JP2003274691A - Method and device for detecting abnormality of rotor in ac motor - Google Patents

Method and device for detecting abnormality of rotor in ac motor

Info

Publication number
JP2003274691A
JP2003274691A JP2002070855A JP2002070855A JP2003274691A JP 2003274691 A JP2003274691 A JP 2003274691A JP 2002070855 A JP2002070855 A JP 2002070855A JP 2002070855 A JP2002070855 A JP 2002070855A JP 2003274691 A JP2003274691 A JP 2003274691A
Authority
JP
Japan
Prior art keywords
rotor
abnormality
motor
current
waveforms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002070855A
Other languages
Japanese (ja)
Other versions
JP4062939B2 (en
Inventor
Hiroshi Shibata
寛 柴田
Kiyoyoshi Suenaga
清佳 末長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002070855A priority Critical patent/JP4062939B2/en
Publication of JP2003274691A publication Critical patent/JP2003274691A/en
Application granted granted Critical
Publication of JP4062939B2 publication Critical patent/JP4062939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make influence of noise to be minimum and to easily detect abnormality of a rotor in an AC motor even in an operation state. <P>SOLUTION: Subtraction is performed in current frequencies (similar phase waveforms) for one continuous cycle in a current flowing in the AC motor 1, which is detected by a current detector 5. Thus, a pulsation component appeared in a case of abnormality in the rotor is extracted and presence or absence of abnormality of the rotor is detected. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、交流電動機の回転
子の異常を、電気的雑音の多い環境下で、且つ運転中で
あっても検出可能な交流電動機の回転子異常検出方法及
び回転子異常検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotor abnormality detection method for an AC motor and a rotor capable of detecting abnormality of the rotor of the AC motor even in an environment where there is a lot of electrical noise and during operation. The present invention relates to an abnormality detection device.

【0002】[0002]

【従来の技術】交流電動機の回転子の異常を運転中に検
出する従来の装置として、バー切れ診断装置がある。こ
の装置では、交流電動機に流れる電流についてFFT分
析を行い、電源周波数成分の側帯波として現れる周波数
成分から回転子などの内部異常を検出する(FFT分
析:電機設備診断の進め方(発行所:日本プラントメン
テナンス協会)初版第1刷発行1993年12月15
日、参照)。
2. Description of the Related Art As a conventional device for detecting an abnormality of a rotor of an AC motor during operation, there is a bar burnout diagnosis device. In this device, FFT analysis is performed on the current flowing in the AC motor, and internal abnormalities such as the rotor are detected from the frequency components that appear as sidebands of the power supply frequency component (FFT analysis: How to proceed with electrical equipment diagnostics (Publisher: Nippon Plant (Maintenance Association) Issued the first edition of the first printing December 15, 1993
Sun, see).

【0003】ここで、上記のような診断装置は、一般に
常時電動機に設置しておくわけではなく、診断する際に
適宜、取り付けて診断を行う。また、上記回転子の異常
に気づかずに電動機の運転を続けると、電動機自体の致
命的な破損に繋がり、電動機自体の交換が要求される場
合がある。一方、早期に回転子の異常が検出できれば、
通常は、回転子の補修だけで済む。
Here, the above-mentioned diagnosis device is not usually always installed in the electric motor, but is appropriately attached and diagnosed when making a diagnosis. Further, if the operation of the electric motor is continued without noticing the abnormality of the rotor, the electric motor itself may be fatally damaged and the electric motor itself may be required to be replaced. On the other hand, if the rotor abnormality can be detected early,
Normally, you only need to repair the rotor.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
ように回転子の異常を検出しようとすると、電流を検出
する電流プローブ(電流検出器)、および回転子の回転
数を検出する回転検出器が必要となる。特に、回転検出
器は、一旦電動機を停止しないと取り付けることが困難
である。また、電動機が正常状態であっても、電動機に
流れる電流には、インバータなどによる電源制御の際な
どに発生する電気的ノイズが重畳されているため、電動
機が正常なときの電流の周波数スペクトルと、回転子の
バーが切断したときの電流スペクトルとの違いは僅かで
あり、回転子の異常の有無の判定に、熟練が要求され
る。図6に、正常なときの電流の周波数スペクトルを、
図7に、回転子のバーが切断したときの電流の周波数ス
ペクトルを示す。この図6及び図7から分かるように、
スペクトルの違いは僅かである。なお、図中、P(f−
2sf)、P(f+2sf)が異常脈動に関与する側帯
波成分である。また、図中の振幅差は、上記側帯波とP
(s)との間の振幅差を表す。
However, when trying to detect the abnormality of the rotor as described above, the current probe (current detector) for detecting the current and the rotation detector for detecting the number of rotations of the rotor are required. Will be needed. In particular, it is difficult to attach the rotation detector unless the electric motor is stopped once. Even when the electric motor is in a normal state, the electric current that flows in the electric motor is superposed with electrical noise that occurs when the power source is controlled by an inverter, etc. The difference from the current spectrum when the bar of the rotor is cut is slight, and skill is required to determine whether the rotor is abnormal. Figure 6 shows the frequency spectrum of the current under normal conditions.
FIG. 7 shows the frequency spectrum of the current when the rotor bar is cut. As can be seen from FIGS. 6 and 7,
The difference in the spectra is slight. In the figure, P (f-
2sf) and P (f + 2sf) are sideband components involved in abnormal pulsation. In addition, the amplitude difference in the figure is the sideband wave and P
It represents the amplitude difference between (s).

【0005】また、上記検出方法におけるFFT分析の
欠点として、測定値の不連続性(測定が必ずしも0点
(振幅=0)から開始しないこと。)があるために、窓
関数を使用して誤差の補正を行う必要性があったが、電
流信号そのものが電源高調波等で歪んでいる場合には、
その誤差は複雑なものとなり、側帯波に類似したノイズ
成分が多数重畳することが多々あった。この点からも、
回転子の異常検出が面倒なものとなる。
Further, as a drawback of the FFT analysis in the above detection method, there is a discontinuity of the measured value (measurement does not always start from 0 point (amplitude = 0)), and therefore an error is caused by using the window function. However, if the current signal itself is distorted due to power source harmonics, etc.,
The error becomes complicated, and many noise components similar to sidebands are often superimposed. From this point as well,
Rotor abnormality detection becomes cumbersome.

【0006】本発明は、上記のような問題点に着目して
なされたもので、交流電動機の回転子の異常を、運転状
態であっても、ノイズの影響を最少限度にして簡易に検
出することが可能な交流電動機の回転子異常検出方法及
び回転子異常検出装置を提供することを課題としてい
る。
The present invention has been made by paying attention to the above problems, and easily detects an abnormality of the rotor of an AC motor even in an operating state by minimizing the influence of noise. An object of the present invention is to provide a rotor abnormality detection method and a rotor abnormality detection device for an AC electric motor capable of performing the same.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明のうち請求項1に記載した発明は、交流電動
機に流れる電流における、同一位相となっている2つの
波形同士を減算することで抽出した成分に基づき、回転
子の異常の有無を検出することを特徴とする交流電動機
の回転子異常検出方法を提供するものである。次に、請
求項2に記載した発明は、請求項1に記載した構成に対
し、上記2つの波形は、連続した2サイクル分の波形内
に存在する、互いに同一位相となっている波形部分であ
ることを特徴とするものである。
In order to solve the above-mentioned problems, the invention described in claim 1 of the present invention subtracts two waveforms having the same phase in the current flowing through the AC motor. The present invention provides a rotor abnormality detection method for an AC motor, which is characterized by detecting the presence or absence of abnormality of the rotor based on the components extracted in this way. Next, in the invention described in claim 2, in contrast to the configuration described in claim 1, the two waveforms are waveform portions that are in the same phase and exist in a waveform for two consecutive cycles. It is characterized by being.

【0008】次に、請求項3に記載した発明は、交流電
動機に流れる電流を検出する電流検出手段と、電流検出
手段が検出した電流波形のうち、隣り合う同一位相部分
の波形同士を減算することで脈動成分を抽出する抽出手
段と、抽出手段が抽出した成分に基づき回転子の異常を
検出する異常判定手段とを備えることを特徴とする交流
電動機の回転子異常検出装置を提供するものである。本
発明によれば、交流電動機に流れる電流のうち、同一位
相の波形同士で減算を行うことで、電源周波数成分、電
源周波数に同期する高調波成分、及びサイリスタ電流サ
ージなどの電源周波数に同期するノイズ成分が相殺(消
去)若しくは大幅に相殺(消去)され、回転子異常に伴
う脈動成分が抽出される。
Next, in the invention described in claim 3, the current detecting means for detecting the current flowing in the AC motor and the waveforms of the adjacent same phase portions among the current waveforms detected by the current detecting means are subtracted from each other. By providing an extracting means for extracting a pulsating component, and an abnormality determining means for detecting an abnormality of the rotor based on the component extracted by the extracting means, a rotor abnormality detecting device for an AC electric motor is provided. is there. According to the present invention, by subtracting waveforms having the same phase from each other in the current flowing through the AC motor, the power source frequency component, the harmonic component synchronized with the power source frequency, and the power source frequency such as the thyristor current surge are synchronized. The noise component is canceled (erased) or largely canceled (erased), and the pulsating component associated with the rotor abnormality is extracted.

【0009】上記脈動成分を連続して取得すると、異常
時には長周期(例えば3〜4Hz)の波形として異常時
の脈動成分が検出され、熟練者でなくても確実に異常検
出が可能となる。また、上記サイリスタ電流サージなど
の電源周波数に同期するノイズ成分は、通常、周期的に
ほぼ同一位相位置に、かつ同じ波形で混在しているの
で、上記のように同一位相の波形同士で減算することで
相殺可能である。特に、この効果は、隣り合う同一波形
同士間で実施することで、上記ノイズ成分をより確実に
相殺することができる。上記2つの同一位相波形位置が
離れるほど、ノイズの位置がずれる可能性が大きくな
る。
When the pulsation component is continuously acquired, the pulsation component at the time of abnormality is detected as a waveform having a long cycle (for example, 3 to 4 Hz) at the time of abnormality, and it is possible for the unskilled person to reliably detect the abnormality. Further, since the noise components such as the thyristor current surge that are synchronized with the power supply frequency are periodically mixed in substantially the same phase position and with the same waveform, as described above, the waveforms of the same phase are subtracted from each other. This can be offset. In particular, this effect can be canceled more reliably by performing the effect between adjacent identical waveforms. The more the two in-phase waveform positions are apart from each other, the greater the possibility that the noise position is displaced.

【0010】[0010]

【発明の実施の形態】次に、本発明に係る実施形態につ
いて図面を参照しつつ説明する。図1は、本発明の異常
検出方法を採用した異常検出装置を示す構成図である。
図1中、符号1が電動機を、符号2が電動機1に電力を
供給する三相の電線を、符号3が電源を、符号4が電流
計をそれぞれ示している。上記異常検出装置は、電流検
出器5、A/D変換器6、DSP7(Digita1
Signa1 Processor)、D/A変換器
8、及び異常判定部9を備える。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing an anomaly detection device adopting the anomaly detection method of the present invention.
In FIG. 1, reference numeral 1 indicates an electric motor, reference numeral 2 indicates a three-phase electric wire for supplying electric power to the electric motor 1, reference numeral 3 indicates a power source, and reference numeral 4 indicates an ammeter. The above-mentioned abnormality detection device includes a current detector 5, an A / D converter 6, a DSP 7 (Digital 1).
Signal1 Processor), a D / A converter 8, and an abnormality determination unit 9.

【0011】電流検出器5は、電動機1に流れる電流を
検出するもので、検出した電流信号をA/D変換器6に
出力する。この電流検出器5は、例えば、分割型の計器
用変流器などから構成され、電動機1の電流計測回路な
どの配線をクリップすることで、電動機1が運転中にで
も、容易に設置して電流を検出して、回転子の異常判定
ができる。A/D変換器6は、入力信号をデジタル信号
に変換してDSP7に出力する。
The current detector 5 detects the current flowing through the electric motor 1, and outputs the detected current signal to the A / D converter 6. The current detector 5 is composed of, for example, a split type current transformer for instruments, and by clipping the wiring of the current measuring circuit of the electric motor 1, the electric current detector 5 can be easily installed even while the electric motor 1 is in operation. It is possible to determine the abnormality of the rotor by detecting the current. The A / D converter 6 converts the input signal into a digital signal and outputs it to the DSP 7.

【0012】ここで、図2に示すように、電源周波数が
60Hzの場合に、サンプリング周波数を15480H
zに設定すると、1サイクル分が258個のデジタルデ
ータとなるので、後述の各レジスタ11,12,13を
それぞれ258個の格納部を持つレジスタに設定すれ
ば、1サイクル毎に連続して波形データを格納可能とな
る。DSP7では、電源周波数の周期に同期をとって、
入力信号から1サイクル分のデジタル信号を第1レジス
タ11に記憶し、続けて、電源周波数の1周期だけ遅れ
た信号を第2レジスタ12に記憶する。次に、第1レジ
スタ11から第2レジスタ12を減算することで、電源
周波数に同期した信号を消去し、減算結果を第3レジス
タ13に書き込む。この第3レジスタ13の内容は、D
/A変換器8でアナログ信号に変換された後に、異常判
定部9に出力される。このDSP7が抽出手段を構成す
る。
Here, as shown in FIG. 2, when the power supply frequency is 60 Hz, the sampling frequency is 15480H.
When set to z, one cycle's worth of digital data becomes 258, so if each of the registers 11, 12, and 13 described later is set to a register having 258 storages, waveforms are continuously generated at each cycle. Data can be stored. In DSP7, in synchronization with the cycle of the power supply frequency,
A digital signal for one cycle from the input signal is stored in the first register 11, and subsequently, a signal delayed by one cycle of the power supply frequency is stored in the second register 12. Next, by subtracting the second register 12 from the first register 11, the signal synchronized with the power supply frequency is erased, and the subtraction result is written in the third register 13. The content of this third register 13 is D
After being converted into an analog signal by the / A converter 8, it is output to the abnormality determination unit 9. This DSP 7 constitutes the extraction means.

【0013】ここで、上記減算処理後の第2レジスタ1
2の内容は、第1レジスタ11にシフトされ、続く1周
期分のデジタルデータが第2レジスタ12に記憶され
て、上記減算処理が行われる。この処理が、DSP7で
繰り返し行われる。異常判定部9では、連続して入力さ
れるアナログ信号に基づいて、回転子の異常の有無を判
定する。電動機1に異常が発生していない場合には、判
定部に入力された信号はゼロ信号であり、一方、回転子
に異常がある場合には、脈動成分がある。したがって、
熟練者でなくても判定可能であり、また、自動判定も容
易である。
Here, the second register 1 after the above subtraction processing
The contents of 2 are shifted to the first register 11, the digital data for one subsequent period is stored in the second register 12, and the subtraction process is performed. This process is repeatedly performed by the DSP 7. The abnormality determination unit 9 determines whether or not there is an abnormality in the rotor based on the analog signals continuously input. When the motor 1 is not abnormal, the signal input to the determination unit is a zero signal, while when the rotor is abnormal, there is a pulsating component. Therefore,
Even an unskilled person can make a determination, and automatic determination is easy.

【0014】すなわち、上記判定部に連続して入力され
るアナログ信号は、電源周波数の周期を60Hzとする
と、回転子に異常がある場合には、その脈動成分が、例
えば図3に示すように、4〜5Hz程度の長周期の波と
して検出される一方、回転子に異常がない場合には、上
記波形が存在しないので、手動で例えばオシロスコープ
等で確認しても、熟練者でなくても判別は容易である。
また、異常判定部9にFFT分析装置を採用した場合に
は、脈動成分の周波数分析が実施される。このFFT分
析を行うと、回転子に異常がある場合には、例えば図4
に示すように、2〜6Hzのあたりにはっきりとしたピ
ーク値が現れるが、回転子に異常が無い場合には、はっ
きりとしたピーク値が現れない。したがって、確実に回
転子の異常が検出される。
That is, when the cycle of the power supply frequency is 60 Hz, the pulsating component of the analog signal continuously input to the above-mentioned judging section is as shown in FIG. 3, for example, when the rotor is abnormal. While it is detected as a long cycle wave of about 4 to 5 Hz, if there is no abnormality in the rotor, the above waveform does not exist. The determination is easy.
Further, when the FFT analysis device is adopted as the abnormality determination unit 9, frequency analysis of the pulsating component is performed. When this FFT analysis is performed and there is an abnormality in the rotor, for example, as shown in FIG.
As shown in, a clear peak value appears around 2 to 6 Hz, but no clear peak value appears when there is no abnormality in the rotor. Therefore, the abnormality of the rotor is surely detected.

【0015】ここで、上記回転子が異常の場合に現れる
脈動電流は、(2・s・f)をピークとした脈動電流で
ある。上記sは、すべり値を、fは、周波数をそれぞれ
示している。したがって、すべり値sに対応するピーク
値の周波数を特定し、特定した周波数に所定の大きさの
ピークが有るスペクトルが無いか否かで、より正確な判
定が可能となる。
The pulsating current that appears when the rotor is abnormal is a pulsating current having a peak at (2 · s · f). The s indicates the slip value, and the f indicates the frequency. Therefore, a more accurate determination can be made by identifying the frequency of the peak value corresponding to the slip value s and determining whether or not there is a spectrum having a peak of a predetermined magnitude at the identified frequency.

【0016】例えば、周波数60Hzで且つ2極の電動
機1で、同期速度が3600rpm、実速度が3500
rpmとすると、すべり値s=((3600−350
0)/3600)≒3%となる。したがって、2・s・
f=2・(3/100)・60=3.6Hzとなり、
3.6Hzをピークとした脈動で上記異常時の脈動か否
かが確認できる。FFT分析の際に、各同一波形部分の
開始位置が振幅ゼロの0点でなくても、、つまり測定値
が不連続であっても、従来のように窓関数を使用する必
要がない。
For example, in a motor 1 having a frequency of 60 Hz and two poles, a synchronous speed is 3600 rpm and an actual speed is 3500.
If rpm, then the slip value s = ((3600-350
0) / 3600) ≈3%. Therefore, 2 · s ·
f = 2 · (3/100) · 60 = 3.6Hz,
It is possible to confirm whether or not the pulsation at the time of the above abnormality occurs by the pulsation having a peak at 3.6 Hz. In the FFT analysis, even if the start position of each identical waveform portion is not the zero point of zero amplitude, that is, the measured values are discontinuous, it is not necessary to use the window function as in the conventional case.

【0017】また、判定部で自動判定する場合には、異
常を検出すると、スピーカなどの報知手段10に異常信
号を出力する。ここで、上記実施形態では、隣り合う1
サイクル毎、つまり、図5中における、W1とW2、W
2とW3,W3とW4,・・・というように、減算する
波形を設定しているが、Y1とY2のように、隣り合う
2サイクル中の同一位相部分を減算する波形としても良
い。また、W1とW2,W3とW4というように減算す
る組合せを設定しても良い。また、若干精度が落ちるも
のの、W1とW3のように、隣り合わない位置の同一波
形同士で減算処理をしても構わない。
Further, in the case where the judging section automatically judges, when an abnormality is detected, an abnormality signal is output to the notifying means 10 such as a speaker. Here, in the above embodiment, the adjacent 1
Every cycle, that is, W1, W2, and W in FIG.
Although the waveforms to be subtracted are set as 2 and W3, W3 and W4, ..., The waveforms for subtracting the same phase portion in two adjacent cycles such as Y1 and Y2 may be used. In addition, a combination of subtraction such as W1 and W2 and W3 and W4 may be set. Further, although the accuracy is slightly lowered, the subtraction processing may be performed between the same waveforms at positions that are not adjacent to each other like W1 and W3.

【0018】[0018]

【発明の効果】以上説明してきたように、本発明を採用
すると、交流電動機の回転子にバー切れなどの異常がお
きた際に生じる脈動成分を、高調波ノイズをはじめとす
る電源ノイズを消去して検出可能となるため、高い精度
で異常の検出が可能となる。
As described above, when the present invention is adopted, the pulsating component generated when an abnormality such as a bar break occurs in the rotor of the AC motor eliminates power source noise including harmonic noise. Therefore, the abnormality can be detected with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に基づく実施形態に係る装置構成を説明
する図である。
FIG. 1 is a diagram illustrating a device configuration according to an embodiment based on the present invention.

【図2】本発明に基づく実施形態に係る異常検出装置の
処理を説明する図である。
FIG. 2 is a diagram illustrating a process of the abnormality detection device according to the embodiment based on the present invention.

【図3】本発明に基づく実施形態に係る連続して抽出し
た脈動成分の波形の例を示す図である。
FIG. 3 is a diagram showing an example of waveforms of continuously extracted pulsation components according to an embodiment of the present invention.

【図4】本発明に基づく実施形態に係るFFT分析した
周波数スペクトルの例を示す図である。
FIG. 4 is a diagram showing an example of an FFT-analyzed frequency spectrum according to an embodiment of the present invention.

【図5】本発明に基づく実施形態に係る電流波形の例を
示す図である。
FIG. 5 is a diagram showing an example of a current waveform according to an embodiment of the present invention.

【図6】電動機が正常なときの周波数スペクトルの例を
示す図である。
FIG. 6 is a diagram showing an example of a frequency spectrum when the electric motor is normal.

【図7】回転子のバーが切断したときのスペクトルの例
を示す図である。
FIG. 7 is a diagram showing an example of a spectrum when a bar of a rotor is cut.

【符号の説明】[Explanation of symbols]

1 電動機 2 電線 3 電源 5 電流検出器(電流検出手段) 6 A/D変換器 7 DSP(抽出手段) 8 D/A変換器 9 異常判定部(異常判定手段) 11 第1レジスタ 12 第2レジスタ 13 第3レジスタ 1 electric motor 2 electric wires 3 power supplies 5 Current detector (current detection means) 6 A / D converter 7 DSP (extractor) 8 D / A converter 9 Abnormality determination unit (abnormality determination means) 11 First register 12 Second register 13 Third register

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G016 BC05 BD01 BD06 BD09 5H570 BB08 BB10 DD03 JJ03 JJ06 JJ16 JJ30 KK06 KK08 LL02 LL33 MM07    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2G016 BC05 BD01 BD06 BD09                 5H570 BB08 BB10 DD03 JJ03 JJ06                       JJ16 JJ30 KK06 KK08 LL02                       LL33 MM07

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 交流電動機に流れる電流における、同一
位相となっている2つの波形同士を減算することで抽出
した成分に基づき、回転子の異常の有無を検出すること
を特徴とする交流電動機の回転子異常検出方法。
1. An AC motor characterized in that the presence or absence of abnormality of a rotor is detected based on a component extracted by subtracting two waveforms having the same phase from each other in a current flowing through the AC motor. Rotor abnormality detection method.
【請求項2】 上記2つの波形は、連続した2サイクル
分の波形内に存在する、互いに同一位相となっている波
形部分であることを特徴とする請求項1に記載した交流
電動機の回転子異常検出方法。
2. The rotor for an AC motor according to claim 1, wherein the two waveforms are waveform portions that are present in a waveform for two consecutive cycles and have the same phase with each other. Anomaly detection method.
【請求項3】 交流電動機に流れる電流を検出する電流
検出手段と、電流検出手段が検出した電流波形のうち、
隣り合う同一位相部分の波形同士を減算することで脈動
成分を抽出する抽出手段と、抽出手段が抽出した成分に
基づき回転子の異常を検出する異常判定手段とを備える
ことを特徴とする交流電動機の回転子異常検出装置。
3. A current detecting means for detecting a current flowing through an AC motor, and a current waveform detected by the current detecting means,
An alternating current motor comprising: an extracting unit that extracts a pulsating component by subtracting waveforms of adjacent same phase portions; and an abnormality determining unit that detects an abnormality of the rotor based on the component extracted by the extracting unit. Rotor abnormality detection device.
JP2002070855A 2002-03-14 2002-03-14 Rotor abnormality detection method and rotor abnormality detection apparatus for AC motor Expired - Fee Related JP4062939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002070855A JP4062939B2 (en) 2002-03-14 2002-03-14 Rotor abnormality detection method and rotor abnormality detection apparatus for AC motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002070855A JP4062939B2 (en) 2002-03-14 2002-03-14 Rotor abnormality detection method and rotor abnormality detection apparatus for AC motor

Publications (2)

Publication Number Publication Date
JP2003274691A true JP2003274691A (en) 2003-09-26
JP4062939B2 JP4062939B2 (en) 2008-03-19

Family

ID=29201307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002070855A Expired - Fee Related JP4062939B2 (en) 2002-03-14 2002-03-14 Rotor abnormality detection method and rotor abnormality detection apparatus for AC motor

Country Status (1)

Country Link
JP (1) JP4062939B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271771A (en) * 2007-01-17 2008-11-06 General Electric Co <Ge> Sinusoidal modulated signal rectification tool using various oscillator systems
JP2008546159A (en) * 2005-06-09 2008-12-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Sensorless measurement of rotor rotation frequency of asynchronous equipment
JP2010151843A (en) * 2005-03-18 2010-07-08 Tektronix Inc Waveform characterization method
JP2015004694A (en) * 2014-10-09 2015-01-08 株式会社高田工業所 Abnormality diagnosing method for rotary machine systems
US8957698B2 (en) 2008-11-13 2015-02-17 Subsee Raa Ab Method and apparatus for off-line testing of multi-phase aternating current machines
JP2015227889A (en) * 2015-08-10 2015-12-17 株式会社高田工業所 Abnormality diagnosis method of rotary machine system
JP2016156643A (en) * 2015-02-23 2016-09-01 株式会社日立製作所 Symptom diagnosis system, symptom diagnosis method, and symptom diagnosis device
JP5985099B1 (en) * 2016-03-31 2016-09-06 株式会社高田工業所 Rotating machine system abnormality detection method, rotating machine system abnormality monitoring method using the abnormality detection method, and rotating machine system abnormality monitoring apparatus using the abnormality monitoring method
JP2016195524A (en) * 2015-04-02 2016-11-17 三菱電機株式会社 Diagnostic equipment of electric motor
WO2018158910A1 (en) * 2017-03-02 2018-09-07 株式会社日立製作所 Diagnostic device and diagnostic method
WO2022102113A1 (en) * 2020-11-16 2022-05-19 三菱電機株式会社 Diagnosis device for motor
KR20230010708A (en) 2020-06-29 2023-01-19 미쓰비시덴키 가부시키가이샤 Fault diagnosis device, power conversion device, and fault diagnosis method
JP2023123333A (en) * 2022-02-24 2023-09-05 株式会社日立製作所 Method and device for diagnosing machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018005613T5 (en) * 2018-03-29 2020-07-09 Hitachi, Ltd. DIAGNOSTIC DEVICE AND DIAGNOSTIC METHOD

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151843A (en) * 2005-03-18 2010-07-08 Tektronix Inc Waveform characterization method
JP2008546159A (en) * 2005-06-09 2008-12-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Sensorless measurement of rotor rotation frequency of asynchronous equipment
JP2008271771A (en) * 2007-01-17 2008-11-06 General Electric Co <Ge> Sinusoidal modulated signal rectification tool using various oscillator systems
US8957698B2 (en) 2008-11-13 2015-02-17 Subsee Raa Ab Method and apparatus for off-line testing of multi-phase aternating current machines
US9395415B2 (en) 2008-11-13 2016-07-19 Subee Raa Ab Method and apparatus for off-line testing of multi-phase alternating current machines
JP2015004694A (en) * 2014-10-09 2015-01-08 株式会社高田工業所 Abnormality diagnosing method for rotary machine systems
JP2016156643A (en) * 2015-02-23 2016-09-01 株式会社日立製作所 Symptom diagnosis system, symptom diagnosis method, and symptom diagnosis device
JP2016195524A (en) * 2015-04-02 2016-11-17 三菱電機株式会社 Diagnostic equipment of electric motor
JP2015227889A (en) * 2015-08-10 2015-12-17 株式会社高田工業所 Abnormality diagnosis method of rotary machine system
JP5985099B1 (en) * 2016-03-31 2016-09-06 株式会社高田工業所 Rotating machine system abnormality detection method, rotating machine system abnormality monitoring method using the abnormality detection method, and rotating machine system abnormality monitoring apparatus using the abnormality monitoring method
WO2017168796A1 (en) * 2016-03-31 2017-10-05 株式会社高田工業所 Abnormality detection method for rotary mechanical system, abnormality monitoring method for rotary mechanical system using said abnormality detection method, and abnormality monitoring device for rotary mechanical system using said abnormality detection method
JP2017181437A (en) * 2016-03-31 2017-10-05 株式会社高田工業所 Rotary machine system abnormality detection method, rotary machine system abnormality monitoring method using abnormality detection method, and rotary machine system abnormality monitoring device using abnormality monitoring method
WO2018158910A1 (en) * 2017-03-02 2018-09-07 株式会社日立製作所 Diagnostic device and diagnostic method
KR20230010708A (en) 2020-06-29 2023-01-19 미쓰비시덴키 가부시키가이샤 Fault diagnosis device, power conversion device, and fault diagnosis method
WO2022102113A1 (en) * 2020-11-16 2022-05-19 三菱電機株式会社 Diagnosis device for motor
JPWO2022102113A1 (en) * 2020-11-16 2022-05-19
JP7422896B2 (en) 2020-11-16 2024-01-26 三菱電機株式会社 Electric motor diagnostic equipment
JP2023123333A (en) * 2022-02-24 2023-09-05 株式会社日立製作所 Method and device for diagnosing machine
JP7367156B2 (en) 2022-02-24 2023-10-23 株式会社日立製作所 Methods and devices for diagnosing machines

Also Published As

Publication number Publication date
JP4062939B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
US6822839B2 (en) Method and apparatus of detecting internal motor faults in an induction machine
JP2003274691A (en) Method and device for detecting abnormality of rotor in ac motor
AU2008259861B2 (en) System and method for bearing fault detection using stator current noise cancellation
CA2454285C (en) Method and apparatus for testing a motor
US10088506B2 (en) Method for detecting a fault condition in an electrical machine
JP6017649B2 (en) Abnormal diagnosis method for rotating machinery
WO2013155844A1 (en) Three-phase ac phase-sequence detection method and device
EP2574947A1 (en) A method of determining stationary signals for the diagnostics of an electromechanical system
KR100812303B1 (en) Apparatus and method for monitoring motor faults using a wavelet transformation
EP3940366A1 (en) Abnormality diagnosis device and abnormality diagnosis method
JP5828948B2 (en) Abnormal diagnosis method for rotating machinery
KR101133234B1 (en) Resolution increase method of device defect signal by synthesizing of electric motor 3 phase current signal
JP4398198B2 (en) Insulation degradation region diagnosis system and method for electric wire or cable
JPH03291539A (en) Detecting method for abnormality of roller bearing of electric motor
JP2000184658A (en) Diagnostic device for induction motor
JPH09233679A (en) Corona discharge detector in power installation
JPH04204021A (en) Apparatus for diagnosing vibration and sound of rotating machine
JP2020153965A (en) Abnormality diagnosis device and abnormality diagnosis method
JP2017020913A (en) Insulation monitoring device and inverter device
KR100374904B1 (en) Apparatus and method for diagnosing error of phase-controlled rectifier
JP3286073B2 (en) Shaft Vibration Monitoring System for Recirculation Pump Built in Reactor
US7064556B2 (en) Frequency rectification tool for shorter waveforms
JP2915027B2 (en) Acoustic diagnosis method for rotating machines
De Mata-Castrejón et al. Evaluation of progressive deterioration of a squirrel-cage rotor, with a condition monitoring system that implements the sideband methodology
JP7213211B2 (en) Inverter deterioration monitoring diagnosis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4062939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees