WO2019187073A1 - Optical waveguide inspection method and optical waveguide manufacturing method using same - Google Patents

Optical waveguide inspection method and optical waveguide manufacturing method using same Download PDF

Info

Publication number
WO2019187073A1
WO2019187073A1 PCT/JP2018/013821 JP2018013821W WO2019187073A1 WO 2019187073 A1 WO2019187073 A1 WO 2019187073A1 JP 2018013821 W JP2018013821 W JP 2018013821W WO 2019187073 A1 WO2019187073 A1 WO 2019187073A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
light
core
opto
light emitting
Prior art date
Application number
PCT/JP2018/013821
Other languages
French (fr)
Japanese (ja)
Inventor
博紀 小澤
大祐 塚原
明 有馬
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to PCT/JP2018/013821 priority Critical patent/WO2019187073A1/en
Publication of WO2019187073A1 publication Critical patent/WO2019187073A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present invention relates to an optical waveguide inspection method used in the fields of optical communication, optical information processing and other general optics, and a method of manufacturing an optical waveguide using the same.
  • an opto-electric hybrid board in which an electric circuit board having electric wiring and an optical waveguide having a core (optical wiring) are laminated.
  • Some of the opto-electric hybrid boards are used with an optical element mounted on the electric circuit board, and the optical waveguide core part corresponding to the mounting position of the optical element is the core part of the optical circuit board. It is formed on a light reflecting surface inclined by 45 ° with respect to the longitudinal direction.
  • the state of the core eg, light propagation performance, dimensions, inclination angle of the light reflecting surface, etc.
  • a light source such as an LED (light emitting diode) toward the first end of the core
  • the light emitted from the second end of the core is converted into a CCD (charge).
  • Coupling element Captured by an image sensor such as an image sensor and imaged by the image sensor. During the imaging, it is necessary to focus the imaging element on the light emitting part (second end of the core).
  • the image sensor is positioned at a position appropriate for imaging the emitted light.
  • the state of the core (the light propagation performance and the like) is inspected by analyzing the image of the captured emitted light. And the thing in which the state of the inspected core meets a preset standard is regarded as a passing product of the above inspection.
  • a strip-shaped optical waveguide assembly sheet is produced by arranging a plurality of optical waveguides in a direction perpendicular to the longitudinal direction of the core, and each optical waveguide of the optical waveguide assembly sheet is produced.
  • Has been proposed see, for example, Patent Document 3 above. Then, after the inspection, individual optical waveguides are cut out from the optical waveguide assembly sheet.
  • the present invention has been made in view of such circumstances, and provides an optical waveguide inspection method and an optical waveguide manufacturing method using the optical waveguide inspection method that can shorten the time required to position an image pickup device when imaging emitted light. provide.
  • the present invention provides a step of preparing an optical waveguide having a light incident portion and a light emitting portion and having an optical path core between the light incident portion and the light emitting portion, and the light emission of the optical waveguide. Detecting the position of the part by a position detector, causing the light to enter the core of the optical waveguide from the light incident part, and emitting the light from the light emitting part, and detecting the detected light emitting part. A step of positioning the imaging device based on the position information, imaging the emitted light emitted from the light emitting unit by the imaging device, and a step of inspecting the state of the core by image analysis of the captured emitted light An inspection method for an optical waveguide provided with
  • the present invention is a method of manufacturing an optical waveguide comprising a step of forming a core and a step of inspecting the state of the core by the optical waveguide inspection method, and the optical waveguide whose inspection result meets a standard
  • the manufacturing method of the optical waveguide which makes a waveguide an acceptable product is made into the 2nd summary.
  • the optical waveguide inspection method of the present invention includes a step of detecting the position of the light emitting portion by a position detector prior to the step of imaging the emitted light emitted from the light emitting portion. That is, in the imaging step, the position of the light emitting unit has already been recognized, and thereby the position where the focus of the image sensor matches the light emitting unit (the appropriate position for imaging the emitted light) has been determined. Is in a state. Therefore, prior to the imaging step or in the imaging step, the imaging element can be quickly positioned at a position where the focus of the imaging element is aligned with the light emitting portion (a position appropriate for imaging the emitted light).
  • the optical waveguide inspection method of the present invention a process for focusing the image pickup device, which takes a long time, is unnecessary. Therefore, the time required for positioning the image sensor can be shortened. As a result, the time required for the inspection can be shortened.
  • a plurality of the optical waveguides are juxtaposed in a direction perpendicular to the longitudinal direction of the core, and the plurality of optical waveguides form a strip-shaped optical waveguide assembly sheet, and the optical waveguides of the optical waveguide assembly sheet are arranged in parallel.
  • the inspection can be continuously performed in the parallel order of the optical waveguides, so that the inspection efficiency can be improved.
  • the optical waveguide assembly sheet includes a plurality of optical waveguides arranged in parallel in a direction perpendicular to the longitudinal direction of the core, and a plurality of the optical waveguides are in parallel.
  • the inspection efficiency can be further improved.
  • the position detector for detecting the position of the light emitting portion of the optical waveguide is a laser displacement meter
  • the time required for detecting the position of the light emitting portion can be shortened, so that further inspection efficiency can be achieved. Can be achieved.
  • the state of the core is inspected by the above-described optical waveguide inspection method, and the optical waveguide whose inspection result meets the standard is accepted.
  • the time required for the inspection can be shortened, the productivity of the optical waveguide can be increased.
  • (A) shows typically an opto-electric hybrid board assembly sheet in which a plurality of opto-electric hybrid boards provided with an optical waveguide to be inspected according to the first embodiment of the optical waveguide inspection method of the present invention are arranged in parallel. It is a top view, (b) is XX sectional drawing of (a). It is a longitudinal cross-sectional view which shows typically the opto-electric hybrid module using the said opto-electric hybrid board. (A)-(b) is explanatory drawing which shows typically the formation process of the electric circuit board of the said opto-electric hybrid board
  • (A)-(d) is explanatory drawing which shows typically the formation process of the optical waveguide of the said opto-electric hybrid board
  • FIG. 1A is a plan view showing an opto-electric hybrid board assembly sheet in which a plurality of opto-electric hybrid boards having optical waveguides to be inspected according to the first embodiment of the optical waveguide inspection method of the present invention are arranged in parallel.
  • FIG. 1B is a cross-sectional view (XX cross-sectional view of FIG. 1A) showing the opto-electric hybrid board included in the opto-electric hybrid board assembly sheet.
  • the opto-electric hybrid board A1 before the inspection is laminated on the electric circuit board E and one surface of the electric circuit board E (the lower surface in FIG. 1B) as shown in FIG. And a formed optical waveguide W1 before inspection.
  • a reinforcing metal layer M is disposed in a part between the electric circuit board E and the optical waveguide W1.
  • the opto-electric hybrid board assembly sheet (optical waveguide assembly sheet) S includes a plurality of the opto-electric hybrid boards A1 (a plurality of optical waveguides W1) and the optical waveguide W. In the direction perpendicular to the longitudinal direction of the core 7, the belt 7 is formed in parallel with a gap.
  • the electric circuit board E has electric wiring (not shown) and element mounting pads 2 formed on the first surface of the light-transmitting insulating layer 1.
  • the insulating layer 1 is formed on the first surface (surface opposite to the optical waveguide W) of the metal layer M.
  • the optical waveguide W1 is configured such that a linear core 7 for an optical path is sandwiched between a first cladding layer 6 and a second cladding layer 8. And the 1st end part of the said optical waveguide W corresponding to the element mounting pad 2 of the said electric circuit board
  • substrate E is formed in the inclined surface inclined 45 degrees with respect to the longitudinal direction of the core 7,
  • the portion of the core 7 located at is a light reflecting surface 7a.
  • the second end of the optical waveguide W1 (the end opposite to the light reflecting surface 7a) is formed on a right-angled plane perpendicular to the longitudinal direction of the core 7, and the core 7 positioned on the right-angled plane is formed.
  • the part is a connection surface 7c connected to the end surface of the core 9 of the optical fiber F (see FIG. 2).
  • the first cladding layer 6 is formed on the second surface of the metal layer M (the surface opposite to the electric circuit board E).
  • the opto-electric hybrid board A is used by being connected to both ends of the optical fiber F as shown in FIG.
  • the optical waveguide W1 before the inspection and the optical waveguide W after the inspection have the same configuration.
  • the opto-electric hybrid board A1 including the optical waveguide W1 before the inspection and the opto-electric hybrid board A including the optical waveguide W after the inspection have the same configuration.
  • the light emitting element 11 is mounted on the element mounting pad 2 of the opto-electric hybrid board A at the first end (left end in FIG. 2), and the second end (right end in FIG. 2).
  • the light receiving element 12 is mounted on the element mounting pad 2 of the opto-electric hybrid board A.
  • an opto-electric hybrid module is formed by the opto-electric hybrid board A, the optical fiber F, the light emitting element 11, and the light receiving element 12, and is mounted on an electronic device or the like.
  • the light propagation in the opto-electric hybrid module is performed as follows. That is, the light L emitted from the light emitting element 11 mounted on the opto-electric hybrid board A at the first end (left end in FIG. 2) is transmitted from the core 7 of the opto-electric hybrid board A to the optical fiber. The light propagates through the core 9 of the F and the core 7 of the opto-electric hybrid board A at the second end (right end in FIG. 2) in this order and is received by the light receiving element 12.
  • the light propagation performance of the core 7 is important. Therefore, in this embodiment, as described below, in the manufacturing process of the opto-electric hybrid board A, the light propagation performance of the core 7 of the optical waveguide W1 (see FIG. 1B) is inspected.
  • the strip-like opto-electric hybrid board assembly sheet S in which a plurality of opto-electric hybrid boards A1 before inspection are arranged in parallel is produced.
  • the production of each opto-electric hybrid board A1 in the opto-electric hybrid board assembly sheet S is performed as follows.
  • a strip-shaped metal sheet material Ma (see FIG. 3A) for forming the metal layer M is prepared.
  • a material for forming the metal sheet material Ma include stainless steel, an alloy of iron and nickel (containing 42 wt% nickel), and stainless steel is preferable from the viewpoint of dimensional accuracy.
  • the thickness of the metal sheet material Ma (metal layer M) is set within a range of 10 to 100 ⁇ m, for example.
  • a photosensitive insulating resin is applied to the first surface of the metal sheet material Ma, and the insulating layer 1 having a predetermined pattern is formed by photolithography.
  • the material for forming the insulating layer 1 include synthetic resins such as polyimide, polyether nitrile, polyether sulfone, polyethylene terephthalate, polyethylene naphthalate, and polyvinyl chloride, and silicone-based sol-gel materials.
  • the thickness of the insulating layer 1 is set within a range of 10 to 100 ⁇ m, for example.
  • the electrical wiring (not shown) and the element mounting pad 2 are formed by, for example, a semi-additive method, a subtractive method, or the like.
  • the electric circuit board E is formed on the first surface of the metal sheet material Ma.
  • optical waveguide W of opto-electric hybrid board A1 In order to form the optical waveguide W1 (see FIG. 1B) on the second surface (surface opposite to the electric circuit substrate E) of the laminate of the electric circuit substrate E and the metal layer M, first, As shown in FIG. 4A, a photosensitive resin, which is a material for forming the first cladding layer 6, is applied to the second surface (the lower surface in the drawing) of the laminate. Thereafter, the coating layer is exposed to radiation and cured to form the first cladding layer 6. The thickness of the first cladding layer 6 (thickness from the second surface of the metal layer M) is set, for example, within a range of 5 to 80 ⁇ m. When the optical waveguide W is formed (when the first clad layer 6, the following core 7 and the second clad layer 8 are formed), the second surface of the laminate is directed upward.
  • a core 7 having a predetermined pattern is formed on the first surface (lower surface in the drawing) of the first cladding layer 6 by photolithography.
  • the dimensions of the core 7 are set in a range of 5 to 200 ⁇ m in width and in a range of 5 to 200 ⁇ m in thickness.
  • the material for forming the core 7 include the same photosensitive resin as that for the first cladding layer 6, and the formation of the first cladding layer 6 and the second cladding layer 8 described below (see FIG. 4C). A material having a higher refractive index than the material is used.
  • the second cladding layer 8 is formed by photolithography on the first surface (the lower surface in the figure) of the first cladding layer 6 so as to cover the core 7. To do.
  • the thickness of the second cladding layer 8 [thickness from the top surface (lower surface in the figure) of the core 7] is set in the range of 3 to 50 ⁇ m, for example.
  • Examples of the material for forming the second cladding layer 8 include the same photosensitive resin as that for the first cladding layer 6.
  • the portion (first end portion) of the core 7 corresponding to the element mounting pad 2 of the electric circuit board E (positioned downward in the drawing) is moved to the first cladding.
  • the layer 6 and the second cladding layer 8 are formed on an inclined surface inclined by 45 ° with respect to the longitudinal direction of the core 7 by, for example, excimer laser processing.
  • the portion of the core 7 located on these inclined surfaces becomes the light reflecting surface 7a.
  • the second end of the core 7 (the end opposite to the light reflecting surface 7a) is formed on a surface perpendicular to the longitudinal direction of the core 7, and the core 9 of the optical fiber F (see FIG. 1).
  • the connection surface 7c is connected to the end surface.
  • the optical waveguide W1 before the inspection is obtained, and the optical / electrical hybrid substrate assembly sheet S in which a plurality of the optical / electrical hybrid substrates A1 provided with the optical waveguide W1 are arranged in parallel [FIGS. 1 (a), (b) Browse].
  • This inspection method is a method of detecting the position of the light emitting portion prior to imaging the light emitted after propagating through the core 7 by the imaging device. This inspection method is the first feature of the present invention.
  • the inspection method first adsorbs the strip-like opto-electric hybrid board assembly sheet S on the upper surface of an air adsorption belt (not shown), and the light.
  • the electric mixed board assembly sheet S is moved in the longitudinal direction (the arrow direction shown in FIG. 5).
  • a laser displacement meter (position detector) 30 is installed on the upstream side of the movement, and a light source 10 such as an LED (light emitting diode) that emits uniform light and a CCD (charge coupled device) image sensor on the downstream side.
  • CMOS phase correction metal oxide semiconductor
  • the laser displacement meter 30 is a transmission type including an emitter 31 that emits a laser beam 30a in a planar shape and a light receiver 32 that receives the emitted laser beam 30a.
  • the light emitting body 31 and the light receiving body 32 are placed between the body 31 and the light receiving body 32 so that the side edge portion with the connection surface 7c serving as the light emitting section of the opto-electric hybrid board assembly sheet S is located. Deploy.
