JP3671369B2 - Electrical equipment abnormality and deterioration diagnosis device - Google Patents

Electrical equipment abnormality and deterioration diagnosis device Download PDF

Info

Publication number
JP3671369B2
JP3671369B2 JP2001358718A JP2001358718A JP3671369B2 JP 3671369 B2 JP3671369 B2 JP 3671369B2 JP 2001358718 A JP2001358718 A JP 2001358718A JP 2001358718 A JP2001358718 A JP 2001358718A JP 3671369 B2 JP3671369 B2 JP 3671369B2
Authority
JP
Japan
Prior art keywords
current
deterioration
abnormality
inverter
electrical equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001358718A
Other languages
Japanese (ja)
Other versions
JP2003156547A (en
Inventor
博 高
Original Assignee
エイテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=19169851&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3671369(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by エイテック株式会社 filed Critical エイテック株式会社
Priority to JP2001358718A priority Critical patent/JP3671369B2/en
Publication of JP2003156547A publication Critical patent/JP2003156547A/en
Application granted granted Critical
Publication of JP3671369B2 publication Critical patent/JP3671369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、設備診断に係る技術分野に属し、誘導電動機(以下電動機と記す)並びにインバ−タを対象とした電気機器の異常及び劣化診断装置に関するものである。
【0002】
【従来の技術】
最近の電気機器設備は生産を連続化したり、集約して高生産性を追求し、さらに高性能で広範囲の自動化システムと共に、インバ−タ等の省エネ機器も導入し、信頼性の高い設備、装置にするマスプロ化があらゆる産業界に求められている。このようなマスプロ設備は一般的に連続操業を原則にしており、電気機器設備の故障(休止)はプロセス全体の休止につながることが多く。ひとたび故障が発生すると、生産障害に加え、需要家からの信頼低下や場合によっては災害の発生等、休止損失は計り知れないものとなり、致命的な問題になることが推測される。
【0003】
また、新品の設備機器(機械)を企業が購入し検収する場合にあっては、検収基準もしくは規格に統一されたものがなく、現状では設備機器(機械)が仕様通り動作することをもって検収上げとしている。しかし、最近の自動機器(機械)類は、多くの装置をインタ−フェ−スケ−ブルにより接続した組合せシステム構成としているため、各装置間の整合性(マッチング)が取れていない場合もあり、後になってトラブルが何度も発生し、火災事故に至ったケ−スもあり問題になっている。
【0004】
更に、人の乗る運搬、輸送設備として、例えば鉄道車両やエレベ−タ等は法令で定期点検が義務づけられているが、電動機設備やインバ−タについては、温度上昇や異音の発生有無を確認する程度で安全面で問題を残している。
【0005】
ここで、電気機器設備の異常及び劣化診断の目的を述べると次のようになる。
(1)コスト削減
a.設備停止時間の減少による操業率の向上
b.材料費、人件費等保全費の削減
c.取替周期延長
d.点検整備削減
(2)トラブル事前防止
(3)安全性向上
(4)信頼性向上
(5)生産性向上
(6)品質向上
【0006】
以上が電気機器設備の異常・劣化診断に関する必要性の背景と目的であるが、ここでは先ず本発明に係る電動機並びにインバ−タの異常・劣化診断の従来技術について、以下1〜2の各項でそれぞれ簡単に述べる。
【0007】
1.電動機の異常・劣化診断について
電動機の異常・劣化診断法としては、(1)振動法、(2)音響法、(3)温度法、(4)トルク(ひずみ)法、(5)電流法、(6)波形法、などがあるが、これらの中で最もよく利用されポピュラ−な方法が振動法であるため、ここでは振動法について述べる。その他の診断法については、既に発明者が出願した特許(特願2000−386603、特願2001−265949)にて述べているので記述を省略する。
【0008】
(1)振動法
振動法は電動機もしくは電動機を含めた負荷設備の回転機械振動を、動電型や圧電型又は変位型の振動ピックアップをできる限り振動の発生源近くに取り付け、振動のオ−バ−オ−ル値により異常判定する簡易診断と、振動の周波数分析により異常・劣化の原因、場所を特定する精密診断とがあるが、これらの診断はいずれも軸受けや回転軸等の機械要素部に限られる。
【0009】
・簡易診断
振動のオ−バ−オ−ル値による異常か正常かの判定基準としては、過去のデ−タの蓄積と経験により自社で独自に定めているところもあるが、一般的にはISO規格、JIS規格、VDI規格(ドイツ技術者協会の規格)などを参考にしている場合がほとんどである。しかし、これらの規格は平均的な評価を与えたものであり、すべての回転機械にあてはまるものではない。いま、参考例としてISO規格(ISO−2372)を表1に示す。
【0010】
【表1】

