JP4062939B2 - Rotor abnormality detection method and rotor abnormality detection apparatus for AC motor - Google Patents

Rotor abnormality detection method and rotor abnormality detection apparatus for AC motor Download PDF

Info

Publication number
JP4062939B2
JP4062939B2 JP2002070855A JP2002070855A JP4062939B2 JP 4062939 B2 JP4062939 B2 JP 4062939B2 JP 2002070855 A JP2002070855 A JP 2002070855A JP 2002070855 A JP2002070855 A JP 2002070855A JP 4062939 B2 JP4062939 B2 JP 4062939B2
Authority
JP
Japan
Prior art keywords
rotor
abnormality
motor
current
abnormality detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002070855A
Other languages
Japanese (ja)
Other versions
JP2003274691A (en
Inventor
寛 柴田
清佳 末長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002070855A priority Critical patent/JP4062939B2/en
Publication of JP2003274691A publication Critical patent/JP2003274691A/en
Application granted granted Critical
Publication of JP4062939B2 publication Critical patent/JP4062939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、交流電動機の回転子の異常を、電気的雑音の多い環境下で、且つ運転中であっても検出可能な交流電動機の回転子異常検出方法及び回転子異常検出装置に関するものである。
【0002】
【従来の技術】
交流電動機の回転子の異常を運転中に検出する従来の装置として、バー切れ診断装置がある。この装置では、交流電動機に流れる電流についてFFT分析を行い、電源周波数成分の側帯波として現れる周波数成分から回転子などの内部異常を検出する(FFT分析:電機設備診断の進め方(発行所:日本プラントメンテナンス協会)初版第1刷発行1993年12月15日、参照)。
【0003】
ここで、上記のような診断装置は、一般に常時電動機に設置しておくわけではなく、診断する際に適宜、取り付けて診断を行う。
また、上記回転子の異常に気づかずに電動機の運転を続けると、電動機自体の致命的な破損に繋がり、電動機自体の交換が要求される場合がある。一方、早期に回転子の異常が検出できれば、通常は、回転子の補修だけで済む。
【0004】
【発明が解決しようとする課題】
しかしながら、上述のように回転子の異常を検出しようとすると、電流を検出する電流プローブ(電流検出器)、および回転子の回転数を検出する回転検出器が必要となる。特に、回転検出器は、一旦電動機を停止しないと取り付けることが困難である。
また、電動機が正常状態であっても、電動機に流れる電流には、インバータなどによる電源制御の際などに発生する電気的ノイズが重畳されているため、電動機が正常なときの電流の周波数スペクトルと、回転子のバーが切断したときの電流スペクトルとの違いは僅かであり、回転子の異常の有無の判定に、熟練が要求される。図6に、正常なときの電流の周波数スペクトルを、図7に、回転子のバーが切断したときの電流の周波数スペクトルを示す。この図6及び図7から分かるように、スペクトルの違いは僅かである。なお、図中、P(f−2sf)、P(f+2sf)が異常脈動に関与する側帯波成分である。また、図中の振幅差は、上記側帯波とP(s)との間の振幅差を表す。
【0005】
また、上記検出方法におけるFFT分析の欠点として、測定値の不連続性(測定が必ずしも0点(振幅=0)から開始しないこと。)があるために、窓関数を使用して誤差の補正を行う必要性があったが、電流信号そのものが電源高調波等で歪んでいる場合には、その誤差は複雑なものとなり、側帯波に類似したノイズ成分が多数重畳することが多々あった。この点からも、回転子の異常検出が面倒なものとなる。
【0006】
本発明は、上記のような問題点に着目してなされたもので、交流電動機の回転子の異常を、運転状態であっても、ノイズの影響を最少限度にして簡易に検出することが可能な交流電動機の回転子異常検出方法及び回転子異常検出装置を提供することを課題としている。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明のうち請求項1に記載した発明は、交流電動機に流れる電流における、同一位相となっている2つの波形同士を減算することで抽出した成分に基づき、回転子の異常の有無を検出することを特徴とする交流電動機の回転子異常検出方法を提供するものである。
次に、請求項2に記載した発明は、請求項1に記載した構成に対し、上記2つの波形は、連続した2サイクル分の波形内に存在する、互いに同一位相となっている波形部分であることを特徴とするものである。
【0008】
次に、請求項3に記載した発明は、交流電動機に流れる電流を検出する電流検出手段と、電流検出手段が検出した電流波形のうち、隣り合う同一位相部分の波形同士を減算することで脈動成分を抽出する抽出手段と、抽出手段が抽出した成分に基づき回転子の異常を検出する異常判定手段とを備えることを特徴とする交流電動機の回転子異常検出装置を提供するものである。
本発明によれば、交流電動機に流れる電流のうち、同一位相の波形同士で減算を行うことで、電源周波数成分、電源周波数に同期する高調波成分、及びサイリスタ電流サージなどの電源周波数に同期するノイズ成分が相殺(消去)若しくは大幅に相殺(消去)され、回転子異常に伴う脈動成分が抽出される。
【0009】
上記脈動成分を連続して取得すると、異常時には長周期(例えば3〜4Hz)の波形として異常時の脈動成分が検出され、熟練者でなくても確実に異常検出が可能となる。
また、上記サイリスタ電流サージなどの電源周波数に同期するノイズ成分は、通常、周期的にほぼ同一位相位置に、かつ同じ波形で混在しているので、上記のように同一位相の波形同士で減算することで相殺可能である。特に、この効果は、隣り合う同一波形同士間で実施することで、上記ノイズ成分をより確実に相殺することができる。上記2つの同一位相波形位置が離れるほど、ノイズの位置がずれる可能性が大きくなる。
【0010】
【発明の実施の形態】
次に、本発明に係る実施形態について図面を参照しつつ説明する。
図1は、本発明の異常検出方法を採用した異常検出装置を示す構成図である。
図1中、符号1が電動機を、符号2が電動機1に電力を供給する三相の電線を、符号3が電源を、符号4が電流計をそれぞれ示している。
上記異常検出装置は、電流検出器5、A/D変換器6、DSP7(Digita1 Signa1 Processor)、D/A変換器8、及び異常判定部9を備える。
【0011】
電流検出器5は、電動機1に流れる電流を検出するもので、検出した電流信号をA/D変換器6に出力する。この電流検出器5は、例えば、分割型の計器用変流器などから構成され、電動機1の電流計測回路などの配線をクリップすることで、電動機1が運転中にでも、容易に設置して電流を検出して、回転子の異常判定ができる。
A/D変換器6は、入力信号をデジタル信号に変換してDSP7に出力する。
【0012】
ここで、図2に示すように、電源周波数が60Hzの場合に、サンプリング周波数を15480Hzに設定すると、1サイクル分が258個のデジタルデータとなるので、後述の各レジスタ11,12,13をそれぞれ258個の格納部を持つレジスタに設定すれば、1サイクル毎に連続して波形データを格納可能となる。
