WO2019186909A1 - Diagnosis device and diagnosis method - Google Patents

Diagnosis device and diagnosis method Download PDF

Info

Publication number
WO2019186909A1
WO2019186909A1 PCT/JP2018/013287 JP2018013287W WO2019186909A1 WO 2019186909 A1 WO2019186909 A1 WO 2019186909A1 JP 2018013287 W JP2018013287 W JP 2018013287W WO 2019186909 A1 WO2019186909 A1 WO 2019186909A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
phase
data
current
matrix
Prior art date
Application number
PCT/JP2018/013287
Other languages
French (fr)
Japanese (ja)
Inventor
哲司 加藤
啓明 小島
牧 晃司
岩路 善尚
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to DE112018005613.9T priority Critical patent/DE112018005613T5/en
Priority to JP2020508714A priority patent/JP6801144B2/en
Priority to PCT/JP2018/013287 priority patent/WO2019186909A1/en
Publication of WO2019186909A1 publication Critical patent/WO2019186909A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings

Definitions

  • the present invention relates to a technique for diagnosing equipment and facilities that operate with a three-phase AC power source.
  • MCSA Motor Current Signature Analysis
  • Patent Document 1 especially in bearing diagnosis, a vibration sensor is installed at two locations, vibration sensor data is acquired from these vibration sensors, and an instantaneous value of each vibration sensor data is drawn on each axis. There is disclosed a method for determining an abnormality from a temporal change in the trajectory inclination or radius of a figure.
  • MCSA is required to detect specific frequency components with high accuracy. For this purpose, it is necessary to measure the current value for a long time at a high sampling rate. To perform long-time measurement at a high sampling rate, an expensive data logger is required, which increases diagnostic costs.
  • An object of the present invention is to provide a technique for efficiently diagnosing an object to be diagnosed that operates with three-phase alternating current while suppressing the sampling rate and data amount of current measurement.
  • a diagnostic device is a diagnostic device for diagnosing a state of a diagnosis target that operates with a three-phase AC power supply, and acquires an instantaneous value of physical data at the same time in a plurality of phases of the three-phase AC.
  • the conversion unit that discretizes the instantaneous value acquired by the acquisition unit, and the discrete density of the instantaneous value of each phase of the physical data of each phase from the discrete value obtained by discretization of the conversion unit, the appearance density of the combination Based on the accumulating unit to be obtained, the accumulating unit that accumulates the appearance density data indicating the appearance density for each combination obtained by the accumulating unit, and the diagnosis that diagnoses the state of the diagnosis target based on the appearance density data accumulated in the accumulating unit A section.
  • FIG. 1 is a block diagram of a diagnostic device according to Embodiment 1.
  • FIG. It is a figure which shows the data amount accumulate
  • FIG. 5 is a diagram showing a swell waveform generated by the current waveform shown in FIG. 4.
  • FIG. 10 is a diagram illustrating a result of analyzing the degree of abnormality of the matrix A and the matrix B based on the current waveforms illustrated in FIGS. 6 to 9 with respect to the matrix C defined as a normal state.
  • FIG. It is a block diagram of the diagnostic apparatus by Example 4. It is a block diagram of the diagnostic apparatus by Example 5.
  • FIG. 10 is a diagram illustrating a result of analyzing the degree of abnormality of the matrix A and the matrix B based on the current waveforms illustrated in FIGS. 6 to 9 with respect to the matrix C defined as a normal state.
  • a rotating machine system including a rotating machine such as an electric motor (motor) or a generator, a cable attached to the rotating machine, and a power conversion device
  • the location of the failure and the cause of the failure are diverse.
  • insulation deterioration, bearing deterioration, short circuit, disconnection, water immersion, etc. can be considered.
  • the electric motor is often installed for a long time in a harsh environment, and a diagnostic technique according to the installation condition is required.
  • FIG. 1 is a diagram showing a comparative example of a diagnostic device.
  • the state of the rotating machine 3 connected to the power source 1 via the cable 2 is diagnosed.
  • the current measuring unit 4 acquires two-phase current data via the current sensors 10a and 10b attached to the cable 2, and the acquired current data is obtained from the spectrum obtained by Fourier transform.
  • the diagnosis unit 9 diagnoses the state of the rotating machine 3 based on the current data stored in the storage unit 8.
  • the inventors discretize the intermittent sensor values for two phases among the load current values of the rotating machine with the number of measurement bits for each phase, and depending on the combination of instantaneous values of each phase and their appearance density Considered to make a diagnosis.
  • the Lissajous figure has an inclined elliptical shape.
  • the inventors have noted that when the two-phase current is ideal perfect continuous sine wave data, the elliptical shapes of the first period and the second period completely overlap. The measured waveform deviates from the ideal sine wave, and the sampling interval is a finite value. Therefore, the probability of measuring a point with exactly the same phase is low, but it can be obtained at a predetermined time obtained intermittently.
  • the data can be accumulated in a form that reduces the data amount compared to accumulating the two-phase waveform as time series data.
  • the combination of instantaneous values and the appearance density change the operating conditions of the diagnosis target. If there is no match, the equipment such as an expensive data logger and an expensive data storage device can be omitted.
  • the important point here is the time synchronism of the first phase and the second phase.
  • the first phase and the second phase need to be the same time or at an arbitrarily designed constant interval.
  • the fluctuation of the measurement interval between the second phase directly leads to a decrease in diagnostic accuracy.
  • it can be realized by using a device having excellent real-time characteristics such as a microcomputer.
  • the diagnostic device of the present embodiment is a diagnostic device for diagnosing the state of a diagnosis target that operates with a three-phase AC power source, and acquires an instantaneous value of physical data at the same time in a plurality of phases of a three-phase AC;
  • a conversion unit that discretizes the instantaneous value acquired by the acquisition unit, and an integration unit that obtains the appearance density of the combination for each combination of discrete values of the instantaneous value of the physical data of each phase from the discrete value obtained by discretization of the conversion unit
  • an accumulating unit that accumulates appearance density data indicating the appearance density for each combination obtained by the integrating unit, and a diagnosis unit that diagnoses the state of the diagnosis target based on the appearance density data accumulated in the accumulating unit. It is to be prepared.
  • the diagnostic device configured as described above can be incorporated into a rotating machine system.
  • a plurality of rotating machines may be connected to the power conversion device.
  • FIG. 2 is a block diagram of the diagnostic apparatus according to the first embodiment.
  • the diagnostic apparatus in the present embodiment diagnoses the state of the rotating machine 3 to be diagnosed that is electrically connected to the power source 1 via the cable 2.
  • the diagnostic device may include a processor and a memory, and the processor may use the memory to execute a software program that defines the operation of each unit.
  • a three-phase AC voltage is output from the power source 1.
  • the current measurement unit 4 may be called an acquisition unit.
  • the current measuring unit 4 obtains instantaneous values of current data as physical data at the same time in a plurality of three-phase alternating currents flowing through the cable 2 via the current sensors 10 a and 10 b attached to the cable 2. At this time, the current measuring unit 4 acquires an instantaneous value of current data while maintaining time synchronism between a plurality of phases at an arbitrary interval for an arbitrary period.
  • the conversion unit 5 discretizes the instantaneous value acquired by the current measurement unit 4 with the set bit number A set by the measurement bit number input unit 6.
  • Integrating section 7 the discrete values by discretization of the conversion unit 5, (power of 2 A) 2 A row and column corresponding to a respective phase ⁇ 2 has a size of A (2 A squared), and line
  • Each component of the column generates a matrix that represents the density of discrete combinations of instantaneous values of current data of each phase, thereby generating the density of combinations of combinations of discrete values of instantaneous values of current data of each phase.
  • the accumulating unit 8 accumulates the appearance density data indicating the appearance density for each combination obtained by the accumulating unit 7.
  • the diagnosis unit 9 diagnoses the state of peripheral devices such as the rotating machine 3 and the power converter connected to the rotating machine 3 based on the appearance density data stored in the storage unit 8.
  • the current measurement unit 4 acquires current data in two phases of the three-phase alternating current flowing through the cable 2 via the current sensors 10 a and 10 b attached to the cable 2. At that time, the current measuring unit 4 acquires an instantaneous value of current data while maintaining time synchronism between a plurality of phases at an arbitrary interval for an arbitrary period.
  • the current sensor acquired by the current measuring unit 4 The current data 10a and 10b do not necessarily have to be a constant sampling interval, and need not necessarily be continuous measurements. Further, it is preferable that the interval between the acquisition of the current data via the current sensor 10a and the acquisition of the current data via the current sensor 10b is constant allowing for some variation.
  • a measurement device that excels in real-time processing, a certain data acquisition interval that allows a certain variation can be obtained.
  • a measuring device for example, a measuring device using a microcomputer can be used.
  • the current measuring unit 4 can be designed such that after a certain amount of data is accumulated in the memory of the microcomputer, the accumulated data is stored in a storage device, and then the memory of the microcomputer is cleared and data accumulation is resumed.
  • a system using a general-purpose current sensor or memory can be provided.
  • the conversion unit 5 discretizes the instantaneous value acquired by the current measurement unit 4 with the set bit number A set by the measurement bit number input unit 6, and the integration unit 7 determines the discrete value of the conversion unit 5.
  • the appearance density of each combination of the discrete values of the instantaneous values of the two-phase current data is obtained from the discrete values obtained by the conversion, and the appearance density data indicating the appearance density for each combination is stored in the storage unit 8.
  • the conversion unit 5 discretizes the instantaneous value of the two-phase current data with a predetermined number of bits A, and the integration unit 7 has 2 A (2 to the power of 2) ⁇ 2 in which each row and column corresponds to a phase.
  • the application density is determined by generating a matrix having a size of A (2 to the power of A) and each component in the row and column representing the appearance density of a combination of discrete values of instantaneous values of current data of each phase
  • the amount of current data for each phase can be compressed to a size of 2 A ⁇ 2 A.
  • FIG. 3 is a diagram showing the amount of data stored in the storage unit 8 by discretization in the conversion unit 5 shown in FIG.
  • the data amount is 1 when measuring two-phase current for 200 seconds at a sampling rate of 200 Hz.
  • the waveform that is current data acquired by the current measurement unit 4 is discretized by the number of bits 8 set by the measurement bit number input unit 6 in the change unit 5, and the integration unit 7 sets 28 ⁇ 28
  • the measurement for 200 seconds does not need to be continuous, and if the control pattern for the rotating machine 3 does not change and the rotating machine 3 operates at a constant fundamental frequency, the measurement should be divided several times. Can do. As a result, data necessary for diagnosis can be acquired even with a low-speed measuring terminal with a small memory capacity.
  • the data amount was 0.81, and the data amount was reduced by 19%.
  • the value divided by the number of measurement points is stored in each matrix element of the matrix, but the number of appearances is saved, and separately, the number of measurement points is saved in a form linked to the file that stores the number of appearances. Also good.
  • error accumulation due to integration can be reduced by storing the number of appearances and the number of measurement points separately.
  • a 28 ⁇ 28 size matrix is not prepared in advance, but (the current value 1 of the current sensor 10a, the current value 1 of the current sensor 10a, the number of appearances), ( Data was stored in the form of a discretized current value 1 of the current sensor 10a, a discretized current value 2 of the current sensor 10a, the number of appearances),.
  • the data finally obtained is data excluding the component of Method 1 whose matrix element value is 0, and it is not necessary to prepare a blank cell. Only the value of the component in which a numerical value other than zero is stored is accumulated, and the amount of accumulated data can be further reduced.
  • the timing for excluding the 0 component is not particularly limited.
  • diagnosis unit 9 diagnoses the state of the rotating machine 3 based on the appearance density data accumulated in the accumulation unit 8.
  • diagnosis method of the diagnosis unit 9 when a spectrum is generated at a specific frequency for some reason when the control pattern for the rotating machine 3 does not change and the rotating machine 3 operates at a constant fundamental frequency will be described. To do.
  • FIG. 4 is a diagram showing a current waveform when a spectrum appears at a frequency 1 Hz away from the fundamental frequency 50 Hz of the U-phase current
  • FIG. 5 is a diagram showing a swell waveform generated by the current waveform shown in FIG. It is.
  • the current measurement unit 4 acquires current values of two or more phases while maintaining time synchronism between phases at an arbitrary interval, and at the conversion unit 5,
  • the current data of two or more phases is discretized for each phase with the number of bits set in the measurement bit number input unit 6, and the accumulating unit 7 sets the number of appearances or the appearance density of the discretized current data in each matrix element.
  • the diagnosis unit 9 compares the data accumulated as application density data in the storage unit 8, and the rotation unit 3 or the power conversion device connected to the rotary unit 3 or the like from the change. By diagnosing the state of the peripheral devices, it is possible to diagnose the rotating machine 3 without increasing the sampling speed and the data amount.
  • the current measurement unit 4 measures the current flowing through the cable 2 asynchronously with the fundamental frequency via the current sensors 10a and 10b. Specifically, at a sampling rate having a period that is an integral multiple of the fundamental wave, a value of only a specific phase is always obtained, and there is a risk of a failure in the case of deterioration in which a change appears only in a specific phase. Therefore, it is desirable that the sampling rate is a frequency different from an integral multiple of the fundamental wave period. As a result, it is possible to acquire the same matrix as when data is acquired at a high sampling rate.
  • FIG. 6 is a diagram illustrating a U-phase current waveform in a normal state
  • FIG. 7 is a diagram illustrating a W-phase current waveform in a normal state
  • FIG. 8 is a diagram showing a U-phase current waveform when a sideband wave is generated
  • FIG. 9 is a diagram showing a W-phase current waveform when a sideband wave is generated.
  • the sampling rate is 200 Hz
  • the data for 1 second is enlarged in the data measurement time of 100 seconds.
  • the U-phase current waveform is as shown in FIG. 6, the W-phase current waveform is as shown in FIG. 7, and the U-phase and W-phase currents are: They are 120 degrees out of phase with each other.
  • the current measuring unit 4 When the waveforms shown in FIGS. 6, 7, 8, and 9 are measured and acquired by the current measuring unit 4, the current measured by the converting unit 5 as shown in the description of the method 1 described above.
  • the waveform is discretized with the number of bits 8 set by the measurement bit number input unit 6, and the accumulating unit 7 converts the current value discretized by 8 bits, that is, 1 to 257 into each matrix element of a 28 ⁇ 28 size matrix. Appearance densities were stored in matrix A and matrix B, respectively.
  • the matrix A is based on the waveforms shown in FIGS. 6 and 7, and corresponds to the normal state matrix
  • the matrix B is based on the waveforms shown in FIGS. Corresponding to
  • the matrix A and the matrix B are compared with the matrix C set in advance as a normal state by learning, and the normal state is calculated by calculating how close the matrix A and the matrix B are to the matrix C.
  • the degree of deviation that is, the degree of abnormality can be examined.
  • the variation of the current value increases, and accordingly, the appearance density of the region having a high appearance density is lowered and distributed to the region having a low appearance density.
  • the value of each matrix element in the matrix changes, the number of matrix elements having a value of 0 decreases, and changes from the matrix defined as the normal state.
  • the diagnosis unit 9 outputs the diagnosis result after performing the above diagnosis.
  • Means for transmitting the diagnosis result to the user can be selected as appropriate, and methods for transmitting to the user include display on the display, lighting of the lamp, notification by e-mail, and the like.
  • the contents are also (1) a method for displaying a matrix to be diagnosed on the screen and allowing the user to determine whether or not it is compatible, (2) a method for quantifying the difference in the matrix to be diagnosed in some way and telling the user, (3) A method of notifying the user when a predetermined threshold is exceeded can be considered.
  • application of machine learning can be considered as a method of quantifying the difference of the matrix to be diagnosed in (2) above.
  • the machine learning algorithm may be selected so that the difference in the matrix to be diagnosed becomes clear.
  • Bhattacharyya coefficient (Bhattacharyya distance) Z of the matrix A to be diagnosed with respect to the matrix C defined as a normal state is the matrix A Where A i, j is the matrix element and C i, j is the matrix element of the matrix C, the following equation is defined.
  • the Bhattacharyya coefficient Z represents the degree of abnormality.
  • the matrix data is held in the storage unit 8, and the diagnosis unit 9 compares the matrix held in the storage unit with the reference matrix that is predetermined as indicating the normal state.
  • a local subspace method can be cited as a diagnostic technique.
  • the local subspace method for each matrix element of the matrix to be diagnosed, two closest points are selected from the two-dimensional space defined by the matrix row and column defined as normal, and the two points are connected.
  • the degree of deterioration is defined by the distance between the straight line and the point to be diagnosed.
  • it may be effective to weight the appearance density of normal values, especially when the data can be recognized as an abnormal state, the discriminant is adjusted so that the matrix of the normal state and the abnormal state can be easily distinguished. It is desirable.
  • the average value of the distances of all points to be diagnosed and specifying can be selected in accordance with the variation error of the current waveform, such as quantification based on the distance of only the phase point.
  • a clustering method such as vector quantization clustering or K-means clustering can be used.
  • a technique called a deep neural network which is a method for automatically finding feature quantities based on a large amount of data, can be applied.
  • FIG. 10 is a diagram illustrating a result of analyzing the degree of abnormality of the matrix A and the matrix B based on the current waveforms illustrated in FIGS. 6, 7, 8, and 9 with respect to the matrix C defined as a normal state.
  • the matrix A based on the current waveform shown in FIGS. 6 and 7 and the matrix B based on the current waveform shown in FIGS. 8 and 9 can analyze the degree of abnormality from the Bhattacharyya distance Z according to the above formula. Since the Bhattacharyya distance Z of the matrix A does not exceed a preset threshold as shown in FIG. 10, the diagnosis unit 9 determines that it is normal. On the other hand, the Bhattacharyya distance Z of the matrix B exceeds the preset threshold value as shown in FIG.
  • the appearance density of combinations of instantaneous values of current data of each phase is accumulated and accumulated, the amount of data to be stored can be suppressed. Further, since the state of the rotating machine 3 to be diagnosed is diagnosed based on the accumulated data obtained by integrating the appearance density of the combination of instantaneous values of the current data of each phase, it is not necessary to measure the current data at a high sampling rate.
  • the deterioration that does not appear as a change in the spectrum of the specific frequency is specifically a deterioration other than the deterioration in which the change appears as a peak of the specific frequency that can be detected by the MCSA, that is, grease deterioration, thermal deterioration of the insulating material, and moisture absorption. Things are assumed.
  • the diagnostic device of the present embodiment it is possible to diagnose a motor system including equipment that is electrically or mechanically connected to the rotating machine 3, such as a cable, a power converter, and a load, in addition to the rotating machine 3. is there.
  • a motor system including peripheral devices connected to the rotating machine 3 even if a peripheral device other than the rotating machine 3 fails or deteriorates, the current flowing through the rotating machine 3 changes due to the impedance and load of those devices changing. Therefore, it is possible to detect deterioration by this method.
  • the diagnosis apparatus shown in FIG. 1 sometimes diagnoses this as abnormal. Further, when learning is performed as a normal state including a state in which the control pattern is changed, a change due to deterioration may be overlooked and reported. Therefore, it is desirable to diagnose normality for each control pattern.
  • FIG. 11 is a block diagram of a diagnostic apparatus according to the second embodiment.
  • the diagnostic apparatus according to the present embodiment is different from that shown in FIG.
  • the command unit 13 gives a control command indicating control pattern information to the integrating unit 7.
  • the control command can be any command value that can be output by the power source 1 such as a voltage command value, current command value, excitation current command value, torque current command value, speed command value, frequency command value, or any equivalent value You can choose to.
  • the accumulating unit 7 obtains the appearance density of each combination for each control command to the rotating machine 3, and the accumulating unit 8 accumulates the appearance density data for each control command.
  • control command A corresponds to a fundamental current frequency of 50 Hz
  • control command B corresponds to a fundamental current frequency of 100 Hz.
  • the integration unit 7 integrates the appearance density obtained by the conversion unit 5 for each current value distributed to the control command A and the control command B based on the fundamental frequency input to the command unit 13. Then, after data of an arbitrarily determined period or score is accumulated, the data is accumulated in the accumulation unit 8 as appearance density data.
  • diagnosis unit 9 compares the appearance density data stored in the storage unit 8 with the data defined as normal acquired in the same state of the control command information to determine the degree of abnormality of the target data, and the normality of the rotating machine 3 Diagnose sex.
  • FIG. 12 is a diagram showing the degree of abnormality of the matrix A obtained from the current waveform of the rotating machine 3 in the normal state acquired by the control command A.
  • the matrices ⁇ and ⁇ are matrices defined by the current waveform of the rotating machine 3 in the normal state measured by the control commands A and B, respectively.
  • the diagnosis unit 9 determines that it is normal.
  • the diagnosis unit 9 determines that the rotating machine 3 is abnormal even though the rotating machine 3 is in a normal state.
  • the control input to the command unit 13 is performed in order to diagnose the state of the rotating machine 3 based on the matrix composed of the U-phase and W-phase currents classified as having the same control command.
  • the control pattern and the current information are combined to improve the diagnostic accuracy. Thereby, a suitable diagnosis can be performed for each control state.
  • the command value having high sensitivity may be selected so that the degree of similarity between the matrix in the deteriorated state and the matrix in the normal state is compared and the difference between the deteriorated state and the normal state is easily visible.
  • the number of conditions is increased, the amount of data increases by the amount classified according to the conditions even if the current data has the same measurement time. Therefore, the number of command values to be used should be limited by the trade-off between diagnostic accuracy and data volume. Can do.
  • the characteristic frequency of the current waveform of the rotating machine 3 can be substituted.
  • FIG. 13 is a block diagram of a diagnostic apparatus according to the third embodiment.
  • the diagnostic apparatus in the present embodiment is different from that shown in FIG. 2 in that it has a frequency extraction unit 12.
  • the output of the current measuring unit 4 is branched and input to the frequency extracting unit 12, as shown in FIG.
  • the frequency extraction unit 12 extracts a characteristic frequency such as at least one of the fundamental frequency and the carrier frequency, and then the integration unit 7 obtains an appearance density of the combination for each combination for each measurement condition with the same characteristic frequency.
  • appearance density data is stored for each characteristic frequency.
  • the output of the current measuring unit 4 is branched in order to diagnose the state of the rotating machine 3 based on the matrix composed of the U-phase and W-phase currents classified as the same control command. Then, the characteristic frequency is extracted by the frequency extraction unit 12, the current waveform is classified based on the characteristic frequency, and the appearance density is integrated for each classified data, thereby combining the control pattern and the current information to obtain diagnosis accuracy. Improved. Thereby, a suitable diagnosis can be performed for each control state.
  • FIG. 14 is a block diagram of a diagnostic apparatus according to the fourth embodiment.
  • the diagnostic apparatus in this embodiment is different from that shown in FIG. 2 in that a plurality of rotating machines 3-1 to 3-n are connected to one power source 1. Is.
  • the load currents of all the rotating machines 3-1 to 3-n were measured by the current sensors 10a and 10b attached to the cable 2 connecting the power source 1 and the rotating machines 3-1 to 3-n. Diagnose using the results.
  • the diagnosis method is equivalent to the case where one rotating machine is connected, and the diagnosis is performed by using the measured command data as the distribution of the Lissajous figure together with the classification using the control command value and the reflection of the command value information.
  • the current data of the plurality of rotating machines 3-1 to 3-n is used for diagnosis as one load current, the change in the current waveform of the deteriorated rotating machine is diluted by the current waveforms of the other rotating machines. Will end up. Therefore, it is desirable to evaluate the degree of abnormality by machine learning, particularly the local subspace method.
  • FIG. 15 is a block diagram of a diagnostic apparatus according to Embodiment 56.
  • the diagnostic apparatus in the present embodiment measures each of the three-phase load currents supplied from the power source 1 to the rotating machine 3 by the current sensors 10a to 10c, as shown in FIG. The point to do is different.
  • the current measurement unit 4 obtains instantaneous values of current data at the same time in the three phases of the three-phase alternating current
  • the integration unit 7 obtains the three-phase from the discrete values obtained by the discretization of the conversion unit 5.
  • the appearance density of each combination of discrete values of instantaneous values of current data is obtained.
  • a multidimensional matrix tensor
  • motor deterioration can be evaluated from changes in the tensor.
  • the current value measured by the current sensors 10a to 10c is zero measured by clamping the three-phase components in addition to the U-phase, V-phase, and W-phase load currents.
  • Diagnosis of phase current two-phase current measured by clamping two arbitrarily selected phases, leakage current measured by clamping both the winding start and end of winding of the motor, and current flowing from the motor to the ground A current that increases sensitivity is arbitrarily selected, and a current sensor may be installed at that position.

Abstract

This diagnosis device for diagnosing the state of a rotating machine that operates using a three-phase AC power supply comprises: a current measurement unit for acquiring simultaneous instantaneous values of physical data for a plurality of phases of the three-phase AC; a conversion unit for discretizing the instantaneous values acquired by the current measurement unit; an integration unit for determining, from the discretized values discretized by the conversion unit, the appearance densities of each combination of the discretized values for the physical data instantaneous values for each phase; an accumulation unit for accumulating appearance density data indicating the appearance densities of each combination determined by the integration unit; and a diagnosis unit for diagnosing the state of the rotating machine on the basis of the appearance density data accumulated by the accumulation unit.

Description

診断装置および診断方法Diagnostic device and diagnostic method
 本発明は、三相交流電源で動作する機器や設備の診断を行う技術に関する。 The present invention relates to a technique for diagnosing equipment and facilities that operate with a three-phase AC power source.
 生産設備に組み込まれたモータ(電動機)や発電機といった回転機が突発的に故障すると、回転機の計画外の修理作業や置換作業が必要となり、生産設備の稼働率の低下や生産計画の見直しが必要となる。同様に、回転機と接続された電力変換装置やケーブルなどが故障した場合も、計画外の修理作業や置換作業が必要となり、生産設備の稼働率の低下や生産計画の見直しが必要となる。 If a rotating machine such as a motor (electric motor) or generator built into a production facility suddenly fails, unscheduled repair or replacement of the rotating machine is required, resulting in a reduction in the operating rate of the production facility or a review of the production plan. Is required. Similarly, when a power conversion device or cable connected to the rotating machine breaks down, unplanned repair work or replacement work is required, which requires a reduction in the operating rate of the production facility or a review of the production plan.
 回転機システム(回転機およびその付帯機器(ケーブル、電力変換装置))の突発的な故障を未然に防ぐために、回転機システムを適宜停止させ、オフラインで診断することで、劣化具合を把握し、突発的な故障をある程度防ぐことができる。しかしながら、オフラインによる診断であるために回転機システムを停止させる必要があり、生産設備の稼働率の低下を招くことになる。また、劣化の種類によっては、電圧印加時にのみ顕在化するものもある。そこで、回転機システムの電流の情報に基づいて回転機の状態を診断することに対するニーズが存在する。 In order to prevent sudden failure of the rotating machine system (rotating machine and its associated equipment (cable, power converter)), stop the rotating machine system as appropriate and diagnose it offline to understand the deterioration. Sudden failure can be prevented to some extent. However, since the diagnosis is performed off-line, it is necessary to stop the rotating machine system, resulting in a reduction in the operating rate of the production facility. Some types of deterioration become apparent only when voltage is applied. Therefore, there is a need for diagnosing the state of a rotating machine based on current information of the rotating machine system.
 回転機システムの電流情報に基づいて機器や設備を診断する手法として、Motor Current Signature Analysis(MCSA)がある。MCSAによれば、電流の周波数スペクトル上にて、回転子バーの損傷、回転子の偏心、固定子の鉄心損傷、巻線の短絡、軸受の劣化など、各要因に応じた特定の周波数成分を検出することにより、故障や劣化を検出することができる。 There is Motor Current Signature Analysis (MCSA) as a method for diagnosing equipment and facilities based on current information of a rotating machine system. According to MCSA, specific frequency components corresponding to various factors such as rotor bar damage, rotor eccentricity, stator iron core damage, winding short-circuit, bearing deterioration, etc. on the current frequency spectrum. By detecting, failure or deterioration can be detected.
 また、特許文献1には、特に軸受診断において、二ヶ所に振動センサを設置し、これらの振動センサから振動センサデータを取得し、各振動センサデータの瞬時値を各軸に取って描いたリサジュー図形の軌跡傾きや半径の時間的変化から異常を判断する手法が開示されている。 In Patent Document 1, especially in bearing diagnosis, a vibration sensor is installed at two locations, vibration sensor data is acquired from these vibration sensors, and an instantaneous value of each vibration sensor data is drawn on each axis. There is disclosed a method for determining an abnormality from a temporal change in the trajectory inclination or radius of a figure.
特開2000-258305号公報JP 2000-258305 A
 しかしながら、MCSAおよび特許文献1に開示された技術には以下のような課題がある。 However, the techniques disclosed in MCSA and Patent Document 1 have the following problems.
 MCSAでは、特定の周波数成分を精度よく検出することが求められる。そのためには、電流値を高いサンプリング速度で長時間にわたり計測することが必要である。高いサンプリング速度で長時間の計測を行うには高価なデータロガーが必要となり、診断コストが増加する。 MCSA is required to detect specific frequency components with high accuracy. For this purpose, it is necessary to measure the current value for a long time at a high sampling rate. To perform long-time measurement at a high sampling rate, an expensive data logger is required, which increases diagnostic costs.
 また、モータの故障にはその現象が短時間のみ出現するものが存在する。その現象を逃さず検出するために、やはり高いサンプリング速度で長時間にわたる電流の計測し、データを蓄積する必要がある。そのために、保存するデータが膨大となり、データを保存する端末には大容量の記憶装置が必要となり、コストが上昇する。また、保存されるデータが膨大となると、そのデータをクラウドやローカルの端末に送るために通信路を介して転送する場合、通信路の大きな帯域を専有し、他の機器の通信を阻害する可能性がある。 Also, there are motor failures that appear only for a short time. In order to detect the phenomenon without missing, it is necessary to measure the current over a long period of time at a high sampling rate and accumulate data. Therefore, the amount of data to be stored becomes enormous, and a terminal for storing data requires a large-capacity storage device, which increases costs. Also, if the amount of stored data becomes enormous, if the data is transferred via a communication path to send it to the cloud or a local terminal, it can occupy a large bandwidth of the communication path and hinder communication with other devices There is sex.
 また、特許文献1に開示された技術では、振動センサで得られるデータに基づいてモータの故障診断を行うので、モータの故障に対して敏感に振動の変化が生じる位置、例えばモータの上部に、振動センサを取り付ける必要があり、振動センサの設置位置が限定される。また、振動センサとリサジュー図形の軌跡を得るのに十分なサンプリング速度を有する高価なデータロガーとが必要なので、診断コストが増加する。 Further, in the technique disclosed in Patent Document 1, since the motor failure diagnosis is performed based on the data obtained by the vibration sensor, the position where the vibration change is sensitive to the motor failure, for example, the upper part of the motor, It is necessary to attach a vibration sensor, and the installation position of the vibration sensor is limited. In addition, the cost of diagnosis increases because a vibration sensor and an expensive data logger having a sampling rate sufficient to obtain the trajectory of the Lissajous figure are necessary.
 本発明は、電流測定のサンプリング速度およびデータ量を抑え、三相交流で動作する診断対象を効率よく診断する技術を提供することを目的とする。 An object of the present invention is to provide a technique for efficiently diagnosing an object to be diagnosed that operates with three-phase alternating current while suppressing the sampling rate and data amount of current measurement.
 本発明の1つの態様による診断装置は、三相交流電源で動作する診断対象の状態を診断する診断装置であって、三相交流の複数相における同時刻の物理データの瞬時値を取得する取得部と、取得部で取得された瞬時値を離散化する変換部と、変換部の離散化による離散値から、各相の物理データの瞬時値の離散値の組み合わせ毎のその組み合わせの出現密度を求める積算部と、積算部で求められた、組み合わせ毎の出現密度を示す出現密度データを蓄積する蓄積部と、蓄積部に蓄積された出現密度データに基づいて、診断対象の状態を診断する診断部と、を備える。 A diagnostic device according to one aspect of the present invention is a diagnostic device for diagnosing a state of a diagnosis target that operates with a three-phase AC power supply, and acquires an instantaneous value of physical data at the same time in a plurality of phases of the three-phase AC. And the conversion unit that discretizes the instantaneous value acquired by the acquisition unit, and the discrete density of the instantaneous value of each phase of the physical data of each phase from the discrete value obtained by discretization of the conversion unit, the appearance density of the combination Based on the accumulating unit to be obtained, the accumulating unit that accumulates the appearance density data indicating the appearance density for each combination obtained by the accumulating unit, and the diagnosis that diagnoses the state of the diagnosis target based on the appearance density data accumulated in the accumulating unit A section.
 本発明の1つの態様によれば、電流測定のサンプリング速度およびデータ量を抑え、三相交流で動作する診断対象の状態を効率よく診断することができる。 According to one aspect of the present invention, it is possible to efficiently diagnose the state of a diagnosis target that operates with three-phase alternating current while suppressing the sampling speed and data amount of current measurement.
診断装置の比較例のブロック図である。It is a block diagram of the comparative example of a diagnostic apparatus. 実施例1による診断装置のブロック図である。1 is a block diagram of a diagnostic device according to Embodiment 1. FIG. 図2に示した変換部における離散化により、蓄積部に蓄積されるデータ量を示す図である。It is a figure which shows the data amount accumulate | stored in a storage part by the discretization in the conversion part shown in FIG. U相電流の基本波周波数50Hzから1Hz離れた周波数にスペクトルが現れた場合の電流波形を示す図である。It is a figure which shows a current waveform in case a spectrum appears in the frequency 1Hz away from the fundamental frequency 50Hz of U phase current. 図4に示した電流波形によって生じるうねり波形を示す図である。FIG. 5 is a diagram showing a swell waveform generated by the current waveform shown in FIG. 4. 正常状態のU相の電流波形を示す図である。It is a figure which shows the current waveform of the U phase of a normal state. 正常状態のW相の電流波形を示す図である。It is a figure which shows the current waveform of the W phase of a normal state. 側帯波が発生した場合におけるU相の電流波形を示す図である。It is a figure which shows the current waveform of the U phase in case a sideband wave generate | occur | produces. 側帯波が発生した場合におけるW相の電流波形を示す図である。It is a figure which shows the current waveform of the W phase in case a sideband wave generate | occur | produces. 図6~9に示した電流波形による行列Aおよび行列Bの、正常状態として定義した行列Cに対する異常度を解析した結果を示す図である。FIG. 10 is a diagram illustrating a result of analyzing the degree of abnormality of the matrix A and the matrix B based on the current waveforms illustrated in FIGS. 6 to 9 with respect to the matrix C defined as a normal state. 実施例2による診断装置のブロック図である。It is a block diagram of the diagnostic apparatus by Example 2. 制御指令Aで取得した正常状態の回転機の電流波形から得られた行列Aの異常度を示す図である。It is a figure which shows the abnormality degree of the matrix A obtained from the current waveform of the rotary machine of the normal state acquired by the control command A. 実施例3による診断装置のブロック図である。It is a block diagram of the diagnostic apparatus by Example 3. FIG. 実施例4による診断装置のブロック図である。It is a block diagram of the diagnostic apparatus by Example 4. 実施例5による診断装置のブロック図である。It is a block diagram of the diagnostic apparatus by Example 5. FIG.
 以下に、本発明を実施形態について複数の実施例を挙げて図面を参照して説明する。なお、下記実施形態はあくまでも説明のための例示であり、本発明が下記実施形態に限定されるものではない。 In the following, the present invention will be described with reference to the drawings by way of a plurality of examples. The following embodiments are merely illustrative examples, and the present invention is not limited to the following embodiments.
 電動機(モータ)や発電機などの回転機と、回転機に付帯するケーブルおよび電力変換装置を備える回転機システムの故障においては、故障の発生部位や、その故障の要因が多岐にわたる。例えば、絶縁劣化や軸受劣化、短絡、断線、浸水などが考えられる。また、電動機は過酷な環境で長期間設置されることも多く、設置条件に応じた診断技術が必要となる。 In the failure of a rotating machine system including a rotating machine such as an electric motor (motor) or a generator, a cable attached to the rotating machine, and a power conversion device, the location of the failure and the cause of the failure are diverse. For example, insulation deterioration, bearing deterioration, short circuit, disconnection, water immersion, etc. can be considered. Moreover, the electric motor is often installed for a long time in a harsh environment, and a diagnostic technique according to the installation condition is required.
 図1は、診断装置の比較例を示す図である。本比較例は図1に示すように、ケーブル2を介して電源1に接続された回転機3の状態を診断するものである。本比較例の診断装置では、電流計測部4において、ケーブル2に取り付けられた電流センサ10a,10bを介して二相の電流データを取得し、取得した電流データを、フーリエ変換で得たスペクトルの特定周波数スペクトルの値として蓄積部8に蓄積した後、診断部9において、蓄積部8に蓄積された電流データに基づいて、回転機3の状態を診断している。 FIG. 1 is a diagram showing a comparative example of a diagnostic device. In this comparative example, as shown in FIG. 1, the state of the rotating machine 3 connected to the power source 1 via the cable 2 is diagnosed. In the diagnostic device of this comparative example, the current measuring unit 4 acquires two-phase current data via the current sensors 10a and 10b attached to the cable 2, and the acquired current data is obtained from the spectrum obtained by Fourier transform. After being stored in the storage unit 8 as a value of the specific frequency spectrum, the diagnosis unit 9 diagnoses the state of the rotating machine 3 based on the current data stored in the storage unit 8.
 このように構成された診断装置においては、フーリエ変換により特定周波数スペクトルの変化を計測しているため、一定のサンプリング速度で連続した計測を実施する必要がある。そのため、計測したデータを一時的に蓄積するためのメモリの容量を大きくするか、データを保存する装置との通信速度を上げる必要があり、高価な装置が必要である。 In the diagnostic apparatus configured as described above, since the change in the specific frequency spectrum is measured by Fourier transform, it is necessary to perform continuous measurement at a constant sampling rate. Therefore, it is necessary to increase the capacity of the memory for temporarily storing the measured data or increase the communication speed with the device for storing the data, and an expensive device is required.
 また、回転機3の故障によっては短時間のみ出現する現象が存在するため、それによる状態を逃さないために高いサンプリング速度で長時間の計測を行うと、蓄積されるデータ量が膨大となり、高価なデータ保存端末が必要であった。また、蓄積されるデータ量が膨大となると、データをクラウドやローカルの端末に送信するためには、大容量通信に対応した高価な通信機器が必要である。 In addition, since there is a phenomenon that appears only for a short time depending on the failure of the rotating machine 3, if a long time measurement is performed at a high sampling rate in order not to miss the state caused by the failure, the amount of accumulated data becomes enormous and expensive. Data storage terminal was necessary. In addition, when the amount of accumulated data becomes enormous, an expensive communication device that supports large-capacity communication is required to transmit data to the cloud or a local terminal.
 発明者らは、回転機の負荷電流値のうち、二相分の断続的なセンサ値を一相毎に計測ビット数で離散化処理し、各相の瞬時値の組み合わせと、その出現密度により診断を行うことを検討した。 The inventors discretize the intermittent sensor values for two phases among the load current values of the rotating machine with the number of measurement bits for each phase, and depending on the combination of instantaneous values of each phase and their appearance density Considered to make a diagnosis.
 三相の回転機となる三相モータから取得される電流センサデータは互いに120度のずれがあるため、二相の電流センサデータを組み合わせた場合、リサジュー図形においては傾いた楕円形状となる。二相の電流が理想的な完全な連続的な正弦波データである場合、1周期目と2周期目の楕円形状は完全に重なることに発明者らは着目した。実測波形では理想的な正弦波からずれが生じ、さらにサンプリング間隔が有限の値であるため、全く同じ位相の点を計測する確率は低くなるが、断続的に取得される所定時間で得られる多周期分のデータを重ねあわせ、瞬時値の組み合わせとその出現密度を蓄積することで、二相の波形を時系列データとして蓄積するよりもデータ量を削減した形でデータを蓄積することができる。また、多周期分のデータを重ね合わせることで、サンプリングの間隔が一定でなくても、またサンプリングの速度が遅くても、瞬時値の組み合わせとその出現密度とは、診断対象の運転条件が変わらなければ一致し、高価なデータロガーや高価なデータ保存装置などの設備を省略することが可能となる。ここで重要な点は、一相目と二相目の時刻同期性であり、一相目と二相目が同時または、任意に設計された一定の間隔である必要があり、一相目と二相目の間の計測間隔のゆらぎは診断精度の低下に直結する。同時または一定の間隔での計測を行うためには、マイコン等のリアルタイム性に優れるデバイスを使用することで実現できる。 Since current sensor data acquired from a three-phase motor that is a three-phase rotating machine has a 120 degree deviation from each other, when two-phase current sensor data is combined, the Lissajous figure has an inclined elliptical shape. The inventors have noted that when the two-phase current is ideal perfect continuous sine wave data, the elliptical shapes of the first period and the second period completely overlap. The measured waveform deviates from the ideal sine wave, and the sampling interval is a finite value. Therefore, the probability of measuring a point with exactly the same phase is low, but it can be obtained at a predetermined time obtained intermittently. By accumulating the data for the period and accumulating the combination of instantaneous values and their appearance density, the data can be accumulated in a form that reduces the data amount compared to accumulating the two-phase waveform as time series data. In addition, by superimposing data for multiple cycles, even if the sampling interval is not constant or the sampling speed is slow, the combination of instantaneous values and the appearance density change the operating conditions of the diagnosis target. If there is no match, the equipment such as an expensive data logger and an expensive data storage device can be omitted. The important point here is the time synchronism of the first phase and the second phase. The first phase and the second phase need to be the same time or at an arbitrarily designed constant interval. The fluctuation of the measurement interval between the second phase directly leads to a decrease in diagnostic accuracy. In order to perform measurement at the same time or at regular intervals, it can be realized by using a device having excellent real-time characteristics such as a microcomputer.
 本実施形態の診断装置は、三相交流電源で動作する診断対象の状態を診断する診断装置であって、三相交流の複数相における同時刻の物理データの瞬時値を取得する取得部と、取得部で取得された瞬時値を離散化する変換部と、変換部の離散化による離散値から、各相の物理データの瞬時値の離散値の組み合わせ毎の該組み合わせの出現密度を求める積算部と、積算部で求められた、組み合わせ毎の出現密度を示す出現密度データを蓄積する蓄積部と、蓄積部に蓄積された出現密度データに基づいて、診断対象の状態を診断する診断部とを備えるものである。 The diagnostic device of the present embodiment is a diagnostic device for diagnosing the state of a diagnosis target that operates with a three-phase AC power source, and acquires an instantaneous value of physical data at the same time in a plurality of phases of a three-phase AC; A conversion unit that discretizes the instantaneous value acquired by the acquisition unit, and an integration unit that obtains the appearance density of the combination for each combination of discrete values of the instantaneous value of the physical data of each phase from the discrete value obtained by discretization of the conversion unit And an accumulating unit that accumulates appearance density data indicating the appearance density for each combination obtained by the integrating unit, and a diagnosis unit that diagnoses the state of the diagnosis target based on the appearance density data accumulated in the accumulating unit. It is to be prepared.
 また、上記のように構成された診断装置は、回転機システムに組み込むことも可能である。特に、電力変換装置に回転機制御のために備えられている電流センサや電流計測部等を共用することで、部品点数を削減することが可能となり好ましい。さらに、電力変換装置には複数の回転機を接続していてもよい。 Also, the diagnostic device configured as described above can be incorporated into a rotating machine system. In particular, it is preferable to share a current sensor, a current measurement unit, and the like that are provided for controlling the rotating machine in the power converter, because the number of parts can be reduced. Further, a plurality of rotating machines may be connected to the power conversion device.
 さらに、上記電流センサや電流計測部にて計測される電流値の周波数条件ごとに電流データを分類し、評価を行うことにより、回転機の駆動条件が変化する場合であっても、適切に回転機システムの状態を診断することが可能となる。 Furthermore, by classifying and evaluating the current data for each frequency condition of the current value measured by the current sensor or current measuring unit, even if the driving condition of the rotating machine changes, the rotation can be performed properly. It is possible to diagnose the state of the machine system.
 以下に、上述した診断装置の、より具体的な実施例について説明する。 Hereinafter, a more specific embodiment of the above-described diagnostic apparatus will be described.
 図2は、実施例1による診断装置のブロック図である。 FIG. 2 is a block diagram of the diagnostic apparatus according to the first embodiment.
 本実施例における診断装置は図2に示すように、ケーブル2を介して電源1に電気的に接続された診断対象となる回転機3の状態を診断するものであって、電流計測部4と、変換部5と、計測ビット数入力部6と、積算部7と、蓄積部8と、診断部9とを有している。診断装置はプロセッサおよびメモリを有し、プロセッサがメモリを利用して、上記各部の動作を規定するスフトウェアプログラムを実行するものであってもよい。 As shown in FIG. 2, the diagnostic apparatus in the present embodiment diagnoses the state of the rotating machine 3 to be diagnosed that is electrically connected to the power source 1 via the cable 2. A conversion unit 5, a measurement bit number input unit 6, an integration unit 7, an accumulation unit 8, and a diagnosis unit 9. The diagnostic device may include a processor and a memory, and the processor may use the memory to execute a software program that defines the operation of each unit.
 電源1からは三相交流電圧が出力されている。三相交流電圧の出力は、モータの回転数やトルクが所望の値となるようにインバータのスイッチング素子を動作させるタイミングを調整し制御されている場合と、商用電源を直接接続する場合の二種類が考えられる。 A three-phase AC voltage is output from the power source 1. There are two types of three-phase AC voltage output: when the inverter switching element is operated and controlled so that the motor speed and torque are at the desired values, and when the commercial power supply is connected directly Can be considered.
 電流計測部4は取得部と言ってもよい。電流計測部4は、ケーブル2に取り付けられた電流センサ10a,10bを介して、ケーブル2を流れる三相交流の複数相における同時刻の物理データとなる電流データの瞬時値を取得する。この際、電流計測部4は、任意の間隔で任意の期間、複数の相間の時刻の同期性を保って電流データの瞬時値を取得することになる。 The current measurement unit 4 may be called an acquisition unit. The current measuring unit 4 obtains instantaneous values of current data as physical data at the same time in a plurality of three-phase alternating currents flowing through the cable 2 via the current sensors 10 a and 10 b attached to the cable 2. At this time, the current measuring unit 4 acquires an instantaneous value of current data while maintaining time synchronism between a plurality of phases at an arbitrary interval for an arbitrary period.
 変換部5は、電流計測部4にて取得された瞬時値を、計測ビット数入力部6にて設定された設定ビット数Aで離散化する。 The conversion unit 5 discretizes the instantaneous value acquired by the current measurement unit 4 with the set bit number A set by the measurement bit number input unit 6.
 積算部7は、変換部5の離散化による離散値から、行と列がそれぞれ相に対応する2A(2のA乗)×2A(2のA乗)のサイズを有し、行と列の各成分が、各相の電流データの瞬時値の離散値の組み合わせの出現密度を表す行列を生成することで、各相の電流データの瞬時値の離散値の組み合わせ毎の組み合わせの出現密度を求める。 Integrating section 7, the discrete values by discretization of the conversion unit 5, (power of 2 A) 2 A row and column corresponding to a respective phase × 2 has a size of A (2 A squared), and line Each component of the column generates a matrix that represents the density of discrete combinations of instantaneous values of current data of each phase, thereby generating the density of combinations of combinations of discrete values of instantaneous values of current data of each phase. Ask for.
 蓄積部8は、積算部7で求められた、組み合わせ毎の出現密度を示す出現密度データを蓄積する。 The accumulating unit 8 accumulates the appearance density data indicating the appearance density for each combination obtained by the accumulating unit 7.
 診断部9は、蓄積部8に蓄積された出現密度データに基づいて、回転機3や回転機3に接続された電力変換装置等の周辺機器の状態を診断する。 The diagnosis unit 9 diagnoses the state of peripheral devices such as the rotating machine 3 and the power converter connected to the rotating machine 3 based on the appearance density data stored in the storage unit 8.
 以下に、上記のように構成された診断装置による回転機3の状態を診断する診断方法について説明する。 Hereinafter, a diagnostic method for diagnosing the state of the rotating machine 3 by the diagnostic device configured as described above will be described.
 まず、電流計測部4において、ケーブル2に取り付けられた電流センサ10a,10bを介して、ケーブル2を流れる三相交流のうちの二相における電流データを取得する。その際、電流計測部4は、任意の間隔で任意の期間、複数の相間の時刻の同期性を保って電流データの瞬時値を取得することになるが、電流計測部4で取得する電流センサ10a,10bの電流データは必ずしも一定のサンプリング間隔である必要も無く、また、必ずしも連続した計測である必要は無い。また、電流センサ10aを介した電流データの取得と電流センサ10bを介した電流データの取得との間隔が、あるばらつきを許容した一定であることが好ましい。リアルタイム処理に優れる計測装置を適用することで、あるばらつきを許容した一定のデータ取得間隔とすることができる。そのような計測装置として、例えばマイコンを用いた計測装置を用いることができる。 First, the current measurement unit 4 acquires current data in two phases of the three-phase alternating current flowing through the cable 2 via the current sensors 10 a and 10 b attached to the cable 2. At that time, the current measuring unit 4 acquires an instantaneous value of current data while maintaining time synchronism between a plurality of phases at an arbitrary interval for an arbitrary period. The current sensor acquired by the current measuring unit 4 The current data 10a and 10b do not necessarily have to be a constant sampling interval, and need not necessarily be continuous measurements. Further, it is preferable that the interval between the acquisition of the current data via the current sensor 10a and the acquisition of the current data via the current sensor 10b is constant allowing for some variation. By applying a measurement device that excels in real-time processing, a certain data acquisition interval that allows a certain variation can be obtained. As such a measuring device, for example, a measuring device using a microcomputer can be used.
 また、電流センサ10aを介した電流データの取得と電流センサ10bを介した電流データの取得との間隔を一定とすることで、連続した計測である必要が無くなる。例えば、マイコンのメモリに一定量のデータを蓄積した後に、蓄積したデータを記憶装置に格納し、その後、マイコンのメモリをクリアしてデータ蓄積を再開するといった電流計測部4の設計が可能となり、汎用の電流センサやメモリを利用したシステムとすることが可能となる。 Further, by making the interval between the acquisition of current data via the current sensor 10a and the acquisition of current data via the current sensor 10b constant, there is no need for continuous measurement. For example, the current measuring unit 4 can be designed such that after a certain amount of data is accumulated in the memory of the microcomputer, the accumulated data is stored in a storage device, and then the memory of the microcomputer is cleared and data accumulation is resumed. A system using a general-purpose current sensor or memory can be provided.
 次に、変換部5において、電流計測部4にて取得された瞬時値を、計測ビット数入力部6にて設定された設定ビット数Aで離散化し、積算部7において、変換部5の離散化による離散値から、二相の電流データの瞬時値の離散値の組み合わせ毎の該組み合わせの出現密度を求め、この組み合わせ毎の出現密度を示す出現密度データが蓄積部8に蓄積されることになる。この際、変換部5において、二相の電流データの瞬時値を所定のビット数Aで離散化し、積算部7において、行と列がそれぞれ相に対応する2A(2のA乗)×2A(2のA乗)のサイズを有し、行と列の各成分が、各相の電流データの瞬時値の離散値の組み合わせの出現密度を表す行列を生成することで出願密度を求めれば、各相の電流データのデータ量を2A×2Aのサイズに圧縮することができる。 Next, the conversion unit 5 discretizes the instantaneous value acquired by the current measurement unit 4 with the set bit number A set by the measurement bit number input unit 6, and the integration unit 7 determines the discrete value of the conversion unit 5. The appearance density of each combination of the discrete values of the instantaneous values of the two-phase current data is obtained from the discrete values obtained by the conversion, and the appearance density data indicating the appearance density for each combination is stored in the storage unit 8. Become. At this time, the conversion unit 5 discretizes the instantaneous value of the two-phase current data with a predetermined number of bits A, and the integration unit 7 has 2 A (2 to the power of 2) × 2 in which each row and column corresponds to a phase. If the application density is determined by generating a matrix having a size of A (2 to the power of A) and each component in the row and column representing the appearance density of a combination of discrete values of instantaneous values of current data of each phase The amount of current data for each phase can be compressed to a size of 2 A × 2 A.
 ここで、回転機3に対する制御パターンが変化せず回転機3が一定の基本波周波数で動作している場合において理想的な正弦波電流が回転機3に流れている場合における離散化によるデータ量について説明する。なお、データロガーの計測ビット数は8bitとした。 Here, when the control pattern for the rotating machine 3 does not change and the rotating machine 3 operates at a constant fundamental frequency, the amount of data by discretization when an ideal sine wave current flows through the rotating machine 3 is obtained. Will be described. Note that the number of measurement bits of the data logger was 8 bits.
 図3は、図2に示した変換部5における離散化により、蓄積部8に蓄積されるデータ量を示す図である。 FIG. 3 is a diagram showing the amount of data stored in the storage unit 8 by discretization in the conversion unit 5 shown in FIG.
 サンプリング速度200Hzで200秒間、二相の電流を計測した場合のデータ量を1とする。 Suppose the data amount is 1 when measuring two-phase current for 200 seconds at a sampling rate of 200 Hz.
 手法1として、電流計測部4にて取得された電流データとなる波形を、変化部5において計測ビット数入力部6で設定されたビット数8で離散化し、積算部7において、28×28のサイズの行列の各行列要素に8bit、つまり1から257で離散化された電流値の出現密度を求めた。例えば、200秒間の計測時間において、電流センサ10aの離散化された電流値が257、電流センサ10bの離散化された電流値が257である条件の回数を、計測点数の40000点で割った値を求めた。200秒間の計測は連続している必要はなく、回転機3に対する制御パターンが変化せず、回転機3が一定の基本波周波数で動作していれば、何度かに分割して計測することができる。これにより、メモリ量の少ない低速な計測端末でも診断に必要なデータを取得することができる。 As technique 1, the waveform that is current data acquired by the current measurement unit 4 is discretized by the number of bits 8 set by the measurement bit number input unit 6 in the change unit 5, and the integration unit 7 sets 28 × 28 The appearance density of current values discretized by 8 bits, that is, 1 to 257, was obtained for each matrix element of the size matrix. For example, in a measurement time of 200 seconds, a value obtained by dividing the number of times that the discretized current value of the current sensor 10a is 257 and the discretized current value of the current sensor 10b is 257 by 40000 measurement points. Asked. The measurement for 200 seconds does not need to be continuous, and if the control pattern for the rotating machine 3 does not change and the rotating machine 3 operates at a constant fundamental frequency, the measurement should be divided several times. Can do. As a result, data necessary for diagnosis can be acquired even with a low-speed measuring terminal with a small memory capacity.
 この場合、データ量は0.81となり、19%のデータ量の削減を実現できた。これにより、メモリ量の少ない低速な計測端末でも診断に必要なデータを取得することができる。本実施例では、行列の各行列要素に計測点数で割った値を格納したが、出現回数を保存し、それとは別に、出現回数を保存したファイルと紐付けた形で計測点数を保存しても良い。また、計測を何度かに分ける場合においては特に、出現回数と計測点数を別々に保存することで、積算による誤差蓄積を低減することができる。 In this case, the data amount was 0.81, and the data amount was reduced by 19%. As a result, data necessary for diagnosis can be acquired even with a low-speed measuring terminal with a small memory capacity. In this example, the value divided by the number of measurement points is stored in each matrix element of the matrix, but the number of appearances is saved, and separately, the number of measurement points is saved in a form linked to the file that stores the number of appearances. Also good. In particular, when measuring is divided into several times, error accumulation due to integration can be reduced by storing the number of appearances and the number of measurement points separately.
 また手法2として、予め28×28のサイズの行列を用意するのではなく、(電流センサ10aの離散化された電流値1、電流センサ10aの離散化された電流値1、出現回数)、(電流センサ10aの離散化された電流値1、電流センサ10aの離散化された電流値2、出現回数)、・・・の形式でデータを保存した。手法2においては、最終的に得られるデータが、手法1の行列要素の値が0の成分を除いたデータとなり、空白のセルを用意する必要が無くなるため、蓄積部8には、行列のうちゼロ以外の数値が格納された成分の値のみが蓄積されることとなり、蓄積するデータ量をさらに低減することができる。なお、0の成分を除くタイミングは特に限定されない。 Also, as a technique 2, a 28 × 28 size matrix is not prepared in advance, but (the current value 1 of the current sensor 10a, the current value 1 of the current sensor 10a, the number of appearances), ( Data was stored in the form of a discretized current value 1 of the current sensor 10a, a discretized current value 2 of the current sensor 10a, the number of appearances),. In Method 2, the data finally obtained is data excluding the component of Method 1 whose matrix element value is 0, and it is not necessary to prepare a blank cell. Only the value of the component in which a numerical value other than zero is stored is accumulated, and the amount of accumulated data can be further reduced. The timing for excluding the 0 component is not particularly limited.
 データの蓄積方法としては、(電流センサ10aの離散化された電流値1、電流センサ10aの離散化された電流値1、出現回数)、(電流センサ10aの離散化された電流値1、電流センサ10aの離散化された電流値2、出現回数)、・・・の形式でデータを蓄積してもよいし、一旦、手法1の行列を構築した後に、(電流センサ10aの離散化された電流値1、電流センサ10aの離散化された電流値1、出現回数)、(電流センサ10aの離散化された電流値1、電流センサ10aの離散化された電流値2、出現回数)、・・・の形式に変換してもよい。 As a data accumulation method, (discrete current value 1 of current sensor 10a, discretized current value 1 of current sensor 10a, number of appearances), (discrete current value 1 of current sensor 10a, current) The data may be stored in the form of the discretized current value 2 of the sensor 10a, the number of appearances),... Once the matrix of the method 1 is constructed, and then the discretization of the current sensor 10a is performed. Current value 1, discrete current value 1 of current sensor 10a, number of appearances), (discrete current value 1 of current sensor 10a, discrete current value 2 of current sensor 10a, number of appearances),・ You may convert to the form
 その後、診断部9において、蓄積部8に蓄積された出現密度データに基づいて、回転機3の状態を診断する。 Thereafter, the diagnosis unit 9 diagnoses the state of the rotating machine 3 based on the appearance density data accumulated in the accumulation unit 8.
 ここで、回転機3に対する制御パターンが変化せず回転機3が一定の基本波周波数で動作している場合において何らかの原因で特定の周波数にスペクトルが発生した場合における診断部9の診断方法について説明する。 Here, the diagnosis method of the diagnosis unit 9 when a spectrum is generated at a specific frequency for some reason when the control pattern for the rotating machine 3 does not change and the rotating machine 3 operates at a constant fundamental frequency will be described. To do.
 図4は、U相電流の基本波周波数50Hzから1Hz離れた周波数にスペクトルが現れた場合の電流波形を示す図であり、図5は、図4に示した電流波形によって生じるうねり波形を示す図である。 4 is a diagram showing a current waveform when a spectrum appears at a frequency 1 Hz away from the fundamental frequency 50 Hz of the U-phase current, and FIG. 5 is a diagram showing a swell waveform generated by the current waveform shown in FIG. It is.
 例えば、軸受劣化において劣化により基本波周波数の側帯波が発生し、それにより、図4に示すように、U相電流の基本波周波数50Hzから1Hz離れた周波数に何らかの原因でスペクトルが現れた場合、図5に示すように、U相電流は1Hz周期のうねりを有する波形として現れる。 For example, when a sideband of the fundamental frequency is generated due to deterioration in bearing deterioration, and as a result, as shown in FIG. 4, a spectrum appears for some reason at a frequency 1 Hz away from the fundamental frequency of the U-phase current, 50 Hz, As shown in FIG. 5, the U-phase current appears as a waveform having a 1 Hz period undulation.
 図1に示した診断装置において、この波形から精度良く50Hzと51Hzの成分を分離するには、ケーブル2に流れる電流を周波数200Hzで計測した場合、少なくとも200秒間、20000点のデータを連続的に計測する必要がある。さらに、側帯波の出現する頻度は劣化進行に伴い増加し、劣化初期では頻度が低いため、長時間のデータ計測が必要となる。したがって、精度良く分離するためには特殊かつ高価な計測装置を適用する必要があった。 In the diagnostic apparatus shown in FIG. 1, in order to accurately separate components of 50 Hz and 51 Hz from this waveform, when the current flowing through the cable 2 is measured at a frequency of 200 Hz, data of 20000 points are continuously obtained for at least 200 seconds. It is necessary to measure. Furthermore, the frequency of appearance of sidebands increases with the progress of deterioration, and the frequency is low at the initial stage of deterioration, so that it is necessary to measure data for a long time. Therefore, it is necessary to apply a special and expensive measuring device in order to separate with high accuracy.
 一方、図2に示した診断装置においては、電流計測部4において、二相以上の電流値を、任意の間隔で任意の期間、相間の時刻同期性を保って取得し、変換部5において、二相以上の電流データを計測ビット数入力部6にて設定されたビット数で相毎に離散化し、積算部7において、離散化された電流データの出現回数または出現密度を、各行列要素に有する行列に変換することで求め、その後、診断部9において、蓄積部8に出願密度データとして蓄積されたデータを比較し、その変化より回転機3または回転機3に接続された電力変換装置等の周辺機器の状態を診断することで、サンプリング速度、データ量を上げずとも、回転機3の診断を可能としている。 On the other hand, in the diagnostic apparatus shown in FIG. 2, the current measurement unit 4 acquires current values of two or more phases while maintaining time synchronism between phases at an arbitrary interval, and at the conversion unit 5, The current data of two or more phases is discretized for each phase with the number of bits set in the measurement bit number input unit 6, and the accumulating unit 7 sets the number of appearances or the appearance density of the discretized current data in each matrix element. Then, the diagnosis unit 9 compares the data accumulated as application density data in the storage unit 8, and the rotation unit 3 or the power conversion device connected to the rotary unit 3 or the like from the change. By diagnosing the state of the peripheral devices, it is possible to diagnose the rotating machine 3 without increasing the sampling speed and the data amount.
 また、高周波の情報を取得するためには、電力変換装置のスイッチングのタイミングと非同期で計測することが望ましい。 Also, in order to acquire high frequency information, it is desirable to measure asynchronously with the switching timing of the power converter.
 なお、サンプリング速度を遅くする場合は、電流計測部4において、ケーブル2を流れる電流を電流センサ10a,10bを介して基本波周波数とは非同期で計測することが望ましい。具体的には、基本波の整数倍の周期を有するサンプリング速度では、常にある特定位相のみの値を取得するため、ある特定位相にのみ変化が現れる劣化の場合に失報の虞がある。従って、サンプリング速度が基本波の周期の整数倍とは異なる周波数であることが望ましい。その結果、高いサンプリング速度でデータを取得した場合と同様の行列を取得することができる。 When the sampling rate is decreased, it is desirable that the current measurement unit 4 measures the current flowing through the cable 2 asynchronously with the fundamental frequency via the current sensors 10a and 10b. Specifically, at a sampling rate having a period that is an integral multiple of the fundamental wave, a value of only a specific phase is always obtained, and there is a risk of a failure in the case of deterioration in which a change appears only in a specific phase. Therefore, it is desirable that the sampling rate is a frequency different from an integral multiple of the fundamental wave period. As a result, it is possible to acquire the same matrix as when data is acquired at a high sampling rate.
 図6は、正常状態のU相の電流波形を示す図であり、図7は、正常状態のW相の電流波形を示す図である。また、図8は、側帯波が発生した場合におけるU相の電流波形を示す図であり、図9は、側帯波が発生した場合におけるW相の電流波形を示す図である。なお、サンプリング速度は200Hzでデータ計測時間100秒の内、1秒間のデータを拡大して示している。 FIG. 6 is a diagram illustrating a U-phase current waveform in a normal state, and FIG. 7 is a diagram illustrating a W-phase current waveform in a normal state. FIG. 8 is a diagram showing a U-phase current waveform when a sideband wave is generated, and FIG. 9 is a diagram showing a W-phase current waveform when a sideband wave is generated. The sampling rate is 200 Hz, and the data for 1 second is enlarged in the data measurement time of 100 seconds.
 うねりのない正常状態の50Hzの正弦波においては、U相の電流波形は図6に示すようになり、W相の電流波形は図7に示すようになり、U相とW相の電流は、互いに120度位相がずれている。 In a normal 50 Hz sine wave without undulation, the U-phase current waveform is as shown in FIG. 6, the W-phase current waveform is as shown in FIG. 7, and the U-phase and W-phase currents are: They are 120 degrees out of phase with each other.
 図6、図7、図8及び図9に示した波形が電流計測部4にて計測、取得された場合、上述した手法1の説明で示したように、変換部5において、計測された電流波形を、計測ビット数入力部6で設定したビット数8で離散化し、積算部7において、28×28のサイズの行列の各行列要素に8bit、つまり1から257で離散化された電流値の出現密度を行列Aと行列Bにそれぞれ格納した。なお、行列Aは、図6及び図7に示した波形によるものであり、正常状態の行列に対応し、行列Bは、図8及び図9に示した波形によるものであり、劣化状態の行列に対応する。 When the waveforms shown in FIGS. 6, 7, 8, and 9 are measured and acquired by the current measuring unit 4, the current measured by the converting unit 5 as shown in the description of the method 1 described above. The waveform is discretized with the number of bits 8 set by the measurement bit number input unit 6, and the accumulating unit 7 converts the current value discretized by 8 bits, that is, 1 to 257 into each matrix element of a 28 × 28 size matrix. Appearance densities were stored in matrix A and matrix B, respectively. The matrix A is based on the waveforms shown in FIGS. 6 and 7, and corresponds to the normal state matrix, and the matrix B is based on the waveforms shown in FIGS. Corresponding to
 診断部9においては、行列Aおよび行列Bを、予め学習により正常状態として設定された行列Cと比較し、行列Aおよび行列Bが行列Cに対してどれだけ近いかを計算することで正常状態からのずれ、つまり異常の度合いを調べることができる。劣化進行に伴い、電流値のばらつきが大きくなり、それに伴い出現密度が高い領域の出現密度が下がり、出現密度が低い領域に分配されるようになる。これにより、行列における各行列要素の値が変化し、値が0となる行列要素が減り、正常状態として定義した行列から変化する。 In the diagnosis unit 9, the matrix A and the matrix B are compared with the matrix C set in advance as a normal state by learning, and the normal state is calculated by calculating how close the matrix A and the matrix B are to the matrix C. The degree of deviation, that is, the degree of abnormality can be examined. As the deterioration progresses, the variation of the current value increases, and accordingly, the appearance density of the region having a high appearance density is lowered and distributed to the region having a low appearance density. As a result, the value of each matrix element in the matrix changes, the number of matrix elements having a value of 0 decreases, and changes from the matrix defined as the normal state.
 診断部9は、上記診断を行った後、診断結果を出力する。診断結果をユーザーに伝える手段としては適宜選択可能であり、ユーザーへの伝達方法としては、ディスプレイによる表示の他、ランプの点灯、電子メールでの通知等が挙げられる。その内容も、(1)診断対象の行列を画面に表示してユーザーに対応有無を判断させる方法、(2)診断対象の行列の差異を何らかの方法で数値化しユーザーに伝える方法、(3)予め定めた閾値を超えた場合にユーザー通知する方法、等が考えられる。 The diagnosis unit 9 outputs the diagnosis result after performing the above diagnosis. Means for transmitting the diagnosis result to the user can be selected as appropriate, and methods for transmitting to the user include display on the display, lighting of the lamp, notification by e-mail, and the like. The contents are also (1) a method for displaying a matrix to be diagnosed on the screen and allowing the user to determine whether or not it is compatible, (2) a method for quantifying the difference in the matrix to be diagnosed in some way and telling the user, (3) A method of notifying the user when a predetermined threshold is exceeded can be considered.
 ここで、上記(2)の診断対象の行列の差異を数値化する方法としては、機械学習の適用が考えられる。機械学習のアルゴリズムとしては、診断対象の行列の差異が明確になるものを選べば良く、例えば、正常状態として定義した行列Cに対する診断対象の行列AのBhattacharyya係数(Bhattacharyya距離)Zは、行列Aの行列要素をAi,jとし、行列Cの行列要素をCi,jとした場合、以下の式で定義される。 Here, application of machine learning can be considered as a method of quantifying the difference of the matrix to be diagnosed in (2) above. The machine learning algorithm may be selected so that the difference in the matrix to be diagnosed becomes clear. For example, the Bhattacharyya coefficient (Bhattacharyya distance) Z of the matrix A to be diagnosed with respect to the matrix C defined as a normal state is the matrix A Where A i, j is the matrix element and C i, j is the matrix element of the matrix C, the following equation is defined.
Figure JPOXMLDOC01-appb-M000001
 上記式において、Bhattacharyya係数Zが大きければ、正常状態と離れている、つまり劣化が進行していると診断でき、係数Zが小さければ、正常状態と診断することができる。Bhattacharyya係数Zは異常度を表していると言える。このように、蓄積部8に行列のデータが保持され、診断部9において、蓄積部に保持された行列と、正常状態を示すものとして予め定められた基準行列とを比較することにより診断対象の状態の正常性を診断することで、正常状態とどの程度異なる状態となっているかを容易に知得し、正常性を診断することができる。
Figure JPOXMLDOC01-appb-M000001
In the above equation, if the Bhattacharyya coefficient Z is large, it can be diagnosed that it is far from the normal state, that is, the deterioration is progressing, and if the coefficient Z is small, it can be diagnosed that the normal state. It can be said that the Bhattacharyya coefficient Z represents the degree of abnormality. In this way, the matrix data is held in the storage unit 8, and the diagnosis unit 9 compares the matrix held in the storage unit with the reference matrix that is predetermined as indicating the normal state. By diagnosing the normality of the state, it is possible to easily know how much the state is different from the normal state and to diagnose the normality.
 ここで、出現回数を各行列要素に格納した行列を用いる場合は、正常状態と診断対象の行列の計測点数を一致させる必要がある。その場合の診断手法としては、局所部分空間法が挙げられる。局所部分空間法は、診断対象の行列の各行列要素に対して、正常状態として定義した行列の行と列で定義される2次元空間のうち最も近い点を2点選び、その2点を結んだ直線と診断対象の点との間の距離で劣化具合を定義する方法である。また、正常値の出現密度を重み付けすることが有効な場合もあり、特に、異常状態と認識できるデータである場合には、正常状態と異常状態の行列が判別しやすいように判別式を調整することが望ましい。 Here, when using a matrix in which the number of appearances is stored in each matrix element, it is necessary to match the number of measurement points of the normal state and the matrix to be diagnosed. In this case, a local subspace method can be cited as a diagnostic technique. In the local subspace method, for each matrix element of the matrix to be diagnosed, two closest points are selected from the two-dimensional space defined by the matrix row and column defined as normal, and the two points are connected. In this method, the degree of deterioration is defined by the distance between the straight line and the point to be diagnosed. In addition, it may be effective to weight the appearance density of normal values, especially when the data can be recognized as an abnormal state, the discriminant is adjusted so that the matrix of the normal state and the abnormal state can be easily distinguished. It is desirable.
 また、局所部分空間法を使用する場合には、診断対象の全ての行列要素について距離を計算して行列の変化を数値化する方法の他、診断対象の全ての点の距離の平均値、特定位相の点のみの距離で数値化する等、電流波形のばらつき誤差に応じて任意の評価手法を選択することができる。また、計算速度を優先したい場合には、ベクトル量子化クラスタリングや、K-meansクラスタリング等のクラスタリング手法を用いることができる。また、大量のデータに基づいて自動的に特徴量を見つける方法である、ディープニューラルネットワークと呼ばれる手法を適用することができる。 In addition, when using the local subspace method, in addition to the method of calculating the distance of all matrix elements to be diagnosed and quantifying the change in the matrix, the average value of the distances of all points to be diagnosed and specifying An arbitrary evaluation method can be selected in accordance with the variation error of the current waveform, such as quantification based on the distance of only the phase point. When priority is given to the calculation speed, a clustering method such as vector quantization clustering or K-means clustering can be used. In addition, a technique called a deep neural network, which is a method for automatically finding feature quantities based on a large amount of data, can be applied.
 図10は、図6、図7、図8および図9に示した電流波形による行列Aおよび行列Bの、正常状態として定義した行列Cに対する異常度を解析した結果を示す図である。 FIG. 10 is a diagram illustrating a result of analyzing the degree of abnormality of the matrix A and the matrix B based on the current waveforms illustrated in FIGS. 6, 7, 8, and 9 with respect to the matrix C defined as a normal state.
 図6および図7に示した電流波形による行列A、並びに、図8および図9に示した電流波形による行列Bは、上述した式によるBhattacharyya距離Zからその異常度を解析することができる。行列AのBhattacharyya距離Zは、図10に示すように、予め設定された閾値を超えていないため、診断部9において正常であると判断されることになる。一方、行列BのBhattacharyya距離Zは、図10に示すように、予め設定された閾値を超えているため、診断部9において異常であると判断されることになる。 The matrix A based on the current waveform shown in FIGS. 6 and 7 and the matrix B based on the current waveform shown in FIGS. 8 and 9 can analyze the degree of abnormality from the Bhattacharyya distance Z according to the above formula. Since the Bhattacharyya distance Z of the matrix A does not exceed a preset threshold as shown in FIG. 10, the diagnosis unit 9 determines that it is normal. On the other hand, the Bhattacharyya distance Z of the matrix B exceeds the preset threshold value as shown in FIG.
 このように、Bhattacharyya距離Zが、予め設定された閾値を超えているかどうかによって、回転機3が故障する前に異常度の増加を検知することが可能となる。 As described above, it is possible to detect an increase in the degree of abnormality before the rotating machine 3 fails depending on whether or not the Bhattacharyya distance Z exceeds a preset threshold value.
 上述したように、各相の電流データの瞬時値の組み合わせの出現密度を積算して蓄積するため、保存するデータ量を抑制することができる。また、各相の電流データの瞬時値の組み合わせの出現密度を積算した積算データに基づいて診断対象となる回転機3の状態を診断するので、高いサンプリング速度で電流データを測定する必要がない。 As described above, since the appearance density of combinations of instantaneous values of current data of each phase is accumulated and accumulated, the amount of data to be stored can be suppressed. Further, since the state of the rotating machine 3 to be diagnosed is diagnosed based on the accumulated data obtained by integrating the appearance density of the combination of instantaneous values of the current data of each phase, it is not necessary to measure the current data at a high sampling rate.
 なお、本実施例では、特定の周波数にスペクトルが発生した場合について説明したが、特定の周波数にスペクトルが発生しない種類の劣化であっても、劣化により回転機3の負荷やインピーダンス変化により電流に何らかの変化が現れるため、図2に示した診断装置および上述した診断方法により異常を検出することができる。特定周波数のスペクトルの変化として現れない劣化としては、具体的には、MCSAで検知可能な特定周波数のピークとして変化が現れる劣化以外の劣化、つまりグリス劣化や絶縁材の熱劣化および吸湿のようなものが想定される。 In the present embodiment, the case where a spectrum is generated at a specific frequency has been described. However, even when the type of deterioration does not generate a spectrum at a specific frequency, the deterioration causes the current to be generated by the load of the rotating machine 3 or the impedance change. Since some change appears, the abnormality can be detected by the diagnostic apparatus shown in FIG. 2 and the diagnostic method described above. Specifically, the deterioration that does not appear as a change in the spectrum of the specific frequency is specifically a deterioration other than the deterioration in which the change appears as a peak of the specific frequency that can be detected by the MCSA, that is, grease deterioration, thermal deterioration of the insulating material, and moisture absorption. Things are assumed.
 また、本実施例の診断装置によれば、回転機3の他、ケーブルや電力変換装置、負荷など、回転機3と電気的または機械的に接続された機器を含むモータシステムの診断も可能である。回転機3と接続された周辺機器を含むモータシステムでは、回転機3以外の周辺機器の故障や劣化であっても、それらの機器のインピーダンスや負荷が変化することで、回転機3に流れる電流が変化するため、本手法により劣化を検知することができる。 In addition, according to the diagnostic device of the present embodiment, it is possible to diagnose a motor system including equipment that is electrically or mechanically connected to the rotating machine 3, such as a cable, a power converter, and a load, in addition to the rotating machine 3. is there. In a motor system including peripheral devices connected to the rotating machine 3, even if a peripheral device other than the rotating machine 3 fails or deteriorates, the current flowing through the rotating machine 3 changes due to the impedance and load of those devices changing. Therefore, it is possible to detect deterioration by this method.
 次に、回転機3に対する制御パターンが変化する場合について説明する。回転機3に対する制御パターンが変化した場合は、回転機3の基本波周波数やキャリア周波数等が変化するため、図1に示した診断装置ではこれを異常と診断する場合があった。また、制御パターンが変化した状態も含めて正常状態として学習させると、劣化による変化を見逃し失報する場合があった。従って、制御パターン毎に正常性を診断することが望ましい。 Next, the case where the control pattern for the rotating machine 3 changes will be described. When the control pattern for the rotating machine 3 changes, the fundamental frequency, the carrier frequency, and the like of the rotating machine 3 change, so the diagnosis apparatus shown in FIG. 1 sometimes diagnoses this as abnormal. Further, when learning is performed as a normal state including a state in which the control pattern is changed, a change due to deterioration may be overlooked and reported. Therefore, it is desirable to diagnose normality for each control pattern.
 図11は、実施例2による診断装置のブロック図である。 FIG. 11 is a block diagram of a diagnostic apparatus according to the second embodiment.
 本実施例における診断装置は図11に示すように、図2に示したものに対して、司令部13を有する点が異なるものである。 As shown in FIG. 11, the diagnostic apparatus according to the present embodiment is different from that shown in FIG.
 司令部13は、制御パターンの情報を示す制御指令を積算部7に与えるものである。制御指令としては、電圧指令値や電流指令値、励磁電流指令値、トルク電流指令値、速度指令値、周波数指令値等など、電源1が出力可能な指令値や、それに準ずる値の中から任意に選ぶことができる。 The command unit 13 gives a control command indicating control pattern information to the integrating unit 7. The control command can be any command value that can be output by the power source 1 such as a voltage command value, current command value, excitation current command value, torque current command value, speed command value, frequency command value, or any equivalent value You can choose to.
 積算部7においては、回転機3に対する制御指令毎に、組み合わせ毎の該組み合わせの出現密度を求め、蓄積部8において、制御指令毎に出現密度データを蓄積することになる。 The accumulating unit 7 obtains the appearance density of each combination for each control command to the rotating machine 3, and the accumulating unit 8 accumulates the appearance density data for each control command.
 以下に、制御指令として、電圧指令値と周波数指令値が互いに異なる制御指令Aと制御指令Bの2つの条件で回転機3の状態を診断した場合について説明する。なお、制御指令Aは、電流の基本波周波数が50Hz、制御指令Bは、電流の基本波周波数が100Hzに対応する。 Hereinafter, a case where the state of the rotating machine 3 is diagnosed under the two conditions of the control command A and the control command B having different voltage command values and frequency command values as control commands will be described. The control command A corresponds to a fundamental current frequency of 50 Hz, and the control command B corresponds to a fundamental current frequency of 100 Hz.
 積算部7は、変換部5にて求められた出現密度を、司令部13に入力された基本周波数に基づいて制御指令Aと制御指令Bに振り分けられた電流値ごとに積算する。そして、任意に定めた期間または点数のデータが蓄積された後、そのデータを出現密度データとして蓄積部8に蓄積する。 The integration unit 7 integrates the appearance density obtained by the conversion unit 5 for each current value distributed to the control command A and the control command B based on the fundamental frequency input to the command unit 13. Then, after data of an arbitrarily determined period or score is accumulated, the data is accumulated in the accumulation unit 8 as appearance density data.
 その後、診断部9において、蓄積部8に蓄積された出現密度データを、制御指令情報が同じ状態で取得した正常と定義したデータと比較して対象データの異常度を求め、回転機3の正常性を診断する。 Thereafter, the diagnosis unit 9 compares the appearance density data stored in the storage unit 8 with the data defined as normal acquired in the same state of the control command information to determine the degree of abnormality of the target data, and the normality of the rotating machine 3 Diagnose sex.
 図12は、制御指令Aで取得した正常状態の回転機3の電流波形から得られた行列Aの異常度を示す図である。なお、行列α,βはそれぞれ、制御指令A,Bで計測した正常状態の回転機3の電流波形で定義された行列である。 FIG. 12 is a diagram showing the degree of abnormality of the matrix A obtained from the current waveform of the rotating machine 3 in the normal state acquired by the control command A. The matrices α and β are matrices defined by the current waveform of the rotating machine 3 in the normal state measured by the control commands A and B, respectively.
 図12に示すように、正常状態の回転機3を、正常状態の回転機3の電流データによる行列Aを行列αを用いて診断した場合は、行列AのBhattacharyya距離Zは、図12に示すように、予め設定された閾値を超えていないため、診断部9において正常であると判断されることになる。 As shown in FIG. 12, when the rotating machine 3 in the normal state is diagnosed using the matrix α based on the current data of the rotating machine 3 in the normal state using the matrix α, the Bhattacharyya distance Z of the matrix A is shown in FIG. Thus, since it does not exceed the preset threshold value, the diagnosis unit 9 determines that it is normal.
 一方、正常状態の回転機3を、正常状態の回転機3の電流データによる行列Aを行列βを用いて診断した場合は、行列AのBhattacharyya距離Zが、図12に示すように、予め設定された閾値を超えているため、回転機3が正常状態であるにも関わらず診断部9において異常として判断されてしまう。 On the other hand, when the normal state rotating machine 3 is diagnosed using the matrix β of the matrix A based on the current data of the normal state rotating machine 3, the Bhattacharyya distance Z of the matrix A is set in advance as shown in FIG. Therefore, the diagnosis unit 9 determines that the rotating machine 3 is abnormal even though the rotating machine 3 is in a normal state.
 このように本実施例では、制御指令が同じ状態として分類されたU相およびW相の電流で構成された行列に基づいて回転機3の状態を診断するため、司令部13に入力された制御指令に基づいて電流波形を分類し、分類したデータごとに出現密度を積算することで、制御パターンと電流情報とを組み合わせて診断精度の向上を図った。それにより、制御状態毎に好適な診断を行うことができる。 As described above, in this embodiment, the control input to the command unit 13 is performed in order to diagnose the state of the rotating machine 3 based on the matrix composed of the U-phase and W-phase currents classified as having the same control command. By classifying the current waveform based on the command and accumulating the appearance density for each classified data, the control pattern and the current information are combined to improve the diagnostic accuracy. Thereby, a suitable diagnosis can be performed for each control state.
 なお、積算部7では、電源1が出力可能な指令値全てを必ずしも使用する必要は無く、検知対象の劣化に対する感度が高い指令値のみを用いることができる。感度が高い指令値とは、劣化状態における行列と、正常状態における行列の類似度合いを比較し、劣化状態と正常状態の差が見えやすくなるように選べばよい。また、条件を多くすると、同じ計測時間の電流データであっても、条件で分類した分だけデータ量が増えるため、診断精度とデータ量のトレードオフで、使用する指令値の数を制限することができる。 In addition, in the integrating | accumulating part 7, it is not necessary to use all the command values which the power supply 1 can output, and only the command value with high sensitivity with respect to degradation of a detection target can be used. The command value having high sensitivity may be selected so that the degree of similarity between the matrix in the deteriorated state and the matrix in the normal state is compared and the difference between the deteriorated state and the normal state is easily visible. In addition, if the number of conditions is increased, the amount of data increases by the amount classified according to the conditions even if the current data has the same measurement time. Therefore, the number of command values to be used should be limited by the trade-off between diagnostic accuracy and data volume. Can do.
 図11に示した診断装置のように司令部13の情報を参照することができない場合は、回転機3の電流波形の特徴周波数で代替することができる。 If the information of the command unit 13 cannot be referred to as in the diagnostic device shown in FIG. 11, the characteristic frequency of the current waveform of the rotating machine 3 can be substituted.
 図13は、実施例3による診断装置のブロック図である。 FIG. 13 is a block diagram of a diagnostic apparatus according to the third embodiment.
 本実施例における診断装置は図14に示すように、図2に示したものに対して、周波数抽出部12を有する点が異なるものである。 As shown in FIG. 14, the diagnostic apparatus in the present embodiment is different from that shown in FIG. 2 in that it has a frequency extraction unit 12.
 回転機3の制御パターンを回転機3の電流波形の特徴周波数によって認識する場合は、図13に示すように、電流計測部4の出力を分岐し、周波数抽出部12に入力する。周波数抽出部12では、基本波周波数とキャリア周波数との少なくとも一方などの特徴周波数を抽出し、その後、積算部7において、特徴周波数が同じ計測条件毎に、組み合わせ毎の該組み合わせの出現密度を求め、蓄積部8において、特徴周波数毎に出現密度データを蓄積することになる。 When recognizing the control pattern of the rotating machine 3 based on the characteristic frequency of the current waveform of the rotating machine 3, the output of the current measuring unit 4 is branched and input to the frequency extracting unit 12, as shown in FIG. The frequency extraction unit 12 extracts a characteristic frequency such as at least one of the fundamental frequency and the carrier frequency, and then the integration unit 7 obtains an appearance density of the combination for each combination for each measurement condition with the same characteristic frequency. In the storage unit 8, appearance density data is stored for each characteristic frequency.
 このように本実施例では、制御指令が同じ状態として分類されたU相およびW相の電流で構成された行列に基づいて回転機3の状態を診断するため、電流計測部4の出力を分岐して周波数抽出部12にて特徴周波数を抽出し、この特徴周波数に基づいて電流波形を分類し、分類したデータごとに出現密度を積算することで、制御パターンと電流情報とを組み合わせて診断精度の向上を図った。それにより、制御状態毎に好適な診断を行うことができる。 As described above, in this embodiment, the output of the current measuring unit 4 is branched in order to diagnose the state of the rotating machine 3 based on the matrix composed of the U-phase and W-phase currents classified as the same control command. Then, the characteristic frequency is extracted by the frequency extraction unit 12, the current waveform is classified based on the characteristic frequency, and the appearance density is integrated for each classified data, thereby combining the control pattern and the current information to obtain diagnosis accuracy. Improved. Thereby, a suitable diagnosis can be performed for each control state.
 図14は、実施例4による診断装置のブロック図である。 FIG. 14 is a block diagram of a diagnostic apparatus according to the fourth embodiment.
 本実施例における診断装置は図14に示すように、図2に示したものに対して、1つの電源1に対して複数の回転機3-1~3-nが接続されている点が異なるものである。 As shown in FIG. 14, the diagnostic apparatus in this embodiment is different from that shown in FIG. 2 in that a plurality of rotating machines 3-1 to 3-n are connected to one power source 1. Is.
 本実施例では、電源1と回転機3-1~3-nとを接続するケーブル2に取り付けられた電流センサ10a,10bにより全ての回転機3-1~3-nの負荷電流を測定した結果を用いて診断を行う。診断の方法は1つの回転機が接続されている場合と同等であり、制御指令値を用いた分類や、指令値情報の反映とともに、測定した診断データをリサジュー図形の分布として診断を行う。 In this embodiment, the load currents of all the rotating machines 3-1 to 3-n were measured by the current sensors 10a and 10b attached to the cable 2 connecting the power source 1 and the rotating machines 3-1 to 3-n. Diagnose using the results. The diagnosis method is equivalent to the case where one rotating machine is connected, and the diagnosis is performed by using the measured command data as the distribution of the Lissajous figure together with the classification using the control command value and the reflection of the command value information.
 なお、複数の回転機3-1~3-nの電流データを1つの負荷電流として用いて診断するため、劣化した回転機の電流波形の変化が、その他の複数の回転機の電流波形により薄まってしまうこととなる。そのため、機械学習、特に局所部分空間法により異常度を評価することが望ましい。 In addition, since the current data of the plurality of rotating machines 3-1 to 3-n is used for diagnosis as one load current, the change in the current waveform of the deteriorated rotating machine is diluted by the current waveforms of the other rotating machines. Will end up. Therefore, it is desirable to evaluate the degree of abnormality by machine learning, particularly the local subspace method.
 図15は、実施例56による診断装置のブロック図である。 FIG. 15 is a block diagram of a diagnostic apparatus according to Embodiment 56.
 本実施例における診断装置は図15に示すように、図2に示したものに対して、電源1から回転機3に供給される三相の負荷電流のそれぞれを電流センサ10a~10cにて計測する点が異なるものである。 As shown in FIG. 15, the diagnostic apparatus in the present embodiment measures each of the three-phase load currents supplied from the power source 1 to the rotating machine 3 by the current sensors 10a to 10c, as shown in FIG. The point to do is different.
 本実施例では、電流計測部4において、記三相交流の三相における同時刻の電流データの瞬時値を取得し、積算部7において、変換部5の離散化による離散値から、三相の電流データの瞬時値の離散値の組み合わせ毎の該組み合わせの出現密度を求めることになる。この場合、分布の比較をする場合には、3つ以上の電流センサから2個を選んだ複数の組合せでリサジュー図形の分布を得て評価することができる。また、3つ以上の電流センサで多次元の行列(テンソル)を定義し、テンソルの変化からモータ劣化を評価することができる。 In the present embodiment, the current measurement unit 4 obtains instantaneous values of current data at the same time in the three phases of the three-phase alternating current, and the integration unit 7 obtains the three-phase from the discrete values obtained by the discretization of the conversion unit 5. The appearance density of each combination of discrete values of instantaneous values of current data is obtained. In this case, when comparing the distributions, it is possible to obtain and evaluate the distribution of the Lissajous figure with a plurality of combinations of two selected from three or more current sensors. Further, a multidimensional matrix (tensor) can be defined by three or more current sensors, and motor deterioration can be evaluated from changes in the tensor.
 電流センサ10a~10cで計測される電流値としては、三相交流の回転機3の場合、U相、V相、W相のそれぞれの負荷電流の他、三相分をクランプして計測した零相電流、任意に選んだ二相をクランプして計測した二相の電流、モータの巻線の巻き始めと巻き終わりの両方をクランプして計測した漏れ電流、モータから対地に流れる電流など、診断感度が高くなる電流を任意に選定し、その位置に電流センサを設置すれば良い。 In the case of the three-phase AC rotating machine 3, the current value measured by the current sensors 10a to 10c is zero measured by clamping the three-phase components in addition to the U-phase, V-phase, and W-phase load currents. Diagnosis of phase current, two-phase current measured by clamping two arbitrarily selected phases, leakage current measured by clamping both the winding start and end of winding of the motor, and current flowing from the motor to the ground A current that increases sensitivity is arbitrarily selected, and a current sensor may be installed at that position.
 このように、三相交流の三相の電流データに基づいて回転機3の状態を診断するので、より精度の高い診断が可能となる。 Thus, since the state of the rotating machine 3 is diagnosed based on the three-phase AC three-phase current data, a more accurate diagnosis is possible.
1…電源、2…ケーブル、3…回転機、4…電流計測部、5…変換部、6…計測ビット数入力部、7…積算部、8…蓄積部、9…診断部、10a,10b,10c…電流センサ、12…周波数抽出部、13…司令部 DESCRIPTION OF SYMBOLS 1 ... Power supply, 2 ... Cable, 3 ... Rotating machine, 4 ... Current measurement part, 5 ... Conversion part, 6 ... Measurement bit number input part, 7 ... Accumulation part, 8 ... Accumulation part, 9 ... Diagnosis part, 10a, 10b , 10c ... current sensor, 12 ... frequency extraction unit, 13 ... command unit

Claims (10)

  1.  三相交流電源で動作する診断対象の状態を診断する診断装置であって、
     前記三相交流の複数相における同時刻の物理データの瞬時値を取得する取得部と、
     前記取得部で取得された瞬時値を離散化する変換部と、
     前記変換部の離散化による離散値から、各相の物理データの瞬時値の離散値の組み合わせ毎の該組み合わせの出現密度を求める積算部と、
     前記積算部で求められた、前記組み合わせ毎の出現密度を示す出現密度データを蓄積する蓄積部と、
     前記蓄積部に蓄積された前記出現密度データに基づいて、前記診断対象の状態を診断する診断部と、
    を備える診断装置。
    A diagnostic device for diagnosing the state of a diagnostic target that operates with a three-phase AC power source,
    An acquisition unit that acquires instantaneous values of physical data at the same time in a plurality of phases of the three-phase alternating current;
    A conversion unit for discretizing the instantaneous value acquired by the acquisition unit;
    From a discrete value obtained by discretization of the conversion unit, an integration unit for obtaining an appearance density of the combination for each combination of discrete values of instantaneous values of physical data of each phase;
    An accumulating unit that accumulates appearance density data indicating the appearance density for each combination obtained by the integration unit;
    Based on the appearance density data stored in the storage unit, a diagnosis unit that diagnoses the state of the diagnosis target;
    A diagnostic device comprising:
  2.  前記変換部は、二相の前記物理データの瞬時値を所定のビット数Aで離散化し、
     前記積算部は、行と列がそれぞれ相に対応する2A(2のA乗)×2A(2のA乗)のサイズを有し、行と列の各成分が、各相の物理データの瞬時値の離散値の組み合わせの出現密度を表す行列を生成する、
    請求項1に記載の診断装置。
    The conversion unit discretizes an instantaneous value of the physical data of two phases with a predetermined number of bits A,
    The accumulating unit has a size of 2 A (2 to the power of A) × 2 A (2 to the power of A) corresponding to each phase of the row and column, and each component of the row and column is physical data of each phase. Generates a matrix representing the density of occurrences of a combination of discrete values of instantaneous values of
    The diagnostic device according to claim 1.
  3.  前記蓄積部は、前記行列のデータを保持し、
     前記診断部は、前記蓄積部に保持された行列と、正常状態を示すものとして予め定められた基準行列とを比較することにより前記診断対象の状態の正常性を診断する、
    請求項2に記載の診断装置。
    The storage unit holds the data of the matrix,
    The diagnosis unit diagnoses the normality of the state of the diagnosis target by comparing a matrix held in the storage unit and a reference matrix that is predetermined as indicating a normal state,
    The diagnostic device according to claim 2.
  4.  前記診断部は、前記蓄積部に蓄積された行列と前記基準行列との差異に基づき前記診断対象の状態の正常性を診断する、
    請求項3に記載の診断装置。
    The diagnosis unit diagnoses the normality of the state of the diagnosis target based on a difference between the matrix accumulated in the accumulation unit and the reference matrix,
    The diagnostic device according to claim 3.
  5.  前記蓄積部は、前記行列のうちゼロ以外の数値が格納された成分の値のみを蓄積する、
    請求項2に記載の診断装置。
    The accumulation unit accumulates only the values of components in which numerical values other than zero are stored in the matrix,
    The diagnostic device according to claim 2.
  6.  前記診断対象は制御可能な回転機を含み、
     前記積算部は、前記回転機に対する制御指令毎に、前記組み合わせ毎の該組み合わせの出現密度を求め、
     前記蓄積部は、前記制御指令毎に前記出現密度データを蓄積する、
    請求項1に記載の診断装置。
    The diagnostic object includes a controllable rotating machine,
    The integration unit obtains the appearance density of the combination for each combination for each control command to the rotating machine,
    The storage unit stores the appearance density data for each control command.
    The diagnostic device according to claim 1.
  7.  前記診断対象は制御可能な回転機を含み、
     前記積算部は、前記回転機への制御で変化する特徴周波数毎に、前記組み合わせ毎の該組み合わせの出現密度を取得し、
     前記蓄積部は、前記特徴周波数毎に前記出現密度データを蓄積する、
    請求項1に記載の診断装置。
    The diagnostic object includes a controllable rotating machine,
    The integrating unit obtains the appearance density of the combination for each combination for each characteristic frequency that is changed by the control to the rotating machine,
    The storage unit stores the appearance density data for each feature frequency.
    The diagnostic device according to claim 1.
  8.  前記特徴周波数は、前記回転機の各相に入力される電流の基本波周波数およびキャリア周波数の少なくとも一方である、
    請求項7に記載の診断装置。
    The characteristic frequency is at least one of a fundamental frequency and a carrier frequency of a current input to each phase of the rotating machine.
    The diagnostic device according to claim 7.
  9.  前記取得部は、前記三相交流の三相における同時刻の物理データの瞬時値を取得し、
     前記積算部は、前記変換部の離散化による離散値から、三相の物理データの瞬時値の離散値の組み合わせ毎の該組み合わせの出現密度を求める、
    請求項1に記載の診断装置。
    The acquisition unit acquires an instantaneous value of physical data at the same time in the three phases of the three-phase alternating current,
    The integration unit obtains an appearance density of the combination for each combination of discrete values of instantaneous values of three-phase physical data from discrete values obtained by discretization of the conversion unit.
    The diagnostic device according to claim 1.
  10.  三相交流電源で動作する診断対象の状態を診断するための診断方法であって、
     前記三相交流の複数相における同時刻の物理データの瞬時値を取得し、
     前記取得した瞬時値を離散化し、
     前記離散化による離散値から、各相の物理データの瞬時値の離散値の組み合わせ毎の該組み合わせの出現密度を求め、
     前記求められた、前記組み合わせ毎の出現密度を示す出現密度データを蓄積し、
     前記蓄積された前記出現密度データに基づいて、前記診断対象の状態を診断する、
    診断方法。
    A diagnostic method for diagnosing the state of a diagnosis target that operates with a three-phase AC power source,
    Obtain the instantaneous value of physical data at the same time in the multiple phases of the three-phase AC,
    Discretizing the acquired instantaneous value,
    From the discrete values by the discretization, obtain the appearance density of the combination for each combination of discrete values of the instantaneous value of the physical data of each phase,
    Accumulating appearance density data indicating the appearance density for each of the obtained combinations,
    Diagnosing the state of the diagnosis object based on the accumulated appearance density data;
    Diagnosis method.
PCT/JP2018/013287 2018-03-29 2018-03-29 Diagnosis device and diagnosis method WO2019186909A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018005613.9T DE112018005613T5 (en) 2018-03-29 2018-03-29 DIAGNOSTIC DEVICE AND DIAGNOSTIC METHOD
JP2020508714A JP6801144B2 (en) 2018-03-29 2018-03-29 Diagnostic device and diagnostic method
PCT/JP2018/013287 WO2019186909A1 (en) 2018-03-29 2018-03-29 Diagnosis device and diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013287 WO2019186909A1 (en) 2018-03-29 2018-03-29 Diagnosis device and diagnosis method

Publications (1)

Publication Number Publication Date
WO2019186909A1 true WO2019186909A1 (en) 2019-10-03

Family

ID=68059717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013287 WO2019186909A1 (en) 2018-03-29 2018-03-29 Diagnosis device and diagnosis method

Country Status (3)

Country Link
JP (1) JP6801144B2 (en)
DE (1) DE112018005613T5 (en)
WO (1) WO2019186909A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004417A1 (en) * 2020-07-01 2022-01-06 株式会社日立産機システム Management device for power transmission mechanism and management method for power transmission mechanism
CN114295337A (en) * 2021-11-13 2022-04-08 中车永济电机有限公司 Detection apparatus for electric motor rotor conducting bar rises tightly
WO2022085425A1 (en) * 2020-10-21 2022-04-28 住友電気工業株式会社 Motor monitoring device, motor monitoring method, and computer program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3671369B2 (en) * 2001-11-26 2005-07-13 エイテック株式会社 Electrical equipment abnormality and deterioration diagnosis device
JP4062939B2 (en) * 2002-03-14 2008-03-19 Jfeスチール株式会社 Rotor abnormality detection method and rotor abnormality detection apparatus for AC motor
JP2010288352A (en) * 2009-06-10 2010-12-24 Nippon Steel Corp Method for diagnosing fault in facility
US20160372916A1 (en) * 2015-06-19 2016-12-22 Schneider Electric Industries Sas Method of operating a protection device, associated computer program product, protection device and electrical installation
WO2017154091A1 (en) * 2016-03-08 2017-09-14 株式会社日立製作所 Rotary machine diagnostic device and diagnostic method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258305A (en) 1999-03-04 2000-09-22 Mitsubishi Electric Corp Diagnostic apparatus for abnormality of bearing part in rotating apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3671369B2 (en) * 2001-11-26 2005-07-13 エイテック株式会社 Electrical equipment abnormality and deterioration diagnosis device
JP4062939B2 (en) * 2002-03-14 2008-03-19 Jfeスチール株式会社 Rotor abnormality detection method and rotor abnormality detection apparatus for AC motor
JP2010288352A (en) * 2009-06-10 2010-12-24 Nippon Steel Corp Method for diagnosing fault in facility
US20160372916A1 (en) * 2015-06-19 2016-12-22 Schneider Electric Industries Sas Method of operating a protection device, associated computer program product, protection device and electrical installation
WO2017154091A1 (en) * 2016-03-08 2017-09-14 株式会社日立製作所 Rotary machine diagnostic device and diagnostic method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004417A1 (en) * 2020-07-01 2022-01-06 株式会社日立産機システム Management device for power transmission mechanism and management method for power transmission mechanism
TWI772085B (en) * 2020-07-01 2022-07-21 日商日立產機系統股份有限公司 Power transmission mechanism management device and power transmission mechanism management method
JP7315797B2 (en) 2020-07-01 2023-07-26 株式会社日立産機システム Power transmission mechanism management device, power transmission mechanism management method
WO2022085425A1 (en) * 2020-10-21 2022-04-28 住友電気工業株式会社 Motor monitoring device, motor monitoring method, and computer program
JPWO2022085425A1 (en) * 2020-10-21 2022-04-28
JP7276617B2 (en) 2020-10-21 2023-05-18 住友電気工業株式会社 MOTOR MONITORING DEVICE, MOTOR MONITORING METHOD, AND COMPUTER PROGRAM
CN114295337A (en) * 2021-11-13 2022-04-08 中车永济电机有限公司 Detection apparatus for electric motor rotor conducting bar rises tightly

Also Published As

Publication number Publication date
DE112018005613T5 (en) 2020-07-09
JPWO2019186909A1 (en) 2020-10-22
JP6801144B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
Gangsar et al. Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review
Su et al. Induction machine condition monitoring using neural network modeling
JP5875734B2 (en) Diagnostic device and switching device for electric motor
US9759774B2 (en) Anomaly diagnosis system, method, and apparatus
CN113748326B (en) Method for estimating bearing fault severity for induction motor
US8536839B2 (en) Device and method for monitoring and/or analyzing rotors of electric machines in operation
WO2018158910A1 (en) Diagnostic device and diagnostic method
JP6945371B2 (en) Diagnostic equipment for rotating machine systems, power converters, rotating machine systems, and diagnostic methods for rotating machine systems.
KR101748559B1 (en) Apparatus for inspecting rotating device and method thereof
CN111758036B (en) System and method for monitoring an operating state of an operating electrical device
EP3367198B1 (en) Method for monitoring and diagnosing rotating machines based on signature analysis of electrical signals
CN107064796A (en) Intelligent electric machine vibration online monitoring and early warning system
WO2019186909A1 (en) Diagnosis device and diagnosis method
US7081760B2 (en) Method of diagnosing a broken bar fault in an induction motor
CN111247442B (en) Abnormality diagnosis device, abnormality diagnosis method, and abnormality diagnosis system
JP2005251185A (en) Electric equipment diagnostic system
CN111509847A (en) Intelligent detection system and method for power grid unit state
US20050218906A1 (en) System and method for monitoring of insulation condition
WO2019167086A1 (en) A system for assessment of multiple faults in induction motors
KR102133385B1 (en) Artificial intelligence device providing induction motor real-time diagnostic service and operating method thereof
EP3339638B1 (en) Systems for crack detection in doubly-fed induction generators
CN110749810A (en) Insulation fault prediction method and system for phase modulator
JP2017099132A (en) Short circuit diagnostic system of rotary machine and short circuit diagnostic method of rotary machine
CN111811845B (en) Diagnostic device
KR100901855B1 (en) Method for diagnosing the insulation condition of three phase alternating current rotating machinery, and a medium having computer readable program for executing the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508714

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18912154

Country of ref document: EP

Kind code of ref document: A1