WO2019186846A1 - 発光素子および表示装置 - Google Patents

発光素子および表示装置 Download PDF

Info

Publication number
WO2019186846A1
WO2019186846A1 PCT/JP2018/013032 JP2018013032W WO2019186846A1 WO 2019186846 A1 WO2019186846 A1 WO 2019186846A1 JP 2018013032 W JP2018013032 W JP 2018013032W WO 2019186846 A1 WO2019186846 A1 WO 2019186846A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
host
light
quantum dot
Prior art date
Application number
PCT/JP2018/013032
Other languages
English (en)
French (fr)
Inventor
時由 梅田
優人 塚本
昌行 兼弘
仲西 洋平
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US17/041,134 priority Critical patent/US20210119160A1/en
Priority to JP2020508676A priority patent/JPWO2019186846A1/ja
Priority to PCT/JP2018/013032 priority patent/WO2019186846A1/ja
Priority to CN201880091863.0A priority patent/CN111919513A/zh
Publication of WO2019186846A1 publication Critical patent/WO2019186846A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices

Definitions

  • the present invention relates to a light emitting device using a quantum dot (Quantum® Dot, QD) dopant.
  • Quantum® Dot, QD quantum dot
  • Patent Document 1 discloses an example of such a display device.
  • the display device of Patent Document 1 is intended to realize a display device with high luminous efficiency and long life.
  • An object of one embodiment of the present invention is to realize a light-emitting element having high light emission efficiency.
  • a light-emitting element includes a light-emitting layer and a hole transport that transports holes supplied from the anode to the light-emitting layer between an anode and a cathode.
  • a light emitting device comprising: a layer; and an electron transport layer that transports electrons supplied from the cathode to the light emitting layer, wherein the light emitting layer includes a quantum dot dopant, a hole transporting host, and an electron transporting host.
  • a light-emitting element having high light emission efficiency can be realized.
  • FIG. 3 is a flowchart illustrating an example of a method for manufacturing the display device according to the first embodiment. It is sectional drawing which shows the structural example of the display part with which the said display apparatus is provided. It is the schematic which shows the structure of the light emitting element with which the said display part is provided. 6 is a schematic diagram illustrating a configuration of a light-emitting element according to Embodiment 2.
  • Embodiment 1 hereinafter, Embodiment 1 of the present invention will be described in detail with reference to the drawings.
  • “same layer” means that the same material is formed in the same process
  • “lower layer” means that it is formed in a process prior to the layer to be compared.
  • the “upper layer” means that it is formed in a later process than the layer to be compared.
  • each drawing schematically illustrates the shape, structure, and positional relationship of each member and is not necessarily drawn to scale.
  • the display unit 1a in the display device 1 will be described. Description of other members in the display device 1 is omitted. Members that omit these descriptions may be understood to be the same as known members.
  • the display device 1 represents an image with a plurality of RGB (Red, Green, Blue) pixels.
  • FIG. 1 is a flowchart showing an example of a method for manufacturing the display device 1 in the present embodiment.
  • FIG. 2 is a cross-sectional view illustrating a configuration example of the display unit 1 a of the display device 1.
  • a resin layer 12 is formed on a translucent support substrate (for example, a mother glass substrate) (not shown) (step S1).
  • the barrier layer 3 is formed (step S2).
  • the TFT layer 4 is formed (step S3).
  • a top emission type light emitting element layer 5 is formed (step S4). Details of step S4 will be described later.
  • the sealing layer 6 is formed (step S5).
  • the functional film 39 is affixed on the upper surface of the sealing layer 6 (step S6).
  • an electronic circuit board for example, an IC chip
  • Examples of the material of the resin layer 12 include polyimide resin, acrylic resin, and epoxy resin.
  • Examples of the material of the functional film 10 include polyethylene terephthalate (PET).
  • the barrier layer 3 is a layer that prevents foreign substances such as water and oxygen from penetrating into the TFT layer 4 and the light emitting element layer 5 when the display device 1 is used.
  • the barrier layer 3 is formed by a CVD (chemical vapor deposition) method.
  • CVD chemical vapor deposition
  • the TFT layer 4 includes a semiconductor film 15, an inorganic insulating film 16 (gate insulating film) above the semiconductor film 15, a gate electrode GE above the inorganic insulating film 16, and an inorganic insulating film above the gate electrode GE.
  • a planarizing film 21 is a planarizing film 21.
  • a thin layer transistor (TFT) Tr is configured to include the semiconductor film 15, the inorganic insulating film 16 (gate insulating film), and the gate electrode GE.
  • the semiconductor film 15 is made of, for example, low temperature polysilicon (LTPS) or an oxide semiconductor.
  • LTPS low temperature polysilicon
  • FIG. 2 the TFT having the semiconductor film 15 as a channel is shown as a top gate structure, but a bottom gate structure may be used (for example, when the TFT channel is an oxide semiconductor).
  • the gate electrode GE, the capacitor electrode CE, and the source wiring SH are made of, for example, aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), or copper (Cu). It is composed of a metal single layer film or a laminated film including at least one.
  • the inorganic insulating films 16, 18, and 20 can be formed of, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a stacked film thereof formed by a CVD method.
  • the planarizing film (interlayer insulating film) 21 can be made of a photosensitive organic material that can be applied, such as polyimide or acrylic.
  • the sealing layer 6 includes an inorganic sealing film 26 above the cathode 51 described later, an organic sealing film 27 above the inorganic sealing film 26, and an inorganic sealing film above the organic sealing film 27. 28, and prevents penetration of foreign matter such as water and oxygen into the light emitting element layer 5.
  • the inorganic sealing films 26 and 28 can be composed of, for example, a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or a laminated film thereof formed by a CVD method.
  • the organic sealing film 27 can be made of a photosensitive organic material that can be applied, such as polyimide or acrylic.
  • the functional film 39 has, for example, an optical compensation function, a touch sensor function, a protection function, and the like.
  • the light emitting element layer 5 includes a plurality of light emitting elements 50.
  • the light emitting element 50 is a light source that lights each pixel of the display device 1.
  • the display device 1 represents an image with a plurality of RGB (Red, Green, Blue) pixels.
  • the red pixel (R pixel) is referred to as Pr
  • the green pixel (G pixel) is referred to as Pg
  • the blue pixel (B pixel) is referred to as Pb
  • the light emitting element 50 that lights the red pixel Pr, the green pixel Pg, and the blue pixel is referred to as These are respectively referred to as the light emitting element 50r, the light emitting element 50g, and the light emitting element 50b.
  • FIG. 3 is a schematic diagram illustrating a configuration of the light emitting element 50.
  • the subscripts “r”, “g”, and “b” are omitted in the following description. The light emitting element 50 will be described.
  • the light emitting element 50 includes a quantum dot dopant (QD phosphor particle) 61 that emits light by receiving exciton energy from a host 62 (which will be described in detail later) that is an exciplex host.
  • QD phosphor particle quantum dot dopant
  • a direction from the anode 57 toward the cathode 51 is referred to as an upward direction.
  • a direction opposite to the upward direction is referred to as a downward direction.
  • the light emitting element 50 includes a cathode 51, an electron injection layer (Electron Injection Layer, EIL) 52, an electron transport layer (Electron Transport Layer, ETL) 53, a light emitting layer 54, a hole transport layer (Hole) from the upper side to the lower side.
  • EIL Electrode Injection Layer
  • ETL electron transport layer
  • Hole hole transport layer
  • Transportation layer (HTL) 55, hole injection layer (Hole layer), and anode 57 are provided in this order.
  • the cathode 51 is an electrode that supplies electrons to the light emitting layer 54.
  • the cathode 51 is made of, for example, an Mg—Ag alloy.
  • the cathode 51 is a transmissive electrode that transmits light emitted from the light emitting layer 54.
  • the light emitting element 50 is configured as a top emission type light emitting element that emits light emitted from the light emitting layer 54 upward.
  • the electron injection layer 52 is a layer that promotes injection of electrons from the cathode 51 to the light emitting layer 54.
  • the electron injection layer 52 includes a material having excellent electron injection properties.
  • the electron transport layer 53 is a layer that promotes the supply of electrons from the cathode 51 to the light emitting layer 54.
  • the electron transport layer 53 includes a material having excellent electron transport properties.
  • the material excellent in the electron transporting property may be the same material as an electron transporting host 62B described later, or may be a different material. It is preferable that the material excellent in the electron transporting property is the same material as the electron transporting host 62B of the light emitting layer 54 because it can emit light at a low voltage.
  • the electron transport layer 53 can be formed by vapor deposition or coating.
  • the light emitting layer 54 includes a quantum dot dopant 61 and a host 62 composed of a hole transporting host 62A and an electron transporting host 62B.
  • the quantum dot dopant 61 is a substance that receives exciton energy from the host 62 and emits light.
  • the material of the quantum dot dopant 61 has a core-shell structure and is made of CdSe / ZnSe, CdSe / ZnS, CdS / ZnSe, CdS / ZnS, ZnSe / ZnS, InP / ZnS, or ZnO / MgO. It may be at least one material selected from.
  • the above-mentioned “CdSe / ZnSe” means a core-shell structure in which the core is made of CdSe and the shell is made of ZnSe.
  • a nano-sized crystal (semiconductor crystal) of the semiconductor material is used as the material of the quantum dot dopant 61.
  • FIG. 3 illustrates a spherical quantum dot dopant 61.
  • the shape of the quantum dot dopant is not limited to a spherical shape.
  • any known shape may be applied, and it may be rod-shaped or wire-shaped.
  • the energy band gap of a quantum dot dopant can be set by adjusting the size (example: particle size) of a quantum dot dopant. That is, by adjusting the particle diameter of the quantum dot dopant, the wavelength of light emitted from the quantum dot dopant (more specifically, the wavelength spectrum) can be controlled. Specifically, as the size of the quantum dot dopant is reduced, the peak wavelength of light emitted from the quantum dot dopant (the wavelength at which an intensity peak in the wavelength spectrum is obtained) can be further shortened.
  • the quantum dot dopants included in the light emitting element 50r, the light emitting element 50g, and the light emitting layer 54 of the light emitting element 50b are respectively red, green, and blue.
  • the particle size is adjusted so that each of the light beams is emitted.
  • the quantum dot dopant since the quantum dot dopant has a narrow spectrum width of emitted light, the color purity of an image displayed by the display device 1 can be increased.
  • the host 62 includes a hole transporting host 62A and an electron transporting host 62B.
  • the hole transporting host 62 ⁇ / b> A is made of a material having a function of transporting holes received from the hole transport layer 55.
  • the materials constituting the hole transporting host 62A are carbazole derivatives, triazole derivatives, oxadiazole derivatives, imidazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Amino-substituted chalcone derivatives, oxazole derivatives, styryl anthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, porphyrin compounds, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers, can be used.
  • the material of the hole transporting host 62A it is preferable to use an aromatic tertiary amine compound and a styrylamine compound, and it is more preferable to use an aromatic tertiary amine compound, but it is not limited thereto.
  • a polymer material in which these materials are introduced into the polymer chain or these materials as the main chain of the polymer can be used, but it is not limited thereto.
  • the hole transporting host 62A preferably has a shallow HOMO (Highest OccupiedalMolecular Orbital) level in order to easily form an exciplex with the electron transporting host 62B described above.
  • the electron transporting host 62B is made of a material having a function of transporting electrons received from the electron transport layer 53.
  • materials constituting the electron-transporting host 62B oxadiazole derivatives, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives are used. be able to.
  • a material for the electron transporting host 62B in the above oxadiazole derivative, a thiadiazole derivative in which an oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group is used. You can also.
  • a material of the electron transporting host 62B a polymer material in which these materials are introduced into a polymer chain or these materials as a polymer main chain can be used, but it is not limited thereto.
  • the electron transporting host 62B preferably has a deep LUMO (lowest unoccupied molecular molecular orbital) level in order to easily form an exciplex with the hole transporting host 62A.
  • the light emitting layer 54 can be formed by using a known method such as a spin coating method, a spray coating method, a casting method, or a printing method including an ink jet method.
  • FIG. 3 only the hole transporting host 62A and the electron transporting host 62B forming the exciplex host are illustrated.
  • a region where none of the quantum dot dopant 61, the hole transporting host 62 ⁇ / b> A, and the electron transporting host 62 ⁇ / b> B is illustrated is a hole transporting host 62 ⁇ / b> A that does not form an exciplex host. It is assumed that it is filled with the electron transporting host 62B.
  • the host 62 includes a hole transporting host 62A and an electron transporting host 62B. This efficiently transports holes and electrons to near the quantum dot dopant.
  • the hole transporting host 62A and the electron transporting host 62B form an exciplex (excited complex) host. More specifically, the host 62 is an exciplex host that forms excitons between the HOMO energy level of the hole transporting host 62A and the LUMO energy level of the electron transporting host 62B.
  • exciton energy having a maximum internal quantum efficiency of 100% is generated in an exciplex host composed of the hole transporting host 62A and the electron transporting host 62B. Then, the generated exciton energy transitions to the quantum dot dopant 61 with high efficiency, whereby the quantum dot dopant 61 emits light.
  • the maximum internal quantum efficiency can be set to 100% in the light emitting device 50, while the maximum internal quantum efficiency is 25% in the conventional light emitting device including the fluorescent dopant. Light can be emitted with high efficiency.
  • the hole transport layer 55 is a layer that promotes the supply of holes from the anode 57 to the light emitting layer 54.
  • the hole transport layer 55 includes a material having excellent hole transportability.
  • the material excellent in the hole transporting property may be the same material as the hole transporting host 62A of the light emitting layer 54 or may be a different material. However, the same material as the hole transporting host 62A of the light emitting layer 54 is preferable because it can emit light at a low voltage.
  • the hole transport layer 55 can be formed by vapor deposition or coating.
  • the hole injection layer 56 is a layer that promotes injection of holes from the anode 57 to the light emitting layer 54.
  • the hole injection layer 56 includes a material having excellent hole injection properties.
  • the anode 57 has a laminated structure in which, for example, the lower layer is an Ag—Pd—Cu alloy (APC) and the upper layer is ITO (Indium Tin Oxide).
  • the anode 57 is a reflective electrode that reflects the light emitted from the light emitting layer 54. According to the arrangement, the light directed downward from the light emitted from the light emitting layer 54 can be reflected by the anode 57. Thereby, the utilization efficiency of the light emitted from the light emitting layer 54 can be improved.
  • the anode 57 can be formed by vapor deposition.
  • the light emitting element 50 by applying a forward voltage between the anode 57 and the cathode 51 (the anode 57 is set to a higher potential than the cathode 51), electrons are supplied from the cathode 51 to the light emitting layer 54. Holes are supplied from the anode 57 to the light emitting layer 54. Excitonic energy is generated in the exciplex host composed of the hole transporting host 62A and the electron transporting host 62B by the electrons supplied from the cathode 51 and the holes supplied from the anode 57. Then, when the generated exciton energy transitions to the quantum dot dopant 61, the quantum dot dopant 61 emits light.
  • the application of the voltage may be controlled by a TFT (Thin Film Transistor) thin film transistor (see FIG. 2).
  • light emission obtained by applying a voltage to the light emitting element 50 is electroluminescence (Electro-Luminescence, EL). That is, the light emitting element 50 functions as a self light emitting type light emitting element. Therefore, unlike a liquid crystal display, it is not necessary to use an LED (Light Emitting Diode) as a backlight. For this reason, a smaller display device 1 can be realized.
  • EL Electro-Luminescence
  • the light emitting layer 54 includes the quantum dot dopant 61 and the exciplex host (host 62) including the hole transporting host 62 ⁇ / b> A and the electron transporting host 62 ⁇ / b> B.
  • the quantum dot dopant 61 emits light when the excited exciton energy transitions to the quantum dot dopant 61.
  • the spectral width of the light emitted from the quantum dot dopant 61 is narrow, the color purity of the image displayed by the display device 1 can be increased.
  • exciton energy having a maximum internal quantum efficiency of 100% is generated in an exciplex host composed of the hole transporting host 62A and the electron transporting host 62B. And since the exciton energy produced
  • the light-emitting element of one embodiment of the present invention may have a structure in which the hole injection layer 56 is not included.
  • the light-emitting element of one embodiment of the present invention may have a structure that does not include the electron injection layer 52.
  • the emission spectrum of the exciplex host (host 62) composed of the hole transporting host 62A and the electron transporting host 62B overlaps the absorption spectrum of the quantum dot dopant 61, and further the overlapping range. Is more preferable. Thereby, the energy transfer from the host 62 to the quantum dot dopant 61 can be efficiently performed.
  • the average distance between the exciplex generated by the host 62 and the quantum dot dopant 61 is close, for example, 10 nm or less. Thereby, the energy transfer from the said exciplex host to the quantum dot dopant 61 can be performed efficiently.
  • the light emitting element 50 may be configured as a bottom emission type light emitting element. That is, the light emitting element 50 may be configured to emit light emitted from the light emitting layer 54 downward. Specifically, by using a reflective electrode as the cathode 51 and a translucent electrode as the anode 57, the bottom emission type light emitting element 50 can be realized.
  • a substrate (not shown) provided below the anode 57 is a light-transmitting substrate (eg, a glass substrate).
  • FIG. 4 is a schematic view showing the configuration of the light emitting element 50A.
  • the light emitting element 50 ⁇ / b> A includes a light emitting layer 54 ⁇ / b> A instead of the light emitting layer 54 of the light emitting element 50 in the first embodiment.
  • the light emitting layer 54 includes a photosensitive host 63 in addition to the configuration of the light emitting layer 54 in the first embodiment.
  • the photosensitive host 63 is used to pattern the light emitting layer 54A by being exposed and developed.
  • the material of the photosensitive host 63 is, for example, SU-8 (manufactured by Nippon Kayaku Co., Ltd.), KI series (manufactured by Hitachi Chemical Co., Ltd.), AZ photoresist (manufactured by Merck), or Sumiresist (manufactured by Sumitomo Chemical Co., Ltd.). It may be a photosensitive resin.
  • the photosensitive host 63 may contain a photopolymerization initiator.
  • the light emitting element 50A includes the host 62 composed of the hole transporting host 62A and the electron transporting host 62B, so that even when the light emitting layer 54A is manufactured using the photosensitive host 63 having poor carrier transportability. , Luminous efficiency can be increased.
  • the light emitting element (50, 50A) emits light emitted from the light emitting layer (54, 54A) and the holes supplied from the anode between the anode (57) and the cathode (51).
  • a light emitting device comprising a hole transport layer (55) transported to a layer and an electron transport layer (53) transporting electrons supplied from the cathode to the light emitting layer, wherein the light emitting layer comprises a quantum dot dopant (61) and an exciplex host (host 62) composed of a hole transporting host (62A) and an electron transporting host (62B), and the exciton energy generated in the exciplex host is the quantum dot dopant.
  • the quantum dot dopant emits light by transitioning to.
  • the wavelength width of the light emitted from the quantum dot dopant is narrow, the color purity of the image displayed by the display device can be increased.
  • exciton energy having a maximum internal quantum efficiency of 100% is generated in a host composed of a hole transporting host and an electron transporting host. And since the generated exciton energy changes to a quantum dot dopant and a quantum dot dopant light-emits, a light emitting element with high luminous efficiency is realizable.
  • the light emitting layer further includes a photosensitive host (63).
  • the substance constituting the hole transport layer and the hole transporting host are the same substance.
  • the substance constituting the electron transport layer and the electron transporting host are the same substance.
  • the light-emitting element according to aspect 5 of the present invention is the light-emitting element according to aspect 1 or 2, wherein the substance constituting the hole transport layer and the hole transporting host are the same substance, and the electron transport layer is constituted. And the electron transporting host are the same material.
  • the light-emitting device is the light-emitting element according to aspect 1 or 2, wherein the quantum dot dopant has a core-shell structure, and CdSe / ZnSe, CdSe / ZnS, CdS / ZnSe, CdS / ZnS, ZnSe / At least one material selected from the group consisting of ZnS, InP / ZnS, or ZnO / MgO.
  • an average distance between the exciplex generated by the exciplex host and the quantum dot dopant is 10 nm or less.
  • the light emitting device includes the hole injection layer that injects holes supplied from the anode into the hole transport layer in any of the above aspects 1 to 8.
  • a light emitting device includes the electron injection layer according to any one of the above aspects 1 to 9, which injects electrons supplied from the cathode into the electron transport layer.
  • a display device (1) according to aspect 11 of the present invention includes a plurality of light-emitting elements according to any one of aspects 1 to 10.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

発光素子(50)は、発光層(54)と、正孔輸送層(55)と、電子輸送層(53)とを含む。発光層(54)は、量子ドットドーパント(61)と、正孔輸送性ホスト(62A)および電子輸送性ホスト(62B)からなるホスト(62)とを含み、ホスト(62)において生成された励起子エネルギーが量子ドットドーパント(61)に遷移することにより、量子ドットドーパント(61)が発光する。

Description

発光素子および表示装置
 本発明は、量子ドット(Quantum Dot,QD)ドーパントを用いた発光素子などに関する。
 近年、例えば表示装置の光源として、QD蛍光体粒子(半導体ナノ粒子蛍光体、QDドーパントとも称される)を含む発光素子が用いられている。特許文献1には、そのような表示装置の一例が開示されている。特許文献1の表示装置は、高発光効率で長寿命の表示装置を実現することを目的としている。
日本国公開特許公報「特開2014-78381号」
 しかしながら、特許文献1の技術では、発光層において、電極から供給された電子またはホールの輸送性が十分ではない。そのため、QD蛍光体粒子に供給される正孔の量と電子と量のバランスが低下してしまい、QD蛍光体粒子を含む発光素子の発光効率が低くなるという問題があった。
 本発明の一態様は、高い発光効率を有する発光素子を実現することを目的とする。
 上記の課題を解決するために、本発明の一態様に係る発光素子は、陽極と陰極との間に、発光層と、前記陽極から供給された正孔を前記発光層に輸送する正孔輸送層と、前記陰極から供給された電子を前記発光層に輸送する電子輸送層とを含む発光素子であって、前記発光層が、量子ドットドーパントと、正孔輸送性ホストおよび電子輸送性ホストからなるエキサイプレックスホストとを含み、前記エキサイプレックスホストにおいて生成された励起子エネルギーが前記量子ドットドーパントに遷移することにより、前記量子ドットドーパントが発光する。
 本発明の一態様に係る発光装置によれば、高い発光効率を有する発光素子を実現することができる。
実施形態1に係る表示装置の製造方法の一例を示すフローチャートである。 上記表示装置が備える表示部の構成例を示す断面図である。 上記表示部が備える発光素子の構成を示す概略図である。 実施形態2に係る発光素子の構成を示す概略図である。
 〔実施形態1〕
 以下、本発明の実施形態1について図面を参照しながら詳細に説明する。以下においては、「同層」とは同一プロセスにて同材料で形成されていることを意味し、「下層」とは、比較対象の層よりも前のプロセスで形成されていることを意味し、「上層」とは比較対象の層よりも後のプロセスで形成されていることを意味する。また、各図面は、各部材の形状、構造、および位置関係を概略的に説明するものであり、必ずしもスケール通りに描かれていないことに留意されたい。
 本実施形態では、表示装置1における表示部1aについて説明する。表示装置1におけるその他の部材については説明を省略する。これらの説明を省略する部材は、公知のものと同様であると理解されてよい。表示装置1は、RGB(Red,Green,Blue)の複数の画素によって画像を表現する。
 図1は、本実施形態における表示装置1の製造方法の一例を示すフローチャートである。図2は、表示装置1の表示部1aの構成例を示す断面図である。
 表示装置1の製造では、図1および図2に示すように、まず、透光性の支持基板(例えば、マザーガラス基板)(図示せず)上に樹脂層12を形成する(ステップS1)。次いで、バリア層3を形成する(ステップS2)。次いで、TFT層4を形成する(ステップS3)。次いで、トップエミッション型の発光素子層5を形成する(ステップS4)。ステップS4の詳細については後述する。次いで、封止層6を形成する(ステップS5)。次いで、封止層6の上面に機能フィルム39を貼り付ける(ステップS6)。次いで、外部接続用の端子に電子回路基板(例えば、ICチップ)をマウントし、表示装置1とする(ステップS7)。なお、上記各ステップは表示装置製造装置が行う。
 樹脂層12の材料としては、例えば、ポリイミド樹脂、アクリル樹脂、エポキシ樹脂が挙げられる。機能フィルム10の材料としては、例えばポリエチレンテレフタレート(PET)が挙げられる。
 バリア層3は、表示装置1の使用時に、水、酸素等の異物がTFT層4、発光素子層5に浸透することを防ぐ層であり、例えば、CVD(chemical vapor deposition)法により形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。
 TFT層4は、半導体膜15と、半導体膜15よりも上層の無機絶縁膜16(ゲート絶縁膜)と、無機絶縁膜16よりも上層のゲート電極GEと、ゲート電極GEよりも上層の無機絶縁膜18と、無機絶縁膜18よりも上層の容量配線CEと、容量配線CEよりも上層の無機絶縁膜20と、無機絶縁膜20よりも上層のソース配線SHと、ソース配線SHよりも上層の平坦化膜21とを含む。
 半導体膜15、無機絶縁膜16(ゲート絶縁膜)、およびゲート電極GEを含むように薄層トランジスタ(TFT)Trが構成される。
 半導体膜15は、例えば低温ポリシリコン(LTPS)あるいは酸化物半導体で構成される。なお、図2では、半導体膜15をチャネルとするTFTがトップゲート構造で示されているが、ボトムゲート構造でもよい(例えば、TFTのチャネルが酸化物半導体の場合)。
 ゲート電極GE、容量電極CE、ソース配線SHは、例えば、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)の少なくとも1つを含む金属の単層膜あるいは積層膜によって構成される。
 無機絶縁膜16・18・20は、例えば、CVD法によって形成された、酸化シリコン(SiOx)膜あるいは窒化シリコン(SiNx)膜またはこれらの積層膜によって構成することができる。平坦化膜(層間絶縁膜)21は、例えば、ポリイミド、アクリル等の塗布可能な感光性有機材料によって構成することができる。
 封止層6は、後述する陰極51よりも上層の無機封止膜26と、無機封止膜26よりも上層の有機封止膜27と、有機封止膜27よりも上層の無機封止膜28とを含み、水、酸素等の異物の発光素子層5への浸透を防ぐ。無機封止膜26・28は、例えば、CVD法により形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。有機封止膜27は、ポリイミド、アクリル等の塗布可能な感光性有機材料によって構成することができる。
 機能フィルム39は、例えば、光学補償機能、タッチセンサ機能、保護機能等を有する。
 発光素子層5は、複数の発光素子50を含む。発光素子50は、表示装置1の各画素を点灯させる光源である。実施形態1では、表示装置1は、RGB(Red,Green,Blue)の複数の画素によって画像を表現する。以下、赤色画素(R画素)をPr、緑色画素(G画素)をPg、青色画素(B画素)をPbと称し、赤色画素Pr、緑色画素Pg、および青色画素を点灯させる発光素子50を、発光素子50r、発光素子50g、および発光素子50bとそれぞれ称する。
 発光素子50の構成について、図3を参照しながら説明する。図3は、発光素子50の構成を示す概略図である。なお、発光素子50としての発光素子50r、発光素子50g、および発光素子50bの構成は、略同様であるため、以下の説明では、「r」、「g」、「b」の添え字を省略して発光素子50として説明する。
 図3に示すように、発光素子50は、エキサイプレックスホストであるホスト62(詳しくは後述する)から励起子エネルギーを受け取ることにより光を発する量子ドットドーパント(QD蛍光体粒子)61を含んでいる。以下、陽極57から陰極51に向かう方向を上方向と称する。また、上方向とは反対の方向を下方向と称する。
 発光素子50は、上側から下方向に向かって、陰極51、電子注入層(Electron Injection Layer,EIL)52、電子輸送層(Electron Transportation Layer,ETL)53、発光層54、正孔輸送層(Hole Transportation Layer,HTL)55、正孔注入層(Hole Injection Layer,HIL)56、および陽極57を、この順に備えている。
 陰極51は、発光層54に対して電子を供給する電極である。陰極51は、例えばMg-Ag合金によって構成されている。陰極51は、発光層54から発せられた光を透過する透過性電極である。発光素子50は、発光層54から発せられた光を上方向に出射するトップエミッション型の発光素子として構成されている。
 電子注入層52は、陰極51から発光層54への電子の注入を促進する層である。電子注入層52は、電子注入性に優れた材料を含む。
 電子輸送層53は、陰極51から発光層54への電子の供給を促進する層である。電子輸送層53は、電子輸送性に優れた材料を含む。当該電子輸送性に優れた材料は、後述する電子輸送性ホスト62Bと同じ材料であってもよいし、異なる材料であってもよい。上記電子輸送性に優れた材料が発光層54の電子輸送性ホスト62Bと同じ材料である場合、低電圧で発光させることができるため好ましい。電子輸送層53は、蒸着または塗布により形成することができる。
 発光層54は、量子ドットドーパント61と、正孔輸送性ホスト62Aおよび電子輸送性ホスト62Bからなるホスト62とを含む。
 量子ドットドーパント61は、ホスト62から励起子エネルギーを受け取り、光を発する物質である。一例として、量子ドットドーパント61の材料は、コア-シェル構造を有し、CdSe/ZnSe、CdSe/ZnS、CdS/ZnSe、CdS/ZnS、ZnSe/ZnS、InP/ZnS、またはZnO/MgOからなる群から選択された少なくとも1種類の材料であってよい。なお、例えば、上記の「CdSe/ZnSe」は、コアがCdSeからなり、シェルがZnSeからなるコア-シェル構造であることを意味する。
上記半導体材料のナノサイズの結晶(半導体結晶)が、量子ドットドーパント61の材料として用いられる。
 図3では、球状の量子ドットドーパント61が例示されている。但し、量子ドットドーパントの形状は球状に限定されない。量子ドットドーパントの形状は、公知の任意の形状が適用されてよく、ロッド状であってもよいし、ワイヤ状であってもよい。
 量子ドットドーパントは、高い発光効率を有しているため、発光素子50(表示装置1)の発光効率を向上させるために好適である。また、量子ドットドーパントのサイズ(例:粒径)を調整することで、量子ドットドーパントのエネルギーバンドギャップを設定できる。つまり、量子ドットドーパントの粒径を調整することで、当該量子ドットドーパントから発せられる光の波長(より具体的には、波長スペクトル)を制御することができる。具体的には、量子ドットドーパントのサイズを小さくするにつれて、当該量子ドットドーパントから発せられる光のピーク波長(波長スペクトルにおける強度ピークが得られる波長)をより短くできる。表示装置1では、発光素子50r、発光素子50g、および発光素子50bの発光層54(発光層54r、発光層54g、および発光層54b)がそれぞれ備える量子ドットドーパントが、それぞれ赤色、緑色、および青色の光をそれぞれ発するように、粒径が調整されている。また、量子ドットドーパントは、発する光のスペクトル幅が狭いので、表示装置1が表示する画像の色純度を高いものにすることができる。
 ホスト62は、正孔輸送性ホスト62Aおよび電子輸送性ホスト62Bからなる。
 正孔輸送性ホスト62Aは、正孔輸送層55から受け取った正孔を輸送する機能を有する材料によって構成されている。正孔輸送性ホスト62Aを構成する材料は、カルバゾール誘導体、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ポルフィリン化合物、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマーなどを使用することができる。なかでも、正孔輸送性ホスト62Aの材料として、芳香族第3級アミン化合物およびスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましいが、これらに限定されない。さらに、正孔輸送性ホスト62Aの材料として、これらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできるが、これらに限定されない。正孔輸送性ホスト62Aは、上述する電子輸送性ホスト62Bとの間でエキサイプレックスを形成しやすくするため、HOMO(最高被占軌道:Highest Occupied Molecular Orbital)準位が浅いことが好ましい。
 電子輸送性ホスト62Bは、電子輸送層53から受け取った電子を輸送する機能を有する材料によって構成されている。電子輸送性ホスト62Bを構成する材料は、オキサジアゾール誘導体、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体などを使用することができる。また、電子輸送性ホスト62Bの材料として、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体を用いることもできる。さらに、電子輸送性ホスト62Bの材料として、これらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできるが、これらに限定されない。電子輸送性ホスト62Bは、正孔輸送性ホスト62Aとの間でエキサイプレックスを形成しやすくするため、LUMO(最低空軌道:Lowest Unoccupied Molecular Orbital)準位が深いことが好ましい。
 発光層54における量子ドットドーパント61と、ホスト62との配合比率は、質量比で、量子ドットドーパント61:ホスト62=0.5:99.5~50:50であることが好ましい。量子ドットドーパント61の量が少なすぎると、上記エキサイプレックスホストで生成された励起子エネルギーが量子ドットドーパント61へ十分に移動せずに失活してしまう。一方、量子ドットドーパント61の量が多すぎると、電子または正孔の移動を阻害してしまうとともに、エキサイプレックスの生成確率が小さくなる。
 発光層54は、例えば、スピンコート法、スプレーコート法、キャスト法、インクジェット法を含む印刷法などの公知の方法を使用して形成することができる。
 なお、図3では、エキサイプレックスホストを形成している正孔輸送性ホスト62Aおよび電子輸送性ホスト62Bのみを図示している。図3における発光層54において、量子ドットドーパント61、正孔輸送性ホスト62Aおよび電子輸送性ホスト62Bのいずれも図示されていない領域は、エキサイプレックスホストを形成していない正孔輸送性ホスト62Aおよび電子輸送性ホスト62Bによって埋められているものとする。
 本実施形態における発光層54では、ホスト62が、正孔輸送性ホスト62Aおよび電子輸送性ホスト62Bから構成されている。これにより、正孔および電子が量子ドットドーパントの近くまで効率良く輸送される。
 また、発光素子50では、正孔輸送性ホスト62Aおよび電子輸送性ホスト62Bが、エキサイプレックス(励起錯体)ホストを形成している。より詳細には、ホスト62は、正孔輸送性ホスト62AのHOMOエネルギー準位と電子輸送性ホスト62BのLUMOエネルギー準位との間において励起子を形成するエキサイプレックスホストである。
 上記の構成によれば、正孔輸送性ホスト62Aと電子輸送性ホスト62Bとからなるエキサイプレックスホストにおいて最大内部量子効率が100%の励起子エネルギーが生成される。そして、生成された励起子エネルギーが量子ドットドーパント61に高効率で遷移することにより、量子ドットドーパント61が発光する。
 以上のように、従来のように発光層が蛍光ドーパントを含む発光素子では最大内部量子効率が25%であるのに対し、発光素子50では最大内部量子効率が100%とすることができるので、高効率で発光させることができる。
 正孔輸送層55は、陽極57から発光層54への正孔の供給を促進する層である。正孔輸送層55は、正孔輸送性に優れた材料を含む。当該正孔輸送性に優れた材料は、発光層54の正孔輸送性ホスト62Aと同じ材料であってもよいし、異なる材料であってもよい。ただし、発光層54の正孔輸送性ホスト62Aと同じ材料である場合、低電圧で発光させることができるため好ましい。正孔輸送層55は、蒸着または塗布により形成することができる。
 正孔注入層56は、陽極57から発光層54への正孔の注入を促進する層である。正孔注入層56は、正孔注入性に優れた材料を含む。
 陽極57は、例えば下層がAg-Pd-Cu合金(APC)で上層がITO(Indium Tin Oxide,インジウムスズ酸化物)の積層構造によって構成されている。陽極57は、発光層54から発せられた光を反射する反射性電極である。当該配置によれば、発光層54から発せられた光のうち、下方向に向かう光を陽極57によって反射できる。これにより、発光層54から発せられた光の利用効率を向上させることができる。陽極57は、蒸着により形成することができる。
 発光素子50では、陽極57と陰極51との間に順方向の電圧を印加する(陽極57を陰極51よりも高電位にする)ことにより、陰極51から発光層54へ電子を供給するとともに、陽極57から発光層54へ正孔を供給する。陰極51から供給された電子および陽極57から供給された正孔によって、正孔輸送性ホスト62Aと電子輸送性ホスト62Bとからなるエキサイプレックスホストにおいて励起子エネルギーが生成される。そして、生成された励起子エネルギーが量子ドットドーパント61に遷移することにより、量子ドットドーパント61が発光する。上記電圧の印加は、TFT(Thin Film Transistor,薄膜トランジスタ)Tr(図2参照)によって制御されてよい。
 このように、発光素子50に電圧を印加して得られる発光は、エレクトロルミネッセンス(Electro-Luminescence,EL)である。すなわち、発光素子50は、自己発光型の発光素子として機能する。そのため、液晶ディスプレイのように、LED(Light Emitting Diode,発光ダイオード)などをバックライトとして用いる必要がない。このため、より小型の表示装置1を実現できる。
 以上のように、発光素子50では、発光層54が、量子ドットドーパント61と、正孔輸送性ホスト62Aおよび電子輸送性ホスト62Bからなるエキサイプレックスホスト(ホスト62)とを含み、ホスト62において生成された励起子エネルギーが量子ドットドーパント61に遷移することにより、量子ドットドーパント61が発光する構成である。
 上記の構成によれば、量子ドットドーパント61が発する光のスペクトル幅が狭いので、表示装置1が表示する画像の色純度を高いものにすることができる。
 さらに、正孔輸送性ホスト62Aと電子輸送性ホスト62Bとからなるエキサイプレックスホストにおいて最大内部量子効率が100%の励起子エネルギーが生成される。そして、生成された励起子エネルギーが量子ドットドーパント61に遷移することにより、量子ドットドーパント61が発光するので、発光効率の高い発光素子50を実現することができる。
 なお、本発明の一態様の発光素子では、正孔注入層56を含まない構成であってもよい。また、本発明の一態様の発光素子では、電子注入層52を含まない構成であってもよい。
 また、正孔輸送性ホスト62Aと電子輸送性ホスト62Bとからなるエキサイプレックスホスト(ホスト62)の発光スペクトルと、量子ドットドーパント61の吸収スペクトルとが重なっていることが好ましく、さらに重なっている範囲が大きいことがより好ましい。これにより、ホスト62から量子ドットドーパント61へのエネルギー移動を効率よく行わせることができる。
 また、ホスト62で生成されるエキサイプレックスと量子ドットドーパント61との平均距離が近い、例えば、10nm以下であることが好ましい。これにより、上記エキサイプレックスホストから量子ドットドーパント61へのエネルギー移動を効率よく行わせることができる。
 (変形例)
 発光素子50は、ボトムエミッション型の発光素子として構成されてもよい。つまり、発光素子50は、発光層54から発せられた光を下方向に出射するように構成されてもよい。具体的には、陰極51として反射性電極を、陽極57として透光性電極をそれぞれ用いることにより、ボトムエミッション型の発光素子50を実現できる。ボトムエミッション型の発光素子50において、陽極57の下方に設けられた基板(不図示)は、光透過性の基板(例:ガラス基板)である。
 〔実施形態2〕
 本発明の他の実施形態に係る発光素子50Aついて説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図4は、発光素子50Aの構成を示す概略図である。図4に示すように、発光素子50Aは、実施形態1における発光素子50の発光層54に代えて発光層54Aを備えている。
 発光層54は、実施形態1における発光層54の構成に加えて、感光性ホスト63を備えている。
 感光性ホスト63は、露光および現像されることにより発光層54Aをパターニングするために用いられる。感光性ホスト63の材料は、例えば、SU-8(日本化薬社製)、KIシリーズ(日立化成社製)、AZフォトレジスト(メルク社製)、またはスミレジスト(住友化学社製)などの、感光性樹脂であってよい。また、感光性ホスト63は、光重合開始剤を含有していてもよい。
 発光素子50Aは、正孔輸送性ホスト62Aと電子輸送性ホスト62Bとからなるホスト62を含んでいることにより、キャリア輸送性が乏しい感光性ホスト63を用いて発光層54Aを製造した場合においても、発光効率を高くすることができる。
 〔まとめ〕
 本発明の態様1に係る発光素子(50、50A)は、陽極(57)と陰極(51)との間に、発光層(54、54A)と、前記陽極から供給された正孔を前記発光層に輸送する正孔輸送層(55)と、前記陰極から供給された電子を前記発光層に輸送する電子輸送層(53)とを含む発光素子であって、前記発光層が、量子ドットドーパント(61)と、正孔輸送性ホスト(62A)および電子輸送性ホスト(62B)からなるエキサイプレックスホスト(ホスト62)とを含み、前記エキサイプレックスホストにおいて生成された励起子エネルギーが前記量子ドットドーパントに遷移することにより、前記量子ドットドーパントが発光する構成である。
 上記の構成によれば、量子ドットドーパントが発する光の波長幅が狭いので、表示装置が表示する画像の色純度を高いものにすることができる。
 さらに、正孔輸送性ホストと電子輸送性ホストとからなるホストにおいて最大内部量子効率が100%の励起子エネルギーが生成される。そして、生成された励起子エネルギーが量子ドットドーパントに遷移することにより量子ドットドーパントが発光するので、発光効率の高い発光素子を実現することができる。
 本発明の態様2に係る発光素子は、上記態様1において、前記発光層が、さらに感光性ホスト(63)を含む。
 本発明の態様3に係る発光素子は、上記態様1または2において、前記正孔輸送層を構成する物質と、前記正孔輸送性ホストとが同じ物質である。
 上記の構成によれば、低い電圧で発光させることができる。
 本発明の態様4に係る発光素子は、上記態様1または2において、前記電子輸送層を構成する物質と、前記電子輸送性ホストとが同じ物質である。
 本発明の態様5に係る発光素子は、上記態様1または2において、前記正孔輸送層を構成する物質と、前記正孔輸送性ホストとが同じ物質であり、かつ、前記電子輸送層を構成する物質と、前記電子輸送性ホストとが同じ物質である。
 本発明の態様6に係る発光素子は、上記態様1または2において、前記量子ドットドーパントは、コア-シェル構造を有し、CdSe/ZnSe、CdSe/ZnS、CdS/ZnSe、CdS/ZnS、ZnSe/ZnS、InP/ZnS、またはZnO/MgOからなる群から選択された少なくとも1種類の材料である。
 本発明の態様7に係る発光素子は、上記態様1~6のいずれかにおいて、前記エキサイプレックスホストの発光スペクトルと、前記量子ドットドーパントの吸収スペクトルとが重なっている。
 本発明の態様8に係る発光素子は、上記態様1~7のいずれかにおいて、前記エキサイプレックスホストで生成されるエキサイプレックスと、前記量子ドットドーパントとの平均距離が10nm以下である。
 本発明の態様9に係る発光素子は、上記態様1~8のいずれかにおいて、前記陽極から供給された正孔を前記正孔輸送層へ注入する正孔注入層を備える。
 本発明の態様10に係る発光素子は、上記態様1~9のいずれかにおいて、前記陰極から供給された電子を前記電子輸送層へ注入する電子注入層を備える。
 本発明の態様11に係る表示装置(1)は、上記態様1~10のいずれかの発光素子を複数備える。
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成できる。
 1 表示装置
 50、50A 発光素子
 51 陰極
 52 電子注入層
 53 電子輸送層
 54、54A 発光層
 55 正孔輸送層
 56 正孔注入層
 57 陽極
 61 量子ドットドーパント
 62 ホスト(エキサイプレックスホスト)
 62A 正孔輸送性ホスト
 62B 電子輸送性ホスト
 63 感光性ホスト

Claims (11)

  1.  陽極と陰極との間に、発光層と、前記陽極から供給された正孔を前記発光層に輸送する正孔輸送層と、前記陰極から供給された電子を前記発光層に輸送する電子輸送層とを含む発光素子であって、
     前記発光層が、量子ドットドーパントと、正孔輸送性ホストおよび電子輸送性ホストからなるエキサイプレックスホストとを含み、
     前記エキサイプレックスホストにおいて生成された励起子エネルギーが前記量子ドットドーパントに遷移することにより、前記量子ドットドーパントが発光することを特徴とする発光素子。
  2.  前記発光層が、さらに感光性ホストを含むことを特徴とする請求項1に記載の発光素子。
  3.  前記正孔輸送層を構成する物質と、前記正孔輸送性ホストとが同じ物質であることを特徴とする請求項1または2に記載の発光素子。
  4.  前記電子輸送層を構成する物質と、前記電子輸送性ホストとが同じ物質であることを特徴とする請求項1または2に記載の発光素子。
  5.  前記正孔輸送層を構成する物質と、前記正孔輸送性ホストとが同じ物質であり、かつ、
     前記電子輸送層を構成する物質と、前記電子輸送性ホストとが同じ物質であることを特徴とする請求項1または2に記載の発光素子。
  6.  前記量子ドットドーパントは、コア-シェル構造を有し、CdSe/ZnSe、CdSe/ZnS、CdS/ZnSe、CdS/ZnS、ZnSe/ZnS、InP/ZnS、またはZnO/MgOからなる群から選択された少なくとも1種類の材料であることを特徴とする請求項1または2に記載の発光素子。
  7.  前記エキサイプレックスホストの発光スペクトルと、前記量子ドットドーパントの吸収スペクトルとが重なっていることを特徴とする請求項1~6のいずれか1項に記載の発光素子。
  8.  前記エキサイプレックスホストで生成されるエキサイプレックスと、前記量子ドットドーパントとの平均距離が10nm以下であることを特徴とする請求項1~7のいずれか1項に記載の発光素子。
  9.  前記陽極から供給された正孔を前記正孔輸送層へ注入する正孔注入層を備えることを特徴とする請求項1~8のいずれか1項に記載の発光素子。
  10.  前記陰極から供給された電子を前記電子輸送層へ注入する電子注入層を備えることを特徴とする請求項1~9のいずれか1項に記載の発光素子。
  11.  請求項1~10のいずれか1項に記載の発光素子を複数備えることを特徴とする表示装置。
PCT/JP2018/013032 2018-03-28 2018-03-28 発光素子および表示装置 WO2019186846A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/041,134 US20210119160A1 (en) 2018-03-28 2018-03-28 Light-emitting element and display device
JP2020508676A JPWO2019186846A1 (ja) 2018-03-28 2018-03-28 発光素子および表示装置
PCT/JP2018/013032 WO2019186846A1 (ja) 2018-03-28 2018-03-28 発光素子および表示装置
CN201880091863.0A CN111919513A (zh) 2018-03-28 2018-03-28 发光元件以及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013032 WO2019186846A1 (ja) 2018-03-28 2018-03-28 発光素子および表示装置

Publications (1)

Publication Number Publication Date
WO2019186846A1 true WO2019186846A1 (ja) 2019-10-03

Family

ID=68057967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013032 WO2019186846A1 (ja) 2018-03-28 2018-03-28 発光素子および表示装置

Country Status (4)

Country Link
US (1) US20210119160A1 (ja)
JP (1) JPWO2019186846A1 (ja)
CN (1) CN111919513A (ja)
WO (1) WO2019186846A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022157848A1 (ja) * 2021-01-20 2022-07-28 シャープ株式会社 発光デバイスの製造方法、および発光デバイス
JP7498805B2 (ja) 2021-01-20 2024-06-12 シャープ株式会社 発光デバイスの製造方法、および発光デバイス

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069981A (ja) * 1996-05-30 1998-03-10 Nippon Steel Corp 有機エレクトロルミネッセンス素子およびその製造方法
JP2005128539A (ja) * 2003-10-21 2005-05-19 Samsung Electronics Co Ltd 感光性半導体ナノ結晶、半導体ナノ結晶パターン形成用感光性組成物及びこれらを用いたパターン形成方法
JP2007042875A (ja) * 2005-08-03 2007-02-15 Fujifilm Holdings Corp 有機電界発光素子
JP2017168420A (ja) * 2015-09-01 2017-09-21 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器及び照明装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143773A4 (en) * 1999-10-05 2007-02-21 Matsushita Electric Ind Co Ltd ELECTROLUMINESCENT DEVICE AND CORRESPONDING MANUFACTURING METHOD, AND DISPLAY AND LIGHTING DEVICE COMPRISING SAID DEVICE
US7772761B2 (en) * 2005-09-28 2010-08-10 Osram Opto Semiconductors Gmbh Organic electrophosphorescence device having interfacial layers
US8106199B2 (en) * 2007-02-13 2012-01-31 Arizona Board Of Regents For And On Behalf Of Arizona State University Organometallic materials for optical emission, optical absorption, and devices including organometallic materials
KR20120103571A (ko) * 2009-10-05 2012-09-19 손 라이팅 리미티드 다층구조의 유기 장치
KR102655709B1 (ko) * 2015-07-21 2024-04-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
CN105161637A (zh) * 2015-08-17 2015-12-16 Tcl集团股份有限公司 含有掺杂型空穴注入层的量子点发光二极管及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069981A (ja) * 1996-05-30 1998-03-10 Nippon Steel Corp 有機エレクトロルミネッセンス素子およびその製造方法
JP2005128539A (ja) * 2003-10-21 2005-05-19 Samsung Electronics Co Ltd 感光性半導体ナノ結晶、半導体ナノ結晶パターン形成用感光性組成物及びこれらを用いたパターン形成方法
JP2007042875A (ja) * 2005-08-03 2007-02-15 Fujifilm Holdings Corp 有機電界発光素子
JP2017168420A (ja) * 2015-09-01 2017-09-21 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器及び照明装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK J. Y. ET AL.: "Tunable electroluminescence properties in CdSe/PVK guest-host based light-emitting devices", PHYS. CHEM. PHYS., vol. 16, no. 18, 27 February 2014 (2014-02-27) - 14 May 2014 (2014-05-14), pages 8589 - 8593, XP055640046 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022157848A1 (ja) * 2021-01-20 2022-07-28 シャープ株式会社 発光デバイスの製造方法、および発光デバイス
JP7498805B2 (ja) 2021-01-20 2024-06-12 シャープ株式会社 発光デバイスの製造方法、および発光デバイス

Also Published As

Publication number Publication date
US20210119160A1 (en) 2021-04-22
JPWO2019186846A1 (ja) 2020-12-17
CN111919513A (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
TW569166B (en) Organic light emitting element and display device using organic light emitting element
JP5564599B2 (ja) 発光素子および発光装置
US9099409B2 (en) Organic electroluminescent display device, electronic apparatus including the same, and method for producing organic electroluminescent display device
KR102651677B1 (ko) 유기발광 표시장치
CN108417729B (zh) 白色有机发光器件
US20100176412A1 (en) Organic el device and method of manufacturing the same
JP2010080738A (ja) 有機el表示装置及びその製造方法
KR20170072728A (ko) 유기발광 표시장치
JP2008252082A (ja) 有機発光表示装置及びその製造方法
JP4731996B2 (ja) 発光素子及び表示装置
WO2013073521A1 (ja) 有機エレクトロルミネッセンス表示装置およびそれを用いた電子機器、並びに、有機エレクトロルミネッセンス表示装置の製造方法
US11502266B2 (en) Light emitting element comprising quantum dots and method for producing light emitting element
KR102282030B1 (ko) 표시 장치
KR102086404B1 (ko) 유기전계발광 소자, 그 제조 방법 및 유기전계발광 표시장치
WO2011024348A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置、有機エレクトロルミネッセンス照明装置、および有機エレクトロルミネッセンス素子の製造方法
KR20210130686A (ko) 백색 유기 발광 소자
WO2019186846A1 (ja) 発光素子および表示装置
KR20190029353A (ko) 유기 발광 소자 및 이를 포함하는 유기 발광 표시 장치
KR20170076218A (ko) 유기발광 표시장치 및 유기발광 적층구조물
WO2011024346A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置、および有機エレクトロルミネッセンス照明装置
US20200098831A1 (en) Organic electroluminescence element, organic electroluminescence panel and electronic apparatus
JP2010277949A (ja) 有機el表示装置及びその製造方法
KR20200061044A (ko) 양자점 발광다이오드 및 양자점 발광표시장치
WO2022226718A1 (zh) 有机电致发光器件及其制备方法、显示装置
KR102672009B1 (ko) 유기 발광 소자 및 이를 포함하는 유기 발광 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508676

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911978

Country of ref document: EP

Kind code of ref document: A1