DSP7では、電源周波数の周期に同期をとって、入力信号から1サイクル分のデジタル信号を第1レジスタ11に記憶し、続けて、電源周波数の1周期だけ遅れた信号を第2レジスタ12に記憶する。次に、第1レジスタ11から第2レジスタ12を減算することで、電源周波数に同期した信号を消去し、減算結果を第3レジスタ13に書き込む。この第3レジスタ13の内容は、D/A変換器8でアナログ信号に変換された後に、異常判定部9に出力される。このDSP7が抽出手段を構成する。
【0013】
ここで、上記減算処理後の第2レジスタ12の内容は、第1レジスタ11にシフトされ、続く1周期分のデジタルデータが第2レジスタ12に記憶されて、上記減算処理が行われる。この処理が、DSP7で繰り返し行われる。
異常判定部9では、連続して入力されるアナログ信号に基づいて、回転子の異常の有無を判定する。電動機1に異常が発生していない場合には、判定部に入力された信号はゼロ信号であり、一方、回転子に異常がある場合には、脈動成分がある。したがって、熟練者でなくても判定可能であり、また、自動判定も容易である。
【0014】
すなわち、上記判定部に連続して入力されるアナログ信号は、電源周波数の周期を60Hzとすると、回転子に異常がある場合には、その脈動成分が、例えば図3に示すように、4〜5Hz程度の長周期の波として検出される一方、回転子に異常がない場合には、上記波形が存在しないので、手動で例えばオシロスコープ等で確認しても、熟練者でなくても判別は容易である。
また、異常判定部9にFFT分析装置を採用した場合には、脈動成分の周波数分析が実施される。このFFT分析を行うと、回転子に異常がある場合には、例えば図4に示すように、2〜6Hzのあたりにはっきりとしたピーク値が現れるが、回転子に異常が無い場合には、はっきりとしたピーク値が現れない。したがって、確実に回転子の異常が検出される。
【0015】
ここで、上記回転子が異常の場合に現れる脈動電流は、(2・s・f)をピークとした脈動電流である。上記sは、すべり値を、fは、周波数をそれぞれ示している。
したがって、すべり値sに対応するピーク値の周波数を特定し、特定した周波数に所定の大きさのピークが有るスペクトルが無いか否かで、より正確な判定が可能となる。
【0016】
例えば、周波数60Hzで且つ2極の電動機1で、同期速度が3600rpm、実速度が3500rpmとすると、
すべり値s=((3600−3500)/3600)≒3%となる。したがって、2・s・f=2・(3/100)・60=3.6Hzとなり、3.6Hzをピークとした脈動で上記異常時の脈動か否かが確認できる。
FFT分析の際に、各同一波形部分の開始位置が振幅ゼロの0点でなくても、、つまり測定値が不連続であっても、従来のように窓関数を使用する必要がない。
【0017】
また、判定部で自動判定する場合には、異常を検出すると、スピーカなどの報知手段10に異常信号を出力する。
ここで、上記実施形態では、隣り合う1サイクル毎、つまり、図5中における、W1とW2、W2とW3,W3とW4,・・・というように、減算する波形を設定しているが、Y1とY2のように、隣り合う2サイクル中の同一位相部分を減算する波形としても良い。また、W1とW2,W3とW4というように減算する組合せを設定しても良い。また、若干精度が落ちるものの、W1とW3のように、隣り合わない位置の同一波形同士で減算処理をしても構わない。
【0018】
【発明の効果】
以上説明してきたように、本発明を採用すると、交流電動機の回転子にバー切れなどの異常がおきた際に生じる脈動成分を、高調波ノイズをはじめとする電源ノイズを消去して検出可能となるため、高い精度で異常の検出が可能となる。
【図面の簡単な説明】
【図1】本発明に基づく実施形態に係る装置構成を説明する図である。
【図2】本発明に基づく実施形態に係る異常検出装置の処理を説明する図である。
【図3】本発明に基づく実施形態に係る連続して抽出した脈動成分の波形の例を示す図である。
【図4】本発明に基づく実施形態に係るFFT分析した周波数スペクトルの例を示す図である。
【図5】本発明に基づく実施形態に係る電流波形の例を示す図である。
【図6】電動機が正常なときの周波数スペクトルの例を示す図である。
【図7】回転子のバーが切断したときのスペクトルの例を示す図である。
【符号の説明】
1 電動機
2 電線
3 電源
5 電流検出器(電流検出手段)
6 A/D変換器
7 DSP(抽出手段)
8 D/A変換器
9 異常判定部(異常判定手段)
11 第1レジスタ
12 第2レジスタ
13 第3レジスタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotor abnormality detection method and a rotor abnormality detection device for an AC motor that can detect an abnormality in a rotor of an AC motor even in an environment with a lot of electrical noise and during operation. .
[0002]
[Prior art]
As a conventional device for detecting an abnormality of a rotor of an AC motor during operation, there is a bar breakage diagnosis device. This device performs FFT analysis on the current flowing through the AC motor and detects internal abnormalities such as rotors from the frequency components that appear as sidebands of the power supply frequency component (FFT analysis: How to proceed with electrical equipment diagnosis (Publisher: Japan Plant) (Maintenance Association) issued the first edition of the first edition, December 15, 1993).
[0003]
Here, the diagnosis apparatus as described above is generally not always installed in the electric motor, but is appropriately attached when making a diagnosis.
Further, if the operation of the electric motor is continued without noticing the abnormality of the rotor, the electric motor itself may be fatally damaged, and the electric motor itself may be required to be replaced. On the other hand, if abnormality of the rotor can be detected at an early stage, it is usually only necessary to repair the rotor.
[0004]
[Problems to be solved by the invention]
However, in order to detect an abnormality of the rotor as described above, a current probe (current detector) for detecting current and a rotation detector for detecting the rotation speed of the rotor are required. In particular, it is difficult to mount the rotation detector unless the motor is stopped once.