Figure 0003671369
【0011】
表1において、小型機〜大型回転機はそれぞれ次のような機械である。
小型機:15KWまでの電動機またはそれに相当する小型機械
中型機:15〜75KWの電動機または強固な基礎上の300KWまでの中型機械
大型機:強固な基礎上の大型機械
大型回転機:柔軟な基礎上の大型機械
【0012】
・精密診断
前述の簡易診断により異常があると判断した場合、その原因、場所などを特定するためには精密診断が必要となる。一般に回転機械類から発生する振動信号は複雑であり、単純な振動はほとんどない。その中から有意義な情報を得て異常の有無を精密に判断するには、周波数分析法が最も広く用いられている。振動信号を周波数分析することにより、異常の原因、場所の特定が可能となる。
【0013】
いま、定速回転を行っている電動機等の回転機について、異常原因と発生振動数の関係の一例を表2に示す。これらの関係は、長期間にわたる過去のデ−タの蓄積により得られているものである。
【0014】
【表2】
Figure 0003671369
【0015】
表2において、f0 :ロ−タ(回転軸)の回転数:Z:ベアリングの玉の数、d:ベアリングの玉の直径、D:ベアリングのピッチ円径、a:ベアリングの接触角、n:整数、Z’:損傷歯数、である。
【0016】
2.インバ−タの異常・劣化診断について
インバ−タは、省エネ化や生産性の向上、操作性の向上など多くの特長があり、各種産業機械のハイテク化に大きく貢献している。今やインバ−タは動力設備機械には必須機器となっており、その生産量も年々増加し、1999年度の日本国内における産業用インバ−タの生産量は、通産省(現経済産業省)の生産動態統計によると180万台を超えている(金額換算:約1000億円)。
【0017】
ところでインバ−タは、IC、抵抗、コンデンサ、トランジスタなどの電子部品や冷却ファン、リレ−など多数の部品によって構成されている。これらの部品は永久的に使用できるものではなく、その耐用年数や寿命は使用環境によって大きく左右され、ほとんどの電子部品はその寿命がアルレニウスの法則(10℃二倍則:周囲温度を10℃低下させるごとに寿命が2倍に延びる)に従うので、インバ−タの定期点検が必要となる。
【0018】
すなわち、インバ−タの異常・劣化診断としては、トラブルの未然防止のため、JEMA(日本電機工業会)では「汎用インバ−タ定期点検のすすめ」のガイドブックで、表3に示すような定期点検をすすめている。
【0019】
【表3】
Figure 0003671369
【0020】
しかし、インバ−タの異常・劣化診断においては、異常・劣化の原因や場所の特定がインバ−タを停止もしくは休止分解して専門技術者による特殊な測定器を用いなけらばならず、現実にはインバ−タが故障するまで使用し続ける場合が多い。その間はインバ−タ機能の低下、例えば省エネ機能、保護機能や出力特性等の異常、また他の機器への悪影響、例えばロボット等の誤動作や電動機トラブルの発生がしばしば見られた。
【0021】
【発明が解決しようとする課題】
電動機及びインバ−タの異常・劣化診断は、電動機については振動法が最も広く用いられているが、ピックアップの取付けが精度に関係するため、これを振動発生源の近くに固定する必要がある。また異常・劣化個所の診断が軸受や回転軸等の機械要素部に限られ、測定にも時間がかかり測定装置を含め診断費用も高くつくので、この診断法は重要度の高い比較的大型機がメインとなる。
【0022】
電動機についてのその他の診断法については記述を省略したが、いずれも振動法のように異常・劣化原因や場所の特定ができず、異常負荷の診断のみを行うオンライン監視システムに至っては極めて高価なものである。
【0023】
また、インバ−タの異常・劣化診断については、前述したように異常・劣化原因や場所の特定を行うにはインバ−タを停止もしくは休止分解して、専門技術者が測定器を使用して行わねばならず甚だ面倒で時間もかかり診断に要するコストも高くつく。
【0024】
【課題を解決するための手段】
本発明に係る電動機並びにインバ−タを対象とした電気機器の異常及び劣化診断装置は、上記の課題を解決するため、次のようにしている。
【0025】
この電気機器の診断装置は、電気機器に流れる機器電流に含まれる各次数の高調波含有率の大きさにより電気機器の異常及び劣化の程度や、その異常・劣化原因や場所の特定を行うが、次のように精密形と簡易形の二つに分類できるので、これらについて以下に記す。
【0026】
1,精密形
電気機器に流れる機器電流を測定する電流検出部と、前記機器電流によって発生する磁束を検出する磁界検出部と、該磁界検出部と前記電流検出部とを切換選択する切換器とを設け、該切換器よりの出力を入力処理する信号処理手段と、該信号処理手段により得られた信号を演算処理する演算処理手段とで、前記機器電流の各相に流れる電流値より演算される電流不平衡率と、前記機器電流に含まれる高調波成分を演算して得られる各次数の高調波含有率とより、前記電気機器の異常及び劣化の程度や、該異常及び劣化の原因並びに場所の特定を行う。
【0027】
2.簡易形
電気機器に流れる機器電流によって発生する磁束を検出する磁界検出部を設け、該磁界検出部よりの出力を入力処理する信号処理手段と、該信号処理手段により得られた信号を演算処理する演算処理手段とで、前記機器電流に含まれる高調波成分を演算して得られる各次数の高調波含有率とより、前記電気機器の異常及び劣化の程度や、該異常及び劣化の原因並びに場所の特定を行う。
【0028】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して説明する。
【0029】
図1は、本発明の一実施例に係る電気機器の異常及び劣化診断装置の構成を示すブロック図である。
【0030】
1は電流検出部、2は磁界検出部である。電流検出部1による電流測定にはクランプ式が非接触で行えるので好ましいが、それ以外の方法でもよい。また、磁界検出部2はサ−チコイルセンサまたはホ−ル素子センサや磁気抵抗センサ等を用いて磁束を測定すればよいが、電流検出部1によって測定される電流と該電流によって発生する磁束は比例するので、この電流を測定磁束に代用すれば、磁界検出部2による測定が省けるので好ましい。
【0031】
電流検出部1と磁界検出部2の選択は切換器Sにて行う。10は信号処理手段であり、演算処理手段20へは20aなるデ−タ信号で通信する。24aは操作手段30で演算処理手段20へ入力する条件設定デ−タを示す入力信号、25aは演算結果を表示手段31に取り出す出力信号である。
【0032】
ここで、先ず信号処理手段10の構成について述べると次の通りである。
【0033】
切換器Sを経由した信号は、選択増幅回路11にて、電流検出部1もしくは磁界検出部2にて測定された信号レベルに応じて選択的に増幅され、その出力はA/D変換器12に入力される。
【0034】
A/D変換器12は、選択増幅回路11によって出力されるアナログ信号をディジタル信号に変換するものである。13は出力回路で演算処理手段20へ20aなるデ−タ信号として転送する。14はシフトレジスタ(図示しない)を中心に構成された順序制御回路、15は波形アドレス選択回路である。
【0035】
次に、演算処理手段20の構成を述べると次の通りである。
【0036】
21は中央処理装置(以下CPUと記す)、22は主記憶回路で、波形記憶回路28の内容がCPU21の制御によって演算デ−タとして記憶される。23は補助記憶回路、24及び25はそれぞれ入力ポ−ト及び出力ポ−トである。補助記憶回路43は、後述する電気機器の運転デ−タ、例えば機器定数や電圧係数、高調波対策係数などを記憶させておいたり、電気機器の定格値や運転値の条件設定をも行う回路で、この時の設定値の入力は入力ポ−ト24を介して行う。ここで入力信号24aはプッシュボタンやスイッチ、タッチボタン等の操作手段30の操作によって生じるものである。また出力ポ−ト25はCPU21の演算結果を外部に出力するもので、その出力信号25aによって、LCD(液晶表示器)やプリンタ−等を動作さす表示手段31を有している。29はバスラインである。
【0037】
また、演算処理手段20には、アドレス発生用カウンタ26、プログラム記憶回路27及び波形記憶回路28を設けている。これらの動作について次に説明する。
【0038】
アドレス発生用カウンタ26は、例えば8ビットのアップダウンカウンタを2個使用し、上位8ビット、下位8ビットで合計16ビットのアドレスをつくる。このアドレス発生用カウンタ26は次の三つの役割をもつ。
【0039】
(1)測定波形の入力
電流検出部1もしくは磁界検出部2によって測定された電流もしくは磁束波形信号のA/D変換したサンプリングデ−タを、測定波形と1対1に対応した波形記憶回路28内の番地(領域)に取り込まなけらばならない。そのためアドレス発生用カウンタ26は、測定波形と対応したアドレスとして測定波形の横座標を下位8ビットで表し、縦座標を上位8ビットで表す。
【0040】
(2)測定波形の出力
波形記憶回路28内に取り込まれた波形デ−タをバスライン29を通してCPU21に転送する。この時、アドレス発生用カウンタ26は16ビットのアップカウンタとして動作し0000〜FFFF(16進表示)までカウントしていく。
【0041】
(3)プログラムの転送
プログラム記憶回路27には、高速フ−リエ変換(FFT:Fast Fourier Transform)プログラムが記憶されている。この高速フ−リエ変換による演算については、発明者が既に出願した「電気機器の劣化診断法」(特願2001−265949)にても説明しているので、ここでは記述を省略する。
【0042】
このプログラム記憶回路27からバスライン29を通してCPU21に高速フ−リエ変換(FFT)プログラムを転送する。この時もアドレス発生用カウンタ26から見れば前述の測定波形の出力の場合と同様である。カウンタ動作の終了はCPU21の指令による。
【0043】
次に、プログラム記憶回路27から、システムの起動時にFFTプログラムがCPU21に全て転送されると、スタ−ト指令を信号処理手段10の直列通信回路(図示しない)に送信する。このスタ−ト指令を受けて順序制御回路が動作し、波形デ−タの波形記憶回路28への取り込み、アドレス発生用カウンタ26のリセット、そして波形記憶回路28内の波形デ−タをCPU21へ送信するというプロセスを繰り返し行う。また、波形アドレス選択回路15はアドレス発生用カウンタ26の動作により、波形アドレスの領域を選択するものである。
【0044】
以上が、本発明に係る診断装置の構成を示すブロック図の説明であるが、次に電気機器の入力及び出力電流に関して、本発明者が既に完成させた出願特許(特願2001−265949)を基に一部補足し図面を参照して説明すると以下の通りとなる。
【0045】
図2は、インバ−タに係るブロック図である。51は三相交流電源、53は電動機52を制御するインバ−タであって、コンバ−タ部54と平滑コンデンサ55、及びインバ−タ部56を制御するコントロ−ル部57で構成されている。コントロ−ル部57はIC、抵抗、コンデンサ、トランジスタなどの電子部品を搭載したコントロ−ル基板である。また、In1及びIn2はそれぞれインバ−タ53の入力電流及び出力電流(電動機電流)であって、インバ−タ53が、例えば現在主流となっている正弦波PWMインバ−タの場合のIn1及びIn2は、図2にて示したような電流波形となる。
【0046】
ところで、図2で示したようなコンバ−タ部54を有するインバ−タ53の入力側における高調波電流In1は、三相交流電源51の電圧がバランスし、その電源インピ−ダンスや電動機52の負荷率等を無視した理想値として考えると、周知のように次式のようになる。
【0047】
【数1】
Figure 0003671369
ただし、I11は基本波電流である。
【0048】
しかし、(1)式は前述した仮定条件以外に、図2のインバ−タ部56を構成する電力素子デバイスのデッドタイムや、インバ−タ53の運転周波数に関係する制御角、及び高調波対策が施されているか否か、更には三相交流電源51の出力に他の負荷機器(インバ−タ等も含む)の接続有無や、電流高調波の検出が電流によるか磁界によるかといった測定方式等の諸要素は全く考慮されていない。
【0049】
だが、上述した諸要素を全て考慮した高調波電流を理論的に算出することは困難なため、本発明者は長年にわたるデ−タの分析と実験的解析手法により、高調波電流In1が次式に従うことを見い出した。
【0050】
【数2】
Figure 0003671369
【0051】
(2)式においてLf は電源負荷係数で、図2で示した三相交流電源51の出力母線に電動機52とは別に負荷(インバ−タ等も含む)が接続されている場合は、それらの接続負荷を合計した等価容量によってLf は次のような値をとる。
【0052】
(1)等価容量が15KWまでの負荷:Lf =2.0
(2)等価容量が15〜55KWの負荷:Lf =1.8
(3)等価容量が55〜110KWの負荷:Lf =1.5
(4)等価容量が110〜300KWの負荷:Lf =1.2
(5)等価容量が300KW以上の負荷:Lf =1.0
【0053】
尚、接続負荷が無い場合はLf =1.0を採用すればよい。しかし負荷が分からない場合や簡略計算でもよい場合はLf =1.0として考えればよいが、出来る限り接続負荷容量を把握しておくことが好ましい。
【0054】
また、(2)式のDf は検出器係数で、機器電流に含まれる高調波成分を、クランプ式電流測定によるか、もしくは機器電流によって発生する磁束をサ−チコイル等の磁界測定によるかで異なる。即ち、磁界測定によって得られた数値は、電流測定による数値より、磁束の空間伝搬減衰分だけ低い値を示す。本発明者は、前記両方式の測定値を統計的に比較分析した結果、Df として次の値を採用するに至った。但し、電流変動が激しい場合は測定を何度か繰返し平均をとる。
(1)クランプ式電流測定による場合:Df =1.6
(2)サ−チコイル等の磁界測定による場合:Df =1.0
【0055】
更に、(2)式においてMa 、Mb 及びMc は電動機単独運転かインバ−タ運転かによって定まる機器定数で、それぞれ次のような値となる。
(1)電動機単独運転の場合
a =0.02、Mb =0.01、Mc =0
(2)インバ−タ運転の場合
a =0.2、Mb =0.1、Mc =1.0
【0056】
そして、(2)式中のKV は次の(6)式で示される電圧係数で、(6)式中Xの数値は電動機もしくはインバ−タの入力電圧が200V系の場合は200、400V系及び3000V系の場合は、それぞれ400及び3000となる。
【0057】
【数3】
Figure 0003671369
【0058】
また、(2)式でのKh はインバ−タ運転時の高調波対策係数で、下記に示すような値をとる。
(1)高調波対策が無い場合はKh =1
(2)高調波対策が有る場合は、その対策部品により異なるが、平均的には次のようになる。但し、数値は第5次及び第7次高調波に対するものであり、第11次以上及びこれら以外の各次数高調波の場合は( )内の数値となる。
a.ラインフィルタ設置時はKh =0.90(0.95)
b.ACリアクトル設置時はKh =0.60(0.85)
c.DCリアクトル設置時はKh =0.55(0.95)
d.AC+DCリアクトル併用設置時はKh =0.40(0.90)
e.EMIフィルタ設置時はKh =0.60(0.80)
【0059】
なお、(2)式のKS は電源インピ−ダンスZ(%)を、KW は負荷率(%)であり、計算時に用いる数値としてはそれぞれ100で除した値となる。
【0060】
ところで、インバ−タ運転において(2)式では表されないが考慮すべきは特に第6次高調波成分である。この第6次高調波成分はインバ−タの運転周波数が電源周波数の1/2、即ち商用電源周波数が60Hz地区では30Hz運転とした時、電動機の回転軸に少しでもベアリングやカップリング等に起因するアンバランスがあると第6次高調波含有率は1/n(nは高調波次数)、即ち約16%にも達する場合がある。この場合は他の次数高調波含有率も高くなる傾向にあるため、インバ−タ運転をする時は次式を満足させるよう注意する必要がある。
インバ−タの運転周波数≠(商用電源周波数)/m(整数)
【0061】
以上で入力側の高調波電流が求まり、各次数の高調波含有率が算出できる。ここで電気機器として電動機及びインバ−タの異常・劣化診断の観点のみから言えば、前記電気機器の入力側高調波次数は第10次迄考慮すれば充分であるが、これについては後述する。
【0062】
次に、図2にもどりインバ−タ53の出力電流、即ち電動機52に流れる電動機電流In2は、本発明者が多くのデ−タを蓄積し、確立統計解析を行った結果次式で表せることを見い出した。
【0063】
【数4】
Figure 0003671369
ここで、I12:電動機電流の基本波電流、n:高調波次数
h:高調波係数、Km :電動機定数
【0064】
(7)式中のKm は次のような数値となる。
(1)Km =0.05(ただし、n=2)
(2)Km =0.15(ただし、n=3)
(3)Km =1.0(ただし、n=2、3以外)
上記(1)、(2)のみKm が異なっているのは、元々三相交流電源によって供給される電圧及び電流波形は、いづれも対称波であるためn=2とその整数倍の高調波は発生せずKm =0となる。更に三相交流電源の電圧、電流が平衡していて不平衡率がゼロの場合はn=3とその整数倍の高調波も生じなくKm =0となる。しかし、現実的には他の電気機器(例えばインバ−タ)や誘導電磁界の影響によりKm ≠0となるのである。
【0065】
また、(7)式中の高調波係数hは、次のような三つの高調波次数(n)領域により異なった値になる。
(1)5>nの場合はh=2
(2)11>n≧5の場合はh=1
(3)n≧11の場合はh=1.6
【0066】
以上のようにインバ−タ出力側の高調波電流が求まる。ここで、インバ−タが正弦波PWM制御方式のような電圧形インバ−タの場合は出力インピ−ダンスが小さく、負荷である電動機に対しては電圧源として作用するため、出力側電流に含まれる高調波含有率は小さい。尚、(7)式中のKV 、KS 及びKW は(2)式にて表したものと同じ意味のものであるが、インバ−タが電圧源と考えた場合はKS =0と考えてよい。しかし、電流形インバ−タの場合はKS =1と見なし、(7)式にインバ−タ係数CS (記述しない)を乗ずればよい。この時CS =2として計算すればほぼ実状に即した結果となることを本発明者は確認している。
【0067】
また、電圧係数KV は(6)式で示されるから、(6)式中のXは運転周波数に比例した電圧と考えても差しつかえない。従って、例えば商用電源周波数が60Hz地域の200V系で、30Hz運転の場合は出力電圧が100Vとなり、電圧係数KV は約1.4となる。
【0068】
以上、本発明に係る機器電流に流れる各次数の高調波電流の演算法について述べたが、その演算結果に基づく電気機器の異常・劣化判定値については後述の実施例にて述べる。
【0069】
ところで、前述したように電気機器の異常及び劣化の程度や、その異常・劣化原因や場所の特定を精密に行うには、前記電気機器の各相(R相、S相、T相)電流の実効値を測定する。この電流の測定にはクランプ式電流計が非接触で行えるので好ましい。測定から得られた各相電流より、電流不平衡率は次式で求める。
電流不平衡率={(Imax −Imin )/Imin }×100(%) (8)
ここで、Imax 及びImin は、それぞれ各相電流の最大値及び最小値である。
【0070】
【実施例】
本発明の実施例として、電動機及びインバ−タの異常・劣化判定値と、この判定値に基づき「正常」、「要注意」及び「不良」に区分し、異常・劣化原因や場所の特定に関して説明すれば次の通りである。尚、本発明の異常・劣化判定値の「正常」、「要注意」及び「不良」についての高調波含有率の数値は実施例に限定されることはない。
【0071】
また、判定値区分において、「正常」はAレベル、「要注意」はBレベル、「不良」はCレベルと記すが、その中で「要注意」のBレベルは、機器の劣化度に応じ軽度な劣化(約1年は運転に支障がない劣化)をB1(ランク・)、中度な劣化(約6ヵ月は運転には支障がないが傾向管理が必要な劣化)をB2(ランク・)、重度な劣化(約3ヵ月程度の運転は可能であるが、機器のトラブル発生が懸念されるため部品交換や修理の準備が必要な劣化)をB3(ランク・)の3ランクに分けている。
【0072】
表4に電気機器の異常・劣化判定基準表を示す。表中の電動機入力における高調波診断時の計算値は(2)式もしくは(7)式により求めた値であるが、電動機単独運転の場合は(7)式により求めるのが簡単で便利である。また、インバ−タ使用時の高調波診断の入力及び出力における計算値は、それぞれ(2)式及び(7)式により求める。また、本発明に係る装置が精密形の場合は表4のように電流診断も行う必要があるが、簡易形の場合は高調波診断のみでよい。
【0073】
【表4】
Figure 0003671369
【0074】
表5は表4の判定基準に基づいて算出した電動機の診断判定表である。表5において高調波診断に用いた「正常」判定の基準となる計算値は、(7)式中で電源負荷係数Lf =1.0、検出器係数Df =1.0(サ−チコイルによる非接触磁界検出器を使用)として求めた数値によった。また、電流診断にはクランプ式センサを用いた。
【0075】
【表5】
Figure 0003671369
【0076】
表6は電動機の劣化原因・場所の特定表である。本表は高調波次数と電動機の劣化原因・場所の関係を表したもので、本発明者の長年に亘デ−タの蓄積による統計分析と実験デ−タによる確率解析により始めて明らかになったものである。特に、第2次〜第5次高調波は電動機に、第7〜第10次高調波は負荷に起因する劣化であることが明確になったことは本発明の大きな成果の一つである。
【0077】
【表6】
Figure 0003671369
【0078】
表7は電動機、インバ−タの劣化原因・場所の特定表である。本表はインバ−タ制御による電動機運転時の高調波次数と電動機、インバ−タの劣化原因・場所の関係を表したもので、表6と同様に技術ノウハウを実験的解析手法により体系化したものである。
【0079】
【表7】
Figure 0003671369
【0080】
【発明の効果】
本発明の電気機器の異常及び劣化診断装置は、電動機並びにインバ−タを対象としたもので次のような効果を奏する。
【0081】
(1)本発明の非接触測定器は回路構成がシンプルで簡便かつ安価なため、電動機並びにインバ−タを対象とした電気機器の異常及び劣化診断が、専門技術者を必要とすることなく誰にでも安全に行える。
(2)対象とする電気機器の劣化診断用以外に、動力設備機械の検収用、鉄道車輛やエレベ−タ等のような法令で定められた運輸、輸送設備の定期点検用にも用途がある。
(3)長年に亘った電気機器の異常及び劣化デ−タの蓄積による統計解析と、実験デ−タによる確率解析に基づき実験理論式が導出でき、本発明装置が多くの機器で実証確認されたので、ISO規格やJIS規格にすることが可能である。
【図面の簡単な説明】
【図1】電気機器の異常及び劣化診断装置の構成を示すブロック図である。
【図2】インバ−タに係るブロック図である。
【符号の説明】
1 電流検出部
2 磁界検出部
10 信号処理手段
20 演算処理手段
21 中央処理装置(CPU)
22 主記憶回路
23 補助記憶回路
24 入力ポ−ト
25 出力ポ−ト
30 操作手段
31 表示手段
51 三相交流電源
52 電動機
53 インバ−タ
54 コンバ−タ部
55 平滑コンデンサ
56 インバ−タ部
57 コントロ−ル部[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to a technical field related to equipment diagnosis, and relates to an apparatus for diagnosing abnormality and deterioration of electrical equipment for an induction motor (hereinafter referred to as an electric motor) and an inverter.
[0002]
[Prior art]
Recent electrical equipment facilities have been continuously produced or concentrated to pursue high productivity, and energy efficient equipment such as inverters has been introduced along with high-performance, wide-range automation systems, and highly reliable equipment and devices. The mass production to make is required in every industry. Such mass production equipment is generally based on continuous operation, and failure of electric equipment (pause) often leads to an outage of the entire process. Once a failure occurs, it is surmised that the outage loss will be immeasurable due to loss of reliability from customers and the occurrence of disasters in some cases, in addition to production failures, and it will be a fatal problem.
[0003]
Also, when a company purchases a new equipment (machine) and accepts it, there is no standardized acceptance standard or standard, and at present, the acceptance is confirmed when the equipment (machine) operates as specified. It is said. However, recent automatic devices (machines) have a combined system configuration in which many devices are connected by an interface scale, so there is a case where consistency (matching) between the devices is not achieved. Later, trouble occurred many times, and there was a case that led to a fire accident.
[0004]
In addition, for example, railway vehicles and elevators, which are transported and transported by people, are required to be regularly inspected by law. For motor equipment and inverters, it is confirmed whether there is a rise in temperature or abnormal noise. There is a problem in terms of safety.
[0005]
Here, the purpose of the abnormality and deterioration diagnosis of the electrical equipment is described as follows.
(1) Cost reduction
a. Increased operating rate by reducing equipment downtime
b. Reduction of maintenance costs such as material costs and labor costs
c. Replacement cycle extension
d. Inspection and maintenance reduction
(2) Prior trouble prevention
(3) Safety improvement
(4) Improved reliability
(5) Productivity improvement
(6) Quality improvement
[0006]
The above is the background and purpose of the necessity for diagnosis of abnormality / deterioration of electrical equipment, but here, first, regarding the prior art of abnormality / degradation diagnosis of the motor and inverter according to the present invention, the following items 1 to 2 Each will be briefly described.
[0007]
1. About abnormality and deterioration diagnosis of motors
As an abnormality / deterioration diagnosis method for an electric motor, (1) vibration method, (2) acoustic method, (3) temperature method, (4) torque (strain) method, (5) current method, (6) waveform method, etc. However, since the vibration method is the most popular and popular method among them, the vibration method will be described here. Other diagnostic methods are described in patents already filed by the inventor (Japanese Patent Application No. 2000-386603, Japanese Patent Application No. 2001-265949).
[0008]
(1) Vibration method
In the vibration method, a rotating machine vibration of a load facility including an electric motor or an electric motor is mounted as close as possible to an electrodynamic type, piezoelectric type or displacement type vibration pickup, and the over-all value of the vibration There is a simple diagnosis for determining an abnormality by the above and a precise diagnosis for identifying the cause and location of the abnormality / degradation by vibration frequency analysis, but these diagnoses are limited to mechanical elements such as a bearing and a rotating shaft.
[0009]
・ Simple diagnosis
As a criterion for determining whether the vibration is abnormal or normal due to the over-all value of the vibration, there are places where the company has independently decided based on the accumulation and experience of past data. In most cases, JIS standards and VDI standards (standards of German Engineers Association) are used as a reference. However, these standards give an average rating and do not apply to all rotating machines. Table 1 shows the ISO standard (ISO-2372) as a reference example.
[0010]
[Table 1]
Figure 0003671369
[0011]
In Table 1, the small machine to the large rotary machine are the following machines, respectively.
Small machine: Electric motor up to 15KW or equivalent small machine
Medium size machine: Medium size machine up to 300KW on 15-1575W motor or solid foundation
Large machine: Large machine on a solid foundation
Large rotating machine: Large machine on a flexible foundation
[0012]
・ Precise diagnosis
If it is determined by the simple diagnosis described above that there is an abnormality, a precise diagnosis is required to identify the cause, location, and the like. In general, vibration signals generated from rotating machinery are complex, and there is almost no simple vibration. The frequency analysis method is most widely used to obtain meaningful information from them and accurately determine the presence or absence of abnormality. By analyzing the frequency of the vibration signal, it is possible to identify the cause and location of the abnormality.
[0013]
Table 2 shows an example of the relationship between the cause of abnormality and the generated frequency for a rotating machine such as an electric motor that is rotating at a constant speed. These relationships are obtained by accumulating past data over a long period of time.
[0014]
[Table 2]
Figure 0003671369
[0015]
In Table 2, f 0 : Number of rotations of rotor (rotating shaft): Z: Number of balls of bearing, d: Diameter of bearing balls, D: Diameter of bearing pitch circle, a: Contact angle of bearing, n: Integer, Z ′: The number of damaged teeth.
[0016]
2. Inverter abnormality / deterioration diagnosis
The inverter has many features such as energy saving, productivity improvement, and operability improvement, and greatly contributes to the high technology of various industrial machines. Inverters are now indispensable equipment for power equipment, and their production volume has been increasing year by year. The production volume of industrial inverters in Japan in 1999 was the production of the Ministry of International Trade and Industry (now Ministry of Economy, Trade and Industry). According to dynamic statistics, it exceeds 1.8 million units (amount conversion: about 100 billion yen).
[0017]
By the way, an inverter is comprised by many components, such as electronic components, such as IC, resistance, a capacitor | condenser, a transistor, a cooling fan, and a relay. These components are not permanently usable, and their useful life and life are greatly affected by the usage environment, and most electronic components have their lifespan of Arrenius's law (10 ° C double rule: lower the ambient temperature by 10 ° C) The life of the inverter is doubled every time the inverter is used. Therefore, periodic inspection of the inverter is required.
[0018]
In other words, in order to prevent troubles from occurring as an abnormality / deterioration diagnosis of inverters, JEMA (Japan Electrical Manufacturers' Association) provides a guidebook “General Inverter Periodic Inspection” guidebook as shown in Table 3. We are inspecting.
[0019]
[Table 3]
Figure 0003671369
[0020]
However, in the inverter abnormality / degradation diagnosis, the cause and location of the abnormality / deterioration must be specified by stopping or suspending the inverter and using a special measuring instrument by a specialist. In many cases, the inverter continues to be used until the inverter fails. In the meantime, the inverter function deteriorated, for example, an abnormality such as an energy saving function, a protection function, and output characteristics, and an adverse effect on other devices, for example, malfunction of a robot or the occurrence of a motor trouble was often observed.
[0021]
[Problems to be solved by the invention]
For the motor / inverter abnormality / deterioration diagnosis, the vibration method is most widely used for motors. However, since the mounting of the pickup is related to accuracy, it is necessary to fix it near the vibration source. In addition, the diagnosis of abnormalities and deteriorated parts is limited to machine elements such as bearings and rotating shafts, and it takes time to measure and the cost of diagnosis including the measuring device is high, so this diagnosis method is a relatively large machine with high importance. Is the main.
[0022]
Other diagnostic methods for motors were omitted from the description, but all of them were extremely expensive for online monitoring systems that could not identify the cause of abnormality / degradation and location like the vibration method, and only diagnose abnormal loads. Is.
[0023]
For inverter abnormality / degradation diagnosis, as described above, the cause of the abnormality / degradation and the location can be identified by stopping or suspending the inverter and using a measuring instrument by a professional engineer. This must be done, is cumbersome, time consuming, and the cost of diagnosis is high.
[0024]
[Means for Solving the Problems]
In order to solve the above-described problems, an apparatus for diagnosing abnormality and deterioration of an electric device intended for an electric motor and an inverter according to the present invention is as follows.
[0025]
This electrical equipment diagnostic device identifies the degree of abnormality and deterioration of electrical equipment, the cause and location of the abnormality / degradation, depending on the magnitude of the harmonic content of each order contained in the equipment current flowing in the electrical equipment. Since it can be classified into two types, precision type and simple type as follows, these are described below.
[0026]
1, precision type
A current detection unit for measuring a device current flowing in the electric device, a magnetic field detection unit for detecting a magnetic flux generated by the device current, and a switch for selecting and switching between the magnetic field detection unit and the current detection unit, A current unbalance calculated from current values flowing in each phase of the device current by signal processing means for input processing of the output from the switching device and arithmetic processing means for arithmetic processing of the signal obtained by the signal processing means From the rate and the harmonic content of each order obtained by calculating the harmonic component included in the equipment current, the degree of abnormality and deterioration of the electrical equipment, the cause and location of the abnormality and deterioration can be specified. Do.
[0027]
2. Simplified type
Provided with a magnetic field detection unit that detects magnetic flux generated by a device current flowing in the electric device, and a signal processing unit that performs input processing on an output from the magnetic field detection unit, and arithmetic processing that performs arithmetic processing on a signal obtained by the signal processing unit Means to determine the degree of abnormality and deterioration of the electrical equipment, the cause and location of the abnormality and deterioration, based on the harmonic content of each order obtained by calculating the harmonic component included in the equipment current. I do.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0029]
FIG. 1 is a block diagram illustrating a configuration of an electrical equipment abnormality and deterioration diagnosis apparatus according to an embodiment of the present invention.
[0030]
Reference numeral 1 denotes a current detection unit, and 2 denotes a magnetic field detection unit. The current measurement by the current detector 1 is preferable because the clamp method can be performed in a non-contact manner, but other methods may be used. The magnetic field detector 2 may measure the magnetic flux using a search coil sensor, a hall element sensor, a magnetoresistive sensor, or the like, but the current measured by the current detector 1 is proportional to the magnetic flux generated by the current. Therefore, it is preferable to substitute this current for the measurement magnetic flux because the measurement by the magnetic field detector 2 can be omitted.
[0031]
Selection between the current detection unit 1 and the magnetic field detection unit 2 is performed by the switch S. A signal processing unit 10 communicates with the arithmetic processing unit 20 using a data signal 20a. Reference numeral 24 a denotes an input signal indicating condition setting data input to the arithmetic processing means 20 by the operation means 30, and reference numeral 25 a denotes an output signal for extracting the calculation result to the display means 31.
[0032]
Here, first, the configuration of the signal processing means 10 will be described as follows.
[0033]
The signal passing through the switch S is selectively amplified by the selective amplifier circuit 11 according to the signal level measured by the current detection unit 1 or the magnetic field detection unit 2, and the output thereof is A / D converter 12. Is input.
[0034]
The A / D converter 12 converts the analog signal output from the selective amplifier circuit 11 into a digital signal. Reference numeral 13 denotes an output circuit which transfers it to the arithmetic processing means 20 as a data signal 20a. Reference numeral 14 denotes a sequence control circuit mainly composed of a shift register (not shown), and reference numeral 15 denotes a waveform address selection circuit.
[0035]
Next, the configuration of the arithmetic processing means 20 will be described as follows.
[0036]
Reference numeral 21 denotes a central processing unit (hereinafter referred to as CPU), 22 is a main memory circuit, and the contents of the waveform memory circuit 28 are stored as operation data under the control of the CPU 21. Reference numeral 23 is an auxiliary memory circuit, and 24 and 25 are input ports and output ports, respectively. The auxiliary storage circuit 43 stores operation data of electrical equipment, which will be described later, such as equipment constants, voltage coefficients, harmonic countermeasure coefficients, etc., and also sets conditions for rated values and operation values of electrical equipment. At this time, the set value is input via the input port 24. Here, the input signal 24a is generated by the operation of the operation means 30 such as a push button, a switch, or a touch button. The output port 25 outputs the calculation result of the CPU 21 to the outside, and has a display means 31 for operating an LCD (Liquid Crystal Display), a printer or the like by the output signal 25a. 29 is a bus line.
[0037]
The arithmetic processing means 20 is provided with an address generation counter 26, a program storage circuit 27, and a waveform storage circuit 28. These operations will be described next.
[0038]
The address generation counter 26 uses, for example, two 8-bit up / down counters, and creates an address of 16 bits in total by upper 8 bits and lower 8 bits. The address generation counter 26 has the following three roles.
[0039]
(1) Measurement waveform input
Sampling data obtained by A / D conversion of the current or magnetic flux waveform signal measured by the current detection unit 1 or the magnetic field detection unit 2 is stored in an address (area) in the waveform storage circuit 28 corresponding to the measurement waveform one-to-one. Must be captured. For this reason, the address generation counter 26 represents the abscissa of the measurement waveform as lower 8 bits and the ordinate as upper 8 bits as an address corresponding to the measurement waveform.
[0040]
(2) Measurement waveform output
The waveform data fetched into the waveform storage circuit 28 is transferred to the CPU 21 through the bus line 29. At this time, the address generation counter 26 operates as a 16-bit up counter and counts from 0000 to FFFF (hexadecimal display).
[0041]
(3) Program transfer
The program storage circuit 27 stores a fast Fourier transform (FFT) program. The calculation by the high-speed Fourier transform is also described in the “electric device deterioration diagnosis method” (Japanese Patent Application No. 2001-265949) already filed by the inventor, and is therefore omitted here.
[0042]
A high-speed Fourier transform (FFT) program is transferred from the program storage circuit 27 to the CPU 21 through the bus line 29. At this time, as seen from the address generation counter 26, it is the same as the case of the output of the measurement waveform described above. The counter operation is ended by a command from the CPU 21.
[0043]
Next, when all the FFT programs are transferred from the program storage circuit 27 to the CPU 21 at the time of system startup, a start command is transmitted to a serial communication circuit (not shown) of the signal processing means 10. In response to this start command, the sequence control circuit operates to load the waveform data into the waveform storage circuit 28, reset the address generation counter 26, and transfer the waveform data in the waveform storage circuit 28 to the CPU 21. Repeat the process of sending. The waveform address selection circuit 15 selects a waveform address region by the operation of the address generation counter 26.
[0044]
The above is the description of the block diagram showing the configuration of the diagnostic apparatus according to the present invention. Next, regarding the input and output currents of the electrical equipment, the patent application already completed by the present inventor (Japanese Patent Application No. 2001-265949) has been completed. It will be as follows if a part is supplemented and it demonstrates with reference to drawings.
[0045]
FIG. 2 is a block diagram relating to the inverter. Reference numeral 51 denotes a three-phase AC power source, and 53 denotes an inverter that controls the motor 52, which includes a converter unit 54, a smoothing capacitor 55, and a control unit 57 that controls the inverter unit 56. . The control unit 57 is a control board on which electronic components such as an IC, a resistor, a capacitor, and a transistor are mounted. I n1 And I n2 Are the input current and output current (motor current) of the inverter 53, respectively. The inverter 53 is, for example, the current mainstream sine wave PWM inverter. n1 And I n2 Is a current waveform as shown in FIG.
[0046]
Incidentally, the harmonic current I on the input side of the inverter 53 having the converter 54 as shown in FIG. n1 As is well known, when the voltage of the three-phase AC power supply 51 is balanced and the power supply impedance and the load factor of the motor 52 are ignored, the following equation is known.
[0047]
[Expression 1]
Figure 0003671369
However, I 11 Is the fundamental current.
[0048]
However, in addition to the above-mentioned assumptions, the equation (1) is a countermeasure against the dead time of the power element device constituting the inverter unit 56 of FIG. 2, the control angle related to the operating frequency of the inverter 53, and harmonic measures Whether or not other load devices (including inverters etc.) are connected to the output of the three-phase AC power source 51, and whether current harmonics are detected by current or magnetic field. These factors are not considered at all.
[0049]
However, since it is difficult to theoretically calculate the harmonic current in consideration of all of the above-described factors, the present inventor has performed harmonic data I through long-term data analysis and experimental analysis techniques. n1 Has found that
[0050]
[Expression 2]
Figure 0003671369
[0051]
In the formula (2), L f Is a power load coefficient, and when a load (including an inverter, etc.) is connected to the output bus of the three-phase AC power source 51 shown in FIG. L by capacity f Takes the following values:
[0052]
(1) Load up to 15 kW equivalent capacity: L f = 2.0
(2) Load with an equivalent capacity of 15 to 55 KW: L f = 1.8
(3) Load with an equivalent capacity of 55 to 110 kW: L f = 1.5
(4) Load with an equivalent capacity of 110 to 300 KW: L f = 1.2
(5) Load with an equivalent capacity of 300 KW or more: L f = 1.0
[0053]
If there is no connection load, L f = 1.0 may be adopted. However, if the load is unknown or simple calculation is acceptable, L f = 1.0, but it is preferable to grasp the connection load capacity as much as possible.
[0054]
In addition, D in equation (2) f Is a detector coefficient, which differs depending on whether the harmonic component contained in the device current is measured by a clamp-type current measurement or the magnetic flux generated by the device current is measured by a magnetic field such as a search coil. That is, the numerical value obtained by the magnetic field measurement is lower than the numerical value by the current measurement by the amount of spatial propagation attenuation of the magnetic flux. As a result of statistically comparing and analyzing the measured values of both the above-mentioned formulas, f As a result, the following values were adopted. However, if the current fluctuation is severe, repeat the measurement several times and take the average.
(1) When using clamp current measurement: D f = 1.6
(2) When measuring magnetic field such as search coil: D f = 1.0
[0055]
Further, in the formula (2), Ma, Mb and Mc are equipment constants determined by whether the motor is operated independently or by the inverter operation, and have the following values, respectively.
(1) In case of single motor operation
M a = 0.02, M b = 0.01, M c = 0
(2) Inverter operation
M a = 0.2, M b = 0.1, M c = 1.0
[0056]
And K in equation (2) V Is a voltage coefficient expressed by the following equation (6). In the equation (6), the numerical value X is 200 when the input voltage of the electric motor or the inverter is 200V system, 400 when the input voltage is 200V system and 3000V system. And 3000.
[0057]
[Equation 3]
Figure 0003671369
[0058]
Also, K in equation (2) h Is a harmonic countermeasure coefficient during inverter operation and takes the following values.
(1) K if there is no harmonic countermeasure h = 1
(2) If there is a countermeasure against harmonics, the average will be as follows, although it depends on the countermeasure component. However, the numerical values are for the fifth and seventh harmonics, and in the case of the eleventh and higher harmonics and other harmonics, the numerical values are in parentheses.
a. K when installing line filter h = 0.90 (0.95)
b. K when installing AC reactor h = 0.60 (0.85)
c. K when installing a DC reactor h = 0.55 (0.95)
d. K when installed with AC + DC reactor h = 0.40 (0.90)
e. K when installing EMI filter h = 0.60 (0.80)
[0059]
Note that K in equation (2) S Is the power impedance Z (%), K W Is a load factor (%), and the numerical values used in the calculation are values divided by 100 respectively.
[0060]
By the way, in the inverter operation, the sixth harmonic component should be taken into consideration, although it is not expressed in the equation (2). This sixth-order harmonic component is caused by the bearing or coupling on the rotating shaft of the motor even a little when the inverter operating frequency is ½ of the power supply frequency, that is, when the commercial power supply frequency is 60 Hz. If there is an imbalance, the sixth harmonic content may reach 1 / n (n is the harmonic order), that is, about 16%. In this case, since the content of other order harmonics also tends to increase, care must be taken to satisfy the following equation when performing inverter operation.
Inverter operating frequency ≠ (commercial power supply frequency) / m (integer)
[0061]
Thus, the harmonic current on the input side is obtained, and the harmonic content of each order can be calculated. Here, speaking only from the viewpoint of abnormality / deterioration diagnosis of the electric motor and the inverter as the electric equipment, it is sufficient to consider the harmonic order on the input side of the electric equipment up to the tenth order, which will be described later.
[0062]
Next, returning to FIG. 2, the output current of the inverter 53, that is, the motor current I flowing through the motor 52. n2 As a result of the inventor accumulating a lot of data and performing statistical analysis, it has been found that the present invention can be expressed by the following equation.
[0063]
[Expression 4]
Figure 0003671369
Where I 12 : Fundamental current of motor current, n: harmonic order
h: Harmonic coefficient, K m : Electric motor constant
[0064]
Km in the equation (7) is the following numerical value.
(1) Km = 0.05 (however, n = 2)
(2) Km = 0.15 (where n = 3)
(3) Km = 1.0 (except n = 2, 3)
The reason why Km differs only in the above (1) and (2) is that the voltage and current waveforms originally supplied by the three-phase AC power source are both symmetric waves, so that n = 2 and its integral multiple harmonics are It does not occur and Km = 0. Further, when the voltage and current of the three-phase AC power supply are balanced and the unbalance rate is zero, n = 3 and its integral multiple harmonics are not generated, and Km = 0. However, in reality, Km ≠ 0 due to the influence of other electric equipment (for example, an inverter) and an induction electromagnetic field.
[0065]
Further, the harmonic coefficient h in the equation (7) has different values depending on the following three harmonic order (n) regions.
(1) If 5> n, h = 2
(2) h = 1 when 11> n ≧ 5
(3) When n ≧ 11, h = 1.6
[0066]
As described above, the harmonic current on the inverter output side is obtained. Here, if the inverter is a voltage type inverter such as a sine wave PWM control system, the output impedance is small, and since it acts as a voltage source for the motor as a load, it is included in the output side current. Harmonic content is small. In the formula (7), K V , K S And K W Has the same meaning as that expressed by equation (2), but if the inverter is considered a voltage source, K S = 0. However, in the case of current source inverter, K S = 1 and the inverter coefficient C in equation (7) S Multiply (not described). At this time C S The present inventor has confirmed that if the calculation is performed with = 2, the result is almost in line with the actual situation.
[0067]
In addition, the voltage coefficient K V Is expressed by equation (6), X in equation (6) can be considered as a voltage proportional to the operating frequency. Therefore, for example, in the case of a 200 V system with a commercial power frequency of 60 Hz and a 30 Hz operation, the output voltage is 100 V, and the voltage coefficient K V Is about 1.4.
[0068]
As described above, the calculation method of the harmonic current of each order flowing in the device current according to the present invention has been described. The abnormality / deterioration determination value of the electric device based on the calculation result will be described in an example described later.
[0069]
By the way, as described above, in order to precisely specify the degree of abnormality and deterioration of an electrical device, the cause and location of the abnormality / degradation, the current of each phase (R phase, S phase, T phase) of the electrical device Measure the rms value. This current measurement is preferable because a clamp-type ammeter can be performed without contact. From each phase current obtained from the measurement, the current unbalance rate is obtained by the following equation.
Current imbalance ratio = {(Imax−Imin) / Imin} × 100 (%) (8)
Here, Imax and Imin are the maximum value and the minimum value of each phase current, respectively.
[0070]
【Example】
As an example of the present invention, motor / inverter abnormality / deterioration judgment values are classified into “normal”, “caution” and “bad” based on these judgment values, and the cause of abnormality / degradation and location are identified. The explanation is as follows. In addition, the numerical value of the harmonic content about "normal", "attention required", and "defect" of the abnormality / deterioration determination value of the present invention is not limited to the example.
[0071]
In the judgment value classification, “normal” is described as A level, “caution” is described as B level, and “bad” is described as C level. Mild deterioration (deterioration that does not hinder driving for about 1 year) is B1 (rank), moderate deterioration (deterioration that does not hinder driving for about 6 months but requires trend management) is B2 (rank ), Severe degradation (deterioration that can be operated for about 3 months, but there is concern about equipment troubles and parts need to be replaced or repaired) is divided into 3 ranks (B3) Yes.
[0072]
Table 4 shows an abnormality / degradation criteria table for electrical equipment. The calculated value at the time of the harmonic diagnosis in the motor input in the table is a value obtained by the equation (2) or (7), but it is easy and convenient to obtain by the equation (7) in the case of motor independent operation. . In addition, the calculated values at the input and output of the harmonic diagnosis when the inverter is used are obtained by the equations (2) and (7), respectively. Further, when the apparatus according to the present invention is a precision type, it is necessary to perform a current diagnosis as shown in Table 4, but when it is a simple type, only a harmonic diagnosis is required.
[0073]
[Table 4]
Figure 0003671369
[0074]
Table 5 is an electric motor diagnosis determination table calculated based on the determination criteria of Table 4. In Table 5, the calculated value used as a criterion for “normal” determination used for harmonic diagnosis is the power load coefficient L f = 1.0, detector coefficient D f = 1.0 (using a non-contact magnetic field detector with a search coil). A clamp type sensor was used for current diagnosis.
[0075]
[Table 5]
Figure 0003671369
[0076]
Table 6 is a specific table of causes and locations of motor deterioration. This table shows the relationship between the harmonic order and the cause and location of the motor deterioration. It became clear for the first time by statistical analysis based on accumulated data and probabilistic analysis based on experimental data. Is. In particular, it is one of the great achievements of the present invention that it has been clarified that the second to fifth harmonics are deterioration due to the electric motor, and the seventh to tenth harmonics are due to the load.
[0077]
[Table 6]
Figure 0003671369
[0078]
Table 7 is a specific table of causes and locations of deterioration of motors and inverters. This table shows the relationship between the harmonic order during motor operation by inverter control and the cause / location of motor / inverter deterioration. As in Table 6, technical know-how was systematized using experimental analysis techniques. Is.
[0079]
[Table 7]
Figure 0003671369
[0080]
【The invention's effect】
The apparatus for diagnosing abnormality and deterioration of electrical equipment according to the present invention is intended for electric motors and inverters, and has the following effects.
[0081]
(1) Since the non-contact measuring instrument of the present invention has a simple, simple and inexpensive circuit configuration, it is possible to diagnose abnormalities and deterioration of electrical equipment for motors and inverters without requiring a specialist engineer. It can be done safely.
(2) In addition to the diagnosis of deterioration of electrical equipment in question, it is also used for inspection of power equipment machinery, transportation defined by laws and regulations such as railway vehicles and elevators, and periodic inspection of transportation equipment .
(3) Theoretical equations can be derived based on statistical analysis based on accumulation of abnormal and deterioration data of electrical equipment over many years and probability analysis based on experimental data, and the apparatus of the present invention has been verified and confirmed on many equipment. Therefore, it is possible to make it ISO standard or JIS standard.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of an electrical equipment abnormality and deterioration diagnosis apparatus.
FIG. 2 is a block diagram related to an inverter.
[Explanation of symbols]
1 Current detector
2 Magnetic field detector
10 Signal processing means
20 arithmetic processing means
21 Central processing unit (CPU)
22 Main memory circuit
23 Auxiliary memory circuit
24 Input port
25 Output port
30 Operating means
31 Display means
51 Three-phase AC power supply
52 Electric motor
53 Inverter
54 Converter section
55 Smoothing capacitor
56 Inverter section
57 Control section

Claims (2)

電気機器に流れる機器電流を測定する電流検出部と、前記機器電流によって発生する磁束を検出する磁界検出部と、該磁界検出部と前記電流検出部とを切換選択する切換器とを設け、該切換器よりの出力を入力処理する信号処理手段と、該信号処理手段により得られた信号を演算処理する演算処理手段とで、前記機器電流に含まれる高調波成分を演算して得られる各次数の高調波含有率より、前記電気機器の異常及び劣化の程度や、該異常及び劣化の原因並びに場所の特定を行って外部に表示する表示手段と、外部より該表示手段により表示された内容項目の変更や条件設定を行わしめる操作手段とを備えたことを特徴とする電気機器の異常及び劣化診断装置。A current detection unit for measuring a device current flowing in the electric device, a magnetic field detection unit for detecting a magnetic flux generated by the device current, and a switch for selecting and switching between the magnetic field detection unit and the current detection unit, Each order obtained by calculating a harmonic component included in the device current by a signal processing means for performing input processing on the output from the switch and an arithmetic processing means for calculating the signal obtained by the signal processing means. From the harmonic content of the above, the degree of abnormality and deterioration of the electrical equipment, the cause of the abnormality and deterioration and the location of the display to specify the outside, the content items displayed by the display means from the outside An apparatus for diagnosing abnormalities and deterioration of electrical equipment, characterized by comprising operating means for changing the conditions and setting conditions. 電気機器が、誘導電動機及びインバータであることを特徴とする請求項1記載の電気機器の異常及び劣化診断装置。The apparatus for diagnosing abnormality and deterioration of an electric device according to claim 1, wherein the electric device is an induction motor and an inverter.
JP2001358718A 2001-11-26 2001-11-26 Electrical equipment abnormality and deterioration diagnosis device Expired - Fee Related JP3671369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001358718A JP3671369B2 (en) 2001-11-26 2001-11-26 Electrical equipment abnormality and deterioration diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001358718A JP3671369B2 (en) 2001-11-26 2001-11-26 Electrical equipment abnormality and deterioration diagnosis device

Publications (2)

Publication Number Publication Date
JP2003156547A JP2003156547A (en) 2003-05-30
JP3671369B2 true JP3671369B2 (en) 2005-07-13

Family

ID=19169851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001358718A Expired - Fee Related JP3671369B2 (en) 2001-11-26 2001-11-26 Electrical equipment abnormality and deterioration diagnosis device

Country Status (1)

Country Link
JP (1) JP3671369B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915895A (en) * 2010-07-13 2010-12-15 杭州电子科技大学 Dynamic potential detection circuit for DC motor
WO2019186909A1 (en) * 2018-03-29 2019-10-03 株式会社日立製作所 Diagnosis device and diagnosis method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100542893B1 (en) * 2003-12-22 2006-01-11 재단법인 포항산업과학연구원 Diagnostic system of induction motor
JP4926145B2 (en) * 2008-09-16 2012-05-09 三菱電機株式会社 AC / DC converter, compressor drive, air conditioner, and abnormality detector
JP6052323B2 (en) * 2015-04-02 2016-12-27 株式会社明電舎 Rotor position detector abnormality determination device for motor control device
CN105467213A (en) * 2015-12-23 2016-04-06 合肥工业大学 Harmonic detection method based on continuous and discrete wavelet analysis
JP7142257B2 (en) 2017-03-03 2022-09-27 パナソニックIpマネジメント株式会社 Deterioration diagnosis system additional learning method
US10514428B2 (en) * 2017-07-13 2019-12-24 Itt Manufacturing Enterprises Llc Technique to detect motor leakage flux anomalies
CN111856170A (en) * 2019-04-24 2020-10-30 中矿龙科能源科技(北京)股份有限公司 Transformer fault diagnosis system based on harmonic method
CN111856171A (en) * 2019-04-24 2020-10-30 中矿龙科能源科技(北京)股份有限公司 Frequency converter and power capacitor fault diagnosis system based on harmonic method
CN112327228A (en) * 2020-10-22 2021-02-05 西安中车永电捷力风能有限公司 Method and device for detecting loss-of-field state of permanent magnet by using current
CN113808374B (en) * 2021-09-17 2022-11-29 深圳市智联云控科技有限公司 Temperature abnormity monitoring device for intelligent terminal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915895A (en) * 2010-07-13 2010-12-15 杭州电子科技大学 Dynamic potential detection circuit for DC motor
CN101915895B (en) * 2010-07-13 2012-07-25 杭州电子科技大学 Dynamic potential detection circuit for DC motor
WO2019186909A1 (en) * 2018-03-29 2019-10-03 株式会社日立製作所 Diagnosis device and diagnosis method
JPWO2019186909A1 (en) * 2018-03-29 2020-10-22 株式会社日立製作所 Diagnostic device and diagnostic method

Also Published As

Publication number Publication date
JP2003156547A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
JP3661155B2 (en) Harmonic diagnosis method for electrical equipment
Siddiqui et al. Health monitoring and fault diagnosis in induction motor-a review
JP3671369B2 (en) Electrical equipment abnormality and deterioration diagnosis device
US6460013B1 (en) Shaft voltage current monitoring system for early warning and problem detection
JP3671367B2 (en) Abnormality diagnosis method for electrical equipment
JP5875734B2 (en) Diagnostic device and switching device for electric motor
CN100487475C (en) Method and apparatus of detecting internal motor faults in an induction machine
JP3561882B2 (en) Deterioration diagnosis method for electrical equipment
US9395415B2 (en) Method and apparatus for off-line testing of multi-phase alternating current machines
US7034706B1 (en) Early warning and problem detection in rotating machinery by monitoring shaft voltage and/or grounding current
WO2020208743A1 (en) Abnormality diagnosis device for electric motor equipment, abnormality diagnosis method for electric motor equipment, and abnormality diagnosis system for electric motor equipment
JPWO2019202651A1 (en) Diagnostic device for electric motor
EP2290776A1 (en) Thermal overload relay with voltage-based protection features
EP3828656A1 (en) Diagnostic device and diagnostic method
KR100810979B1 (en) A method for detecting defects of induction motors
KR101715187B1 (en) Fault diagnosis apparatus and method in grinder for iron making using current signal analysis
JP2012021497A (en) Method and device for monitoring rotation states of a plurality of dc fans
CN100443907C (en) Harmonic diagnosing method for electric facility
KR20130050618A (en) Apparatus for diagnosing electric motor for vehicle and method thereof
WO2022107100A1 (en) Method and system for auto-detecting induction motor fault
CN109946605B (en) On-line monitoring system for dynamic characteristics in starting process of motor
Strankowski et al. Faults and fault detection methods in electric drives
CN111856137A (en) Online electrical fault diagnosis system based on harmonic method
Chaturvedi et al. A review of health monitoring techniques of induction motor
Surya et al. A simplified cost effective condition monitoring and diagnostic system for detection of faults and protection of electrical machines

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20030911

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20040107

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040326

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050407

R150 Certificate of patent or registration of utility model

Ref document number: 3671369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees