JP2004112906A - Detection method for crack of rotor bar of ac motor - Google Patents

Detection method for crack of rotor bar of ac motor Download PDF

Info

Publication number
JP2004112906A
JP2004112906A JP2002271791A JP2002271791A JP2004112906A JP 2004112906 A JP2004112906 A JP 2004112906A JP 2002271791 A JP2002271791 A JP 2002271791A JP 2002271791 A JP2002271791 A JP 2002271791A JP 2004112906 A JP2004112906 A JP 2004112906A
Authority
JP
Japan
Prior art keywords
motor
bar
rotor
power supply
crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002271791A
Other languages
Japanese (ja)
Inventor
Takuya Suzuki
鈴木 拓哉
Hideo Fujimoto
藤本 英男
Kunio Tabei
田部井 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Denki Corp
Original Assignee
JFE Steel Corp
Kawatetsu Densetsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kawatetsu Densetsu KK filed Critical JFE Steel Corp
Priority to JP2002271791A priority Critical patent/JP2004112906A/en
Publication of JP2004112906A publication Critical patent/JP2004112906A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately detect a disconnection of the rotor bar of an AC motor even in a light load. <P>SOLUTION: In this detection method for the crack of the rotor bar of the AC motor, the number of revolutions of a rotor 12 is made to slip (S) relative to the synchronous number of revolutions S0 by reducing the generated torque of the motor itself by lowering a power supply voltage, a pulsation current component (2 x S x f0) contained in a motor current generated accompanied by a torque ripple caused by the crack of the bar is separated from a power supply frequency f0, and detection sensibility is thus improved. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、交流モータの回転子バー切れ検出方法に係り、特に、一般的に使用されている籠型誘導電動機(交流モータと称する)の回転子バーと短絡環との接続部の切損を検出することが可能な、交流モータの回転子バー切れ検出方法に関する。
【0002】
【従来の技術】
一般的に使用されている交流モータ10の回転子12は、図1に示す如く、例えば銅製のバー16を回転子両端部で、例えば銅製のエンドリング(短絡環と称する)18により短絡する構造になっており、接続部は銀蝋溶接されている。この接続部は、起動停止時の過大電流による熱収縮ストレスが大きく、バー16と短絡環18との切断→バー飛び出し→固定子コイル損傷→地絡焼損へと進展していく。図1において、20は鉄心である。
【0003】
ここで、モータ10には、図2に示す如く、電源から電力が供給され、出力側に負荷が接続されている。図2において、22は電流計である。
【0004】
バー切れが発生すると、切損に伴うトルク変動による振動や電流リップルが発生するため、これを診断(周波数解析を含む)する方法が行なわれている。
【0005】
このとき、電流の周波数スペクトルには、図3に示す如く、電源周波数成分(f0)(基本波とも称する)の両側に脈動成分(2・S・f0)(側帯波とも称する)が、バー切れの本数に比例して発生することが知られている(下里太郎著「インテリジェント設備診断」104頁−105頁、オーム社発行参照)。又、特開2000−184658には、この方法を利用した誘導電動機の診断装置が記載されている。
【0006】
【発明が解決しようとする課題】
しかしながら、従来のような方法では、上記文献に記載されているように、モータ負荷が50%以上あることが診断上必要であり、負荷が少ない場合には判定が難しくなるという問題があった。
【0007】
即ち、軽負荷では、スリップ(S)が余り発生しないため、後出図7に例示する如く、脈動成分(2・S・f0)が電源周波数成分(f0)と近似し、周波数スペクトルとして分離し難いという問題があった。
【0008】
本発明は、前記従来の問題点を解決するべくなされたもので、軽負荷でも交流モータの回転子バー切れを精度良く検出できるようにすることを課題とする。
【0009】
【課題を解決するための手段】
本発明は、交流モータの回転子のバー切れを検出する際に、好ましくは電源電圧を下げて、モータ自体の発生トルクを低下させることより、回転子の回転数を同期回転数S0に対してスリップ(S)させ、バー切れに伴い発生するモータ電流に含まれる脈動成分(2・S・f0)を電源周波数f0から分離させて、脈動成分のレベルを測定できるようにして、前記課題を解決したものである。
【0010】
又、前記スリップを、0.5%以上とするようにしたものである。
【0011】
本発明によれば、軽負荷の状態で回転子のバー切れにより発生する脈動電流成分(2・S・f0)を電源周波数(f0)から分離させる方法として、通常採られるブレーキや負荷装置によるスリップ発生手段に対して、電源電圧を可変させることにより、モータ自体の発生トルクを低減させて、軽負荷のままでスリップを発生させるようにしている。従って、大きな設備改造を要しないで、比較的簡便に精度良くバー切れを検出できる。
【0012】
本発明は、交流モータの発生トルクが、電源電圧の2乗に比例するという特性を利用したもので、図4に示すように、電源電圧を定格電圧(V)から下げていくと、トルクカーブが低下し、軽負荷でもバランス点がずれてきて、同期回転数に対して、実回転数に遅れ、即ちスリップが発生することになる。
【0013】
【発明の実施の形態】
以下図面を参照して、本発明の実施形態を詳細に説明する。
【0014】
本発明を実施するための診断装置は、例えば図5に示す如く、交流モータ10に与える電源電圧を変化させるための電源電圧可変装置30と、該電源電圧可変装置30から交流モータ10に与えられる一次電流を検出するための、例えばクランプ式の電流検出器32と、該電流検出器32によって検出される電流を周波数解析(例えばFFT)する周波数解析装置34と、該周波数解析装置34の出力に応じてバー切れを診断するバー切れ診断判定装置36と、交流モータ10の回転数を検出する回転数検出器38とを備えている。
【0015】
以下、診断装置の作用を説明する。
【0016】
交流モータ10の電源を電源電圧可変装置30から供給し、回転数を回転数検出器38で測定しながら、1%程度のスリップSが発生するまで、電源電圧を下げていく。
【0017】
そのときに電流検出器32によって検出される一次電流を入力として、周波数解析装置34でスペクトル分析し、脈動電流のレベルや脈動電流/電源周波数のレベル比(脈動電流比率)により、図6に示すような関係を利用して、バー切れの有無や本数を検出する。
【0018】
【実施例】
図7乃至図9に交流モータのバー切れ診断結果を示す。モータの定格は7.5kW、400V、極数6(6P)、975rpm、定格時のスリップ(S)=0.025(2.5%)である。
【0019】
図7は、従来の診断方法による診断結果を示したもので、負荷が少ない状態である負荷率35%で回転子のバーを1本切断した場合の電流を、周波数解析した結果を示すが、回転数が999rpmと同期回転数(S0)1000rpmに近似してスリップが小さいため、脈動成分(側帯波)を誤認識して、脈動成分のレベルを小さく判断し、バー切れ無しと誤判定している。
【0020】
これに対して、図8は、本発明により電源電圧を徐々に低下させ、定格400Vに対して50Vを印加した場合の電流を周波数解析したもので、回転数も992rpmとスリップ(S)=0.008(0.8%)が発生し、側帯波(50±0.8Hz)が、電源周波数50Hzから明確に分離できている。これにより、バー切れ(1本)を正確に判定できている。
【0021】
図9は、バー切れを2本とした場合の実施例で、電源電圧を50Vとすることで、回転数が990rpmまで下がって、側帯波の検出レベルも高まり、正確にバー切れ2本を判定できている。
【0022】
【発明の効果】
本発明によれば、検出感度を上げ、従来の負荷率50%以上という診断条件に囚われることなく、軽負荷でも回転子のバー切れを正確に検出できる。
【0023】
又、モータ単体での診断の場合には、オンラインでの負荷やノイズによる電流成分がないので、正確に電流解析でき、断線しかかっている場合の断線予知や、回転子アンバランス、軸受不良等も診断できる。
【0024】
即ち、交流モータの回転子のバー切れをいかなる状態でも診断でき、バー切れの早期発見により、突発事故や突発補修費の削減を図ることができる。
【図面の簡単な説明】
【図1】交流モータの回転子の構成を示す斜視図
【図2】交流モータの全体構成を示す正面図
【図3】バー切れ検出の原理を示すスペクトル図
【図4】本発明の原理を説明するための電源電圧を下げたときのスリップ発生状態を示す線図
【図5】本発明が採用された診断装置の全体構成を示すブロック図
【図6】回転子のバー切れ本数と脈動電流比率の関係の例を示す線図
【図7】従来の診断方法による診断結果を示すスペクトル図
【図8】本発明によりバー切れ1本を診断したときのスペクトル図
【図9】同じくバー切れ2本を診断したときのスペクトル図
【符号の説明】
10…交流モータ
12…回転子
16…バー
18…短絡環(エンドリング)
30…電源電圧可変装置
32…電流検出器
34…周波数解析装置
36…バー切れ診断判定装置
38…回転数検出器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of detecting a broken rotor bar of an AC motor, and more particularly, to a method of detecting a breakage of a connection portion between a rotor bar and a short-circuit ring of a generally used cage induction motor (referred to as an AC motor). The present invention relates to a method of detecting a broken rotor bar of an AC motor, which can be detected.
[0002]
[Prior art]
As shown in FIG. 1, a rotor 12 of a commonly used AC motor 10 has a structure in which, for example, a copper bar 16 is short-circuited at both ends of the rotor by, for example, an end ring (referred to as a short-circuit ring) 18 made of copper. And the connection is silver-welded. This connection portion has a large heat shrinkage stress due to an excessive current at the time of starting and stopping, and progresses from disconnection between the bar 16 and the short-circuit ring 18 → bar protrusion → stator coil damage → ground fault burning. In FIG. 1, reference numeral 20 denotes an iron core.
[0003]
Here, as shown in FIG. 2, power is supplied to the motor 10 from a power supply, and a load is connected to the output side. In FIG. 2, reference numeral 22 denotes an ammeter.
[0004]
When a bar break occurs, vibration and current ripples occur due to torque fluctuations caused by the breakage, and a method of diagnosing this (including frequency analysis) has been used.
[0005]
At this time, in the frequency spectrum of the current, as shown in FIG. 3, a pulsation component (2 · S · f0) (also referred to as a sideband) is present on both sides of the power supply frequency component (f0) (also referred to as a fundamental wave), and the bar is broken. (See Intelligent Equipment Diagnosis, pp. 104-105, published by Ohmsha) by Taro Shimozato. Japanese Patent Application Laid-Open No. 2000-184658 describes a diagnostic device for an induction motor using this method.
[0006]
[Problems to be solved by the invention]
However, in the conventional method, as described in the above literature, it is necessary for diagnosis that the motor load is 50% or more, and there is a problem that it is difficult to determine when the load is small.
[0007]
That is, since the slip (S) does not occur much at a light load, the pulsation component (2 · S · f0) approximates to the power supply frequency component (f0) and is separated as a frequency spectrum as illustrated in FIG. There was a problem that it was difficult.
[0008]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and has as its object to enable accurate detection of a broken rotor bar of an AC motor even under a light load.
[0009]
[Means for Solving the Problems]
In the present invention, when detecting the break of the bar of the rotor of the AC motor, preferably, by lowering the power supply voltage to reduce the torque generated by the motor itself, the rotation speed of the rotor is compared with the synchronous rotation speed S0. The above problem is solved by slipping (S) and separating the pulsation component (2 · S · f0) included in the motor current generated due to the bar breaking from the power supply frequency f0 so that the level of the pulsation component can be measured. It was done.
[0010]
Further, the slip is set to 0.5% or more.
[0011]
According to the present invention, as a method of separating a pulsating current component (2 · S · f0) generated by a rotor bar breaking under a light load state from a power supply frequency (f0), a slip by a brake or a load device which is usually adopted is used. By varying the power supply voltage with respect to the generating means, the generated torque of the motor itself is reduced, and a slip is generated with a light load. Therefore, bar breakage can be detected relatively easily and accurately with no need for major equipment modification.
[0012]
The present invention utilizes the characteristic that the torque generated by the AC motor is proportional to the square of the power supply voltage. As shown in FIG. 4, when the power supply voltage is reduced from the rated voltage (V), the torque curve is reduced. And the balance point deviates even with a light load, and the actual rotational speed is delayed with respect to the synchronous rotational speed, that is, slip occurs.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0014]
As shown in FIG. 5, for example, a diagnostic device for implementing the present invention is provided with a power supply voltage varying device 30 for changing a power supply voltage applied to the AC motor 10, and is provided to the AC motor 10 from the power supply voltage varying device 30. For example, a clamp-type current detector 32 for detecting a primary current, a frequency analyzer 34 for performing frequency analysis (for example, FFT) of a current detected by the current detector 32, and an output of the frequency analyzer 34 A bar break diagnosis determining device 36 for diagnosing a bar break in response thereto, and a rotation speed detector 38 for detecting the rotation speed of the AC motor 10 are provided.
[0015]
Hereinafter, the operation of the diagnostic device will be described.
[0016]
The power of the AC motor 10 is supplied from the power supply voltage varying device 30, and the power supply voltage is reduced until the slip S of about 1% occurs while measuring the rotation speed with the rotation speed detector 38.
[0017]
The primary current detected by the current detector 32 at that time is used as an input, and the spectrum is analyzed by the frequency analyzer 34, and the pulsating current level and the pulsating current / power supply frequency level ratio (pulsating current ratio) are shown in FIG. Utilizing such a relationship, the presence or absence of bars and the number of bars are detected.
[0018]
【Example】
7 to 9 show the results of the bar breakage diagnosis of the AC motor. The rating of the motor is 7.5 kW, 400 V, 6 poles (6P), 975 rpm, and the slip (S) at the time of rating is 0.025 (2.5%).
[0019]
FIG. 7 shows a result of a diagnosis by a conventional diagnosis method, and shows a result of frequency analysis of a current when one rotor bar is cut off at a load ratio of 35% with a small load, Since the rotational speed is 999 rpm and the synchronous rotational speed (S0) is close to 1000 rpm and the slip is small, the pulsation component (sideband wave) is erroneously recognized, the level of the pulsation component is determined to be small, and it is erroneously determined that there is no bar break. I have.
[0020]
On the other hand, FIG. 8 is a frequency analysis of the current when the power supply voltage is gradually reduced according to the present invention and 50 V is applied to the rated voltage of 400 V. The rotation speed is 992 rpm and the slip (S) = 0. 0.008 (0.8%), and the sideband (50 ± 0.8 Hz) is clearly separated from the power supply frequency of 50 Hz. As a result, it is possible to accurately determine that one bar has run out.
[0021]
FIG. 9 shows an embodiment in which two bars are cut. When the power supply voltage is set to 50 V, the number of rotations drops to 990 rpm, the detection level of the sideband increases, and the two bars are accurately judged. is made of.
[0022]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, detection sensitivity is raised and the bar | burr break of a rotor can be detected correctly even with a light load, without being bound by the conventional diagnostic conditions of 50% or more of load factors.
[0023]
Also, in the case of diagnosis of the motor alone, since there is no current component due to online load or noise, accurate current analysis can be performed, and if a disconnection is about to occur, disconnection prediction, rotor imbalance, bearing failure, etc. Diagnose.
[0024]
That is, the bar of the rotor of the AC motor can be diagnosed in any state, and the early detection of the bar can reduce sudden accidents and sudden repair costs.
[Brief description of the drawings]
FIG. 1 is a perspective view showing the configuration of a rotor of an AC motor. FIG. 2 is a front view showing the entire configuration of the AC motor. FIG. 3 is a spectrum diagram showing the principle of bar break detection. FIG. FIG. 5 is a diagram illustrating a slip occurrence state when the power supply voltage is reduced for the sake of explanation. FIG. 5 is a block diagram illustrating an overall configuration of a diagnostic device to which the present invention is applied. FIG. FIG. 7 is a diagram showing an example of the relationship between the ratios. FIG. 7 is a spectrum diagram showing a diagnosis result obtained by a conventional diagnosis method. FIG. 8 is a spectrum diagram showing one bar bar being diagnosed according to the present invention. FIG. Spectrum diagram when a book is diagnosed [Explanation of symbols]
10 AC motor 12 Rotor 16 Bar 18 Short-circuit ring (end ring)
Reference numeral 30: power supply voltage varying device 32: current detector 34: frequency analysis device 36: bar break diagnosis / judgment device 38: rotational speed detector

Claims (2)

交流モータの回転子のバー切れを検出する際に、
モータ自体の発生トルクを低下させることより、回転子の回転数を同期回転数S0に対してスリップ(S)させ、
バー切れに伴い発生するモータ電流に含まれる脈動成分(2・S・f0)を電源周波数f0から分離させて、
前記脈動成分のレベルを測定できるようにしたことを特徴とする交流モータの回転子バー切れ検出方法。
When detecting the burnout of the rotor of the AC motor,
By reducing the torque generated by the motor itself, the rotation speed of the rotor is slipped (S) with respect to the synchronous rotation speed S0,
The pulsation component (2 · S · f0) included in the motor current generated due to the bar breaking is separated from the power supply frequency f0,
A method for detecting a broken rotor bar of an AC motor, wherein a level of the pulsation component can be measured.
前記スリップを、0.5%以上とすることを特徴とする請求項1に記載の交流モータの回転子バー切れ検出方法。The method according to claim 1, wherein the slip is 0.5% or more.
JP2002271791A 2002-09-18 2002-09-18 Detection method for crack of rotor bar of ac motor Pending JP2004112906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002271791A JP2004112906A (en) 2002-09-18 2002-09-18 Detection method for crack of rotor bar of ac motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002271791A JP2004112906A (en) 2002-09-18 2002-09-18 Detection method for crack of rotor bar of ac motor

Publications (1)

Publication Number Publication Date
JP2004112906A true JP2004112906A (en) 2004-04-08

Family

ID=32269001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002271791A Pending JP2004112906A (en) 2002-09-18 2002-09-18 Detection method for crack of rotor bar of ac motor

Country Status (1)

Country Link
JP (1) JP2004112906A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271771A (en) * 2007-01-17 2008-11-06 General Electric Co <Ge> Sinusoidal modulated signal rectification tool using various oscillator systems
JP2010016982A (en) * 2008-07-03 2010-01-21 Mitsubishi Electric Corp Motor controller and method for detecting ground fault of motor
JP2015227889A (en) * 2015-08-10 2015-12-17 株式会社高田工業所 Abnormality diagnosis method of rotary machine system
JP5985099B1 (en) * 2016-03-31 2016-09-06 株式会社高田工業所 Rotating machine system abnormality detection method, rotating machine system abnormality monitoring method using the abnormality detection method, and rotating machine system abnormality monitoring apparatus using the abnormality monitoring method
JP6062588B1 (en) * 2016-03-31 2017-01-18 株式会社高田工業所 A method for determining the characteristic features of a three-phase induction motor.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271771A (en) * 2007-01-17 2008-11-06 General Electric Co <Ge> Sinusoidal modulated signal rectification tool using various oscillator systems
JP2010016982A (en) * 2008-07-03 2010-01-21 Mitsubishi Electric Corp Motor controller and method for detecting ground fault of motor
JP2015227889A (en) * 2015-08-10 2015-12-17 株式会社高田工業所 Abnormality diagnosis method of rotary machine system
JP5985099B1 (en) * 2016-03-31 2016-09-06 株式会社高田工業所 Rotating machine system abnormality detection method, rotating machine system abnormality monitoring method using the abnormality detection method, and rotating machine system abnormality monitoring apparatus using the abnormality monitoring method
JP6062588B1 (en) * 2016-03-31 2017-01-18 株式会社高田工業所 A method for determining the characteristic features of a three-phase induction motor.
WO2017169170A1 (en) * 2016-03-31 2017-10-05 株式会社高田工業所 Method for determining characteristic feature quantity of three-phase induction motor
JP2017181437A (en) * 2016-03-31 2017-10-05 株式会社高田工業所 Rotary machine system abnormality detection method, rotary machine system abnormality monitoring method using abnormality detection method, and rotary machine system abnormality monitoring device using abnormality monitoring method
WO2017168796A1 (en) * 2016-03-31 2017-10-05 株式会社高田工業所 Abnormality detection method for rotary mechanical system, abnormality monitoring method for rotary mechanical system using said abnormality detection method, and abnormality monitoring device for rotary mechanical system using said abnormality detection method
TWI612765B (en) * 2016-03-31 2018-01-21 高田工業所股份有限公司 Method for determining specific characteristic quantities of three-phase induction motor

Similar Documents

Publication Publication Date Title
US8405339B2 (en) System and method for detecting fault in an AC machine
Drif et al. Stator fault diagnostics in squirrel cage three-phase induction motor drives using the instantaneous active and reactive power signature analyses
MA Cruz, AJ Marques Cardoso Rotor cage fault diagnosis in three-phase induction motors by extended Park's vector approach
Rajagopalan et al. Dynamic eccentricity and demagnetized rotor magnet detection in trapezoidal flux (brushless DC) motors operating under different load conditions
US9261562B2 (en) Portable system for immotive multiphasic motive force electrical machine testing
US8924170B2 (en) Method and system for detecting a failed rectifier in an AC/DC converter
CN102520352B (en) Brushless alternating current (AC) generator failure diagnosis instrument
Kim et al. Online fault-detecting scheme of an inverter-fed permanent magnet synchronous motor under stator winding shorted turn and inverter switch open
KR102040397B1 (en) Fault diagnosis method and system of induction motor using inverter input current analysis
Park et al. Evaluation of the detectability of broken rotor bars for double squirrel cage rotor induction motors
Bellini et al. Diagnosis of bearing faults of induction machines by vibration or current signals: A critical comparison
Muller et al. A novel method to detect broken rotor bars in squirrel cage induction motors when interbar currents are present
Cira et al. Analysis of stator inter-turn short-circuit fault signatures for inverter-fed permanent magnet synchronous motors
CN109845090B (en) Method for detecting a fault in an electric machine
Le Roux et al. Detecting rotor faults in permanent magnet synchronous machines
Siau et al. Broken bar detection in induction motors using current and flux spectral analysis
JP2004112906A (en) Detection method for crack of rotor bar of ac motor
KR102028710B1 (en) System and method for detecting damper bar breakage of 3-phase salient pole synchronous machines
Lee et al. A stator-core quality-assessment technique for inverter-fed induction machines
KR101142974B1 (en) Method for detecting rotor faults of inverter-fed induction motor, and a medium having computer readable program for executing the method
Pietrzak et al. Stator phase current STFT analysis for the PMSM stator winding fault diagnosis
KR101665891B1 (en) Apparatus for sensing disorder of transistor driving motor
Stojičić et al. Monitoring of rotor bar faults in induction generators with full-size inverter
Immovilli et al. Currents and vibrations in asynchronous motor with externally induced vibration
Royo et al. Machine current signature analysis as a way for fault detection in permanent magnet motors in elevators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070515