In addition, even when the motor is in a normal state, the electric current generated when the power is controlled by an inverter or the like is superimposed on the current flowing through the motor. The difference from the current spectrum when the rotor bar is cut is slight, and skill is required to determine whether the rotor is abnormal. FIG. 6 shows the frequency spectrum of the current when normal, and FIG. 7 shows the frequency spectrum of the current when the rotor bar is cut. As can be seen from FIGS. 6 and 7, the difference in spectrum is slight. In the figure, P (f−2sf) and P (f + 2sf) are sideband components involved in abnormal pulsation. The amplitude difference in the figure represents the amplitude difference between the sideband and P (s).
[0005]
In addition, as a disadvantage of the FFT analysis in the above detection method, there is a discontinuity of the measurement value (measurement does not necessarily start from 0 point (amplitude = 0)), so that the error correction is performed using a window function. However, when the current signal itself is distorted by power supply harmonics or the like, the error becomes complicated, and many noise components similar to sidebands are often superimposed. Also from this point, the abnormality detection of the rotor becomes troublesome.
[0006]
The present invention has been made paying attention to the above-mentioned problems, and it is possible to easily detect an abnormality in the rotor of an AC motor even if it is in an operating state with a minimum effect of noise. An object of the present invention is to provide a rotor abnormality detection method and a rotor abnormality detection device for a simple AC motor.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the invention described in claim 1 of the present invention is based on a component extracted by subtracting two waveforms having the same phase in the current flowing in the AC motor. An object of the present invention is to provide a rotor abnormality detection method for an AC motor, characterized by detecting the presence or absence of a child abnormality.
Next, the invention described in claim 2 is the same as the structure described in claim 1, but the two waveforms are waveform portions that exist in the waveform for two consecutive cycles and have the same phase. It is characterized by being.
[0008]
Next, the invention described in claim 3 pulsates by subtracting adjacent waveforms of the same phase portion from the current detection means that detects the current flowing through the AC motor and the current waveform detected by the current detection means. The present invention provides an AC motor rotor abnormality detection device comprising: an extraction means for extracting a component; and an abnormality determination means for detecting an abnormality of the rotor based on the component extracted by the extraction means.
According to the present invention, by subtracting between waveforms of the same phase among the currents flowing in the AC motor, the power supply frequency component, the harmonic component synchronized with the power supply frequency, and the power supply frequency such as a thyristor current surge are synchronized. The noise component is canceled (erased) or greatly canceled (erased), and the pulsation component accompanying the rotor abnormality is extracted.
[0009]
When the pulsation component is acquired continuously, the pulsation component at the time of abnormality is detected as a long-period waveform (for example, 3 to 4 Hz) at the time of abnormality, and it is possible to reliably detect the abnormality even if it is not an expert.
In addition, since noise components synchronized with the power supply frequency such as the thyristor current surge are usually periodically mixed at substantially the same phase position and in the same waveform, they are subtracted between waveforms having the same phase as described above. Can be offset. In particular, this effect can be canceled more reliably by performing the effect between adjacent identical waveforms. The farther the two identical phase waveform positions are, the greater the possibility that the noise position will shift.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments according to the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an abnormality detection apparatus employing the abnormality detection method of the present invention.
In FIG. 1, reference numeral 1 denotes an electric motor, reference numeral 2 denotes a three-phase electric wire that supplies electric power to the electric motor 1, reference numeral 3 denotes a power source, and reference numeral 4 denotes an ammeter.
The abnormality detection device includes a current detector 5, an A / D converter 6, a DSP 7 (Digital 1 Signal 1 Processor), a D / A converter 8, and an abnormality determination unit 9.
[0011]
The current detector 5 detects a current flowing through the electric motor 1 and outputs the detected current signal to the A / D converter 6. The current detector 5 is composed of, for example, a split-type instrument current transformer, and can be easily installed even when the motor 1 is in operation by clipping the wiring of the current measuring circuit of the motor 1. It is possible to determine the abnormality of the rotor by detecting the current.
The A / D converter 6 converts the input signal into a digital signal and outputs it to the DSP 7.
[0012]
Here, as shown in FIG. 2, when the power supply frequency is 60 Hz and the sampling frequency is set to 15480 Hz, one cycle corresponds to 258 digital data. If a register having 258 storage units is set, waveform data can be stored continuously every cycle.
In the DSP 7, in synchronization with the cycle of the power supply frequency, the digital signal for one cycle from the input signal is stored in the first register 11, and subsequently, the signal delayed by one cycle of the power supply frequency is stored in the second register 12. To do. Next, by subtracting the second register 12 from the first register 11, the signal synchronized with the power supply frequency is deleted, and the subtraction result is written in the third register 13. The contents of the third register 13 are output to the abnormality determination unit 9 after being converted into an analog signal by the D / A converter 8. This DSP 7 constitutes extraction means.
[0013]
Here, the contents of the second register 12 after the subtraction process are shifted to the first register 11, and the digital data for one subsequent period is stored in the second register 12, and the subtraction process is performed. This process is repeated in the DSP 7.
The abnormality determination unit 9 determines the presence / absence of an abnormality of the rotor based on continuously input analog signals. When no abnormality has occurred in the electric motor 1, the signal input to the determination unit is a zero signal. On the other hand, when there is an abnormality in the rotor, there is a pulsating component. Therefore, determination can be made even by a non-expert, and automatic determination is easy.
[0014]
That is, the analog signal continuously input to the determination unit has a pulsation component of 4 to 4 as shown in FIG. While detected as a long-period wave of about 5 Hz, the above waveform does not exist when there is no abnormality in the rotor. Therefore, even if it is manually confirmed by an oscilloscope etc. It is.
Further, when an FFT analyzer is adopted as the abnormality determination unit 9, a frequency analysis of pulsation components is performed. When this FFT analysis is performed, when there is an abnormality in the rotor, for example, as shown in FIG. 4, a clear peak value appears around 2 to 6 Hz, but when there is no abnormality in the rotor, A clear peak value does not appear. Therefore, the rotor abnormality is reliably detected.
[0015]
Here, the pulsating current that appears when the rotor is abnormal is a pulsating current having a peak at (2 · s · f). The s indicates a slip value, and f indicates a frequency.
Therefore, the frequency of the peak value corresponding to the slip value s is specified, and a more accurate determination can be made based on whether or not there is a spectrum having a peak of a predetermined size at the specified frequency.
[0016]
For example, if the frequency is 60 Hz and the electric motor 1 has two poles, the synchronous speed is 3600 rpm, and the actual speed is 3500 rpm,
The slip value s = ((3600-3500) / 3600) ≈3%. Therefore, 2 · s · f = 2 · (3/100) · 60 = 3.6 Hz, and it is possible to confirm whether the pulsation is abnormal or not by the pulsation having a peak at 3.6 Hz.
In the FFT analysis, even if the start position of each identical waveform portion is not the zero point with zero amplitude, that is, even if the measurement value is discontinuous, it is not necessary to use a window function as in the prior art.
[0017]
When the determination unit automatically determines, when an abnormality is detected, an abnormality signal is output to the notification means 10 such as a speaker.
Here, in the above embodiment, the waveform to be subtracted is set for each adjacent cycle, that is, W1 and W2, W2 and W3, W3 and W4,... In FIG. It is good also as a waveform which subtracts the same phase part in two adjacent cycles like Y1 and Y2. Further, a combination of subtraction such as W1 and W2, W3 and W4 may be set. In addition, although the accuracy is slightly reduced, the subtraction process may be performed between the same waveforms at positions that are not adjacent to each other, such as W1 and W3.
[0018]
【The invention's effect】
As described above, when the present invention is adopted, it is possible to detect a pulsation component generated when an abnormality such as bar breakage occurs in the rotor of an AC motor by eliminating power supply noise including harmonic noise. Therefore, the abnormality can be detected with high accuracy.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a device configuration according to an embodiment of the present invention.
FIG. 2 is a diagram for explaining processing of the abnormality detection device according to the embodiment of the present invention.
FIG. 3 is a diagram showing an example of a waveform of continuously extracted pulsation components according to an embodiment of the present invention.
FIG. 4 is a diagram showing an example of a frequency spectrum subjected to FFT analysis according to an embodiment of the present invention.
FIG. 5 is a diagram showing an example of a current waveform according to the embodiment of the present invention.
FIG. 6 is a diagram showing an example of a frequency spectrum when the electric motor is normal.
FIG. 7 is a diagram showing an example of a spectrum when a rotor bar is cut.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electric motor 2 Electric wire 3 Power supply 5 Current detector (current detection means)
6 A / D converter 7 DSP (extraction means)
8 D / A converter 9 Abnormality determination unit (abnormality determination means)
11 First register 12 Second register 13 Third register

Claims (3)

交流電動機に流れる電流における、同一位相となっている2つの波形同士を減算することで抽出した成分に基づき、回転子の異常の有無を検出することを特徴とする交流電動機の回転子異常検出方法。A rotor abnormality detection method for an AC motor characterized by detecting the presence or absence of a rotor abnormality based on a component extracted by subtracting two waveforms having the same phase in the current flowing through the AC motor. . 上記2つの波形は、連続した2サイクル分の波形内に存在する、互いに同一位相となっている波形部分であることを特徴とする請求項1に記載した交流電動機の回転子異常検出方法。2. The AC motor rotor abnormality detection method according to claim 1, wherein the two waveforms are waveform portions having the same phase as each other and existing in waveforms for two consecutive cycles. 交流電動機に流れる電流を検出する電流検出手段と、電流検出手段が検出した電流波形のうち、隣り合う同一位相部分の波形同士を減算することで脈動成分を抽出する抽出手段と、抽出手段が抽出した成分に基づき回転子の異常を検出する異常判定手段とを備えることを特徴とする交流電動機の回転子異常検出装置。Current detection means for detecting the current flowing in the AC motor, extraction means for extracting the pulsation component by subtracting the waveforms of adjacent identical phase portions from the current waveforms detected by the current detection means, and extraction means for extraction And an abnormality determining means for detecting abnormality of the rotor on the basis of the component thus obtained.
JP2002070855A 2002-03-14 2002-03-14 Rotor abnormality detection method and rotor abnormality detection apparatus for AC motor Expired - Fee Related JP4062939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002070855A JP4062939B2 (en) 2002-03-14 2002-03-14 Rotor abnormality detection method and rotor abnormality detection apparatus for AC motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002070855A JP4062939B2 (en) 2002-03-14 2002-03-14 Rotor abnormality detection method and rotor abnormality detection apparatus for AC motor

Publications (2)

Publication Number Publication Date
JP2003274691A JP2003274691A (en) 2003-09-26
JP4062939B2 true JP4062939B2 (en) 2008-03-19

Family

ID=29201307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002070855A Expired - Fee Related JP4062939B2 (en) 2002-03-14 2002-03-14 Rotor abnormality detection method and rotor abnormality detection apparatus for AC motor

Country Status (1)

Country Link
JP (1) JP4062939B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019186909A1 (en) * 2018-03-29 2019-10-03 株式会社日立製作所 Diagnosis device and diagnosis method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7359810B2 (en) * 2005-03-18 2008-04-15 Tektronix, Inc. Characterizing newly acquired waveforms for identification of waveform anomalies
WO2006131878A1 (en) * 2005-06-09 2006-12-14 Philips Intellectual Property & Standards Gmbh Sensorless measurement of the rotation frequency of a rotor of an asynchronous machine
US7855545B2 (en) * 2007-01-17 2010-12-21 General Electric Company Sinusoidal modulated signal clarification tool using various oscillator systems
SE534522C2 (en) 2008-11-13 2011-09-20 Subsee Ab Method and apparatus for off-line testing of multi-phase AC machines
JP5828948B2 (en) * 2014-10-09 2015-12-09 株式会社高田工業所 Abnormal diagnosis method for rotating machinery
JP6371236B2 (en) * 2015-02-23 2018-08-08 株式会社日立製作所 Predictive diagnostic system, predictive diagnostic method, and predictive diagnostic apparatus
JP6190841B2 (en) * 2015-04-02 2017-08-30 三菱電機株式会社 Diagnostic equipment for electric motors
JP6017649B2 (en) * 2015-08-10 2016-11-02 株式会社高田工業所 Abnormal diagnosis method for rotating machinery
JP5985099B1 (en) * 2016-03-31 2016-09-06 株式会社高田工業所 Rotating machine system abnormality detection method, rotating machine system abnormality monitoring method using the abnormality detection method, and rotating machine system abnormality monitoring apparatus using the abnormality monitoring method
WO2018158910A1 (en) * 2017-03-02 2018-09-07 株式会社日立製作所 Diagnostic device and diagnostic method
DE112020007369T5 (en) 2020-06-29 2023-05-04 Mitsubishi Electric Corporation ABNORMALITY DIAGNOSTIC DEVICE, POWER CONVERSION DEVICE AND ABNORMALITY DIAGNOSTIC METHOD
DE112020007771T5 (en) * 2020-11-16 2023-08-31 Mitsubishi Electric Corporation ELECTRIC MOTOR DIAGNOSTIC DEVICE
EP4235197A1 (en) 2022-02-24 2023-08-30 Hitachi, Ltd. Method and system for diagnosing a machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019186909A1 (en) * 2018-03-29 2019-10-03 株式会社日立製作所 Diagnosis device and diagnosis method
JPWO2019186909A1 (en) * 2018-03-29 2020-10-22 株式会社日立製作所 Diagnostic device and diagnostic method

Also Published As

Publication number Publication date
JP2003274691A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
JP4062939B2 (en) Rotor abnormality detection method and rotor abnormality detection apparatus for AC motor
de Jesus Romero-Troncoso Multirate signal processing to improve FFT-based analysis for detecting faults in induction motors
US6822839B2 (en) Method and apparatus of detecting internal motor faults in an induction machine
Riera-Guasp et al. A general approach for the transient detection of slip-dependent fault components based on the discrete wavelet transform
US6449567B1 (en) Apparatus and method for determining shaft speed of a motor
AU2008259861B2 (en) System and method for bearing fault detection using stator current noise cancellation
JP5565120B2 (en) High-frequency electromagnetic vibration component removal method and high-frequency electromagnetic vibration component removal device, rolling bearing diagnosis method and bearing diagnosis device for a rotating machine
US20140074427A1 (en) Method and apparatus for monitoring the condition of electromechanical systems
JP2005274440A (en) Inspection device and technique of rotary electric machine
CA2849549C (en) A method of determining stationary signals for the diagnostics of an electromechanical system
Rosero et al. Broken bearings fault detection for a permanent magnet synchronous motor under non-constant working conditions by means of a joint time frequency analysis
EP3940366A1 (en) Abnormality diagnosis device and abnormality diagnosis method
KR20090027086A (en) Device for diagnosing defects of generators using stator-current
KR20080071259A (en) Measurement device of leakage current ohmic value on power line and method thereof
JPH03291539A (en) Detecting method for abnormality of roller bearing of electric motor
JP2000184658A (en) Diagnostic device for induction motor
KR101133234B1 (en) Resolution increase method of device defect signal by synthesizing of electric motor 3 phase current signal
JP2007236170A (en) Method and device for measuring rotational speed of motor
KR20230054455A (en) Machine condition monitoring method and machine condition monitoring system
JP2915027B2 (en) Acoustic diagnosis method for rotating machines
JPH0566150A (en) Method and device for analyzing rotating degree ratio
JP7213211B2 (en) Inverter deterioration monitoring diagnosis method
US11218823B2 (en) Speaker load diagnostics
De Mata-Castrejón et al. Evaluation of progressive deterioration of a squirrel-cage rotor, with a condition monitoring system that implements the sideband methodology
JP4588985B2 (en) Harmonic analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4062939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees