樹脂層1の表面とを貼り合せ、重剥離フィルム/第1粘着剤層/基材/アンカー層/熱膨張層/第2粘着剤層/熱硬化性樹脂層/剥離フィルムをこの順で積層した、剥離フィルム付き反り防止用積層体を得た。
(比較例1)
 製造例5の支持層1の粘着剤層上に積層している剥離フィルムを除去し、表出した粘着剤層の粘着表面と、製造例4で形成した熱硬化性樹脂層の表面とを貼り合せ、基材/粘着剤層/硬化性樹脂層/剥離フィルムをこの順で積層した、剥離フィルム付き反り防止用積層体を得た。
(比較例2)
 製造例5の支持層1をそのまま用いた。
 実施例1~5及び比較例1~2で得られた反り防止用積層体を、上述した測定方法及び評価手順に従って測定及び評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、硬化性樹脂層の、支持層とは反対側の表面である第1表面のせん断力が20N/(3mm×3mm)以上の、反り防止用積層体としての反り防止用積層体を用いた実施例1~5においては、チップズレ2の評価が良好であり、チップズレがなく、反りの発生も抑えられることが確認された。
 一方、せん断力が20N/(3mm×3mm)未満の反り防止用積層体を用いた比較例1ではチップズレが発生した。このため、比較例1については、チップ保持性に問題があるため、反りの有無の判定以前に、反り防止用集積体として不合格と判断し、反りの評価は行わなかった。なお、硬化性樹脂層を有していないが、20N/(3mm×3mm)以上のせん断力を有する粘着積層体を用いた比較例2においては、チップズレ2の評価は基準以上であったが、実施例1~5の5倍以上の大きな反りが発生した。
 また、表1の結果から明らかなように、硬化性樹脂層の、支持層とは反対側の表面である第1表面の粘着力が1.7N/25mm以上の、反り防止用積層体としての反り防止用積層体を用いた実施例1~5においては、チップズレ1の評価が良好であり、チッブズレがなく、反りの発生も抑えられることが確認された。なお、実施例4においては、粘着力の測定時に、硬化性樹脂層(I)の第1表面の粘着力が強いことに起因して、裏打ち層が破壊されてしまったため、粘着力が10N/25mm以上であることは確認できたが、正確な数値は測定できなかった。
 一方、粘着力が1.7N/25mm未満の反り防止用積層体を用いた比較例1ではチップズレが発生した。なお、硬化性樹脂層を有していないが、1.7N/25mm以上の粘着力を有する粘着積層体を用いた比較例2においては、チップズレ1の評価は基準以上であったが、上述のとおり大きな反りが発生した。
(I):硬化性樹脂層
(I’):硬化樹脂層
(I):一部硬化した硬化性樹脂層
(II):支持層
(II’):膨張した支持層
(V):粘着剤層
(V1):(第1)粘着剤層
(V1-1):第1粘着剤層
(V2)、(V1-2):第2粘着剤層
(X1)、(X1-1)、(X1-2):熱硬化性樹脂層
(X1’):硬化した熱硬化性樹脂層
(X1-1’):硬化した熱硬化性樹脂層
(X2):エネルギー線硬化性樹脂層
(X2’):硬化したエネルギー線硬化性樹脂層
(Y):基材
(Y1):膨張性基材層
(Y1’):膨張した膨張性基材層
(Y2):非膨張性基材層
1a、1b、2a、2b、3、4、5:反り防止用積層体
50:支持体
60:封止対象物(半導体チップ)
70:成形型
71:注入孔
72:成形空間
80:封止材
81:硬化した封止材
85:硬化封止体
200:硬化樹脂層付き硬化封止体
P:界面
 

Claims (12)

  1.  熱硬化性樹脂層(X1)を含む硬化性樹脂層(I)と、
     硬化性樹脂層(I)を支持する支持層(II)と、を有し、
     熱硬化性樹脂層(X1)は支持層(II)に直接積層しており、
     硬化性樹脂層(I)の測定用被着体に対するせん断強度が、3mm×3mmの鏡面を備えた厚さ350μmのシリコンチップを前記測定用被着体とし、温度70℃において、130gfで1秒間前記測定用被着体の鏡面を前記硬化性樹脂層に押圧して貼り付け、速度200μm/sで測定したときの値で、20N/(3mm×3mm)以上であり、
     硬化性樹脂層(I)の、支持層(II)とは反対側の表面である第1表面において、封止対象物を封止材で封止して製造される硬化封止体の反り防止用積層体。
  2.  硬化性樹脂層(I)が単層の熱硬化性樹脂層(X1)である、請求項1に記載の反り防止用積層体。
  3.  硬化性樹脂層(I)が、支持層(II)側に位置する第1層と、前記第1表面側に位置する第2層とを含み、
     前記第1層は、第1の熱硬化性樹脂層(X1-1)であり、
     前記第2層は、第1の熱硬化性樹脂層(X1-1)よりも、表面の粘着力が高い第2の熱硬化性樹脂層(X1-2)である、請求項1に記載の反り防止用積層体。
  4.  硬化性樹脂層(I)が、支持層(II)側に位置する第1層と、前記第1表面側に位置する第2層とを含み、
     前記第1層は、熱硬化性樹脂層(X1-1)であり、
     前記第2層は、エネルギー線硬化性樹脂層(X2)である、請求項1に記載の反り防止用積層体。
  5.  硬化性樹脂層(I)の厚さが、1~500μmである、請求項1~4のいずれか1項に記載の反り防止用積層体。
  6.  支持層(II)が、基材(Y)及び粘着剤層(V)を有し、基材(Y)及び粘着剤層(V)の少なくとも一方が膨張性粒子を含み、
     前記膨張性粒子を膨張させる処理によって、支持層(II)と硬化性樹脂層(I)を硬化してなる硬化樹脂層(I’)との界面で分離する、請求項1~5のいずれか1項に記載の反り防止用積層体。
  7.  基材(Y)が、前記膨張性粒子を含む膨張性基材層(Y1)を有する、請求項6に記載の反り防止用積層体。
  8.  粘着剤層(V)が、非膨張性の粘着剤層(V1)である、請求項7に記載の反り防止用積層体。
  9.  基材(Y)が、非膨張性基材層(Y2)と膨張性基材層(Y1)とを有し、
     支持層(II)が、非膨張性基材層(Y2)、膨張性基材層(Y1)、及び、粘着剤層(V)をこの順で有し、
     粘着剤層(V)と熱硬化性樹脂層(X1)とが直接積層されてなる、請求項7又は8に記載の反り防止用積層体。
  10.  請求項1~9のいずれか1項に記載の反り防止用積層体を用いて硬化封止体を製造する方法であって、
     前記反り防止用積層体が有する硬化性樹脂層(I)の前記第1表面の一部に、封止対象物を載置し、
     前記封止対象物と、当該封止対象物の少なくとも周辺部の硬化性樹脂層(I)の前記第1表面とを熱硬化性の封止材で被覆し、
     前記封止材を熱硬化させて、前記封止対象物を含む硬化封止体を形成するとともに、硬化性樹脂層(I)も熱硬化させ、硬化樹脂層(I’)を形成して、硬化樹脂層付き硬化封止体を得る、硬化封止体の製造方法。
  11.  請求項4に記載の反り防止用積層体を用いて硬化封止体を製造する方法であって、
     前記反り防止用積層体が有する硬化性樹脂層(I)の前記第1表面である、エネルギー線硬化性樹脂層(X2)の、前記第1層とは反対側の表面の一部に、封止対象物を載置し、
     エネルギー線を照射してエネルギー線硬化性樹脂層(X2)を硬化させ、
     前記封止対象物と、当該封止対象物の少なくとも周辺部の硬化性樹脂層(I)の表面とを熱硬化性の封止材で被覆し、
     前記封止材を熱硬化させて、前記封止対象物を含む硬化封止体を形成するとともに、硬化性樹脂層(I)も熱硬化させ、硬化樹脂層(I’)を形成して、硬化樹脂層付き硬化封止体を得る、硬化封止体の製造方法。
  12.  前記封止材を硬化性樹脂層(I)の前記第1表面に沿って射出して、前記封止対象物と、当該封止対象物の少なくとも周辺部の硬化性樹脂層(I)の前記第1表面とを封止材で被覆する、請求項10又は11に記載の硬化封止体の製造方法。
     
PCT/JP2018/036811 2018-03-30 2018-10-02 硬化封止体の反り防止用積層体、及び、硬化封止体の製造方法 WO2019187248A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020509574A JP7240377B2 (ja) 2018-03-30 2018-10-02 硬化封止体の反り防止用積層体、及び、硬化封止体の製造方法
KR1020207015349A KR102576309B1 (ko) 2018-03-30 2018-10-02 경화 봉지체의 휨 방지용 적층체, 및 경화 봉지체의 제조 방법
CN201880091673.9A CN111902503A (zh) 2018-03-30 2018-10-02 固化密封体的防翘曲用层叠体、以及固化密封体的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018068732 2018-03-30
JP2018068725 2018-03-30
JP2018-068725 2018-03-30
JP2018-068732 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019187248A1 true WO2019187248A1 (ja) 2019-10-03

Family

ID=68058708

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/036810 WO2019187247A1 (ja) 2018-03-30 2018-10-02 硬化封止体の反り防止用積層体、及び、硬化封止体の製造方法
PCT/JP2018/036811 WO2019187248A1 (ja) 2018-03-30 2018-10-02 硬化封止体の反り防止用積層体、及び、硬化封止体の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036810 WO2019187247A1 (ja) 2018-03-30 2018-10-02 硬化封止体の反り防止用積層体、及び、硬化封止体の製造方法

Country Status (5)

Country Link
JP (2) JP7240376B2 (ja)
KR (2) KR102576309B1 (ja)
CN (2) CN111902503A (ja)
TW (2) TWI788425B (ja)
WO (2) WO2019187247A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114829529A (zh) * 2019-12-11 2022-07-29 琳得科株式会社 粘合片及半导体装置的制造方法
JP7438740B2 (ja) 2019-12-13 2024-02-27 日東電工株式会社 半導体プロセスシート
JP7438741B2 (ja) 2019-12-13 2024-02-27 日東電工株式会社 半導体プロセスシート
CN114179465A (zh) * 2021-11-26 2022-03-15 安徽森泰木塑科技地板有限公司 一种用于数码打印的基材、数码打印板材及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102383A (ja) * 2009-10-14 2011-05-26 Nitto Denko Corp 熱硬化型ダイボンドフィルム
JP2011142170A (ja) * 2010-01-06 2011-07-21 Sumitomo Bakelite Co Ltd 熱硬化性接着剤組成物および半導体装置
JP2013201402A (ja) * 2012-03-26 2013-10-03 Tomoegawa Paper Co Ltd 半導体装置製造用接着シート及び半導体装置の製造方法
JP2013201404A (ja) * 2012-03-26 2013-10-03 Tomoegawa Paper Co Ltd 半導体装置製造用接着シート及び半導体装置の製造方法
JP2017092335A (ja) * 2015-11-13 2017-05-25 日東電工株式会社 半導体パッケージの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3594853B2 (ja) 1999-11-08 2004-12-02 日東電工株式会社 加熱剥離型粘着シート
JP2003264205A (ja) * 2002-03-08 2003-09-19 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JP2009152490A (ja) 2007-12-21 2009-07-09 Furukawa Electric Co Ltd:The チップ保護用フィルム
JP2009227892A (ja) * 2008-03-25 2009-10-08 Lintec Corp 粘接着剤組成物、粘接着シートおよび半導体装置の製造方法
KR20130056863A (ko) 2010-04-20 2013-05-30 닛토덴코 가부시키가이샤 플립칩형 반도체 이면용 필름, 다이싱 테이프 일체형 반도체 이면용 필름, 반도체 장치의 제조방법, 및 플립칩형 반도체 장치
JP2012149181A (ja) * 2011-01-19 2012-08-09 Nitto Denko Corp 両面粘着テープ又はシート、および被着体の加工方法
JP2015021082A (ja) * 2013-07-19 2015-02-02 日東電工株式会社 電子部品切断用熱剥離型粘着テープおよび電子部品の切断方法
JP2015185436A (ja) * 2014-03-25 2015-10-22 リンテック株式会社 シート状封止材、封止シート、および発光素子封止体
WO2016125835A1 (ja) * 2015-02-05 2016-08-11 リンテック株式会社 樹脂膜形成用複合シート、及び樹脂膜付きチップの製造方法
JP7340457B2 (ja) * 2017-12-26 2023-09-07 リンテック株式会社 粘着性積層体、樹脂膜付き加工対象物の製造方法、及び硬化樹脂膜付き硬化封止体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102383A (ja) * 2009-10-14 2011-05-26 Nitto Denko Corp 熱硬化型ダイボンドフィルム
JP2011142170A (ja) * 2010-01-06 2011-07-21 Sumitomo Bakelite Co Ltd 熱硬化性接着剤組成物および半導体装置
JP2013201402A (ja) * 2012-03-26 2013-10-03 Tomoegawa Paper Co Ltd 半導体装置製造用接着シート及び半導体装置の製造方法
JP2013201404A (ja) * 2012-03-26 2013-10-03 Tomoegawa Paper Co Ltd 半導体装置製造用接着シート及び半導体装置の製造方法
JP2017092335A (ja) * 2015-11-13 2017-05-25 日東電工株式会社 半導体パッケージの製造方法

Also Published As

Publication number Publication date
JPWO2019187248A1 (ja) 2021-04-08
KR102576309B1 (ko) 2023-09-07
JPWO2019187247A1 (ja) 2021-04-15
CN111902503A (zh) 2020-11-06
JP7240377B2 (ja) 2023-03-15
TW201942283A (zh) 2019-11-01
KR20200138150A (ko) 2020-12-09
CN111954703A (zh) 2020-11-17
TWI788425B (zh) 2023-01-01
WO2019187247A1 (ja) 2019-10-03
TWI796367B (zh) 2023-03-21
KR20200138149A (ko) 2020-12-09
JP7240376B2 (ja) 2023-03-15
TW201942286A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
WO2019187248A1 (ja) 硬化封止体の反り防止用積層体、及び、硬化封止体の製造方法
JP7340515B2 (ja) 粘着性積層体、粘着性積層体の使用方法、及び硬化樹脂膜付き硬化封止体の製造方法
JP7340457B2 (ja) 粘着性積層体、樹脂膜付き加工対象物の製造方法、及び硬化樹脂膜付き硬化封止体の製造方法
JP7405618B2 (ja) 粘着性積層体、粘着性積層体の使用方法、及び半導体装置の製造方法
JP7129110B2 (ja) 積層体及び硬化封止体の製造方法
TWI835785B (zh) 黏著性層合體、黏著性層合體之使用方法,及附有硬化樹脂膜之硬化密封體之製造方法
TWI793186B (zh) 層合體及硬化密封體之製造方法
JP2023020205A (ja) 半導体素子封止用積層体、及び、半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509574

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18911497

Country of ref document: EP

Kind code of ref document: A1