JP6017649B2 - Abnormal diagnosis method for rotating machinery - Google Patents

Abnormal diagnosis method for rotating machinery Download PDF

Info

Publication number
JP6017649B2
JP6017649B2 JP2015158215A JP2015158215A JP6017649B2 JP 6017649 B2 JP6017649 B2 JP 6017649B2 JP 2015158215 A JP2015158215 A JP 2015158215A JP 2015158215 A JP2015158215 A JP 2015158215A JP 6017649 B2 JP6017649 B2 JP 6017649B2
Authority
JP
Japan
Prior art keywords
current
frequency
abnormality
motor
rotating machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015158215A
Other languages
Japanese (ja)
Other versions
JP2015227889A (en
Inventor
信芳 劉
信芳 劉
芳 馮
芳 馮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takada Corp
Original Assignee
Takada Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takada Corp filed Critical Takada Corp
Priority to JP2015158215A priority Critical patent/JP6017649B2/en
Publication of JP2015227889A publication Critical patent/JP2015227889A/en
Application granted granted Critical
Publication of JP6017649B2 publication Critical patent/JP6017649B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

本発明は、電動機の正常時電流と稼働時(点検時)電流の状態を比較して回転機械系の異常を診断する方法に関する。 The present invention relates to a method for diagnosing abnormalities in a rotating machine system by comparing the state of current during normal operation and the state of current during operation (inspection).

従来、電動機、又は電動機によって駆動されるポンプや減速機(歯車装置)等の機械系からなる回転機械系の状態診断には、診断精度が高いという理由から、測定パラメータとして振動を利用した方法及び装置が用いられている。しかし、回転機械系の設置位置によっては、人が近づいて振動センサー等を設置できない場合がある。
そこで、このような場合には、電動機の電流の実効値やピーク値などの有次元特徴パラメータによる状態監視方法が、一般的に用いられている(例えば、特許文献1参照)。
Conventionally, for diagnosis of the state of a rotating machine system consisting of a motor or a mechanical system such as a pump driven by an electric motor or a reduction gear (gear device), a method using vibration as a measurement parameter because of high diagnostic accuracy and The device is used. However, depending on the installation position of the rotating machine system, a person may approach and cannot install a vibration sensor or the like.
Therefore, in such a case, a state monitoring method based on dimensional feature parameters such as the effective value and peak value of the current of the electric motor is generally used (see, for example, Patent Document 1).

特開平11−83686号公報Japanese Patent Laid-Open No. 11-83686

しかしながら、回転機械系に異常が発生した場合、電流の実効値やピーク値には、ほとんど大きな変化がなく、逆に負荷などの変動が発生した場合に、電流の実効値やピーク値が大きく変わるため、これらのパラメータによる状態判定は不可能であった。特に、特徴パラメータは、電流波形のもつ情報の一部を定量化したものであり、得られた情報を有効に活用しているとはいえない。
つまり、特徴パラメータによる回転機械系の診断においては、機械の負荷と運転状況が変わると、異常の判定と識別基準も変化させる必要が生じるため、統一的な判定基準と識別法の設定が困難であるといった問題があった。
However, when an abnormality occurs in a rotating machine system, there is almost no significant change in the effective value or peak value of the current. Conversely, when a change such as a load occurs, the effective value or peak value of the current changes greatly. Therefore, it is impossible to determine the state using these parameters. In particular, the characteristic parameter is obtained by quantifying a part of information of the current waveform, and it cannot be said that the obtained information is effectively used.
In other words, in the diagnosis of a rotating machine system using characteristic parameters, it is necessary to change the determination of abnormality and the identification standard when the machine load and operating conditions change, so it is difficult to set unified judgment standards and identification methods. There was a problem.

本発明はかかる事情に鑑みてなされたもので、異常判定の基準と識別の設定が可能であり、従来よりも高感度な回転機械系の異常診断方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for diagnosing abnormalities in a rotating machine system that is capable of setting an abnormality determination standard and identification and is more sensitive than the conventional one.

前記目的に沿う発明に係る回転機械系の異常診断方法は、電動機で駆動される回転機械系の異常診断方法において、
前記電動機の稼働時の電流信号をサンプリングし、高速フーリエ変換した後、スペクトルを対数変換し、前記電動機の電源周波数のスペクトルピークのレベルと、該電源周波数を中心周波数として対称に、前記電動機の回転子の軸の回転周波数分だけ離れた周波数の位置に現れるスペクトルピークのレベルとの差が、30〜50デシベルの範囲内となったことを条件として、前記回転機械系において伝動継手で連結されている前記電動機の前記回転子の軸と、負荷側の回転軸との間に、アライメントの異常が発生したと判断する。
An abnormality diagnosis method for a rotating machine system according to the present invention that meets the above-mentioned object is an abnormality diagnosis method for a rotating machine system driven by an electric motor.
The current signal during operation of the motor is sampled, subjected to fast Fourier transform, and then the spectrum is logarithmically converted. The level of the spectrum peak of the power frequency of the motor is symmetrical with respect to the power frequency as the center frequency. The rotational mechanical system is connected by a transmission joint on the condition that the difference from the level of the spectrum peak appearing at the frequency position separated by the rotational frequency of the child shaft is within the range of 30 to 50 decibels. It is determined that an alignment error has occurred between the rotor shaft of the motor and the rotating shaft on the load side.

発明に係る回転機械系の異常診断方法は、電動機の稼働時の電流信号をサンプリングし、高速フーリエ変換した後、スペクトルを対数変換することで、電動機の電源周波数を中心周波数として対称に、電動機の回転子の軸の回転周波数分だけ離れた周波数の位置にスペクトルピークが現れる。このスペクトルピークは、回転機械系において伝動継手で連結されている電動機の回転子の軸と負荷側の回転軸との間のアライメントの異常に起因して、そのレベルが変わるため、電動機の電源周波数のスペクトルピークのレベルと、上記したスペクトルピークのレベルとの差が、30〜50デシベルの範囲内となったことを条件として、異常が発生したと判断できる。 The abnormality diagnosis method for a rotating machine system according to the present invention is such that the current signal during operation of the motor is sampled, subjected to fast Fourier transform, and then the spectrum is logarithmically converted to symmetrically about the power supply frequency of the motor as the center frequency. A spectral peak appears at a frequency position separated by the rotational frequency of the rotor axis. The level of this spectral peak changes due to an abnormality in alignment between the rotor shaft of the motor connected by a transmission joint in the rotating mechanical system and the rotating shaft on the load side. It can be determined that an abnormality has occurred on the condition that the difference between the spectrum peak level and the above-described spectrum peak level is within the range of 30 to 50 decibels .

本発明の一実施の形態に係る回転機械系の異常診断方法のフローチャートである。It is a flowchart of the abnormality diagnosis method of the rotating machine system which concerns on one embodiment of this invention. 同回転機械系の異常診断方法を適用する回転機械系の異常診断装置の説明図である。It is explanatory drawing of the abnormality diagnosis apparatus of the rotating machine system which applies the abnormality diagnosis method of the same rotating machine system. (A)は基準正弦波信号波形のグラフ、(B)〜(E)はそれぞれ電動機の稼働時の電流波形のグラフ、(F)は(A)の参照振幅確率密度関数のグラフ、(G)〜(J)はそれぞれ(B)〜(E)の点検時振幅確率密度関数のグラフである。(A) is a graph of a standard sine wave signal waveform, (B) to (E) are graphs of current waveforms during operation of the motor, (F) is a graph of a reference amplitude probability density function of (A), and (G). -(J) is a graph of the amplitude probability density function at the time of inspection of (B)-(E), respectively. (A)〜(C)は三相誘導電動機の電流各相の正常時の電流波形と点検時の電流波形を比較したグラフである。(A)-(C) are the graphs which compared the current waveform at the time of the normal of each phase of current of a three-phase induction motor, and the current waveform at the time of inspection. (A)〜(C)は三相誘導電動機の電流各相それぞれの電流波形の高周波成分解析を行って歯車軸受が正常と判断される場合のグラフである。(A)-(C) are graphs when a gear bearing is judged to be normal by performing high-frequency component analysis of the current waveform of each phase of the current of the three-phase induction motor. (A)〜(C)は三相誘導電動機の電流各相それぞれの電流波形の高周波成分解析を行って歯車軸受又は噛み合いが異常と判断される場合のグラフである。(A)-(C) are graphs when the high frequency component analysis of the current waveform of each phase of the current of the three-phase induction motor is performed to determine that the gear bearing or the meshing is abnormal. (A)〜(C)は三相誘導電動機の電流各相それぞれの電流波形の側帯波解析を行った結果のグラフである。(A)-(C) are the graphs of the result of having performed the sideband analysis of the current waveform of each phase of the current of a three-phase induction motor. (A)は三相誘導電動機の電流の1つの相の正常時の電流波形を示すグラフ、(B)は異常時の電流波形を示すグラフである。(A) is a graph which shows the current waveform at the time of the normal of one phase of the electric current of a three-phase induction motor, (B) is a graph which shows the current waveform at the time of abnormality. (A)〜(C)は三相誘導電動機の電流各相それぞれの過度電流値である起動電流のパターン分析を行った結果のグラフ、(D)〜(F)は電流各相それぞれの過度電流値である遮断電流のパターン分析を行った結果のグラフである。(A)-(C) is a graph of the result of having performed the pattern analysis of the starting current which is an excessive current value of each current of each phase of a three-phase induction motor, and (D)-(F) are the transient current of each current phase. It is a graph of the result of having performed the pattern analysis of the interruption current which is a value. (A)〜(C)はそれぞれ電流波形の歪解析を行った結果のグラフである。(A)-(C) are each a graph of the result of having performed distortion analysis of the current waveform.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、図2を参照しながら、本発明の一実施の形態に係る回転機械系の異常診断方法を適用する回転機械系の異常診断装置(以下、単に異常診断装置ともいう)10について説明する。
異常診断装置10は、1)異常診断の対象となる交流の電動機11と(及び/又は)、2)この電動機11によって駆動される機械系12(負荷側)からなる回転機械系の診断を行う装置である。この機械系12には、例えば、ポンプや減速機(歯車装置)等があり、この機械系12に電動機11が接続され、電動機11が電力線13を介して電源(制御盤)14に接続されている。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
First, a rotating machine system abnormality diagnosis device (hereinafter also simply referred to as an abnormality diagnosis device) 10 to which a rotating machine system abnormality diagnosis method according to an embodiment of the present invention is applied will be described with reference to FIG.
The abnormality diagnosis apparatus 10 diagnoses a rotating machine system including 1) an AC electric motor 11 to be subjected to abnormality diagnosis and / or 2) a mechanical system 12 (load side) driven by the electric motor 11. Device. The mechanical system 12 includes, for example, a pump, a reduction gear (gear device), and the like. An electric motor 11 is connected to the mechanical system 12, and the electric motor 11 is connected to a power source (control panel) 14 through a power line 13. Yes.

異常診断装置10は、例えば、電動機11と電源14を接続し、電気室や制御盤(電気盤)などに位置する電力線13に近接して配置され、電動機11の稼働時の負荷電流を検出する電流検出器15と、電流検出器15で測定したアナログの電流波形をデジタルの電流データに変換するA/D変換器16と、A/D変換器16で得られた電流データを処理する処理ユニット17とを有している。なお、A/D変換器16から処理ユニット17への電流データの送信は、LANやUSBケーブルにより行う。
ここで、電流検出器15には、例えば、検流器(CT:Current Transducer)等を使用できる。また、処理ユニット17は、RAM、CPU、ROM、I/O、及びこれらの要素を接続するバスを備えた従来公知の演算器(即ち、コンピュータ)で構成され、電動機11と(及び/又は)機械系12からなる回転機械系の診断結果を表示するモニタも有している。なお、処理ユニット17での処理は、CPUが所定のプログラムを実行することで実現される。
For example, the abnormality diagnosis apparatus 10 connects the electric motor 11 and the power source 14 and is disposed in the vicinity of the power line 13 located in an electric room, a control panel (electric panel) or the like, and detects a load current when the electric motor 11 is operating. A current detector 15; an A / D converter 16 that converts an analog current waveform measured by the current detector 15 into digital current data; and a processing unit that processes the current data obtained by the A / D converter 16. 17. Note that transmission of current data from the A / D converter 16 to the processing unit 17 is performed by a LAN or a USB cable.
Here, for example, a galvanometer (CT: Current Transducer) or the like can be used as the current detector 15. The processing unit 17 includes a RAM, a CPU, a ROM, an I / O, and a conventionally known arithmetic unit (that is, a computer) having a bus connecting these elements, and is connected to the electric motor 11 (and / or). It also has a monitor that displays the diagnosis result of the rotating machine system composed of the machine system 12. Note that the processing in the processing unit 17 is realized by the CPU executing a predetermined program.

続いて、本発明の一実施の形態に係る回転機械系の異常診断方法(以下、単に異常診断方法ともいう)について説明する。
異常診断を行うに際しては、まず、図2に示すように、電動機11と電源14を接続する電力線13に電流検出器15を設置し、点検時(稼働時)の電動機11の電流を計測する。なお、電動機11は三相誘導電動機であるため、ここでは、3本の電力線13にそれぞれ電流検出器15を設置しているが、例えば、1本又は2本の電力線に電流検出器を設置して、電流の計測を、電動機11に供給される三相電源の一相について行ってもよい。また、電流の計測は、電動機11に供給される三相電源の一相ごとについて順次切り換えて行ってもよい。
Subsequently, a rotating machine system abnormality diagnosis method (hereinafter also simply referred to as an abnormality diagnosis method) according to an embodiment of the present invention will be described.
When performing an abnormality diagnosis, first, as shown in FIG. 2, a current detector 15 is installed on the power line 13 connecting the motor 11 and the power source 14, and the current of the motor 11 at the time of inspection (operation) is measured. Since the motor 11 is a three-phase induction motor, the current detector 15 is installed on each of the three power lines 13 here. However, for example, a current detector is installed on one or two power lines. Then, the current may be measured for one phase of the three-phase power source supplied to the electric motor 11. Further, the current measurement may be performed by sequentially switching each phase of the three-phase power supplied to the electric motor 11.

上記した電流検出器の設置個数や電流の計測は、異常診断を行う対象の重要度に応じて、適宜決定するのが好ましい。例えば、異常が発生しても大きな問題に繋がりにくい場合は、一部(例えば、1又は2本)の電力線に電流検出器を設置するのがよく、また、異常の検出精度を高める必要がある場合は、全て(ここでは、3本)の電力線に電流検出器を設置して、電流の計測を同時に又は順次切り換えて行うのがよい。
そして、図1に示すステップ1(ST1)〜ステップ6(ST6)の簡易診断(異常検出)を行い、この簡易診断で異常が検出されたことを条件として、ステップ7(ST7)〜ステップ14(ST14)の精密診断(異常識別)を行う。以下、詳しく説明する。
The number of installed current detectors and the measurement of current are preferably determined as appropriate according to the importance of the object to be diagnosed. For example, if it is difficult to lead to a big problem even if an abnormality occurs, it is better to install a current detector in a part (for example, one or two) of power lines, and it is necessary to improve the detection accuracy of the abnormality. In this case, it is preferable to install current detectors on all (three in this case) power lines and switch the current measurement simultaneously or sequentially.
Then, the simple diagnosis (abnormality detection) of Step 1 (ST1) to Step 6 (ST6) shown in FIG. 1 is performed, and Step 7 (ST7) to Step 14 ( The precise diagnosis (abnormality identification) of ST14) is performed. This will be described in detail below.

まず、簡易診断を行うためのステップ1では、電動機11の電源周波数である定格電流(ここでは、60Hz)の基準正弦波信号波形をその実効値で割った規格化電流信号から、参照振幅確率密度関数fr(x)を求めて、処理ユニット17の記憶手段(RAM又はROM)に保存する。基準正弦波信号波形は、図3(A)に示すように、歪みのない波形である。なお、この波形は、計算で求めて作成してもよく、また、正常時の波形を使用してもよい。
このように、電流信号を用いることで、振動信号を用いた診断と比較して、診断精度の向上が図れる。振動信号を用いた診断の場合、機器が正常と思われる状態での振動信号を計測して基準信号とする必要があるが、実際には、その中に異常の振動が含まれている可能性があり、異常の検出精度に難がある。一方、電流信号を用いた診断の場合、基準正弦波信号を基準正弦波信号発生器又は計算によって取得できるので、基準信号に異常の信号が含まれない。
そして、この基準正弦波信号波形をA/D変換し、所定のサンプリング時間で得られる複数の点データにして、図3(F)に示す参照振幅確率密度関数fr(x)を求める(以上、第1工程)。
First, in step 1 for performing a simple diagnosis, a reference amplitude probability density is obtained from a standardized current signal obtained by dividing a standard sine wave signal waveform of a rated current (60 Hz in this case) that is a power supply frequency of the motor 11 by its effective value. The function fr (x) is obtained and stored in the storage means (RAM or ROM) of the processing unit 17. The reference sine wave signal waveform is a waveform without distortion, as shown in FIG. Note that this waveform may be obtained by calculation, or a normal waveform may be used.
Thus, by using the current signal, the diagnostic accuracy can be improved as compared with the diagnosis using the vibration signal. In the case of diagnosis using vibration signals, it is necessary to measure the vibration signal in the state that the device seems to be normal and use it as a reference signal, but in fact, there is a possibility that abnormal vibration is included in it There is a difficulty in detecting the abnormality. On the other hand, in the case of diagnosis using a current signal, since the reference sine wave signal can be obtained by a reference sine wave signal generator or calculation, an abnormal signal is not included in the reference signal.
Then, the reference sine wave signal waveform is A / D converted into a plurality of point data obtained at a predetermined sampling time, and the reference amplitude probability density function fr (x) shown in FIG. First step).

次に、ステップ2(ST2)では、電動機11の稼働時の三相電流を計測してA/D変換器16でA/D変換し、LAN又はUSBケーブル経由で、処理ユニット17(監視コンピュータ)に送信して、記憶手段に保存する。
電動機11の稼働時の電流波形は、図3(B)〜(E)に示すように、回転機械系の状態によって、様々な形状となっている。なお、電動機の電流の計測時間は、例えば、1〜10秒間隔(好ましくは、下限を3秒、上限を7秒)で行われる。
そして、ステップ3(ST3)では、電動機11の稼働時の電流波形の複数の点データから、図3(G)〜(J)に示す点検時振幅確率密度関数ft(x)を求め、処理ユニット17の記憶手段に保存する。なお、点検時振幅確率密度関数ft(x)は、点検時のモータ電流信号を、算出した実効値で割った規格化電流信号である(以上、第2工程)。
Next, in step 2 (ST2), the three-phase current during operation of the electric motor 11 is measured, A / D converted by the A / D converter 16, and the processing unit 17 (monitoring computer) via a LAN or USB cable. To the storage means.
As shown in FIGS. 3B to 3E, the current waveform during operation of the electric motor 11 has various shapes depending on the state of the rotating machine system. In addition, the measurement time of the electric current of the motor is performed, for example, at intervals of 1 to 10 seconds (preferably, the lower limit is 3 seconds and the upper limit is 7 seconds).
In step 3 (ST3), the inspection amplitude probability density function ft (x) shown in FIGS. 3G to 3J is obtained from a plurality of point data of the current waveform during operation of the electric motor 11, and the processing unit The data is stored in 17 storage means. The inspection amplitude probability density function ft (x) is a normalized current signal obtained by dividing the inspection motor current signal by the calculated effective value (the second step).

ステップ4(ST4)では、ステップ1で得られた参照振幅確率密度関数fr(x)と、ステップ2、3で得られた点検時振幅確率密度関数ft(x)について、ID(Information Divergence)とKI(Kullback−Leibler Information:カルバック・ライブラー情報量)を算出する。
一般に、設備状態が変化すると、その電流波形の振幅確率密度関数も変化する。そこで、二つの振幅確率密度関数の相違、即ち、「情報距離」を求めるためにIDとKIを用いる。特に、異常診断においては、IDとKIが、二つの振幅確率密度関数の相違を精度よく現すことができるため、より優れた異常検出精度をもつことが期待される。
In step 4 (ST4), the reference amplitude probability density function fr (x) obtained in step 1 and the inspection amplitude probability density function ft (x) obtained in steps 2 and 3 are set to ID (Information Divergence) and KI (Kullback-Leibler Information) is calculated.
Generally, when the equipment state changes, the amplitude probability density function of the current waveform also changes. Therefore, ID and KI are used to obtain the difference between the two amplitude probability density functions, that is, the “information distance”. In particular, in abnormality diagnosis, since ID and KI can accurately represent the difference between two amplitude probability density functions, it is expected to have better abnormality detection accuracy.

このステップ4では、IDとKIの双方の値を算出しているが、必要に応じて、ID又はKIのいずれか一方のみの値を算出してもよい。
ここで、参照振幅確率密度関数fr(x)と点検時振幅確率密度関数ft(x)が、どちらも正規分布関数となる場合は、各々の分散をσr及びσtとすると、σr>σtであればIDの感度がよく検出精度もよい。一方、σr<σtであれば、KIの感度がよく検出精度もよい。
また、参照振幅確率密度関数fr(x)と点検時振幅確率密度関数ft(x)のどちらかが正規分布関数とならない場合、又は正規分布関数であるか否か不明である場合は、IDとKIの双方の値を算出することで、検出精度が高められる。
ここで、規格化後の振幅xの電流信号に対して、fr(x)を参照分布、ft(x)をテスト分布とすると、IDの定義は、式(1)で表され、また、KIの定義は、式(2)で表される(以上、第3工程)。
In step 4, the values of both ID and KI are calculated. However, if necessary, only the value of either ID or KI may be calculated.
Here, when both the reference amplitude probability density function fr (x) and the inspection amplitude probability density function ft (x) are normal distribution functions, assuming that the respective variances are σr 2 and σt 2 , σr 2 > sensitivity of ID if .sigma.t 2 may be detected accurately. On the other hand, if σr 2 <σt 2 , the sensitivity of KI is good and the detection accuracy is also good.
If either the reference amplitude probability density function fr (x) or the inspection amplitude probability density function ft (x) does not become a normal distribution function, or if it is unknown whether or not it is a normal distribution function, ID and By calculating both values of KI, detection accuracy is increased.
Here, with respect to the normalized current signal of amplitude x, if fr (x) is a reference distribution and ft (x) is a test distribution, the definition of ID is expressed by equation (1), and KI Is defined by the formula (2) (the third step).

Figure 0006017649
Figure 0006017649

Figure 0006017649
Figure 0006017649

ステップ5(ST5)では、上記したIDとKIの経時変化により、回転機械系の状態劣化傾向を管理する。
具体的には、上記したIDとKIの定義により、二つの振幅確率密度分布が全く同一の場合、即ち、fr(x)=ft(x)の場合は、ID=0、KI=0となる。また、fr(x)とft(x)の偏移が大きくなる場合は、IDとKIも大きくなる。
In Step 5 (ST5), the state deterioration tendency of the rotating machine system is managed based on the above-described change with time of ID and KI.
Specifically, according to the definition of ID and KI, when the two amplitude probability density distributions are exactly the same, that is, when fr (x) = ft (x), ID = 0 and KI = 0. . Further, when the deviation of fr (x) and ft (x) becomes large, ID and KI also become large.

そこで、ステップ6(ST6)で、情報検定理論により二つの分布、即ちfr(x)とft(x)の情報距離ID又はKIが回転機械系の異常が推定される量(値)であるかを判断する。n回の独立観測より得た標本空間をXとし、Xを互いに交差しない集合EとEに分割、即ち、E∩E=0、X=E∪Eとする。あるサンプル点をxとすると、
帰無仮説 H:x∈E
対立仮説 H:x∈E
に対して、第一種のエラーα(過検出率)をProb(x∈E|H)、第二種のエラーβ(見逃し率)をProb(x∈E|H)とする。
Therefore, in Step 6 (ST6), whether the information distance ID or KI of the two distributions, ie, fr (x) and ft (x), is an amount (value) by which the abnormality of the rotating machine system is estimated by the information test theory. Judging. Let X be a sample space obtained from n independent observations, and divide X into sets E 0 and E 1 that do not cross each other, that is, E 0 ∩E 1 = 0 and X = E 0 ∪E 1 . If a sample point is x,
Null hypothesis H 0 : x∈E 0
Alternative hypothesis H 1 : x∈E 1
On the other hand, the first type of error α (overdetection rate) is Prob (xεE 1 | H 0 ), and the second type of error β (missing rate) is Prob (xεE 0 | H 1 ). .

IDに対して、式(5)となれば、Hを選択する。ここで、Oは、n回独立観測の一つの標本を表し、このRID(α,β)をIDの判定基準という。なお、RID(α,β)は、式(3)で現される。 If ID (5) is satisfied, H 1 is selected. Here, O n represents one of the samples of n times independent observations, the R ID (alpha, beta) is called ID criteria. Note that R ID (α, β) is expressed by Equation (3).

Figure 0006017649
Figure 0006017649

Figure 0006017649
Figure 0006017649

また、KIに対して、式(6)となれば、Hを選択する。このRKI(α,β)をKIの判定基準という。なお、RKI(α,β)は、式(4)で現される。 Further, with respect to KI, if the equation (6), to select the H 1. This R KI (α, β) is referred to as a KI criterion. Note that R KI (α, β) is expressed by Equation (4).

Figure 0006017649
Figure 0006017649

Figure 0006017649
Figure 0006017649

上記したRID(α,β)とRKI(α,β)のαとβに対する変化は、以下のようになる。
α≧1−βのとき、RID(α,β)とRKI(α,β)は単調増加関数となる。
また、βを一定としてαが大きくなると、RID(α,β)とRKI(α,β)が小さくなり、αを一定としてβが大きくなると、RID(α,β)とRKI(α,β)が小さくなるため、判定基準が厳しくなる。
そこで、上記した参照振幅確率密度関数fr(x)と点検時振幅確率密度関数ft(x)から求めたID又はKIを用い、それぞれについて、前記した式(5)及び式(3)と、式(6)及び式(4)により、異常の有無を判断する。
Changes in R ID (α, β) and R KI (α, β) with respect to α and β are as follows.
When α ≧ 1-β, R ID (α, β) and R KI (α, β) are monotonically increasing functions.
When α is increased with β being constant, R ID (α, β) and R KI (α, β) are decreased, and when β is increased with α being constant, R ID (α, β) and R KI ( Since (α, β) becomes smaller, the criterion becomes stricter.
Therefore, using the ID or KI obtained from the reference amplitude probability density function fr (x) and the inspection amplitude probability density function ft (x), the above-described equations (5) and (3), and The presence or absence of abnormality is determined by (6) and formula (4).

このように、稼働時に求めた(算出された)IDとKIの値の時系列変化を記録することにより、回転機械系の状態の劣化傾向を管理できると同時に、予め設定した判定基準RID(α,β)、RKI(α,β)と比較することにより、回転機械系の簡易診断を実施する。即ち、ステップ6で、IDとKIの双方が条件を満足(ID<RID(α,β)かつKI<RKI(α,β))した場合は、回転機械系に異常の兆候が現れなかったと判断し、またID及びKIのいずれか一方又は双方が前記条件を満足しなかった場合(ID≧RID(α,β)とKI≧RKI(α,β)のいずれか一方又は双方を満足する場合)は、回転機械系の異常の兆候が現れたと判断する。なお、αとβは、それぞれ異常診断の過検出率と見落し率であり、設備の異常検出の要求に従って予め設定できる。例えば、αは0.05以上0.3以下(好ましくは、下限を0.1、上限を0.2)、βは0.05以上0.3以下(好ましくは、下限を0.1、上限を0.2)である。
このステップ6においては、前記したステップ4でIDのみの値を算出した場合、ID≧RID(α,β)の条件を満足するか否か、またステップ4でKIのみの値を算出した場合、KI≧RKI(α,β)の条件を満足するか否かの判断を行う(以上、第4工程)。
In this way, by recording the time-series change of the ID and KI values obtained (calculated) during operation, the deterioration tendency of the state of the rotating machine system can be managed, and at the same time, a predetermined criterion R ID ( A simple diagnosis of the rotating machine system is performed by comparing with α, β) and R KI (α, β). That is, in step 6, when both ID and KI satisfy the conditions (ID <R ID (α, β) and KI <R KI (α, β)), no sign of abnormality appears in the rotating machine system. If either or both of ID and KI do not satisfy the above conditions (ID ≧ R ID (α, β) and KI ≧ R KI (α, β) or both) If satisfied, it is determined that a sign of abnormality in the rotating machine system has appeared. Α and β are an overdiagnosis rate and an oversight rate for abnormality diagnosis, respectively, and can be set in advance in accordance with a request for facility abnormality detection. For example, α is 0.05 to 0.3 (preferably, lower limit is 0.1, upper limit is 0.2), β is 0.05 to 0.3 (preferably, lower limit is 0.1, upper limit 0.2).
In this step 6, when the value of only ID is calculated in the above-mentioned step 4, whether or not the condition of ID ≧ R ID (α, β) is satisfied, and the value of only KI is calculated in step 4 , KI ≧ R KI (α, β) is determined (4th step).

そして、ステップ6で、回転機械系に異常の兆候が現れなかったと判断した場合には、上記したステップ2からステップ6までを、順次繰り返し行う。また、回転機械系に異常の兆候が現れたと判断した場合には、ステップ7(ST7)で異常のメッセージをモニタに表示し、以下の精密解析を行う。
具体的には、1)電流波形の高周波成分解析による回転機械系の異常検出及び識別、2)電流波形の側帯波解析による回転機械系の異常検出及び識別、3)過度電流値のパターン分析による異常検出及びプロセス診断、4)電流波形の歪解析による電動機の電源品質のモニタリング解析のいずれか1又は2以上(好ましくは、全て)の処理を行う。以下、各処理について説明する。
If it is determined in step 6 that there is no sign of abnormality in the rotating machine system, steps 2 to 6 described above are sequentially repeated. If it is determined that a sign of abnormality appears in the rotating machine system, an abnormality message is displayed on the monitor in step 7 (ST7), and the following precision analysis is performed.
Specifically, 1) Abnormal detection and identification of rotating machine system by high-frequency component analysis of current waveform, 2) Abnormal detection and identification of rotating machine system by sideband analysis of current waveform, and 3) Pattern analysis of excessive current value Abnormality detection and process diagnosis, 4) One or more (preferably all) processing of motor power quality monitoring analysis by current waveform distortion analysis is performed. Hereinafter, each process will be described.

まず、ステップ8(ST8)で行う、1)電流波形の高周波成分解析による回転機械系の異常検出及び識別とは、例えば、歯車装置や、軸系のミスアライメント(軸の位置調整ミス)やアンバランス(軸のバランスのずれ)などの異常を識別する方法である。
ここでは、図4(A)〜(C)にそれぞれ示す正常時の電流波形(電流信号:図4中の太線)と点検時の電動機の電流波形(電流信号:図4中の細線)に対し、1000Hz(例えば、500〜1500Hzの範囲内)のハイパスフィルターによるハイパスフィルター処理を行った後、包絡線検波による包絡線処理を行った電流の時系列信号に対し、更に高速フーリエ変換(FFT変換:Fast Fourier Transform)を行う。なお、高速フーリエ変換は、信号を周波数領域に変換する方法であり、周波数成分や位相を観察するのに用いる従来公知の方法である(以下、同様)。
First, in step 8 (ST8), 1) rotating machine system abnormality detection and identification by high-frequency component analysis of the current waveform is, for example, a gear device, a shaft system misalignment (shaft position misalignment), This is a method for identifying an abnormality such as a balance (an axial balance deviation).
Here, with respect to the current waveform at normal time (current signal: thick line in FIG. 4) and the current waveform of the motor at the time of inspection (current signal: thin line in FIG. 4) shown in FIGS. , After performing high-pass filter processing with a high-pass filter of 1000 Hz (for example, in the range of 500 to 1500 Hz), further fast Fourier transform (FFT transform: FFT) on the current time-series signal subjected to envelope processing by envelope detection Fast Fourier Transform). The fast Fourier transform is a method for converting a signal into the frequency domain, and is a conventionally known method used for observing a frequency component and a phase (the same applies hereinafter).

これにより、例えば、図5(A)〜(C)と図6(A)〜(C)に示す高周波電流スペクトルが得られる。
歯車の軸受が正常な場合、図5(A)〜(C)に示すように、高周波電流スペクトルは、電源周波数のほとんど偶数倍の周波数(ここでは、120Hzと240Hz)にだけピークが現れる。一方、歯車の軸受又は歯車の噛み合いに異常が発生した場合は、図6(A)〜(C)に示す長円で囲まれた領域、即ち歯車の軸の回転周波数が29.7Hzの場合、その偶数倍の周波数付近(この場合、59.4Hz、118.8Hz、178.2Hz、237.6Hz、及び297Hz)に、高周波電流スペクトルのピーク群が現れる。なお、正常な場合にも現れる電源周波数のほとんど偶数倍のピークと重なる周波数では、ピークは確認できない。また、偶数倍の周波数付近とは、滑りを考慮した歯車の軸の回転周波数(ここでは、29.7Hz)の偶数倍の周波数を中心として、例えば、±10Hz(好ましくは、±5Hz)の範囲内を意味する。
Thereby, for example, the high-frequency current spectrum shown in FIGS. 5 (A) to (C) and FIGS. 6 (A) to (C) is obtained.
When the gear bearing is normal, as shown in FIGS. 5A to 5C, the high-frequency current spectrum has peaks only at frequencies that are almost even times the power supply frequency (120 Hz and 240 Hz in this case). On the other hand, if an abnormality occurs in the gear bearing or gear meshing, the region surrounded by the ellipse shown in FIGS. 6A to 6C, that is, the rotational frequency of the gear shaft is 29.7 Hz, A peak group of a high-frequency current spectrum appears in the vicinity of the even-numbered frequency (in this case, 59.4 Hz, 118.8 Hz, 178.2 Hz, 237.6 Hz, and 297 Hz). Note that a peak cannot be confirmed at a frequency that overlaps with an even-numbered peak of the power supply frequency that appears even in normal operation. Further, the vicinity of the even multiple frequency is, for example, a range of ± 10 Hz (preferably ± 5 Hz), for example, centering on the frequency of the even multiple of the rotation frequency of the gear shaft (29.7 Hz in this case) considering slippage. Means inside.

ここで、異常の判断は、歯車の軸の回転周波数の偶数倍の周波数付近に現れるスペクトルのピーク群が、予め設定した値を超えたことを条件として判断してもよい。なお、予め設定した値とは、例えば、電源周波数のほとんど偶数倍のピークのレベル(最も高い)の10%以上、好ましくは20%以上、更に好ましくは、30%以上である。
従って、歯車軸の回転周波数の偶数倍の周波数付近に、高周波電流スペクトルのピーク群を検出することにより、回転機械系の異常の精密診断を実施できる。
なお、上記した歯車の軸受又は歯車の噛み合いに異常が発生したか否かの判断は、前記したステップ1〜ステップ6の簡易診断(異常検出)を行うことなく、実施してもよい。即ち、電動機の稼働時の電流信号をサンプリングし、フィルター処理を行った後、包絡線処理を行った電流の時系列信号に対し、更に高速フーリエ変換を行い、歯車の軸の回転周波数の偶数倍の周波数付近に現れるスペクトルのピーク群を検出する。
Here, the determination of abnormality may be made on condition that the peak group of the spectrum that appears in the vicinity of the frequency that is an even multiple of the rotational frequency of the gear shaft exceeds a preset value. The preset value is, for example, 10% or more, preferably 20% or more, more preferably 30% or more of the peak level (highest) that is almost an even multiple of the power supply frequency.
Therefore, by detecting a peak group of the high-frequency current spectrum in the vicinity of a frequency that is an even multiple of the rotational frequency of the gear shaft, it is possible to perform a precise diagnosis of abnormalities in the rotating machine system.
The determination as to whether or not an abnormality has occurred in the above-described gear bearing or gear meshing may be performed without performing the simple diagnosis (abnormality detection) in Steps 1 to 6 described above. That is, after sampling the current signal when the motor is in operation and performing the filter processing, the time series signal of the current subjected to the envelope processing is further subjected to a fast Fourier transform to be an even multiple of the rotational frequency of the gear shaft. A peak group of spectrum appearing near the frequency of is detected.

また、ステップ9(ST9)で行う、2)電流波形の側帯波解析による回転機械系の異常検出及び識別とは、例えば、固定子の異常、巻線の異常、回転子の偏心、回転子の磁極部の損傷、軸系のミスアライメントやアンバランスなどの異常を識別する方法である。
ここでは、図4(A)〜(C)にそれぞれ示す正常時の電流波形(電流信号)と点検時の電動機の電流波形(電流信号)に対し、高速フーリエ変換した後、対数変換(log10Z)を行う。これにより、図7(A)〜(C)に示すように、大きな値は小さなピークのスペクトルにでき、一方、小さな値は大きなピークのスペクトルにできる。
そして、電源周波数を中心周波数として対称に、この電源周波数の側帯波が存在するかどうか、また、そのスペクトルレベルがいくらかを確認する。なお、中心周波数は、例えば、固定子のスロット通過周波数や回転子バーの磁極部の通過周波数でもよく、この場合、電源周波数の側帯波の代わりに、中心周波数から回転周波数や極通過周波数分だけ離れた周波数のスペクトルのピークのレベルを確認する。
Also, in step 9 (ST9), 2) rotating machine system abnormality detection and identification by sideband analysis of the current waveform is, for example, stator abnormality, winding abnormality, rotor eccentricity, rotor This is a method for identifying abnormalities such as damage to the magnetic pole part, misalignment and unbalance of the shaft system.
Here, a normal current waveform (current signal) and a motor current waveform (current signal) at the time of inspection shown in FIGS. 4A to 4C are subjected to fast Fourier transform and then logarithmic conversion (log 10Z). I do. Thus, as shown in FIGS. 7A to 7C, a large value can be a small peak spectrum, while a small value can be a large peak spectrum.
Then, symmetrically with the power supply frequency as the center frequency, it is confirmed whether or not a sideband of this power supply frequency exists and what the spectrum level is. The center frequency may be, for example, the stator slot passing frequency or the rotor bar magnetic pole passing frequency. In this case, instead of the power source frequency sideband, the center frequency is equal to the rotational frequency or pole passing frequency. Check the peak level of the spectrum of the remote frequency.

これにより、例えば、固定子、回転子、回転軸系の状態を診断することができる。
例えば、図7(A)〜(C)に示すように、電源周波数f(ここでは、60Hz)を中心として、極通過周波数f(ここでは、60Hzを中心として±1〜5Hzずれた周波数)の側帯波が存在すると共に、そのピークレベルと中心周波数のピークレベルとの差が予め設定した差を超えた場合に、回転子バーに異常が発生したと判断する。
また、電源周波数を中心周波数として対称に、電動機の回転子の軸の回転周波数分だけ離れた周波数(ここでは、30.7Hzと89.3Hz)の位置では、カップリング(伝動継手)で繋がれて(連結されて)いる電動機の回転子の軸と負荷側の回転軸の軸芯がずれている場合に、ピークが現れる。
Thereby, the state of a stator, a rotor, and a rotating shaft system can be diagnosed, for example.
For example, as shown in FIGS. 7A to 7C, a frequency that is shifted by ± 1 to 5 Hz centered on the power supply frequency f L (here, 60 Hz) and pole passing frequency f p (here, centered on 60 Hz). ) Sidebands and the difference between the peak level and the peak level of the center frequency exceeds a preset difference, it is determined that an abnormality has occurred in the rotor bar.
Further, the symmetrical power frequency as the center frequency (in this case, 30.7Hz and 89.3Hz) rotational frequency partial but only distant frequency axis of the rotor of the motor at the position of, connected by a coupling (transmission joint) A peak appears when the axis of the rotor shaft of the motor being connected (connected) and the axis of the rotation shaft on the load side are deviated.

そこで、図8(A)、(B)に示すように、電動機の電源周波数のスペクトルピークのレベルと、中心周波数から対称に離れた周波数の位置に現れるスペクトルピークのレベルとの差のうち、どちらか一方が、予め設定した値以下となったことを条件として、アライメントの異常が発生したと判断する。ここで、各スペクトルピークのレベルの差は、必要とする検知精度に応じて、例えば、30〜50デシベル(以下、dBともいう。ここでは、40dB)の範囲内(好ましくは、下限を36dB、上限を48dB)で設定できる。
ここで、dBとは、20log(Iline/Ishaft)で表される。なお、Ilineは電流スペクトル電源周波数部の電流成分であり、Ishaftは電流スペクトル電源周波数を中心とした軸回転周波数側帯波部の電流成分である。
従って、回転機械系の異常の精密診断を実施できる。
なお、上記したアライメントの異常が発生したか否かの判断は、前記したステップ1〜ステップ6の簡易診断(異常検出)を行うことなく、実施してもよい。即ち、電動機の稼働時の電流信号をサンプリングし、高速フーリエ変換した後、スペクトルを対数変換し、電動機の電源周波数のスペクトルピークのレベルと、電源周波数から電動機の回転子の軸の回転周波数分だけ離れた周波数の位置に現れるスペクトルピークのレベルとの差を求める。
Therefore, as shown in FIGS. 8A and 8B, whichever of the difference between the level of the spectrum peak of the power supply frequency of the motor and the level of the spectrum peak appearing at a frequency symmetrically away from the center frequency is selected. On the other hand, it is determined that an alignment error has occurred, provided that one of the values is equal to or less than a preset value. Here, the difference in the level of each spectral peak is within a range of 30 to 50 decibels (hereinafter also referred to as dB. Here, 40 dB) (preferably, the lower limit is 36 dB, depending on the required detection accuracy. The upper limit can be set at 48 dB).
Here, dB is represented by 20 log (I line / I shift ). In addition, I line is a current component of the current spectrum power supply frequency part, and I shift is a current component of the axial rotation frequency sideband part centering on the current spectrum power supply frequency.
Therefore, it is possible to carry out precise diagnosis of abnormalities in the rotating machine system.
The determination as to whether or not the above-described alignment abnormality has occurred may be performed without performing the simple diagnosis (abnormality detection) in Steps 1 to 6 described above. That is, after sampling the current signal during operation of the motor, performing fast Fourier transform, logarithmically transforming the spectrum, the level of the spectrum peak of the power frequency of the motor and the rotation frequency of the shaft of the rotor of the motor from the power frequency The difference from the level of the spectrum peak appearing at the position of the remote frequency is obtained.

ステップ10(ST10)で行う、3)過度電流値のパターン分析による異常検出及びプロセス診断とは、被駆動回転機の状態及びプロセスを診断する方法である。
ここでは、図9(A)〜(C)に示す起動電流解析や操業電流解析、また図9(D)〜(F)に示す遮断電流解析や操業電流解析を行う。この起動電流解析とは、回転機械系に異常のない正常状態での起動電流パターン(電流実効値波形、以下同様)と、電動機の稼働時の電流実効値波形とを照合(比較)する方法であり、遮断電流解析とは、正常状態の遮断電流パターンと、電動機の稼働時の電流実効値波形とを照合する方法であり、操業電流解析とは、正常状態の操業電流パターンと、電動機の稼働時の電流実効値波形とを照合する方法である。
ここで、点検時の電動機の電流波形が、正常状態の電流パターンに対して±10%(好ましくは±5%)を超える場合に、回転機械系に異常が発生したとして精密診断できる。
3) Abnormality detection and process diagnosis by pattern analysis of excessive current values performed in step 10 (ST10) are methods for diagnosing the state and process of the driven rotating machine.
Here, the starting current analysis and the operating current analysis shown in FIGS. 9A to 9C, and the breaking current analysis and the operating current analysis shown in FIGS. 9D to 9F are performed. This starting current analysis is a method of comparing (comparing) the starting current pattern (current effective value waveform, the same applies hereinafter) in a normal state with no abnormality in the rotating machine system and the current effective value waveform during operation of the motor. Yes, interrupting current analysis is a method of collating normal interrupting current pattern with motor RMS current waveform during motor operation, and operating current analysis is normal operating current pattern and motor operation This is a method of collating with the current RMS value waveform at the time.
Here, when the current waveform of the motor at the time of inspection exceeds ± 10% (preferably ± 5%) with respect to the current pattern in the normal state, it can be precisely diagnosed that an abnormality has occurred in the rotating machine system.

以上に示したステップ8〜ステップ10を同時又は順次行い、ステップ11(ST11)で異常パターンが認められない場合には、ステップ2に戻って簡易診断を繰り返し行い、異常パターンが認められたと判断された場合には、ステップ14(ST14)で異常識別結果を処理ユニット17のモニタで表示する。 Steps 8 to 10 described above are performed simultaneously or sequentially, and if an abnormal pattern is not recognized in step 11 (ST11), the process returns to step 2 and a simple diagnosis is repeated to determine that an abnormal pattern is recognized. If so, the abnormality identification result is displayed on the monitor of the processing unit 17 in step 14 (ST14).

また、ステップ12(ST12)で行う、4)電流波形の歪解析による電動機の電源品質のモニタリング解析とは、電動機の稼働時の電流信号の高調波成分と電源周波数成分の単調波比率及び全調波比率と相間電流の不平衡率を算出することにより行う解析である。
ここでは、図4(A)〜(C)にそれぞれ示す正常時の電流波形(電流信号)と電動機の稼働時の電流波形(電流信号)に対し、図10(A)〜(C)に示すように、電動機の電源周波数の50次(50倍)までの高調波(歪)解析を実施する。なお、図10(A)〜(C)の縦軸は、基本波に対する各高調波の比率である。
理想的な電源の品質は、電流(電圧)信号の電源周波数f成分が圧倒的に強く、電源周波数の高調波成分がほとんど現れないものである。
In addition, the monitoring analysis of the power quality of the motor by the distortion analysis of the current waveform, which is performed in step 12 (ST12), includes the harmonic component of the current signal during the operation of the motor and the monotone ratio of the power frequency component and the total harmonics. This analysis is performed by calculating the wave ratio and the unbalance rate of the interphase current.
Here, the current waveform (current signal) at normal time and the current waveform (current signal) during operation of the motor shown in FIGS. 4 (A) to 4 (C) are shown in FIGS. 10 (A) to 10 (C). Thus, harmonic (distortion) analysis up to the 50th order (50 times) of the power supply frequency of the electric motor is performed. In addition, the vertical axis | shaft of FIG. 10 (A)-(C) is a ratio of each harmonic with respect to a fundamental wave.
The ideal power supply quality is such that the power supply frequency f L component of the current (voltage) signal is overwhelmingly strong and the harmonic component of the power supply frequency hardly appears.

このため、50次までの高調波成分と電源周波数成分との比率、即ち電流信号の単調波比率idis及び全調波比率(総合電流歪率)idisと、相間電流のアンバランス、即ち電流不平衡率Iubを求める。この単調波比率idis、全調波比率idis、及び電流不平衡率Iubは、それぞれ式(7)〜式(9)で現される。
dis={n次高調波電流の実効値(In)}/{基本電流(I)}×100(%)
・・・(7)
dis={高調波電流の実効値}/{基本電流(I)}×100(%) ・・・(8)
For this reason, the ratio between the harmonic component up to the 50th order and the power supply frequency component, that is, the monotone ratio i dis and total harmonic ratio (total current distortion factor) i dis of the current signal, and the imbalance of the interphase current, that is, the current The unbalance rate I ub is obtained. The monoharmonic ratio i dis , the total harmonic ratio i dis , and the current imbalance ratio I ub are expressed by equations (7) to (9), respectively.
i dis = {effective value of n-th harmonic current (In)} / {basic current (I 1 )} × 100 (%)
... (7)
i dis = {effective value of harmonic current} / {basic current (I 1 )} × 100 (%) (8)

Figure 0006017649
Figure 0006017649

なお、高調波電流の実効値は、第n次高調波電流の実効値をIとすると、式(10)で現される。 The effective value of the harmonic currents, when the effective value of the n-th harmonic current and I n, are revealed by the formula (10).

Figure 0006017649
Figure 0006017649

そして、ステップ13において、単調波比率idis及び全調波比率idisと電流不平衡率Iubの全てが予め設定した基準値(例えば、単調波比率idisは3%、全調波比率idisと電流不平衡率Iubは5%)を超えない場合、電動機に供給される電源品質とインバータに異常が発生しなかったと診断し、ステップ2に戻って繰り返し簡易診断を行う。一方、単調波比率idis、全調波比率idis、又は電流不平衡率Iubのうち一つでも、基準値以上の場合には、電源品質又はインバータに異常が発生したと診断し、ステップ14(ST14)で異常識別結果を処理ユニット17のモニタで表示する。
なお、ステップ12も、ステップ8〜10と同時又は順次行うことができる。
以上の方法により、異常判定の基準と識別の設定が可能であり、従来よりも高感度に回転機械系の異常診断を実施できる。
Then, in step 13, monotonic wave ratio i dis and total harmonic ratio i dis and current imbalance factor I reference values all previously set the ub (e.g., monotonic wave ratio i dis 3%, the total harmonic ratio i If the dis and the current imbalance rate I ub do not exceed 5%), it is diagnosed that no abnormality has occurred in the quality of the power supplied to the motor and the inverter, and the process returns to step 2 to perform simple diagnosis repeatedly. On the other hand, if any one of the monoharmonic ratio i dis , the total harmonic ratio i dis , or the current unbalance ratio I ub is greater than the reference value, it is diagnosed that an abnormality has occurred in the power quality or the inverter, 14 (ST14), the abnormality identification result is displayed on the monitor of the processing unit 17.
Note that step 12 can also be performed simultaneously or sequentially with steps 8-10.
By the above method, it is possible to set the criterion and identification of abnormality determination, and it is possible to carry out abnormality diagnosis of a rotating machine system with higher sensitivity than before.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の回転機械系の異常診断方法を構成する場合も本発明の権利範囲に含まれる。 As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the rotating machine system abnormality diagnosis method of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.

10:回転機械系の異常診断装置、11:電動機、12:機械系、13:電力線、14:電源、15:電流検出器、16:A/D変換器、17:処理ユニット 10: rotating machine system abnormality diagnosis device, 11: electric motor, 12: mechanical system, 13: power line, 14: power supply, 15: current detector, 16: A / D converter, 17: processing unit

Claims (2)

電動機で駆動される回転機械系の異常診断方法において、
前記電動機の稼働時の電流信号をサンプリングし、高速フーリエ変換した後、スペクトルを対数変換し、前記電動機の電源周波数のスペクトルピークのレベルと、該電源周波数を中心周波数として対称に、前記電動機の回転子の軸の回転周波数分だけ離れた周波数の位置に現れるスペクトルピークのレベルとの差が、30〜50デシベルの範囲内となったことを条件として、前記回転機械系において伝動継手で連結されている前記電動機の前記回転子の軸と、負荷側の回転軸との間に、アライメントの異常が発生したと判断することを特徴とする回転機械系の異常診断方法。
In an abnormality diagnosis method for a rotating machine system driven by an electric motor,
The current signal during operation of the motor is sampled, subjected to fast Fourier transform, and then the spectrum is logarithmically converted. The level of the spectrum peak of the power frequency of the motor is symmetrical with respect to the power frequency as the center frequency. The rotational mechanical system is connected by a transmission joint on the condition that the difference from the level of the spectrum peak appearing at the frequency position separated by the rotational frequency of the child shaft is within the range of 30 to 50 decibels. An abnormality diagnosis method for a rotating machine system, characterized in that it is determined that an alignment abnormality has occurred between the axis of the rotor of the motor and the rotation axis on the load side.
請求項1記載の回転機械系の異常診断方法において、前記回転機械系は前記電動機の負荷側が歯車装置で構成されることを特徴とする回転駆動系の異常診断方法。The abnormality diagnosis method for a rotating machine system according to claim 1, wherein the rotating machine system includes a gear device on the load side of the electric motor.
JP2015158215A 2015-08-10 2015-08-10 Abnormal diagnosis method for rotating machinery Active JP6017649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015158215A JP6017649B2 (en) 2015-08-10 2015-08-10 Abnormal diagnosis method for rotating machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015158215A JP6017649B2 (en) 2015-08-10 2015-08-10 Abnormal diagnosis method for rotating machinery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014208245A Division JP5828948B2 (en) 2014-10-09 2014-10-09 Abnormal diagnosis method for rotating machinery

Publications (2)

Publication Number Publication Date
JP2015227889A JP2015227889A (en) 2015-12-17
JP6017649B2 true JP6017649B2 (en) 2016-11-02

Family

ID=54885411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015158215A Active JP6017649B2 (en) 2015-08-10 2015-08-10 Abnormal diagnosis method for rotating machinery

Country Status (1)

Country Link
JP (1) JP6017649B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090546A (en) * 2014-11-11 2016-05-23 旭化成エンジニアリング株式会社 Current diagnostic device and current diagnostic method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3474029B1 (en) * 2016-06-21 2022-03-30 Mitsubishi Electric Corporation Load abnormality detection device
EP3492938B1 (en) * 2016-07-26 2021-09-01 Mitsubishi Electric Corporation Electric motor diagnosis device
JP6144404B1 (en) * 2016-12-27 2017-06-07 川崎重工業株式会社 Reduction gear failure diagnosis device, failure diagnosis method, and mechanical device including the failure diagnosis device
WO2018158910A1 (en) * 2017-03-02 2018-09-07 株式会社日立製作所 Diagnostic device and diagnostic method
KR102340119B1 (en) * 2017-06-29 2021-12-16 미쓰비시덴키 가부시키가이샤 Diagnosis device of electric motor
JP6619908B1 (en) * 2019-09-13 2019-12-11 三菱重工業株式会社 Diagnostic device, diagnostic method, and diagnostic program
CN115136487A (en) * 2020-02-20 2022-09-30 三菱电机株式会社 Diagnostic device for motor
JP7453875B2 (en) * 2020-07-31 2024-03-21 三菱重工業株式会社 Diagnostic equipment, diagnostic methods, and diagnostic programs for rotating machinery
CN116057364A (en) * 2020-08-03 2023-05-02 大金工业株式会社 Abnormality determination device, abnormality determination method, and program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61112976A (en) * 1984-11-07 1986-05-30 Fuji Electric Co Ltd Diagnostic apparatus of induction motor
JPH1183686A (en) * 1997-09-01 1999-03-26 Nippon Steel Corp Method and device for diagnosing abnormality in machine installation
JP4062939B2 (en) * 2002-03-14 2008-03-19 Jfeスチール株式会社 Rotor abnormality detection method and rotor abnormality detection apparatus for AC motor
JP2004112906A (en) * 2002-09-18 2004-04-08 Jfe Steel Kk Detection method for crack of rotor bar of ac motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090546A (en) * 2014-11-11 2016-05-23 旭化成エンジニアリング株式会社 Current diagnostic device and current diagnostic method

Also Published As

Publication number Publication date
JP2015227889A (en) 2015-12-17

Similar Documents

Publication Publication Date Title
JP5733913B2 (en) Abnormal diagnosis method for rotating machinery
JP6017649B2 (en) Abnormal diagnosis method for rotating machinery
EP2565658B1 (en) Fault detection based on current signature analysis for a generator
US10267860B2 (en) Fault detection in induction machines
EP2790028B1 (en) Broken rotor bar detection based on current signature analysis of an electric machine
US10310016B2 (en) Method for the diagnostics of electromechanical system based on impedance analysis
EP3068040A1 (en) Fault detection and diagnosis in an induction motor
KR102097510B1 (en) Load abnormality detection device
US11099101B2 (en) Method for estimating bearing fault severity for induction motors
EP2728367B1 (en) A method for detecting a fault condition in an electrical machine
JP7046064B2 (en) Diagnostic device for motors
JP5828948B2 (en) Abnormal diagnosis method for rotating machinery
JP2011259624A (en) Method and device for removing high frequency electromagnetic vibration component of vibration data of rolling bearing section and method and device for diagnosing rolling bearing of rotary machine
JP7109656B2 (en) Abnormality Diagnosis Device for Electric Motor Equipment, Abnormality Diagnosis Method for Electric Motor Equipment, and Abnormality Diagnosis System for Electric Motor Equipment
EP3579404B1 (en) Motor diagnosis device
JP2011215067A (en) Insulation diagnosis method, insulation diagnosis system, and rotating electric machine
WO2019082277A1 (en) Anomaly assessment device, anomaly assessment method, and anomaly assessment system
Mehala et al. Condition monitoring methods, failure identification and analysis for Induction machines
EP3339638B1 (en) Systems for crack detection in doubly-fed induction generators
WO2017169170A1 (en) Method for determining characteristic feature quantity of three-phase induction motor
Treml et al. EMD and MCSA improved via Hilbert Transform analysis on asynchronous machines for broken bar detection using vibration analysis
KR101950385B1 (en) System and method for diagnosing induction motor and load, and a recording medium having computer readable program for executing the method
JP7213211B2 (en) Inverter deterioration monitoring diagnosis method
RU2356061C1 (en) Method of automatic control of mechanical damages of three-phase asynchronous motors
Norrawai et al. Analysis of 3-Phase Induction Motor at Chiller Room FKAAB Building Using Motor Current Signature Analysis and Vibration-Monitoring

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160928

R150 Certificate of patent or registration of utility model

Ref document number: 6017649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250