  • the light source 10 is installed above the portion of the electric circuit board E corresponding to the light reflecting surface 7 a at the first end of the core 7, and the light reflecting surface 7 a at the first end of the core 7 from the light source 10.
  • Light L is emitted toward.
  • the light L is incident on the optical waveguide W1 (see FIG. 1B) from the first surface portion (the light incident portion of the optical waveguide W1) of the first cladding layer 6 corresponding to the light reflecting surface 7a. Thereafter, the light is reflected by the light reflecting surface 7a and emitted from the connection surface 7c (light emitting portion of the optical waveguide W1) at the second end of the core 7 (see FIG. 2).
  • the camera 20 is installed in a state of facing the connection surface 7c at the second end of the core 7, and the light L emitted from the connection surface 7c can be captured by the imaging element.
  • the camera 20 is fixed to a camera moving unit (not shown) that can move in three dimensions, and the camera 20 can be moved by operating the camera moving unit.
  • a part of the laser beam 30a emitted in a planar shape from the emitting body 31 is blocked at the side edge of the opto-electric hybrid board assembly sheet S, and the remaining unblocked laser beam 30a is received by the light receiving device.
  • Light is received by the body 32.
  • the position of the light emitting portion (connection surface 7c) of the opto-electric hybrid board assembly sheet S can be detected in the parallel order of the opto-electric hybrid board A1 by the change in the cutoff state of the laser beam 30a.
  • the part of the opto-electric hybrid board A1 corresponding to the light exit part is set to the opto-electric hybrid board assembly so that the blocking state of the laser light 30a changes at the position of the light exit part.
  • the sheet S is formed so as to protrude from the side edge, or is formed in a recessed state.
  • connection surface 7c the camera moving part is operated to a position where the focus of the image pickup device is aligned with the light emitting part (connection surface 7c). Is moved to position the camera 20. Therefore, it is not necessary to focus the image pickup device on the light emitting portion (second end portion of the core 7) after the image pickup device captures the emitted light L from the light emitting portion (connecting surface 7c). That is, in this embodiment, a focusing process requiring a long time is not required.
  • the time required from the detection of the position of the light emitting portion (connection surface 7c) by the laser displacement meter 30 to the positioning of the camera 20 is short.
  • 25 opto-electric hybrid boards A1 in the opto-electric hybrid board aggregate sheet S are used.
  • the conventional inspection method that needs to be focused requires about 280 seconds under the same conditions.
  • the light L emitted from the light emitting portion (connection surface 7c) is imaged by the imaging element of the camera 20 in the parallel order of the opto-electric hybrid board A1. Then, by analyzing the captured image of the emitted light L, the light propagation loss value in the core 7 is calculated.
  • the optical waveguide W1 is inspected in parallel order. And the thing with the calculated light propagation loss value smaller than the preset reference value is set as the pass product of the said inspection as the light propagation performance of the core 7 being excellent.
  • the optical waveguide W is formed through the step of inspecting the light propagation performance of the core 7.
  • an opto-electric hybrid board assembly sheet S in which a plurality of opto-electric hybrid boards A are arranged in parallel is obtained.
  • the productivity of the optical waveguide W can be increased, and as a result, the productivity of the opto-electric hybrid board assembly sheet S can be increased.
  • the optical waveguide W a step of inspecting the light propagation performance of the core 7 is provided, and the optical waveguide W whose light propagation performance of the core 7 is suitable for practical use is regarded as an acceptable product. This is the second feature of the present invention.
  • the opto-electric hybrid board A provided with the optical waveguide W which is an acceptable product of the above inspection, is individually cut out from the opto-electric hybrid board assembly sheet S, and as shown in FIG. 7 are connected to both ends of the core 9 of the optical fiber F via connectors (not shown) or the like.
  • the light emitting element 11 is mounted on the element mounting pad 2 of the opto-electric hybrid board A at the first end of the optical fiber F, and the element mounting pad 2 of the opto-electric hybrid board A at the second end.
  • the light receiving element 12 is mounted. In this way, the opto-electric hybrid module is obtained.
  • FIG. 6 is an explanatory view showing a second embodiment of the optical waveguide inspection method of the present invention.
  • the inspection method of this embodiment is obtained by reversing the arrangement of the light source 10 and the camera 20 in the inspection method of the first embodiment shown in FIG. That is, the light source 10 is installed in a state of facing the connection surface 7 c at the second end of the core 7, and the camera 20 is a part of the electric circuit board E corresponding to the light reflecting surface 7 a at the first end of the core 7. It is installed above.
  • the light L from the light source 10 enters the core 7 from the connection surface 7c of the core 7 and is reflected by the light reflecting surface 7a, and then passes through the first cladding layer 6 and the insulating layer 1 in this order.
  • the light incident portion of the optical waveguide W1 serves as the connection surface 7c of the core 7, and the light emitting portion of the optical waveguide W1 [see FIG. This is the first surface portion of the first cladding layer 6 corresponding to the surface 7a.
  • the laser displacement meter 30 for detecting the position of the light emitting portion a reflection type in which the emitting body and the light receiving body are integrated is used.
  • Other parts are the same as those in the first embodiment shown in FIG. 5, and the same reference numerals are given to the same parts.
  • the position of the light emitting part is detected by arranging the reflective laser displacement meter 30 above the first surface of the opto-electric hybrid board A1. Then, laser light 30b is emitted from the laser displacement meter 30 toward the first surface of the opto-electric hybrid board A1, and the laser light 30c reflected by the opto-electric hybrid board A1 is received by the laser displacement meter 30. At this time, since the light emitting portion is at a low position between the two element mounting pads 2, the reflection state of the laser beam 30c changes in the light emitting portion, and thus the light emitting portion is detected. can do.
  • the light propagation performance of the core 7 of the optical waveguide W1 can be inspected by reversing the propagation direction of the light L from that of the first embodiment.
  • the time required for the inspection can be shortened, and the productivity of the optical waveguide W and the opto-electric hybrid board assembly sheet S can be increased.
  • FIG. 7 is a transverse cross-sectional view (cross-sectional view corresponding to FIG. 1B) showing an opto-electric hybrid board provided with an optical waveguide to be inspected according to the third embodiment of the optical waveguide inspection method of the present invention. It is.
  • the opto-electric hybrid board B1 before the inspection has element mounting pads 2 formed on both ends of one electric circuit board E, and the optical waveguide W2 stacked on the electric circuit board E.
  • Light reflecting surfaces 7 a are formed at both ends of the core 7.
  • the optical waveguide W2 before the inspection and the optical waveguide W after the inspection have the same configuration.
  • the opto-electric hybrid board B1 provided with the optical waveguide W2 before inspection and the opto-electric hybrid board B provided with the optical waveguide W after inspection have the same configuration. And the opto-electric hybrid board B after inspection does not pass through the optical fiber F (see FIG. 2).
  • the other parts are the same as those of the opto-electric hybrid board A1 in the first embodiment shown in FIG. 1B, and the same parts are denoted by the same reference numerals.
  • the light propagation in this opto-electric hybrid board B is such that the light L from the first surface of the first end passes through the insulating layer 1 and the first cladding layer 6 in this order, and then the first end of the core 7 The light is reflected by the light reflecting surface 7 a and propagates through the core 7. Thereafter, the light is reflected by the light reflecting surface 7a at the second end of the core 7, passes through the first cladding layer 6 and the insulating layer 1 in this order, and is emitted from the first surface at the second end. That is, both the light incident portion and the light emitting portion of the optical waveguide W2 are the first surface portions of the first cladding layer 6 corresponding to the light reflecting surface 7a.
  • the inspection method of the optical waveguide W2 according to the third embodiment uses the second embodiment (FIG. 6) as a laser displacement meter 30 for detecting the position of the light emitting portion. Similar to the reference), a reflective type in which the emitting body and the light receiving body are integrated is used. The light source 10 and the camera 20 are both installed above the opto-electric hybrid board B1. Then, similarly to the first and second embodiments, the light propagation performance of the core 7 of the optical waveguide W2 can be inspected.
  • the time required for the inspection can be shortened, and the productivity of the optical waveguide W and the opto-electric hybrid board assembly sheet S can be increased. Can be increased.
  • FIG. 9 is an explanatory view showing a fourth embodiment of the optical waveguide inspection method of the present invention.
  • the opto-electric hybrid board assembly sheet S is obtained by arranging two rows of a plurality of juxtaposed opto-electric hybrid boards A1 shown in FIG. Yes.
  • the light emission part (connection surface 7c) is formed in the side edge of the opto-electric hybrid board assembly sheet S in both the two rows. Then, the two rows can be inspected simultaneously.
  • the inspection of each column can be performed in the same manner as in the first embodiment shown in FIG.
  • Other parts are the same as those in the first embodiment shown in FIG. 5, and the same reference numerals are given to the same parts.
  • the inspection efficiency can be further increased, and the production of the optical waveguide W and the opto-electric hybrid board aggregate sheet S can be achieved.
  • the sex can be further enhanced.
  • both the two rows were inspected in the same manner as in the first embodiment shown in FIG. 5, but one of the two rows is that of the light source 10 and the camera 20.
  • the arrangement may be reversed and the inspection may be performed in the same manner as in the second embodiment shown in FIG. Further, both rows may be inspected in the same manner as in the second embodiment shown in FIG.
  • the opto-electric hybrid board A1 has the light incident part position and the light emission part position on the first surface of the opto-electric hybrid board B1 shown in FIG.
  • Two or more rows of the plurality of opto-electric hybrid boards B1 arranged in parallel can be arranged in parallel. Therefore, the number of optical waveguides that can be inspected at the same time can be further increased, and the efficiency of inspection can be further increased. And the productivity of the optical waveguide W and the opto-electric hybrid board assembly sheet S can be further enhanced.
  • the optical waveguides W1 and W2 are inspected in a state where the electric circuit board E is laminated on the optical waveguides W1 and W2. However, the inspection is performed in a state where only the optical waveguides W1 and W2 are formed. May be.
  • the laser displacement meter 30 is used as a detector for detecting the position of the light emitting portion of the optical waveguides W1 and W2. However, if the position of the light emitting portion can be detected, other detectors can be used. May be used.
  • the opto-electric hybrid board assembly sheet S is moved, but the laser displacement meter 30, the light source 10, and the camera 20 (imaging device) may be moved.
  • the opto-electric hybrid board assembly sheet S, the laser displacement meter 30, the light source 10, and the camera 20 (imaging device) may be moved in directions opposite to each other.
  • the light propagation performance of the core 7 is inspected as the state of the core 7. Inspection can also be performed by image analysis of the emitted light imaged as described above (see Patent Documents 1 to 3). At this time, as in the above embodiments, the position of the light emitting portion is detected by the laser displacement meter 30 prior to imaging of the emitted light from the light emitting portion, so that the time required for the inspection can be shortened. it can.
  • Example 1 As in the first embodiment shown in FIG. 5, the optical propagation performance of the core was inspected for the optical waveguide of the opto-electric hybrid board assembly sheet.
  • the number of opto-electric hybrid boards arranged in parallel in the opto-electric hybrid board assembly sheet was 25.
  • the dimensions of the core of the optical waveguide were a square with a cross section of 50 ⁇ m ⁇ 50 ⁇ m and a length of 10 cm.
  • the light emission part of the said optical waveguide is located in the side edge part of the said opto-electric hybrid board assembly sheet. Therefore, a transmissive laser displacement meter (manufactured by Keyence Corporation, LS-9006M) was used as a laser displacement meter for detecting the position of the light emitting portion.
  • LS-9006M transmissive laser displacement meter
  • OCT-001 manufactured by Synergy Opto Systems was used as an apparatus for imaging the light emitted from the light emitting part.
  • This apparatus includes a light source and a camera including a CCD image sensor (imaging device).
  • the light source has a wavelength of emitted light of 850 nm, a uniform light irradiation surface diameter of 4 mm, and an NA (numerical aperture) of 0.57.
  • the CCD image sensor has a magnification of 5 times, a field of view range of 1.28 mm ⁇ 0.96 mm, and an NA (numerical aperture) of 0.42.
  • Example 2 As in the second embodiment shown in FIG. 6, the optical propagation performance of the core was examined for the optical waveguide of the opto-electric hybrid board assembly sheet.
  • the light emitting portion of the optical waveguide is located on the first surface portion of the first cladding layer. Therefore, a reflection type laser displacement meter (manufactured by Keyence Corporation, LJ-V7020K) was used as a laser displacement meter for detecting the position of the light emitting portion.
  • the other parts were the same as in Example 1 above.
  • Example 1 In Example 1 above, after the light emitted from the light emitting portion of the optical waveguide is captured by the CCD image sensor and the focus of the CCD image sensor is adjusted to the light emitting portion of the optical waveguide, as in the conventional inspection method, I took an image. The other parts were the same as in Example 1 above.
  • Example 2 In Example 2 above, after the emitted light from the light emitting portion of the optical waveguide is captured by the CCD image sensor and the focus of the CCD image sensor is adjusted to the light emitting portion of the optical waveguide, as in the conventional inspection method, I took an image. The other parts were the same as in Example 2 above.
  • the above-described implementation can be performed even if two rows of a plurality of juxtaposed opto-electric hybrid boards are arranged in parallel as the opto-electric hybrid board assembly sheet (see FIG. 9). Results showing the same tendency as in Examples 1 and 2 were obtained.
  • the opto-electric hybrid board is the one where the light incident part and the light emitting part are located on the first surface of the opto-electric hybrid board (see FIG. 7), and a plurality of the opto-electric hybrid boards are arranged in parallel. Even when an opto-electric hybrid board assembly sheet having two or more rows arranged in parallel was used, a result showing the same tendency as in Examples 1 and 2 was obtained.
  • Examples 1 and 2 and Comparative Examples 1 and 2 the light propagation performance of the core was inspected, but the core dimensions (width and thickness) and the inclination angle of the light reflecting surface were imaged in the same manner as described above. Even when examined by image analysis of the emitted light, results showing the same tendency as in Examples 1 and 2 and Comparative Examples 1 and 2 were obtained.
  • the optical waveguide inspection method and the optical waveguide manufacturing method using the optical waveguide according to the present invention can be used for inspecting the core state of the optical waveguide (light propagation performance, dimensions, inclination angle of the light reflecting surface, etc.) in a short time. is there.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

Provided are: an optical waveguide inspection method in which the time required to position an image capturing element when capturing an image of emitted light can be reduced; and an optical waveguide manufacturing method using same. In the optical waveguide inspection method according to the present invention, the position of a light emission unit (a connection surface 7c) of an optical waveguide is detected by a position detector such as a laser displacement meter (30), and on the basis of the position information of the light emission unit, a camera 20 is positioned at a place at which an image capturing element of the camera 20 is focused on the light emission unit. Then, light L that has traveled from a light incident unit of the optical waveguide to a core 7 is emitted from the light emission unit, and the emitted light L is captured by the image capturing element of the camera 20. Subsequently, the state of the core 7 (for example, light propagation properties, dimensions, inclination angle of a light reflection surface, or the like) is inspected by analyzing the captured image of the emitted light L. Also, the inspection is deemed to have passed if the state of the inspected core 7 meets predetermined criteria.

Description

光導波路の検査方法およびそれを用いた光導波路の製法Optical waveguide inspection method and optical waveguide manufacturing method using the same
 本発明は、光通信,光情報処理,その他一般光学の分野で用いられる光導波路の検査方法およびそれを用いた光導波路の製法に関するものである。 The present invention relates to an optical waveguide inspection method used in the fields of optical communication, optical information processing and other general optics, and a method of manufacturing an optical waveguide using the same.
 最近の電子機器等では、伝送情報量の増加に伴い、電気配線に加えて、光配線が併用されている。そのようなものとして、電気配線を有する電気回路基板と、コア(光配線)を有する光導波路とが積層された光電気混載基板が提案されている。その光電気混載基板のなかには、上記電気回路基板に光素子が実装されて使用されるものがあり、そのものは、上記光素子の実装位置に対応する上記光導波路のコアの部分が、そのコアの長手方向に対して45°傾斜した光反射面に形成されている。 In recent electronic devices, as the amount of transmission information increases, optical wiring is used in addition to electrical wiring. As such, an opto-electric hybrid board is proposed in which an electric circuit board having electric wiring and an optical waveguide having a core (optical wiring) are laminated. Some of the opto-electric hybrid boards are used with an optical element mounted on the electric circuit board, and the optical waveguide core part corresponding to the mounting position of the optical element is the core part of the optical circuit board. It is formed on a light reflecting surface inclined by 45 ° with respect to the longitudinal direction.
 そして、上記光導波路の製造工程では、コアを形成した後、そのコアの状態(例えば、光伝播性能,寸法,上記光反射面の傾斜角度等)が検査される(例えば、特許文献1~3参照)。その検査方法の一例について説明すると、まず、LED(発光ダイオード)等の光源からコアの第1端部に向けて光を照射し、そのコアの第2端部から出射した光を、CCD(電荷結合素子)イメージセンサ等の撮像素子で捕らえ、その撮像素子により撮像する。その撮像の際、撮像素子の焦点を光出射部(コアの第2端部)に合わせる必要がある。これにより、出射光の撮像に適正な位置に、撮像素子を位置決めする。ついで、上記撮像した出射光の画像を解析することにより、上記コアの状態(上記光伝播性能等)を検査する。そして、その検査したコアの状態が、予め設定した基準に合うものを、上記検査の合格品とする。 In the optical waveguide manufacturing process, after the core is formed, the state of the core (eg, light propagation performance, dimensions, inclination angle of the light reflecting surface, etc.) is inspected (eg, Patent Documents 1 to 3). reference). An example of the inspection method will be described. First, light is emitted from a light source such as an LED (light emitting diode) toward the first end of the core, and the light emitted from the second end of the core is converted into a CCD (charge). Coupling element) Captured by an image sensor such as an image sensor and imaged by the image sensor. During the imaging, it is necessary to focus the imaging element on the light emitting part (second end of the core). As a result, the image sensor is positioned at a position appropriate for imaging the emitted light. Next, the state of the core (the light propagation performance and the like) is inspected by analyzing the image of the captured emitted light. And the thing in which the state of the inspected core meets a preset standard is regarded as a passing product of the above inspection.
 また、上記検査の効率化を図るために、複数の光導波路を、コアの長手方向と直角の方向に、並列させた帯状の光導波路集合シートを作製し、その光導波路集合シートの各光導波路を並列順に検査する方法が提案されている(例えば、上記特許文献3参照)。そして、検査後に、上記光導波路集合シートから、個々の光導波路が切り出される。 In order to increase the efficiency of the inspection, a strip-shaped optical waveguide assembly sheet is produced by arranging a plurality of optical waveguides in a direction perpendicular to the longitudinal direction of the core, and each optical waveguide of the optical waveguide assembly sheet is produced. Has been proposed (see, for example, Patent Document 3 above). Then, after the inspection, individual optical waveguides are cut out from the optical waveguide assembly sheet.
特開2014-173849号公報JP 2014-173849 A 特開2014-199229号公報JP 2014-199229 A 特開2015-215237号公報JP 2015-215237 A
 しかしながら、上記従来の光導波路の検査方法では、撮像素子の焦点をコアの光出射部に合わせる工程(撮像素子の位置決め工程)に、長い時間(例えば25個の光導波路に対し280秒間程度)を要する。たとえ上記特許文献3のように効率化を図った方法でも、上記焦点を合わせる工程が必要であり、同様の長い時間を要する。そのため、光導波路の生産性が悪くなっている。しかも、コアの光出射部の加工状態が悪い場合や寸法が小さい場合は、上記焦点合わせに、より長い時間を要し、光導波路の生産性がさらに悪くなる。 However, in the above-described conventional optical waveguide inspection method, a long time (for example, about 280 seconds for 25 optical waveguides) is required for the step of focusing the image pickup device on the light emitting portion of the core (the image pickup device positioning step). Cost. Even in the method of improving efficiency as in Patent Document 3 described above, the step of focusing is required, and a similar long time is required. Therefore, the productivity of the optical waveguide is deteriorated. In addition, when the processing state of the light emitting portion of the core is poor or the dimensions are small, the focusing requires a longer time, and the productivity of the optical waveguide is further deteriorated.
 本発明は、このような事情に鑑みなされたもので、出射光を撮像する際の撮像素子の位置決めに要する時間を短縮することができる光導波路の検査方法およびそれを用いた光導波路の製法を提供する。 The present invention has been made in view of such circumstances, and provides an optical waveguide inspection method and an optical waveguide manufacturing method using the optical waveguide inspection method that can shorten the time required to position an image pickup device when imaging emitted light. provide.
 本発明は、光入射部と光出射部とを有し上記光入射部と上記光出射部との間の光路用のコアを備えた光導波路を準備する工程と、この光導波路の上記光出射部の位置を位置検知器により検知する工程と、上記光入射部から上記光導波路のコア内に光を入射させ、その光を上記光出射部から出射させる工程と、上記検知した光出射部の位置情報に基づいて、撮像素子を位置決めし、上記光出射部から出射した出射光を、上記撮像素子により撮像する工程と、その撮像した出射光の画像解析により、上記コアの状態を検査する工程とを備えている光導波路の検査方法を第1の要旨とする。 The present invention provides a step of preparing an optical waveguide having a light incident portion and a light emitting portion and having an optical path core between the light incident portion and the light emitting portion, and the light emission of the optical waveguide. Detecting the position of the part by a position detector, causing the light to enter the core of the optical waveguide from the light incident part, and emitting the light from the light emitting part, and detecting the detected light emitting part. A step of positioning the imaging device based on the position information, imaging the emitted light emitted from the light emitting unit by the imaging device, and a step of inspecting the state of the core by image analysis of the captured emitted light An inspection method for an optical waveguide provided with
 また、本発明は、コアを形成する工程と、このコアの状態を上記光導波路の検査方法により検査する工程とを備えた光導波路の製法であって、上記検査の結果が基準に合った光導波路を合格品とする光導波路の製法を第2の要旨とする。 Further, the present invention is a method of manufacturing an optical waveguide comprising a step of forming a core and a step of inspecting the state of the core by the optical waveguide inspection method, and the optical waveguide whose inspection result meets a standard The manufacturing method of the optical waveguide which makes a waveguide an acceptable product is made into the 2nd summary.
 本発明の光導波路の検査方法では、光出射部から出射した出射光を撮像する工程に先立って、上記光出射部の位置を位置検知器により検知する工程を備えている。すなわち、上記撮像工程では、既に、上記光出射部の位置が認識された状態にあり、それにより、撮像素子の焦点が光出射部に合う位置(出射光の撮像に適正な位置)が確定した状態にある。そのため、上記撮像工程に先立って、ないし上記撮像工程において、上記撮像素子の焦点が光出射部に合う位置(出射光の撮像に適正な位置)に、撮像素子を素早く位置決めすることができる。すなわち、本発明の光導波路の検査方法では、長い時間を要する、撮像素子の焦点を合わせる工程が不要となっている。そのため、上記撮像素子の位置決めに要する時間を短縮することができる。その結果、上記検査に要する時間を短縮することができる。 The optical waveguide inspection method of the present invention includes a step of detecting the position of the light emitting portion by a position detector prior to the step of imaging the emitted light emitted from the light emitting portion. That is, in the imaging step, the position of the light emitting unit has already been recognized, and thereby the position where the focus of the image sensor matches the light emitting unit (the appropriate position for imaging the emitted light) has been determined. Is in a state. Therefore, prior to the imaging step or in the imaging step, the imaging element can be quickly positioned at a position where the focus of the imaging element is aligned with the light emitting portion (a position appropriate for imaging the emitted light). That is, in the optical waveguide inspection method of the present invention, a process for focusing the image pickup device, which takes a long time, is unnecessary. Therefore, the time required for positioning the image sensor can be shortened. As a result, the time required for the inspection can be shortened.
 特に、上記光導波路が、上記コアの長手方向と直角の方向に、複数並列され、それら複数の光導波路により、帯状の光導波路集合シートをなし、その光導波路集合シートの上記各光導波路を並列順に検査する場合には、検査を光導波路の並列順に連続的にできるため、検査の効率化を図ることができる。 Particularly, a plurality of the optical waveguides are juxtaposed in a direction perpendicular to the longitudinal direction of the core, and the plurality of optical waveguides form a strip-shaped optical waveguide assembly sheet, and the optical waveguides of the optical waveguide assembly sheet are arranged in parallel. In the case of sequentially inspecting, the inspection can be continuously performed in the parallel order of the optical waveguides, so that the inspection efficiency can be improved.
 さらに、上記光導波路集合シートが、上記コアの長手方向と直角の方向に並列された上記複数の光導波路からなる列を、複数列並列させたものとなっており、それら複数列を同時に検査する場合には、同時に検査できる光導波路の数が上記列の数だけ増加するため、検査のより一層の効率化を図ることができる。 Further, the optical waveguide assembly sheet includes a plurality of optical waveguides arranged in parallel in a direction perpendicular to the longitudinal direction of the core, and a plurality of the optical waveguides are in parallel. In this case, since the number of optical waveguides that can be inspected at the same time increases by the number of the above-described columns, the inspection efficiency can be further improved.
 また、上記光導波路の上記光出射部の位置を検知する上記位置検知器が、レーザ変位計である場合には、上記光出射部の位置の検知に要する時間を短くできるため、検査のさらなる効率化を図ることができる。 Further, when the position detector for detecting the position of the light emitting portion of the optical waveguide is a laser displacement meter, the time required for detecting the position of the light emitting portion can be shortened, so that further inspection efficiency can be achieved. Can be achieved.
 そして、本発明の光導波路の製法は、コアを形成した後、このコアの状態を上記光導波路の検査方法により検査し、その検査の結果が基準に合った光導波路を合格品とする。ここで、上記検査に要する時間は短縮可能であることから、光導波路の生産性を高めることができる。 In the optical waveguide manufacturing method of the present invention, after the core is formed, the state of the core is inspected by the above-described optical waveguide inspection method, and the optical waveguide whose inspection result meets the standard is accepted. Here, since the time required for the inspection can be shortened, the productivity of the optical waveguide can be increased.
(a)は、本発明の光導波路の検査方法の第1の実施の形態の検査対象となる光導波路を備えた光電気混載基板が複数並列された光電気混載基板集合シートを模式的に示す平面図であり、(b)は、(a)のX-X断面図である。(A) shows typically an opto-electric hybrid board assembly sheet in which a plurality of opto-electric hybrid boards provided with an optical waveguide to be inspected according to the first embodiment of the optical waveguide inspection method of the present invention are arranged in parallel. It is a top view, (b) is XX sectional drawing of (a). 上記光電気混載基板を用いた光電気混載モジュールを模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the opto-electric hybrid module using the said opto-electric hybrid board. (a)~(b)は、上記光電気混載基板の電気回路基板の形成工程を模式的に示す説明図であり、(c)は、上記光電気混載基板の金属層の形成工程を模式的に示す説明図である。(A)-(b) is explanatory drawing which shows typically the formation process of the electric circuit board of the said opto-electric hybrid board | substrate, (c) is a schematic process of forming the metal layer of the said opto-electric hybrid board | substrate. It is explanatory drawing shown in. (a)~(d)は、上記光電気混載基板の光導波路の形成工程を模式的に示す説明図である。(A)-(d) is explanatory drawing which shows typically the formation process of the optical waveguide of the said opto-electric hybrid board | substrate. 上記光導波路の検査方法の第1の実施の形態を模式的に示す説明図である。It is explanatory drawing which shows typically 1st Embodiment of the inspection method of the said optical waveguide. 本発明の光導波路の検査方法の第2の実施の形態を模式的に示す説明図である。It is explanatory drawing which shows typically 2nd Embodiment of the test | inspection method of the optical waveguide of this invention. 本発明の光導波路の検査方法の第3の実施の形態の検査対象となる光導波路を備えた光電気混載基板を模式的に示す横断面図である。It is a cross-sectional view which shows typically the opto-electric hybrid board | substrate provided with the optical waveguide used as the test object of 3rd Embodiment of the inspection method of the optical waveguide of this invention. 上記光導波路の検査方法の第3の実施の形態を模式的に示す説明図である。It is explanatory drawing which shows typically 3rd Embodiment of the test | inspection method of the said optical waveguide. 本発明の光導波路の検査方法の第4の実施の形態を模式的に示す説明図である。It is explanatory drawing which shows typically 4th Embodiment of the test | inspection method of the optical waveguide of this invention.
 つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.
 図1(a)は、本発明の光導波路の検査方法の第1の実施の形態の検査対象となる光導波路を備えた光電気混載基板が複数並列された光電気混載基板集合シートを示す平面図であり、図1(b)は、その光電気混載基板集合シートが有する上記光電気混載基板を示す横断面図〔図1(a)のX-X断面図〕である。この実施の形態における、検査前の光電気混載基板A1は、図1(b)に示すように、電気回路基板Eと、この電気回路基板Eの片面〔図1(b)では下面〕に積層形成された、検査前の光導波路W1とを備えている。また、この実施の形態では、上記電気回路基板Eと上記光導波路W1との間の一部に、補強用の金属層Mが配置されている。そして、上記光電気混載基板集合シート(光導波路集合シート)Sは、図1(a)に示すように、複数の上記光電気混載基板A1(複数の上記光導波路W1)を、上記光導波路Wのコア7の長手方向と直角の方向に、間隔をあけて一体に並列させた帯状のものとなっている。 FIG. 1A is a plan view showing an opto-electric hybrid board assembly sheet in which a plurality of opto-electric hybrid boards having optical waveguides to be inspected according to the first embodiment of the optical waveguide inspection method of the present invention are arranged in parallel. FIG. 1B is a cross-sectional view (XX cross-sectional view of FIG. 1A) showing the opto-electric hybrid board included in the opto-electric hybrid board assembly sheet. In this embodiment, the opto-electric hybrid board A1 before the inspection is laminated on the electric circuit board E and one surface of the electric circuit board E (the lower surface in FIG. 1B) as shown in FIG. And a formed optical waveguide W1 before inspection. In this embodiment, a reinforcing metal layer M is disposed in a part between the electric circuit board E and the optical waveguide W1. Then, as shown in FIG. 1A, the opto-electric hybrid board assembly sheet (optical waveguide assembly sheet) S includes a plurality of the opto-electric hybrid boards A1 (a plurality of optical waveguides W1) and the optical waveguide W. In the direction perpendicular to the longitudinal direction of the core 7, the belt 7 is formed in parallel with a gap.
 より詳しく説明すると、上記電気回路基板Eは、透光性を有する絶縁層1の第1面に、電気配線(図示せず)と素子実装用パッド2とが形成されたものとなっている。ここで、上記絶縁層1は、上記金属層Mの第1面(光導波路Wと反対側の面)に形成されている。 More specifically, the electric circuit board E has electric wiring (not shown) and element mounting pads 2 formed on the first surface of the light-transmitting insulating layer 1. Here, the insulating layer 1 is formed on the first surface (surface opposite to the optical waveguide W) of the metal layer M.
 光導波路W1は、光路用の線状のコア7が第1クラッド層6と第2クラッド層8とで挟持されたものとなっている。そして、上記電気回路基板Eの素子実装用パッド2に対応する上記光導波路Wの第1端部は、コア7の長手方向に対して45°傾斜した傾斜面に形成されており、その傾斜面に位置するコア7の部分は、光反射面7aになっている。上記光導波路W1の第2端部(光反射面7aと反対側の端部)は、コア7の長手方向に対して直角な直角面に形成されており、その直角面に位置するコア7の部分は、光ファイバF(図2参照)のコア9の端面に接続される接続面7cとなっている。ここで、上記第1クラッド層6は、上記金属層Mの第2面(電気回路基板Eと反対側の面)に形成されている。 The optical waveguide W1 is configured such that a linear core 7 for an optical path is sandwiched between a first cladding layer 6 and a second cladding layer 8. And the 1st end part of the said optical waveguide W corresponding to the element mounting pad 2 of the said electric circuit board | substrate E is formed in the inclined surface inclined 45 degrees with respect to the longitudinal direction of the core 7, The inclined surface The portion of the core 7 located at is a light reflecting surface 7a. The second end of the optical waveguide W1 (the end opposite to the light reflecting surface 7a) is formed on a right-angled plane perpendicular to the longitudinal direction of the core 7, and the core 7 positioned on the right-angled plane is formed. The part is a connection surface 7c connected to the end surface of the core 9 of the optical fiber F (see FIG. 2). Here, the first cladding layer 6 is formed on the second surface of the metal layer M (the surface opposite to the electric circuit board E).
 そして、上記光導波路W1の検査後、その検査に合格した光導波路Wを備えた光電気混載基板Aだけが上記光電気混載基板集合シートSから個々に切り出される。そして、その光電気混載基板Aは、図2に示すように、光ファイバFの両端部に接続されて使用される。ここで、検査前の光導波路W1と検査後の光導波路Wとは、同じ構成である。また、検査前の光導波路W1を備えた光電気混載基板A1と検査後の光導波路Wを備えた光電気混載基板Aとは、同じ構成である。そして、第1の端部(図2では、左端部)の光電気混載基板Aの素子実装用パッド2には、発光素子11が実装され、第2の端部(図2では、右端部)の光電気混載基板Aの素子実装用パッド2には、受光素子12が実装される。このようにして、これら光電気混載基板Aと光ファイバFと発光素子11と受光素子12とで光電気混載モジュールが形成され、電子機器等に搭載される。 Then, after the inspection of the optical waveguide W1, only the opto-electric hybrid board A having the optical waveguide W that has passed the inspection is individually cut out from the opto-electric hybrid board assembly sheet S. The opto-electric hybrid board A is used by being connected to both ends of the optical fiber F as shown in FIG. Here, the optical waveguide W1 before the inspection and the optical waveguide W after the inspection have the same configuration. The opto-electric hybrid board A1 including the optical waveguide W1 before the inspection and the opto-electric hybrid board A including the optical waveguide W after the inspection have the same configuration. The light emitting element 11 is mounted on the element mounting pad 2 of the opto-electric hybrid board A at the first end (left end in FIG. 2), and the second end (right end in FIG. 2). The light receiving element 12 is mounted on the element mounting pad 2 of the opto-electric hybrid board A. Thus, an opto-electric hybrid module is formed by the opto-electric hybrid board A, the optical fiber F, the light emitting element 11, and the light receiving element 12, and is mounted on an electronic device or the like.
 上記光電気混載モジュールにおける光伝播は、つぎのようにして行われる。すなわち、第1の端部(図2では、左端部)の光電気混載基板Aに実装された発光素子11から発光された光Lは、その光電気混載基板Aのコア7から、上記光ファイバFのコア9、第2の端部(図2では、右端部)の光電気混載基板Aのコア7をこの順番に伝播して受光素子12で受光される。 The light propagation in the opto-electric hybrid module is performed as follows. That is, the light L emitted from the light emitting element 11 mounted on the opto-electric hybrid board A at the first end (left end in FIG. 2) is transmitted from the core 7 of the opto-electric hybrid board A to the optical fiber. The light propagates through the core 9 of the F and the core 7 of the opto-electric hybrid board A at the second end (right end in FIG. 2) in this order and is received by the light receiving element 12.
 このように、各端部の光電気混載基板Aでは、コア7の光伝播性能が重要である。そこで、この実施の形態では、下記に説明するように、上記光電気混載基板Aの作製工程において、上記光導波路W1〔図1(b)参照〕のコア7の光伝播性能を検査する。 Thus, in the opto-electric hybrid board A at each end, the light propagation performance of the core 7 is important. Therefore, in this embodiment, as described below, in the manufacturing process of the opto-electric hybrid board A, the light propagation performance of the core 7 of the optical waveguide W1 (see FIG. 1B) is inspected.
 すなわち、上記検査工程を備えた光電気混載基板Aの作製は、まず、検査前の光電気混載基板A1が複数並列された帯状の上記光電気混載基板集合シートSを作製する。この光電気混載基板集合シートSにおける個々の光電気混載基板A1の作製は、つぎのようにして行われる。 That is, in the production of the opto-electric hybrid board A provided with the inspection step, first, the strip-like opto-electric hybrid board assembly sheet S in which a plurality of opto-electric hybrid boards A1 before inspection are arranged in parallel is produced. The production of each opto-electric hybrid board A1 in the opto-electric hybrid board assembly sheet S is performed as follows.
〔光電気混載基板A1の電気回路基板Eの形成〕
 まず、上記金属層Mを形成するための帯状の金属シート材Ma〔図3(a)参照〕を準備する。この金属シート材Maの形成材料としては、例えば、ステンレス,鉄とニッケルの合金(ニッケル42重量%含有)等があげられ、なかでも、寸法精度等の観点から、ステンレスが好ましい。上記金属シート材Ma(金属層M)の厚みは、例えば、10~100μmの範囲内に設定される。
[Formation of the electric circuit board E of the opto-electric hybrid board A1]
First, a strip-shaped metal sheet material Ma (see FIG. 3A) for forming the metal layer M is prepared. Examples of a material for forming the metal sheet material Ma include stainless steel, an alloy of iron and nickel (containing 42 wt% nickel), and stainless steel is preferable from the viewpoint of dimensional accuracy. The thickness of the metal sheet material Ma (metal layer M) is set within a range of 10 to 100 μm, for example.
 ついで、図3(a)に示すように、上記金属シート材Maの第1面に、感光性絶縁樹脂を塗布し、フォトリソグラフィ法により、所定パターンの絶縁層1を形成する。この絶縁層1の形成材料としては、例えば、ポリイミド,ポリエーテルニトリル,ポリエーテルスルホン,ポリエチレンテレフタレート,ポリエチレンナフタレート,ポリ塩化ビニル等の合成樹脂、シリコーン系ゾルゲル材料等があげられる。上記絶縁層1の厚みは、例えば、10~100μmの範囲内に設定される。 Next, as shown in FIG. 3A, a photosensitive insulating resin is applied to the first surface of the metal sheet material Ma, and the insulating layer 1 having a predetermined pattern is formed by photolithography. Examples of the material for forming the insulating layer 1 include synthetic resins such as polyimide, polyether nitrile, polyether sulfone, polyethylene terephthalate, polyethylene naphthalate, and polyvinyl chloride, and silicone-based sol-gel materials. The thickness of the insulating layer 1 is set within a range of 10 to 100 μm, for example.
 つぎに、図3(b)に示すように、上記電気配線(図示せず)と素子実装用パッド2とを、例えば、セミアディティブ法,サブトラクティブ法等により形成する。このようにして、上記金属シート材Maの第1面に、電気回路基板Eが形成される。 Next, as shown in FIG. 3B, the electrical wiring (not shown) and the element mounting pad 2 are formed by, for example, a semi-additive method, a subtractive method, or the like. In this way, the electric circuit board E is formed on the first surface of the metal sheet material Ma.
〔光電気混載基板A1の金属層Mの形成〕
 その後、図3(c)に示すように、上記金属シート材Maにエッチング等を施すことにより、その金属シート材Maの不要部分を除去して形を整え、上記金属シート材Maを金属層Mに形成する。
[Formation of metal layer M of opto-electric hybrid board A1]
Thereafter, as shown in FIG. 3C, etching or the like is performed on the metal sheet material Ma to remove unnecessary portions of the metal sheet material Ma so as to shape the metal sheet material Ma. To form.
〔光電気混載基板A1の光導波路Wの形成〕
 そして、上記電気回路基板Eと上記金属層Mとの積層体の第2面(電気回路基板Eと反対側の面)に光導波路W1〔図1(b)参照〕を形成するために、まず、図4(a)に示すように、上記積層体の第2面(図では下面)に、第1クラッド層6の形成材料である感光性樹脂を塗布する。その後、その塗布層を照射線により露光して硬化させ、第1クラッド層6に形成する。上記第1クラッド層6の厚み(金属層Mの第2面からの厚み)は、例えば、5~80μmの範囲内に設定される。なお、光導波路Wの形成時(上記第1クラッド層6,下記コア7,下記第2クラッド層8の形成時)は、上記積層体の第2面は上に向けられる。
[Formation of optical waveguide W of opto-electric hybrid board A1]
In order to form the optical waveguide W1 (see FIG. 1B) on the second surface (surface opposite to the electric circuit substrate E) of the laminate of the electric circuit substrate E and the metal layer M, first, As shown in FIG. 4A, a photosensitive resin, which is a material for forming the first cladding layer 6, is applied to the second surface (the lower surface in the drawing) of the laminate. Thereafter, the coating layer is exposed to radiation and cured to form the first cladding layer 6. The thickness of the first cladding layer 6 (thickness from the second surface of the metal layer M) is set, for example, within a range of 5 to 80 μm. When the optical waveguide W is formed (when the first clad layer 6, the following core 7 and the second clad layer 8 are formed), the second surface of the laminate is directed upward.
 ついで、図4(b)に示すように、上記第1クラッド層6の第1面(図では下面)に、フォトリソグラフィ法により、所定パターンのコア7を形成する。上記コア7の寸法は、例えば、幅が5~200μmの範囲内に設定され、厚みが5~200μmの範囲内に設定される。上記コア7の形成材料としては、例えば、上記第1クラッド層6と同様の感光性樹脂があげられ、上記第1クラッド層6および下記第2クラッド層8〔図4(c)参照〕の形成材料よりも屈折率が大きい材料が用いられる。 Next, as shown in FIG. 4B, a core 7 having a predetermined pattern is formed on the first surface (lower surface in the drawing) of the first cladding layer 6 by photolithography. For example, the dimensions of the core 7 are set in a range of 5 to 200 μm in width and in a range of 5 to 200 μm in thickness. Examples of the material for forming the core 7 include the same photosensitive resin as that for the first cladding layer 6, and the formation of the first cladding layer 6 and the second cladding layer 8 described below (see FIG. 4C). A material having a higher refractive index than the material is used.
 つぎに、図4(c)に示すように、上記コア7を被覆するよう、上記第1クラッド層6の第1面(図では下面)に、フォトリソグラフィ法により、第2クラッド層8を形成する。この第2クラッド層8の厚み〔コア7の頂面(図では下面)からの厚み〕は、例えば、3~50μmの範囲内に設定される。上記第2クラッド層8の形成材料としては、例えば、上記第1クラッド層6と同様の感光性樹脂があげられる。 Next, as shown in FIG. 4C, the second cladding layer 8 is formed by photolithography on the first surface (the lower surface in the figure) of the first cladding layer 6 so as to cover the core 7. To do. The thickness of the second cladding layer 8 [thickness from the top surface (lower surface in the figure) of the core 7] is set in the range of 3 to 50 μm, for example. Examples of the material for forming the second cladding layer 8 include the same photosensitive resin as that for the first cladding layer 6.
 その後、図4(d)に示すように、上記電気回路基板Eの素子実装用パッド2に対応する(図では下方に位置する)コア7の部分(第1端部)を、上記第1クラッド層6および上記第2クラッド層8とともに、例えば、エキシマレーザ加工等により、コア7の長手方向に対して45°傾斜した傾斜面に形成する。それら傾斜面に位置する上記コア7の部分が光反射面7aとなる。また、上記コア7の第2端部(光反射面7aと反対側の端部)は、そのコア7の長手方向に直角な面に形成され、光ファイバFのコア9(図1参照)の端面に接続される接続面7cとなる。このようにして、検査前の光導波路W1を得るとともに、その光導波路W1を備えた光電気混載基板A1が複数並列された前記光電気混載基板集合シートS〔図1(a),(b)参照〕を得る。 Thereafter, as shown in FIG. 4D, the portion (first end portion) of the core 7 corresponding to the element mounting pad 2 of the electric circuit board E (positioned downward in the drawing) is moved to the first cladding. The layer 6 and the second cladding layer 8 are formed on an inclined surface inclined by 45 ° with respect to the longitudinal direction of the core 7 by, for example, excimer laser processing. The portion of the core 7 located on these inclined surfaces becomes the light reflecting surface 7a. The second end of the core 7 (the end opposite to the light reflecting surface 7a) is formed on a surface perpendicular to the longitudinal direction of the core 7, and the core 9 of the optical fiber F (see FIG. 1). The connection surface 7c is connected to the end surface. Thus, the optical waveguide W1 before the inspection is obtained, and the optical / electrical hybrid substrate assembly sheet S in which a plurality of the optical / electrical hybrid substrates A1 provided with the optical waveguide W1 are arranged in parallel [FIGS. 1 (a), (b) Browse].
〈光導波路W1の検査方法〉
 そして、つぎのようにして、上記光導波路W1のコア7の光伝播性能を検査する。この検査方法は、コア7の中を伝播した後に出射した光を撮像素子により撮像するのに先立って、光出射部の位置を検知する方法である。この検査方法が、本発明の第1の特徴である。
<Inspection method of optical waveguide W1>
Then, the light propagation performance of the core 7 of the optical waveguide W1 is inspected as follows. This inspection method is a method of detecting the position of the light emitting portion prior to imaging the light emitted after propagating through the core 7 by the imaging device. This inspection method is the first feature of the present invention.
 すなわち、上記検査方法は、この実施の形態では、図5に示すように、まず、帯状の上記光電気混載基板集合シートSを、エア吸着ベルト(図示せず)の上面に吸着させ、その光電気混載基板集合シートSの長手方向(図5に示す矢印方向)に移動させる。そして、その移動における上流側に、レーザ変位計(位置検知器)30を設置し、下流側に、均一光を発光するLED(発光ダイオード)等の光源10と、CCD(電荷結合素子)イメージセンサ,CMOS(相補正金属酸化膜半導体)イメージセンサ等の撮像素子を備えたカメラ20とを設置する。なお、図5では、上記検査方法をわかりやすくするため、上記光電気混載基板集合シートSの構成の一部を簡略化ないし省略して図示している。 That is, in this embodiment, as shown in FIG. 5, the inspection method first adsorbs the strip-like opto-electric hybrid board assembly sheet S on the upper surface of an air adsorption belt (not shown), and the light. The electric mixed board assembly sheet S is moved in the longitudinal direction (the arrow direction shown in FIG. 5). A laser displacement meter (position detector) 30 is installed on the upstream side of the movement, and a light source 10 such as an LED (light emitting diode) that emits uniform light and a CCD (charge coupled device) image sensor on the downstream side. And a camera 20 equipped with an image sensor such as a CMOS (phase correction metal oxide semiconductor) image sensor. In FIG. 5, in order to facilitate understanding of the inspection method, a part of the configuration of the opto-electric hybrid board assembly sheet S is simplified or omitted.
 より詳しく説明すると、上記レーザ変位計30は、レーザ光30aを平面状に出射する出射体31と、その出射されたレーザ光30aを受光する受光体32とを備えた透過型であり、それら出射体31と受光体32との間に、上記光電気混載基板集合シートSの光出射部となる上記接続面7cのある側端縁部が位置するよう、それら出射体31と受光体32とを配置する。 More specifically, the laser displacement meter 30 is a transmission type including an emitter 31 that emits a laser beam 30a in a planar shape and a light receiver 32 that receives the emitted laser beam 30a. The light emitting body 31 and the light receiving body 32 are placed between the body 31 and the light receiving body 32 so that the side edge portion with the connection surface 7c serving as the light emitting section of the opto-electric hybrid board assembly sheet S is located. Deploy.
 上記光源10は、コア7の第1端部の光反射面7aに対応する電気回路基板Eの部分の上方に設置されており、その光源10からコア7の第1端部の光反射面7aに向かって、光Lが発光されている。これにより、光導波路W1〔図1(b)参照〕へは、上記光反射面7aに対応する第1クラッド層6の第1面部分(光導波路W1の光入射部)から光Lが入射し、その後、上記光反射面7aで反射し、コア7の第2端部の接続面7c(光導波路W1の光出射部)から出射している(図2参照)。 The light source 10 is installed above the portion of the electric circuit board E corresponding to the light reflecting surface 7 a at the first end of the core 7, and the light reflecting surface 7 a at the first end of the core 7 from the light source 10. Light L is emitted toward. As a result, the light L is incident on the optical waveguide W1 (see FIG. 1B) from the first surface portion (the light incident portion of the optical waveguide W1) of the first cladding layer 6 corresponding to the light reflecting surface 7a. Thereafter, the light is reflected by the light reflecting surface 7a and emitted from the connection surface 7c (light emitting portion of the optical waveguide W1) at the second end of the core 7 (see FIG. 2).
 上記カメラ20は、コア7の第2端部の接続面7cに対面した状態で設置され、その接続面7cから出射した光Lを、上記撮像素子で捕らえることができるようになっている。また、上記カメラ20は、3次元に移動可能なカメラ移動部(図示せず)に固定されており、そのカメラ移動部を作動させてカメラ20を移動させることができるようになっている。 The camera 20 is installed in a state of facing the connection surface 7c at the second end of the core 7, and the light L emitted from the connection surface 7c can be captured by the imaging element. The camera 20 is fixed to a camera moving unit (not shown) that can move in three dimensions, and the camera 20 can be moved by operating the camera moving unit.
 このような状態において、上記レーザ変位計30の出射体31と受光体32との間を、上記光電気混載基板集合シートSの光出射部(接続面7c)のある側端縁部が通ることにより、上記出射体31から平面状に出射されたレーザ光30aの一部が、上記光電気混載基板集合シートSの側端縁部で遮断され、残りの遮断されていないレーザ光30aが上記受光体32で受光される。そのレーザ光30aの遮断状態の変化により、上記光電気混載基板集合シートSの光出射部(接続面7c)の位置を、光電気混載基板A1の並列順に、検知することができる。このように光出射部の位置でレーザ光30aの遮断状態が変化するよう、光電気混載基板A1の形成工程において、上記光出射部に対応する光電気混載基板A1の部分を光電気混載基板集合シートSの側端縁から突出させた状態に形成するか、または凹ませた状態に形成する。 In such a state, the side edge portion where the light emitting portion (connection surface 7c) of the opto-electric hybrid board assembly sheet S passes between the emitting body 31 and the light receiving body 32 of the laser displacement meter 30. Thus, a part of the laser beam 30a emitted in a planar shape from the emitting body 31 is blocked at the side edge of the opto-electric hybrid board assembly sheet S, and the remaining unblocked laser beam 30a is received by the light receiving device. Light is received by the body 32. The position of the light emitting portion (connection surface 7c) of the opto-electric hybrid board assembly sheet S can be detected in the parallel order of the opto-electric hybrid board A1 by the change in the cutoff state of the laser beam 30a. In this way, in the process of forming the opto-electric hybrid board A1, the part of the opto-electric hybrid board A1 corresponding to the light exit part is set to the opto-electric hybrid board assembly so that the blocking state of the laser light 30a changes at the position of the light exit part. The sheet S is formed so as to protrude from the side edge, or is formed in a recessed state.
 そして、その検知した光出射部(接続面7c)の位置情報に基づいて、上記撮像素子の焦点が上記光出射部(接続面7c)に合う位置に、上記カメラ移動部を作動させてカメラ20を移動させることにより、上記カメラ20を位置決めする。そのため、上記撮像素子が上記光出射部(接続面7c)からの出射光Lを捕らえてから、上記撮像素子の焦点を光出射部(コア7の第2端部)に合わせる必要がない。すなわち、この実施の形態では、長い時間を要する焦点を合わせる工程が不要となっている。 Then, based on the detected position information of the light emitting part (connection surface 7c), the camera moving part is operated to a position where the focus of the image pickup device is aligned with the light emitting part (connection surface 7c). Is moved to position the camera 20. Therefore, it is not necessary to focus the image pickup device on the light emitting portion (second end portion of the core 7) after the image pickup device captures the emitted light L from the light emitting portion (connecting surface 7c). That is, in this embodiment, a focusing process requiring a long time is not required.
 上記レーザ変位計30による光出射部(接続面7c)の位置の検知から上記カメラ20を位置決めまでに要する時間は短く、例えば、上記光電気混載基板集合シートSにおける25個の光電気混載基板A1に対し10秒間程度である。先に述べたように、焦点を合わせる必要がある従来の検査方法では、同条件で、280秒間程度を要する。 The time required from the detection of the position of the light emitting portion (connection surface 7c) by the laser displacement meter 30 to the positioning of the camera 20 is short. For example, 25 opto-electric hybrid boards A1 in the opto-electric hybrid board aggregate sheet S are used. For about 10 seconds. As described above, the conventional inspection method that needs to be focused requires about 280 seconds under the same conditions.
 また、上記カメラ20を位置決めと同時に、上記光出射部(接続面7c)から出射した光Lを、上記光電気混載基板A1の並列順に、上記カメラ20の撮像素子により撮像する。そして、その撮像した出射光Lの画像を解析することにより、上記コア7における光伝播損失値を算出する。このように上記コア7の光伝播性能を検査することにより、光導波路W1を並列順に検査する。そして、その算出した光伝播損失値が、予め設定した基準値よりも小さいものを、コア7の光伝播性能が優れているとして、上記検査の合格品とする。 Simultaneously with the positioning of the camera 20, the light L emitted from the light emitting portion (connection surface 7c) is imaged by the imaging element of the camera 20 in the parallel order of the opto-electric hybrid board A1. Then, by analyzing the captured image of the emitted light L, the light propagation loss value in the core 7 is calculated. Thus, by inspecting the light propagation performance of the core 7, the optical waveguide W1 is inspected in parallel order. And the thing with the calculated light propagation loss value smaller than the preset reference value is set as the pass product of the said inspection as the light propagation performance of the core 7 being excellent.
 このようにして、上記コア7の光伝播性能を検査する工程を経て、光導波路Wが形成される。そして、それと同時に、光電気混載基板Aが複数並列された光電気混載基板集合シートSを得る。そして、上記のように、光導波路Wの形成工程における上記コア7の光伝播性能の検査では、出射光の撮像に先立って、光出射部の位置を検知するため、上記検査に要する時間を短縮することができる。そのため、光導波路Wの生産性を高めることができ、ひいては、光電気混載基板集合シートSの生産性を高めることができる。 In this way, the optical waveguide W is formed through the step of inspecting the light propagation performance of the core 7. At the same time, an opto-electric hybrid board assembly sheet S in which a plurality of opto-electric hybrid boards A are arranged in parallel is obtained. As described above, in the inspection of the light propagation performance of the core 7 in the process of forming the optical waveguide W, the position of the light emitting portion is detected prior to imaging of the emitted light, so the time required for the inspection is shortened. can do. Therefore, the productivity of the optical waveguide W can be increased, and as a result, the productivity of the opto-electric hybrid board assembly sheet S can be increased.
 このように、光導波路Wの形成工程において、上記コア7の光伝播性能を検査する工程を設け、そのコア7の光伝播性能が実用に適している光導波路Wを合格品とすることが、本発明の第2の特徴である。 Thus, in the process of forming the optical waveguide W, a step of inspecting the light propagation performance of the core 7 is provided, and the optical waveguide W whose light propagation performance of the core 7 is suitable for practical use is regarded as an acceptable product. This is the second feature of the present invention.
〔光電気混載モジュールの作製〕
 その後、上記検査の合格品である光導波路Wを備えた光電気混載基板Aを、上記光電気混載基板集合シートSから個々に切り出し、図2に示すように、その光電気混載基板Aのコア7の接続面7cを、コネクタ(図示せず)等を介して、光ファイバFのコア9の両端部に接続する。また、その光ファイバFの第1の端部の光電気混載基板Aの素子実装用パッド2に、発光素子11を実装し、第2の端部の光電気混載基板Aの素子実装用パッド2に、受光素子12を実装する。このようにして、前記光電気混載モジュールを得る。
[Production of opto-electric hybrid module]
Thereafter, the opto-electric hybrid board A provided with the optical waveguide W, which is an acceptable product of the above inspection, is individually cut out from the opto-electric hybrid board assembly sheet S, and as shown in FIG. 7 are connected to both ends of the core 9 of the optical fiber F via connectors (not shown) or the like. The light emitting element 11 is mounted on the element mounting pad 2 of the opto-electric hybrid board A at the first end of the optical fiber F, and the element mounting pad 2 of the opto-electric hybrid board A at the second end. In addition, the light receiving element 12 is mounted. In this way, the opto-electric hybrid module is obtained.
 図6は、本発明の光導波路の検査方法の第2の実施の形態を示す説明図である。この実施の形態の検査方法は、図5に示す上記第1の実施の形態の検査方法において、光源10とカメラ20の配置を逆にしたものである。すなわち、光源10は、コア7の第2端部の接続面7cに対面した状態で設置され、カメラ20は、コア7の第1端部の光反射面7aに対応する電気回路基板Eの部分の上方に設置されている。そして、光源10からの光Lが、コア7の接続面7cから、コア7内に入射し、光反射面7aで反射した後、第1クラッド層6,絶縁層1をこの順番に透過して、カメラ20に向かって出射している。このように、この実施の形態では、光導波路W1の光入射部が、コア7の接続面7cとなっており、光導波路W1〔図1(b)参照〕の光出射部が、上記光反射面7aに対応する第1クラッド層6の第1面部分となっている。そのため、上記光出射部の位置を検知するレーザ変位計30として、出射体と受光体とが一体となっている反射型のものを用いる。それ以外の部分は、図5に示す上記第1の実施の形態と同様であり、同様の部分には、同じ符号を付している。 FIG. 6 is an explanatory view showing a second embodiment of the optical waveguide inspection method of the present invention. The inspection method of this embodiment is obtained by reversing the arrangement of the light source 10 and the camera 20 in the inspection method of the first embodiment shown in FIG. That is, the light source 10 is installed in a state of facing the connection surface 7 c at the second end of the core 7, and the camera 20 is a part of the electric circuit board E corresponding to the light reflecting surface 7 a at the first end of the core 7. It is installed above. The light L from the light source 10 enters the core 7 from the connection surface 7c of the core 7 and is reflected by the light reflecting surface 7a, and then passes through the first cladding layer 6 and the insulating layer 1 in this order. The light is emitted toward the camera 20. As described above, in this embodiment, the light incident portion of the optical waveguide W1 serves as the connection surface 7c of the core 7, and the light emitting portion of the optical waveguide W1 [see FIG. This is the first surface portion of the first cladding layer 6 corresponding to the surface 7a. For this reason, as the laser displacement meter 30 for detecting the position of the light emitting portion, a reflection type in which the emitting body and the light receiving body are integrated is used. Other parts are the same as those in the first embodiment shown in FIG. 5, and the same reference numerals are given to the same parts.
 この第2の実施の形態において、上記光出射部の位置の検知は、上記反射型のレーザ変位計30を、光電気混載基板A1の第1面の上方に配置する。そして、そのレーザ変位計30から光電気混載基板A1の第1面に向けてレーザ光30bを出射し、その光電気混載基板A1で反射したレーザ光30cを、上記レーザ変位計30で受光する。このとき、上記光出射部は、2個の素子実装用パッド2に挟まれた低い位置にあることから、その光出射部ではレーザ光30cの反射状態が変化するため、その光出射部を検知することができる。 In the second embodiment, the position of the light emitting part is detected by arranging the reflective laser displacement meter 30 above the first surface of the opto-electric hybrid board A1. Then, laser light 30b is emitted from the laser displacement meter 30 toward the first surface of the opto-electric hybrid board A1, and the laser light 30c reflected by the opto-electric hybrid board A1 is received by the laser displacement meter 30. At this time, since the light emitting portion is at a low position between the two element mounting pads 2, the reflection state of the laser beam 30c changes in the light emitting portion, and thus the light emitting portion is detected. can do.
 そして、この第2の実施の形態では、上記第1の実施の形態と光Lの伝播方向を逆にして、光導波路W1のコア7の光伝播性能を検査することができる。そして、上記第1の実施の形態と同様に、上記検査に要する時間を短縮することができ、光導波路Wおよび光電気混載基板集合シートSの生産性を高めることができる。 In the second embodiment, the light propagation performance of the core 7 of the optical waveguide W1 can be inspected by reversing the propagation direction of the light L from that of the first embodiment. As in the first embodiment, the time required for the inspection can be shortened, and the productivity of the optical waveguide W and the opto-electric hybrid board assembly sheet S can be increased.
 図7は、本発明の光導波路の検査方法の第3の実施の形態の検査対象となる光導波路を備えた光電気混載基板を示す横断面図〔図1(b)に相当する断面図〕である。この実施の形態における、検査前の光電気混載基板B1は、1個の電気回路基板Eの両端部に、素子実装用パッド2が形成され、その電気回路基板Eに積層される光導波路W2のコア7の両端部に、光反射面7aが形成されている。また、検査前の光導波路W2と検査後の光導波路Wとは、同じ構成である。また、検査前の光導波路W2を備えた光電気混載基板B1と検査後の光導波路Wを備えた光電気混載基板Bとは、同じ構成である。そして、検査後の光電気混載基板Bは、光ファイバF(図2参照)を介さないものとなっている。それ以外の部分は、図1(b)に示す、上記第1の実施の形態における光電気混載基板A1と同様であり、同様の部分には、同じ符号を付している。 FIG. 7 is a transverse cross-sectional view (cross-sectional view corresponding to FIG. 1B) showing an opto-electric hybrid board provided with an optical waveguide to be inspected according to the third embodiment of the optical waveguide inspection method of the present invention. It is. In this embodiment, the opto-electric hybrid board B1 before the inspection has element mounting pads 2 formed on both ends of one electric circuit board E, and the optical waveguide W2 stacked on the electric circuit board E. Light reflecting surfaces 7 a are formed at both ends of the core 7. Further, the optical waveguide W2 before the inspection and the optical waveguide W after the inspection have the same configuration. Further, the opto-electric hybrid board B1 provided with the optical waveguide W2 before inspection and the opto-electric hybrid board B provided with the optical waveguide W after inspection have the same configuration. And the opto-electric hybrid board B after inspection does not pass through the optical fiber F (see FIG. 2). The other parts are the same as those of the opto-electric hybrid board A1 in the first embodiment shown in FIG. 1B, and the same parts are denoted by the same reference numerals.
 この光電気混載基板Bにおける光伝播は、第1端部の第1面からの光Lが、絶縁層1,第1クラッド層6をこの順番に透過した後、コア7の第1端部の光反射面7aで反射して、コア7内を伝播する。その後、コア7の第2端部の光反射面7aで反射して、第1クラッド層6,絶縁層1をこの順番に透過して、第2端部の第1面から出射される。すなわち、光導波路W2の光入射部も光出射部も、上記光反射面7aに対応する第1クラッド層6の第1面部分となっている。 The light propagation in this opto-electric hybrid board B is such that the light L from the first surface of the first end passes through the insulating layer 1 and the first cladding layer 6 in this order, and then the first end of the core 7 The light is reflected by the light reflecting surface 7 a and propagates through the core 7. Thereafter, the light is reflected by the light reflecting surface 7a at the second end of the core 7, passes through the first cladding layer 6 and the insulating layer 1 in this order, and is emitted from the first surface at the second end. That is, both the light incident portion and the light emitting portion of the optical waveguide W2 are the first surface portions of the first cladding layer 6 corresponding to the light reflecting surface 7a.
 そのため、この第3の実施の形態の、光導波路W2の検査方法は、図8に示すように、光出射部の位置を検知するレーザ変位計30として、上記第2の実施の形態(図6参照)と同様、出射体と受光体とが一体となっている反射型のものを用いる。また、光源10もカメラ20も、光電気混載基板B1の上方に設置される。そして、上記第1および第2の実施の形態と同様にして、光導波路W2のコア7の光伝播性能を検査することができる。 Therefore, the inspection method of the optical waveguide W2 according to the third embodiment, as shown in FIG. 8, uses the second embodiment (FIG. 6) as a laser displacement meter 30 for detecting the position of the light emitting portion. Similar to the reference), a reflective type in which the emitting body and the light receiving body are integrated is used. The light source 10 and the camera 20 are both installed above the opto-electric hybrid board B1. Then, similarly to the first and second embodiments, the light propagation performance of the core 7 of the optical waveguide W2 can be inspected.
 この第3の実施の形態でも、上記第1および第2の実施の形態と同様に、上記検査に要する時間を短縮することができ、光導波路Wおよび光電気混載基板集合シートSの生産性を高めることができる。 Also in the third embodiment, as in the first and second embodiments, the time required for the inspection can be shortened, and the productivity of the optical waveguide W and the opto-electric hybrid board assembly sheet S can be increased. Can be increased.
 図9は、本発明の光導波路の検査方法の第4の実施の形態を示す説明図である。この実施の形態の検査方法は、光電気混載基板集合シートSが、図1(a)に示す、並列された複数の光電気混載基板A1からなる列を、2列並列させたものとなっている。ただし、その2列とも、光出射部(接続面7c)を、光電気混載基板集合シートSの側端縁に形成している。そして、上記2列同時に検査することができる。各列の検査は、図5に示す上記第1の実施の形態と同様にして行うことができる。それ以外の部分は、図5に示す上記第1の実施の形態と同様であり、同様の部分には、同じ符号を付している。 FIG. 9 is an explanatory view showing a fourth embodiment of the optical waveguide inspection method of the present invention. In the inspection method of this embodiment, the opto-electric hybrid board assembly sheet S is obtained by arranging two rows of a plurality of juxtaposed opto-electric hybrid boards A1 shown in FIG. Yes. However, the light emission part (connection surface 7c) is formed in the side edge of the opto-electric hybrid board assembly sheet S in both the two rows. Then, the two rows can be inspected simultaneously. The inspection of each column can be performed in the same manner as in the first embodiment shown in FIG. Other parts are the same as those in the first embodiment shown in FIG. 5, and the same reference numerals are given to the same parts.
 この第4の実施の形態では、同時に検査できる光導波路W1の数が2倍となるため、検査のより一層の効率化を図ることができ、光導波路Wおよび光電気混載基板集合シートSの生産性をより一層高めることができる。 In the fourth embodiment, since the number of optical waveguides W1 that can be inspected at the same time is doubled, the inspection efficiency can be further increased, and the production of the optical waveguide W and the opto-electric hybrid board aggregate sheet S can be achieved. The sex can be further enhanced.
 なお、この第4の実施の形態では、2列とも、図5に示す上記第1の実施の形態と同様にして検査したが、その2列のうち1列については、光源10とカメラ20の配置を逆にし、図6に示す上記第2の実施の形態と同様にして検査してもよい。また、2列とも、図6に示す上記第2の実施の形態と同様にして検査してもよい。 In the fourth embodiment, both the two rows were inspected in the same manner as in the first embodiment shown in FIG. 5, but one of the two rows is that of the light source 10 and the camera 20. The arrangement may be reversed and the inspection may be performed in the same manner as in the second embodiment shown in FIG. Further, both rows may be inspected in the same manner as in the second embodiment shown in FIG.
 また、この第4の実施の形態において、光電気混載基板A1が、図7に示す、光入射部の位置も光出射部の位置も光電気混載基板B1の第1面にあるものであれば、並列された複数の光電気混載基板B1からなる列を、2列ないし3列以上並列させることができる。そのため、同時に検査できる光導波路の数をさらに増加することができ、検査のさらなる効率化を図ることができる。そして、光導波路Wおよび光電気混載基板集合シートSの生産性をさらに高めることができる。 In the fourth embodiment, if the opto-electric hybrid board A1 has the light incident part position and the light emission part position on the first surface of the opto-electric hybrid board B1 shown in FIG. Two or more rows of the plurality of opto-electric hybrid boards B1 arranged in parallel can be arranged in parallel. Therefore, the number of optical waveguides that can be inspected at the same time can be further increased, and the efficiency of inspection can be further increased. And the productivity of the optical waveguide W and the opto-electric hybrid board assembly sheet S can be further enhanced.
 なお、上記各実施の形態では、コア7の光伝播性能の検査の際に、そのコア7に1方向のみに光を伝播させたが、その後、光源10とカメラ20の配置を逆にし、上記と逆方向に光を伝播させて検査を行ってもよい。このようにすると、1個の光導波路を2回検査することになるため、検査精度が向上する。 In each of the above embodiments, when the light propagation performance of the core 7 is inspected, light is propagated in the core 7 only in one direction. Thereafter, the arrangement of the light source 10 and the camera 20 is reversed, Inspection may be performed by propagating light in the opposite direction. In this way, since one optical waveguide is inspected twice, the inspection accuracy is improved.
 また、上記各実施の形態では、複数の光電気混載基板A1,B1が並列された光電気混載基板集合シートSを用いて検査したが、光電気混載基板A1,B1が単独で移動された状態で、検査してもよい。 Moreover, in each said embodiment, although test | inspected using the opto-electric hybrid board | substrate assembly sheet | seat S in which several opto-electric hybrid board | substrates A1 and B1 were arranged in parallel, the opto-electric hybrid board | substrate A1 and B1 were moved independently You may inspect it.
 さらに、上記各実施の形態では、光導波路W1,W2に電気回路基板Eが積層された状態で、その光導波路W1,W2を検査したが、光導波路W1,W2のみを形成した状態で検査してもよい。 Further, in each of the above embodiments, the optical waveguides W1 and W2 are inspected in a state where the electric circuit board E is laminated on the optical waveguides W1 and W2. However, the inspection is performed in a state where only the optical waveguides W1 and W2 are formed. May be.
 そして、上記各実施の形態では、光導波路W1,W2の光出射部の位置を検知する検知器として、レーザ変位計30を用いたが、上記光出射部の位置を検知できれば、他の検知器を用いてもよい。 In each of the above embodiments, the laser displacement meter 30 is used as a detector for detecting the position of the light emitting portion of the optical waveguides W1 and W2. However, if the position of the light emitting portion can be detected, other detectors can be used. May be used.
 また、上記各実施の形態では、光電気混載基板集合シートSを移動させているが、レーザ変位計30ならびに光源10およびカメラ20(撮像素子)を移動させてもよい。または、光電気混載基板集合シートSと、レーザ変位計30ならびに光源10およびカメラ20(撮像素子)とを、互いに反対方向に移動させてもよい。 In each of the above embodiments, the opto-electric hybrid board assembly sheet S is moved, but the laser displacement meter 30, the light source 10, and the camera 20 (imaging device) may be moved. Alternatively, the opto-electric hybrid board assembly sheet S, the laser displacement meter 30, the light source 10, and the camera 20 (imaging device) may be moved in directions opposite to each other.
 さらに、上記各実施の形態では、コア7の状態として、コア7の光伝播性能を検査したが、コア7の寸法(幅および厚み),光反射面7aの傾斜角度等のコア7の状態を、上記のように撮像した出射光の画像解析により、検査することもできる(前記特許文献1~3参照)。その際、上記各実施の形態と同様に、光出射部からの出射光の撮像に先立って、光出射部の位置をレーザ変位計30により検知するため、上記検査に要する時間を短縮することができる。 Further, in each of the above-described embodiments, the light propagation performance of the core 7 is inspected as the state of the core 7. Inspection can also be performed by image analysis of the emitted light imaged as described above (see Patent Documents 1 to 3). At this time, as in the above embodiments, the position of the light emitting portion is detected by the laser displacement meter 30 prior to imaging of the emitted light from the light emitting portion, so that the time required for the inspection can be shortened. it can.
 つぎに、実施例について説明する。但し、本発明は、実施例に限定されるものではない。 Next, examples will be described. However, the present invention is not limited to the examples.
〔実施例1〕
 図5に示す第1の実施の形態のようにして、光電気混載基板集合シートの光導波路について、コアの光伝播性能を検査した。その光電気混載基板集合シートにおいて並列されている光電気混載基板の数を25個とした。また、上記光導波路のコアの寸法は、断面を50μm×50μmの正方形、長さを10cmとした。そして、上記光導波路の光出射部は、上記光電気混載基板集合シートの側端縁部に位置している。そのため、上記光出射部の位置を検知するレーザ変位計として、透過型のレーザ変位計(キーエンス社製、LS-9006M)を用いた。
[Example 1]
As in the first embodiment shown in FIG. 5, the optical propagation performance of the core was inspected for the optical waveguide of the opto-electric hybrid board assembly sheet. The number of opto-electric hybrid boards arranged in parallel in the opto-electric hybrid board assembly sheet was 25. Moreover, the dimensions of the core of the optical waveguide were a square with a cross section of 50 μm × 50 μm and a length of 10 cm. And the light emission part of the said optical waveguide is located in the side edge part of the said opto-electric hybrid board assembly sheet. Therefore, a transmissive laser displacement meter (manufactured by Keyence Corporation, LS-9006M) was used as a laser displacement meter for detecting the position of the light emitting portion.
 また、上記光出射部からの出射光を撮像する装置として、シナジーオプトシステムズ社製のOCT-001を用いた。この装置は、光源と、CCDイメージセンサ(撮像素子)を備えたカメラとを備えている。上記光源は、発光する光の波長が850nm、均一光照射面が直径4mm、NA(開口数)が0.57である。上記CCDイメージセンサは、倍率が5倍、視野範囲が1.28mm×0.96mm、NA(開口数)が0.42である。 Further, OCT-001 manufactured by Synergy Opto Systems was used as an apparatus for imaging the light emitted from the light emitting part. This apparatus includes a light source and a camera including a CCD image sensor (imaging device). The light source has a wavelength of emitted light of 850 nm, a uniform light irradiation surface diameter of 4 mm, and an NA (numerical aperture) of 0.57. The CCD image sensor has a magnification of 5 times, a field of view range of 1.28 mm × 0.96 mm, and an NA (numerical aperture) of 0.42.
〔実施例2〕
 図6に示す第2の実施の形態のようにして、光電気混載基板集合シートの光導波路について、コアの光伝播性能を検査した。その光導波路の光出射部は、第1クラッド層の第1面部分に位置している。そのため、上記光出射部の位置を検知するレーザ変位計として、反射型のレーザ変位計(キーエンス社製、LJ-V7020K)を用いた。それ以外の部分は、上記実施例1と同様とした。
[Example 2]
As in the second embodiment shown in FIG. 6, the optical propagation performance of the core was examined for the optical waveguide of the opto-electric hybrid board assembly sheet. The light emitting portion of the optical waveguide is located on the first surface portion of the first cladding layer. Therefore, a reflection type laser displacement meter (manufactured by Keyence Corporation, LJ-V7020K) was used as a laser displacement meter for detecting the position of the light emitting portion. The other parts were the same as in Example 1 above.
〔比較例1〕
 上記実施例1において、従来の検査方法のように、光導波路の光出射部からの出射光を、CCDイメージセンサで捕らえ、そのCCDイメージセンサの焦点を光導波路の光出射部に合わせた後、撮像した。それ以外の部分は、上記実施例1と同様とした。
[Comparative Example 1]
In Example 1 above, after the light emitted from the light emitting portion of the optical waveguide is captured by the CCD image sensor and the focus of the CCD image sensor is adjusted to the light emitting portion of the optical waveguide, as in the conventional inspection method, I took an image. The other parts were the same as in Example 1 above.
〔比較例2〕
 上記実施例2において、従来の検査方法のように、光導波路の光出射部からの出射光を、CCDイメージセンサで捕らえ、そのCCDイメージセンサの焦点を光導波路の光出射部に合わせた後、撮像した。それ以外の部分は、上記実施例2と同様とした。
[Comparative Example 2]
In Example 2 above, after the emitted light from the light emitting portion of the optical waveguide is captured by the CCD image sensor and the focus of the CCD image sensor is adjusted to the light emitting portion of the optical waveguide, as in the conventional inspection method, I took an image. The other parts were the same as in Example 2 above.
〔検査時間〕
 上記実施例1,2および比較例1,2について、光電気混載基板集合シートの25個の光導波路の検査に要した時間を測定した。そして、その結果を下記の表1に示した。
[Inspection time]
For Examples 1 and 2 and Comparative Examples 1 and 2, the time required to inspect 25 optical waveguides of the opto-electric hybrid board assembly sheet was measured. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1の結果から、実施例1,2では、比較例1,2と比較して、検査時間が短いことがわかる。 From the results of Table 1 above, it can be seen that Examples 1 and 2 have a shorter inspection time than Comparative Examples 1 and 2.
 また、上記実施例1,2において、光電気混載基板集合シートとして、並列された複数の光電気混載基板からなる列を、2列並列させたもの(図9参照)を用いても、上記実施例1,2と同様の傾向を示す結果が得られた。さらに、上記光電気混載基板を、光入射部の位置も光出射部の位置も、光電気混載基板の第1面にあるもの(図7参照)とし、その光電気混載基板が複数並列された列を、2列ないし3列以上並列させた光電気混載基板集合シートを用いても、上記実施例1,2と同様の傾向を示す結果が得られた。 Further, in the first and second embodiments, the above-described implementation can be performed even if two rows of a plurality of juxtaposed opto-electric hybrid boards are arranged in parallel as the opto-electric hybrid board assembly sheet (see FIG. 9). Results showing the same tendency as in Examples 1 and 2 were obtained. Further, the opto-electric hybrid board is the one where the light incident part and the light emitting part are located on the first surface of the opto-electric hybrid board (see FIG. 7), and a plurality of the opto-electric hybrid boards are arranged in parallel. Even when an opto-electric hybrid board assembly sheet having two or more rows arranged in parallel was used, a result showing the same tendency as in Examples 1 and 2 was obtained.
 そして、上記実施例1,2において、光電気混載基板集合シートに代えて、光電気混載基板を単独で移動させた状態で検査しても、上記実施例1,2と同様の傾向を示す結果が得られた。 And in the said Examples 1 and 2, it replaces with an opto-electric hybrid board assembly sheet, and even if it inspects in the state which moved the opto-electric hybrid board independently, the result which shows the same tendency as the said Examples 1 and 2 was gotten.
 さらに、上記実施例1,2および比較例1,2では、コアの光伝播性能を検査したが、コアの寸法(幅および厚み)および光反射面の傾斜角度を、上記と同様に、撮像した出射光の画像解析により検査しても、上記実施例1,2および比較例1,2と同様の傾向を示す結果が得られた。 Further, in Examples 1 and 2 and Comparative Examples 1 and 2, the light propagation performance of the core was inspected, but the core dimensions (width and thickness) and the inclination angle of the light reflecting surface were imaged in the same manner as described above. Even when examined by image analysis of the emitted light, results showing the same tendency as in Examples 1 and 2 and Comparative Examples 1 and 2 were obtained.
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 In the above embodiments, specific forms in the present invention have been described. However, the above embodiments are merely examples and are not construed as limiting. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
 本発明の光導波路の検査方法およびそれを用いた光導波路の製法は、光導波路のコア状態(光伝播性能,寸法,光反射面の傾斜角度等)を短時間で検査する場合に利用可能である。 The optical waveguide inspection method and the optical waveguide manufacturing method using the optical waveguide according to the present invention can be used for inspecting the core state of the optical waveguide (light propagation performance, dimensions, inclination angle of the light reflecting surface, etc.) in a short time. is there.
 L 光
 7 コア
 7c 接続面
 20 カメラ
 30 レーザ変位計
L light 7 core 7c connection surface 20 camera 30 laser displacement meter

Claims (5)

  1.  光入射部と光出射部とを有し上記光入射部と上記光出射部との間の光路用のコアを備えた光導波路を準備する工程と、この光導波路の上記光出射部の位置を位置検知器により検知する工程と、上記光入射部から上記光導波路のコア内に光を入射させ、その光を上記光出射部から出射させる工程と、上記検知した光出射部の位置情報に基づいて、撮像素子を位置決めし、上記光出射部から出射した出射光を、上記撮像素子により撮像する工程と、その撮像した出射光の画像解析により、上記コアの状態を検査する工程とを備えていることを特徴とする光導波路の検査方法。 A step of preparing an optical waveguide having a light incident portion and a light emitting portion and having an optical path core between the light incident portion and the light emitting portion; and a position of the light emitting portion of the optical waveguide. Based on the step of detecting by the position detector, the step of causing light to enter the core of the optical waveguide from the light incident portion, and emitting the light from the light emitting portion, and the position information of the detected light emitting portion. Positioning the image pickup device, and imaging the emitted light emitted from the light emitting portion by the image pickup device, and inspecting the state of the core by image analysis of the imaged emitted light. A method for inspecting an optical waveguide.
  2.  上記光導波路が、上記コアの長手方向と直角の方向に、複数並列され、それら複数の光導波路により、帯状の光導波路集合シートをなし、その光導波路集合シートの上記各光導波路を並列順に検査する請求項1記載の光導波路の検査方法。 A plurality of the optical waveguides are arranged in parallel in a direction perpendicular to the longitudinal direction of the core, and the plurality of optical waveguides form a strip-shaped optical waveguide assembly sheet, and the optical waveguides of the optical waveguide assembly sheet are inspected in parallel order. The method for inspecting an optical waveguide according to claim 1.
  3.  上記光導波路集合シートが、上記コアの長手方向と直角の方向に並列された上記複数の光導波路からなる列を、複数列並列させたものとなっており、それら複数列を同時に検査する請求項2記載の光導波路の検査方法。 The optical waveguide assembly sheet has a plurality of optical waveguides arranged in parallel in a direction perpendicular to the longitudinal direction of the core, wherein the plurality of optical waveguides are arranged in parallel, and the plurality of rows are simultaneously inspected. 2. A method for inspecting an optical waveguide according to 2.
  4.  上記光導波路の上記光出射部の位置を検知する上記位置検知器が、レーザ変位計である請求項1~3のいずれか一項に記載の光導波路の検査方法。 The optical waveguide inspection method according to any one of claims 1 to 3, wherein the position detector that detects the position of the light emitting portion of the optical waveguide is a laser displacement meter.
  5.  コアを形成する工程と、このコアの状態を上記請求項1~4のいずれか一項に記載の光導波路の検査方法により検査する工程とを備えた光導波路の製法であって、上記検査の結果が基準に合った光導波路を合格品とすることを特徴とする光導波路の製法。 A method of manufacturing an optical waveguide, comprising: a step of forming a core; and a step of inspecting the state of the core by the optical waveguide inspection method according to any one of claims 1 to 4. An optical waveguide manufacturing method characterized in that an optical waveguide whose result meets a standard is regarded as an acceptable product.
PCT/JP2018/013821 2018-03-30 2018-03-30 Optical waveguide inspection method and optical waveguide manufacturing method using same WO2019187073A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013821 WO2019187073A1 (en) 2018-03-30 2018-03-30 Optical waveguide inspection method and optical waveguide manufacturing method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013821 WO2019187073A1 (en) 2018-03-30 2018-03-30 Optical waveguide inspection method and optical waveguide manufacturing method using same

Publications (1)

Publication Number Publication Date
WO2019187073A1 true WO2019187073A1 (en) 2019-10-03

Family

ID=68058678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013821 WO2019187073A1 (en) 2018-03-30 2018-03-30 Optical waveguide inspection method and optical waveguide manufacturing method using same

Country Status (1)

Country Link
WO (1) WO2019187073A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230296834A1 (en) * 2022-03-18 2023-09-21 Taiwan Semiconductor Manufacturing Company, Ltd. Photonic device and methods of forming same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101706A (en) * 1989-09-14 1991-04-26 Nippon Telegr & Teleph Corp <Ntt> Position detecting method for optical waveguide
JPH06249623A (en) * 1993-02-24 1994-09-09 Mihara Ryoju Eng Kk System for measuring cross-sectional shape of object
US20150146195A1 (en) * 2013-11-22 2015-05-28 Vario-Optics Ag Test Apparatus For Electro-Optical Printed Circuit Boards
JP2015132497A (en) * 2014-01-10 2015-07-23 セイコーエプソン株式会社 Inspection device and inspection method
JP2015215237A (en) * 2014-05-09 2015-12-03 日立化成株式会社 Optical waveguide inspection method
JP2016034844A (en) * 2014-08-04 2016-03-17 日立化成株式会社 Packing method of optical waveguide and packing body of the optical waveguide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101706A (en) * 1989-09-14 1991-04-26 Nippon Telegr & Teleph Corp <Ntt> Position detecting method for optical waveguide
JPH06249623A (en) * 1993-02-24 1994-09-09 Mihara Ryoju Eng Kk System for measuring cross-sectional shape of object
US20150146195A1 (en) * 2013-11-22 2015-05-28 Vario-Optics Ag Test Apparatus For Electro-Optical Printed Circuit Boards
JP2015132497A (en) * 2014-01-10 2015-07-23 セイコーエプソン株式会社 Inspection device and inspection method
JP2015215237A (en) * 2014-05-09 2015-12-03 日立化成株式会社 Optical waveguide inspection method
JP2016034844A (en) * 2014-08-04 2016-03-17 日立化成株式会社 Packing method of optical waveguide and packing body of the optical waveguide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230296834A1 (en) * 2022-03-18 2023-09-21 Taiwan Semiconductor Manufacturing Company, Ltd. Photonic device and methods of forming same

Similar Documents

Publication Publication Date Title
JP6358092B2 (en) Optical probe, inspection device, inspection method
JP5565458B2 (en) Optical system for measurement, and color luminance meter and color meter using the same
EP2304483B1 (en) Retro-reflective structures
JP2008158440A (en) Photoelectric wiring board and method of manufacturing photoelectric wiring apparatus
CN109196336A (en) System is checked using the dark field chip nano-defects of unusual light beam
JP2018146437A (en) Inspection method of optical waveguide and preparation method of optical waveguide using the same
WO2019187073A1 (en) Optical waveguide inspection method and optical waveguide manufacturing method using same
JP6331196B2 (en) Optical element, irradiation optical system, condensing optical system, and optical waveguide inspection device
US7489841B2 (en) Device for transferring optical signals by means of planar optical conductors
JP2014199229A (en) Inclination angle measuring method and inclination angle measuring device
WO2017104522A1 (en) Method for testing optical waveguide and method for producing optical waveguide in which said method is used
JP2014194473A (en) Optical waveguide and inspection method of optical waveguide
JP7215161B2 (en) Optical waveguide evaluation method and optical module manufacturing method
US10436715B2 (en) Fluorescence reading device
WO2020255191A1 (en) Optical circuit wafer
TW201942553A (en) Optical waveguide inspection method and optical waveguide manufacturing method using same shortening the time required for positioning an image pickup element when photographing the emitting light
TWI758902B (en) Inspection probe, method for manufacturing inspection probe, and inspection device
JP2006132972A (en) Defect detecting method and defect detecting device of optical part
WO2022157820A1 (en) Optical waveguide element, light guide plate, and optical axis adjustment method
CN220872351U (en) Optical detection device and film testing equipment
US11942489B2 (en) Image reading device
WO2022157962A1 (en) Image reading device
JPH08320219A (en) Inclination and distance measuring apparatus
US6822271B2 (en) Semiconductor photodetector and optical transmitting device
JP2023132460A (en) Waveguide substrate, optical module, and method for manufacturing optical module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912894

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18912894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP