WO2019185001A1 - 一种数据传输方法和装置 - Google Patents

一种数据传输方法和装置 Download PDF

Info

Publication number
WO2019185001A1
WO2019185001A1 PCT/CN2019/080264 CN2019080264W WO2019185001A1 WO 2019185001 A1 WO2019185001 A1 WO 2019185001A1 CN 2019080264 W CN2019080264 W CN 2019080264W WO 2019185001 A1 WO2019185001 A1 WO 2019185001A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
domain resource
mapping manner
data
mapping
Prior art date
Application number
PCT/CN2019/080264
Other languages
English (en)
French (fr)
Inventor
高磊
刘德平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019185001A1 publication Critical patent/WO2019185001A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a data transmission method and apparatus.
  • V2X vehicle to X
  • the car networking system communicates between vehicles, vehicles, transportation facilities and pedestrians to improve the safety and reliability of road traffic and improve traffic. effectiveness.
  • the vehicle networking system includes communication between a vehicle to vehicle (V2V), communication between a vehicle to infrastructure (V2I), and communication between vehicles to pedestrians (V2P). Communication between vehicle and network (V2N) and so on.
  • the terminals in the V2X system need to periodically exchange some data, such as periodic status information (PSM), etc., and the PSM carries information such as the position, speed and status of the vehicle.
  • PSM periodic status information
  • the terminal broadcasts its own PSM to other terminals on the side line based on Device-to-Device (D2D) technology.
  • D2D Device-to-Device
  • the long term evolution (LTE) V2X system uses subcarrier spacing (SCS) of 15 kHz.
  • SCS subcarrier spacing
  • the carrier frequency is constant, the relative speed between terminals is larger, and the terminal generates more data when transmitting data.
  • ICI inter-carrier interference
  • SIR signal-to-interference ratio
  • High-speed scenes such as high-speed moving scenes
  • a solution to the high ICI generated by a terminal in a high-speed scenario in a V2X system is that a terminal in a high-speed scenario in the V2X system uses a larger resource pool of SCS when communicating. If the terminal in the high-speed scene of the V2X system and the terminal in the non-high-speed scene use different resource pools, the V2X system needs to allocate resource pools for the terminals in the high-speed scene and the terminals in the non-high-speed scene, respectively, so that there may be The problem of unreasonable resource pools leads to waste of resources.
  • the embodiment of the present application provides a data transmission method and device, which are used to solve the problem that a terminal in a high-speed scene in a car network system and a terminal in a non-high-speed scene use the same SCS mapping data, and when the relative speed between the terminals is high, The problem of using a higher order MCS.
  • the present application provides a data transmission method, including: a first device mapping data by using a first resource mapping manner, and transmitting the mapped data to a second device.
  • the first resource mapping manner is: mapping on n frequency domain resource units in consecutive m frequency domain resource units, and spacing between any two adjacent frequency domain resource units in the n frequency domain resource units At least one frequency domain resource unit, m, n are positive integers, and m is greater than n.
  • the second device determines the frequency domain resource of the first device mapping data according to the first resource mapping manner, and receives the data sent by the first device on the n frequency domain resource units.
  • At least one frequency domain resource unit may be separated between any two adjacent frequency domain resource units mapped with data, and at least one frequency domain resource unit of the interval is not mapped.
  • the frequency domain resource unit of the unmapped data does not interfere with the frequency domain resource unit mapped with the data, thereby reducing the ICI generated when the first device communicates in a high speed scenario, and by the frequency domain in which the data is mapped.
  • the method of not mapping the data in the at least one frequency domain resource unit adjacent to the resource unit to reduce the ICI in the high speed scenario, so that the first device can use the same SCS resource pool not only in the high speed scenario but also in the non-high speed scenario.
  • Higher order MCSs can be used in high speed scenarios. Since the terminal in the high-speed scene and the terminal in the non-high-speed scene can use the resource pool of the same SCS, the vehicle networking system does not need to reallocate the resource pool for the terminal in the high-speed scene, so that the vehicle networking system can be prevented from being the terminal in the high-speed scene. When the terminal allocates a resource pool in a non-high-speed scenario, resources are wasted due to an unreasonable proportion of allocated resources. Moreover, since the terminal in the Internet of Vehicles can use the same SCS mapping data, the receiving-side terminal can receive data using one SCS mapping, thereby simplifying the design of the receiving-side terminal.
  • the terminal in the non-high-speed scene and the terminal in the high-speed scene can adopt the MCS with higher order, and therefore, the terminal in the non-high-speed scene and the terminal in the high-speed scene.
  • MCS of the same order can be configured, which simplifies configuration and/or pre-configuration.
  • the first device uses the first resource mapping manner to map data, including: the first device mapping data on the 2ith frequency domain resource unit of the consecutive m frequency domain resource units.
  • the second device receives the data sent by the first device on the 2ith frequency domain resource unit of the consecutive m frequency domain resource units.
  • mapping 0 on the 2i-1th frequency domain resource unit the 2i-1th frequency domain resource unit does not interfere with the 2i frequency domain resource unit, thereby reducing the first device and The ICI generated by the second device when communicating.
  • the first device uses the first resource mapping manner to map data, including: the first device mapping data on the 2i-1th frequency domain resource unit in the consecutive m frequency domain resource units.
  • the i is a positive integer
  • the second device receives the data sent by the first device on the 2i-1th frequency domain resource unit of the consecutive m frequency domain resource units.
  • the first device maps data by using the first resource mapping manner, if data is mapped in a certain frequency domain resource unit, it may be in the j frequency domain resource units adjacent to the frequency domain resource unit. Do not map data.
  • the second device receives data on the certain frequency domain resource unit, and does not receive data on the j frequency domain resource units adjacent to the certain frequency domain resource unit.
  • the value of j in the embodiment of the present application is not specifically limited herein.
  • the first device determines that the first device meets a preset condition, and the preset condition includes at least one of: located in a preset geographic area, needs to communicate with a third device, and the speed is greater than The first threshold is that the third device and the first device are in opposite directions.
  • the first device may use the first resource mapping manner to map data according to the pre-configured parameters or according to the pre-defined in the high-speed scenario, so that the vehicle networking system does not need to separately allocate resources for the terminal in the high-speed scenario, and further It is possible to avoid waste of resources caused by the unreasonable proportion of allocated resources when the vehicle networking system separately allocates resource pools for terminals in a high-speed scene and terminals in a non-high-speed scene.
  • the first device receives the first indication information that is sent by the network device, where the first indication information is used to indicate that the first device uses the first resource mapping manner to map data.
  • the first device receives the second indication information that is sent by the network device, where the second indication information is used to indicate that the first device uses the first resource mapping manner to map data when the preset condition is met.
  • the preset condition includes at least one of: located in a preset geographical area, needs to communicate with the fourth device, the speed is greater than a second threshold, and the fourth device and the first device are in opposite movements.
  • the second device is a network device
  • the first indication information and the second indication information may be sent by the second device.
  • the first device may use the first resource mapping manner to map data under the instruction of the network device, so that the vehicle networking system does not need to separately allocate resources for the terminal in the high-speed scenario, thereby preventing the car networking system from being in a high-speed scene.
  • the vehicle networking system does not need to separately allocate resources for the terminal in the high-speed scenario, thereby preventing the car networking system from being in a high-speed scene.
  • the first device sends third indication information to the second device, where the third indication information is used to indicate the first resource mapping manner, and the second device is configured according to the third indication information. Determining that the first device maps data by using the first resource mapping manner, and receives data according to the first resource mapping manner.
  • the first device may indicate the corresponding resource mapping manner to the second device by sending the indication message, and the second device may determine the resource mapping manner of the first device according to the received third indication information, so that the first device can be correctly received. Send data without additional blind detection.
  • the first device may simultaneously send the third indication information and the mapped data, or the first device may also send the third indication information and then send the mapped data.
  • the first device when the first device uses the first resource mapping manner to map data, the first device may use the first resource mapping manner to map the reference signal, and the second device receives the data according to the first resource mapping manner. a reference signal transmitted by the first device. Or, when the first device uses the first resource mapping manner to map data, the first device may also map the reference signal by using a second resource mapping manner, where the second resource mapping manner is: in the continuous m The mapping is performed on the frequency domain resource unit, and the second device receives the reference signal sent by the first device according to the second resource mapping manner.
  • the first device when the first device uses the first resource mapping manner to map data, the first device may use the first resource mapping manner to map the reference signal, or may use the second resource mapping reference signal, or may use other methods to map.
  • the reference signal, the manner in which the reference signal is mapped, is not specifically limited.
  • the first device when the first device does not meet the preset condition, maps data by using a second resource mapping manner, where the second resource mapping manner is: in the continuous Mapping on m frequency domain resource units.
  • the first device may sequentially map data in consecutive frequency domain resource units when the device is in a non-high speed condition, thereby improving the utilization of the frequency domain resources.
  • the first device sends fourth indication information to the second device, where the fourth indication information is used to indicate the second resource mapping manner, and the second device is configured according to the fourth indication information. Determining that the first device maps data by using a second resource mapping manner, and receives data according to the second resource mapping manner.
  • the first device sends the fourth indication information to the second device to indicate the second resource mapping manner, so that the second device can correctly receive the data sent by the first data without performing a blind detection side.
  • the present application provides a first device, including: a mapping module, configured to map data by using a first resource mapping manner, where the first resource mapping manner is: in consecutive m frequency domain resource units. Mapping n frequency domain resource units, at least one frequency domain resource unit between any two adjacent frequency domain resource units, m and n are positive integers, and m is greater than n. And a sending module, configured to send the processor-mapped data to the second device.
  • the mapping module is specifically configured to: map data on the 2ith frequency domain resource unit of the consecutive m frequency domain resource units.
  • the mapping module is specifically configured to: map data on the 2i-1th frequency domain resource unit in the consecutive m frequency domain resource units, where i is a positive integer.
  • the first device further includes a determining module.
  • the determining module is configured to determine that the first device meets a preset condition, where the preset condition includes at least one of: being located in a preset geographic area, requiring communication with a third device, and the speed is greater than a first threshold, The third device is in opposite direction to the first device.
  • the first device further includes a receiving module.
  • the receiving module is configured to receive first indication information that is sent by the network device, where the first indication information is used to indicate that the first device uses the first resource mapping manner to map data.
  • the receiving module is configured to receive the second indication information that is sent by the network device, where the second indication information is used to indicate that the first device uses the first resource mapping manner to map data when the preset condition is met.
  • the preset condition includes at least one of: being located in a preset geographic area, requiring communication with the fourth device, the speed is greater than a second threshold, and the fourth device and the first device are moving in opposite directions.
  • the sending module is further configured to: send, to the second device, third indication information, where the third indication information is used to indicate the first resource mapping manner.
  • the mapping module is further configured to: map the reference signal by using the first resource mapping manner.
  • the mapping module is further configured to: map the reference signal by using a second resource mapping manner, where the second resource mapping manner is: mapping on the consecutive m frequency domain resource units.
  • the mapping module is further configured to: when the first device does not meet the preset condition, use a second resource mapping manner to map data, where the second resource mapping manner is: Mapping on the consecutive m frequency domain resource units.
  • the sending module is further configured to: send, to the second device, fourth indication information, where the fourth indication information is used to indicate the second resource mapping manner.
  • the application provides a second device, including: a determining module, configured to determine a frequency domain resource of the first device mapping data according to the first resource mapping manner, where the first resource mapping manner is: in a continuous manner Mapping on n frequency domain resource units in m frequency domain resource units, wherein any two adjacent frequency domain resource units in the n frequency domain resource units are separated by at least one frequency domain resource unit, and m and n are positive An integer, and m is greater than n.
  • a receiving module configured to receive data sent by the first device on the n frequency domain resource units.
  • the receiving module is configured to: receive data sent by the first device on a second i-th frequency-domain resource unit of the consecutive m frequency-domain resource units. Or the receiving module is configured to: receive data sent by the first device, where the i is positive, on the 2i-1th frequency domain resource unit of the consecutive m frequency domain resource units. Integer.
  • the receiving module is further configured to: receive a first indication message sent by the first device, where the first indication message is used to indicate the first resource mapping manner.
  • the receiving module is further configured to: receive, by using the n frequency domain resource units, a reference signal sent by the first device.
  • the determining module is further configured to: determine a frequency domain resource of the first device mapping reference signal according to a second resource mapping manner, where the second resource mapping manner is: in the continuous Mapping on m frequency domain resource units.
  • the receiving module is further configured to: receive the reference signal sent by the first device on the consecutive m frequency domain resource units.
  • the receiving module is further configured to: receive a second indication message sent by the first device, where the second indication message is used to indicate a second resource mapping manner, where the second resource is The mapping manner is: mapping on the consecutive m frequency domain resource units.
  • the determining module is further configured to: determine a frequency domain resource of the first device mapping data according to the second resource mapping manner.
  • the receiving module is further configured to: receive data sent by the first device on the consecutive m frequency domain resource units.
  • the second device is a network device, and the second device further includes a sending module.
  • the sending module is configured to send third indication information to the first device, where the determining module determines the frequency domain resource of the first device mapping data according to the first resource mapping manner, where the third indication information is used by the third module Instructing the first device to map data by using the first resource mapping manner.
  • the sending module configured to send, to the first device, fourth indication information, where the determining module determines the frequency domain resource of the first device mapping data according to the first resource mapping manner, the fourth indication information
  • the first device is configured to use the first resource mapping manner to map data when the first device meets the preset condition, where the preset condition includes at least one of: being located in a preset geographic area, requiring communication with the third device, and speed
  • the third device is opposite to the first device and is opposite to the preset threshold.
  • the present application provides a first device, the device comprising a transceiver, a memory, and a processor, the memory for storing program code to be executed by the processor.
  • the transceiver is used to receive or transmit data.
  • the processor is configured to execute the program code stored in the memory, specifically for performing the method described in any one of the first aspect or the first aspect.
  • the present application provides a second device including a transceiver, a memory, and a processor for storing program code to be executed by the processor.
  • the transceiver is used to receive or transmit data.
  • the processor is configured to execute the program code stored in the memory, specifically for performing the method described in any one of the first aspect or the first aspect.
  • the present application further provides a computer readable storage medium, configured to store computer software instructions for performing the functions of any of the above first aspect, the first aspect, including A program designed by any one of the methods of designing the first aspect.
  • an embodiment of the present application provides a computer program product comprising instructions, when executed on a computer, causing a computer to perform the method in any of the above aspects or the first aspect of the first aspect.
  • the embodiment of the present application provides a chip system, where the chip system includes a processor, and is configured to support the first device to implement the functions involved in the foregoing first aspect or any possible design manner of the first aspect.
  • the chip system also includes a memory for storing the necessary program instructions and data for the first device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the embodiment of the present application provides a chip system, including a processor, for supporting a second device to implement the functions involved in the foregoing first aspect or any possible design manner of the first aspect.
  • the chip system also includes a memory for storing the necessary program instructions and data for the second device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic structural diagram of a communication system supporting D2D technology provided by the present application.
  • FIG. 2 is a schematic flowchart of a data transmission method provided by the present application.
  • FIG. 3 is a schematic diagram of a first resource mapping manner provided by the present application.
  • FIG. 4 is a schematic diagram of a first resource mapping manner provided by the present application.
  • FIG. 5 is a schematic diagram of a first resource mapping manner provided by the present application.
  • FIG. 6 is a schematic structural diagram of a first device provided by the present application.
  • FIG. 7 is a schematic structural diagram of a first device provided by the present application.
  • FIG. 8 is a schematic structural diagram of a second device provided by the present application.
  • FIG. 9 is a schematic structural diagram of a second device provided by the present application.
  • the data transmission method provided by the embodiment of the present application can be applied to a communication system supporting device-to-device (D2D) technology, and the communication system supporting the D2D technology includes at least two terminal devices.
  • a communication system supporting D2D technology may also include a network device.
  • a communication system supporting D2D technology may include a network device 101 and a terminal 102 and a terminal 103.
  • the terminal is a device that provides voice and/or data connectivity to the user, for example, including a handheld device having a wireless connection function, or a processing device connected to the wireless modem.
  • the terminal can communicate with the core network via a radio access network (RAN) to exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal may include a vehicle, a user equipment (UE), a wireless terminal device, a mobile terminal device, a subscriber unit, a subscriber station, a mobile station, a mobile station, Remote station, access point (AP), remote terminal, access terminal, user terminal, user agent, or User equipment, etc.
  • the terminal may include a mobile phone (or "cellular" phone), a computer with a mobile terminal device, a dedicated terminal device in a narrow band internet of things (NB-IoT), portable, pocket, handheld , a built-in computer or a mobile device on the car.
  • PCS personal communication service
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal may further include a vehicle to X (V2X) device, for example, an on-board unit (OBU) in the vehicle network, and the following mainly takes the terminal as a V2X device as an example.
  • V2X vehicle to X
  • OBU on-board unit
  • the terminal may perform direct communication based on the D2D technology, or may communicate with the network device, and the terminal may independently select to send the resource for communication according to the pre-configured parameter, or may allocate and allocate the resource for communication by the network device.
  • Network devices include access network devices and core network devices.
  • An access network device for example, including a base station (e.g., an access point), can refer to a device in the access network that communicates with the wireless terminal over one or more sectors over the air interface.
  • the base station can be configured to convert the received air frame with an internet protocol (IP) packet as a router between the terminal and the rest of the access network, wherein the rest of the access network can include an IP network.
  • IP internet protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may include an evolved base station (eNB or e-NodeB, evolutional Node B) in an LTE system or an evolved LTE system (LTE-A), or a small base station in an LTE system or an LTE-A system (micro/pico eNB), or may include a next generation node B (gNB) in the NR system, or a transmission point (TP), or a transmission and receiver point (transmission and receiver point, TRP), etc., is not limited by the embodiment of the present invention.
  • the core network device includes, for example, a mobility management entity (MME), or may also include a corresponding functional entity in a new radio (NR) system.
  • MME mobility management entity
  • NR new radio
  • the network device has a management function of radio resources, communicates with the terminal, or acts as a central controller to assist direct communication between the terminals.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • V2X Currently, vehicles can communicate by vehicle to vehicle (V2V) or vehicle to infrastructure (V2I), or communication between vehicles and pedestrians (vehicle to pedestrian) , V2P), or vehicle to network (vehicle to network, V2N) and other means to obtain road condition information or receive information in time, these communication methods can be collectively referred to as V2X communication.
  • V2V and V2I Take the most common V2V and V2I as an example: the vehicle can communicate with its surrounding vehicles by V2V communication, and its own speed, direction of travel, specific position, emergency brakes, etc., and the surrounding vehicles obtain the information to make the driver It is better to perceive the traffic conditions outside the line of sight, so that the dangerous situation can be pre-judged in advance, and then timely avoidance can be made.
  • the roadside infrastructure can also provide various types of service information and data network access for vehicles, and functions such as non-stop charging and in-vehicle entertainment greatly improve traffic intelligence.
  • the network used by V2X communication is generally referred to as an Internet of Vehicles.
  • D2D technology It can support direct data communication between terminal and terminal using dedicated air interface technology, which is a kind of end-to-end direct communication technology.
  • dedicated air interface technology which is a kind of end-to-end direct communication technology.
  • the biggest difference from the traditional cellular communication technology is that, with the support of the D2D technology, the terminal and the terminal can directly communicate without requiring the relay of the base station, and the base station can perform resource configuration, scheduling, and coordination, etc., between the auxiliary terminals. Direct communication.
  • D2D technology can be applied to the Internet of Vehicles business.
  • PSM periodic state information
  • the United States refers to the periodic state information between vehicles as basic safety message (BSM), and the period between terminals in Europe.
  • BSM basic safety message
  • CAM cooperative-awareness message
  • PSM periodic state information
  • the vehicle in the vehicle network broadcasts the PSM to the surrounding vehicles, so that the vehicle in the vehicle network can determine and warn the impending danger by reducing the disaster by analyzing the received PSM of the surrounding vehicle after receiving the PSM broadcasted by the surrounding vehicle. happened.
  • the service period of the PSM can be changed according to the motion state of the vehicle.
  • the service period of the vehicle with different motion states can be valued between [100ms, 1000ms].
  • the LTE V2X system adopts a 15 kHz subcarrier spacing and a corresponding normal cyclic prefix (NCP), and the modulation and coding scheme available for the physical sidelink share channel (PSSCH) in the LTE V2X system (modulation and coding)
  • the scheme, MCS) range is related to the speed of the terminal.
  • the Doppler spread and the frequency offset are relatively large, and the ratio of Doppler spread and frequency offset to subcarrier spacing (SCS) is relatively high, and inter-carrier interference (ICI) is inter-carrier interference (ICI). Higher results in lower signal to interference ratio (SIR).
  • the demodulation performance under the MCS will be seriously affected; when the SIR is equal to or lower than the demodulation SNR threshold of the MCS, the demodulation performance will be very high. Poor, causing the MCS to be unavailable. Therefore, if the V2X system supports higher moving speed and higher carrier frequency, it needs to select MCS with smaller order, because the demodulation threshold of the MCS with lower order is lower, and the link performance is less affected by ICI. . However, the MCS with a smaller order has a lower code rate and a smaller spectrum utilization rate, resulting in waste of resources.
  • 5G NR V2X system will support more types of services, such as fleet business, sensor information sharing services, etc., and also have higher requirements for coverage distance and reliability of vehicle network communication, including coverage distance requirements. It reaches 700m or even 1000m.
  • each SCS corresponds to two NCPs, where a longer NCP is used for the CP of the first symbol after each 0.5 ms boundary, for example, 15 SCS for SCS corresponds to two The NCPs are 4.7us and 5.2us, respectively, of which 5.2us is used for the CP of the first symbol after each 0.5ms boundary.
  • Doppler spread and frequency offset should not be too high.
  • the CP length used for terminal communication in V2X systems should not be too short to support greater delay spread and timing offset.
  • NCP try to use NCP to reduce CP overhead. Since the Doppler spread is proportional to the relative speed between the terminals, and the Doppler spread is proportional to the carrier frequency used in the terminal communication, the ICI generated by the terminal in the high-speed scene in the 5G NR V2X system is compared. high.
  • High-speed scenes that is, scenes with high moving speeds, such as on the Infinite Speed Highway in Germany, need to support a relative speed of up to 500km/h when communicating between two terminals moving in opposite directions on the Infinite Speed Highway in Germany.
  • the maximum relative speed that needs to be supported is 280km/h.
  • the ICI generated during communication is high, and only the MCS with a small order can be used.
  • One solution is that the terminal in the high-speed scene in the 5G NR V2X system is communicating. Use a larger resource pool of SCS.
  • the 5G NR V2X system needs to allocate resource pools for the terminals in the high-speed scene and the terminals in the non-high-speed scene. There is a problem that resources are wasted due to an unreasonable proportion of allocated resource pools. Since the terminal uses different SCS mapping data in different scenarios, the receiving side terminal needs to support receiving data using different SCS mappings, which increases the design complexity of the receiving side terminal.
  • the embodiment of the present application provides a data transmission method and device, which are used to solve the problem that the terminal in the high-speed scene and the terminal in the non-high-speed scene in the vehicle networking system use the same SCS mapping data, and the relative speed between the terminals is higher.
  • the MCS with a higher order cannot be used.
  • FIG. 2 is a flowchart of a data transmission method according to an embodiment of the present application. Referring to FIG. 2, a specific process of the method is as follows.
  • S201 The first device maps data by using a first resource mapping manner.
  • the first resource mapping manner is: if the data mapping is on a certain frequency domain resource unit, the data is not mapped on at least one frequency domain resource unit adjacent to the frequency domain resource unit, or the frequency domain resource unit in which the data is mapped Mapping 0 on at least one adjacent frequency domain resource unit.
  • the frequency domain resource unit may be a subcarrier or a resource element (RE) or the like.
  • the first resource mapping manner can be as shown in FIG. 3.
  • the SCS of the frequency domain resource unit involved in the embodiment of the present application may be selected in the SCS supported by the 5G NR according to the relatively low speed requirement in the V2X system, and a relatively small SCS may be selected according to the relatively low speed requirement.
  • the smaller SCS corresponds to a longer symbol length.
  • the terminal transmits at maximum power the energy of each symbol is larger, so the coverage performance is better under the same MCS, and the smaller SCS corresponds to a longer CP length, which can be supported. Timing bias and delay spread are even larger.
  • the V2X system needs to support a relative speed requirement of 280 km/h in other scenarios except the Infinity Expressway in Germany, and the SCS of the V2X system can be selected according to the relative speed requirement of 280 km/h.
  • the SCS of the frequency domain resource unit involved in the embodiment of the present application may also be any one of the SCSs supported by the 5G NR, or may be the SCS supported by the LTE, or other SCS. Make specific limits.
  • the first device sends the mapped data to the second device.
  • the first device may send the mapped data to the second device by means of a broadcast.
  • the second device determines the frequency domain resource of the first device mapping data according to the first resource mapping manner.
  • the second device receives the data sent by the first device on the determined frequency domain resource.
  • the terminal in the high-speed scenario in the embodiment of the present application may allocate at least one frequency domain resource unit between any two adjacent frequency domain resource units mapped with data, and the unmapped data is not mapped on at least one frequency domain resource unit in the interval.
  • the frequency domain resource unit of the data does not interfere with the frequency domain resource unit to which the data is mapped, thereby reducing the ICI generated by the first device during communication.
  • the ISI in the high-speed scene is reduced by not mapping data on at least one frequency domain resource unit adjacent to the frequency domain resource unit to which the data is mapped, so that the first device can be not only in a high-speed scene but also in a non-high-speed scene.
  • a resource pool of the same SCS is used, and the first device can also use a higher order MCS in a high speed scenario. Since the terminal in the high-speed scene and the terminal in the non-high-speed scene can use the resource pool of the same SCS, the vehicle networking system does not need to reallocate the resource pool for the first device in the high-speed scene, thereby avoiding that the vehicle networking system is respectively in the high-speed scene.
  • the vehicle networking system does not need to reallocate the resource pool for the first device in the high-speed scene, thereby avoiding that the vehicle networking system is respectively in the high-speed scene.
  • resources are wasted due to an unreasonable proportion of allocated resources.
  • the receiving side device can receive the data using one SCS mapping, thereby simplifying the design of the receiving side device.
  • the terminal in the high-speed scene and the terminal in the non-high-speed scene can use the same resource pool, that is, the terminal in the high-speed scene and the terminal in the non-high-speed scene can use the same SCS, and the smaller the SCS, the longer the symbol.
  • the terminal transmits at maximum power the energy of each symbol is larger, so the coverage performance is better.
  • the smaller the SCS, the longer the symbol, and the longer the CP under the same CP overhead the larger the timing offset and delay spread that can be supported. Therefore, a terminal in a high speed scene can use a larger MCS without increasing the SCS.
  • the first device when the first device maps data by using the first resource mapping manner, the first device may map data on the 2ith frequency domain resource unit of the consecutive m frequency domain resource units. Mapping 0, i is a positive integer on the 2i-1th frequency domain resource unit in consecutive m frequency domain resource units. Therefore, the second device receives the data sent by the first device on the 2ith frequency domain resource unit of the consecutive m frequency domain resource units, as shown in FIG. 4 .
  • mapping data on the 2ith frequency domain resource unit, mapping 0 on the 2i-1 frequency domain resource unit, and mapping 0 on the 2i-1 frequency domain resource unit the second device After receiving the data sent by the first device, there is no interference of the 2i-1th frequency domain resource unit to other frequency domain resource units, thereby reducing the ICI.
  • the first device when the first device maps data by using the first resource mapping manner, the first device may also map data on the 2i-1th frequency domain resource unit of the consecutive m frequency domain resource units. Mapping 0 on the 2ith frequency domain resource unit of the consecutive m frequency domain resource units. Therefore, the second device receives the data sent by the first device on the 2i-1th frequency domain resource unit of the consecutive m frequency domain resource units, as shown in FIG. 5 .
  • mapping data on the 2i-1th frequency domain resource unit mapping 0 on the 2i frequency domain resource unit, since the 2i frequency domain resource unit maps 0, the second device is receiving. After the data sent by the first device, there is no interference of the 2i frequency domain resource unit to other frequency domain resource units, thereby reducing the ICI.
  • the data is mapped on the 2ith frequency domain resource unit in the consecutive m frequency domain resource units, or the 2i-1th in the consecutive m frequency domain resource units.
  • the data is mapped on the frequency domain resource unit, and the frequency domain equally spaced mapping data can be realized, and the data in the frequency domain equal interval mapping appears as a regular sequence in the time domain.
  • the data mapped by the first device in the manner of mapping data on the 2ith frequency domain resource unit is represented as two repeated sequences in the time domain, and is mapped by mapping data on the 2i-1 frequency domain resource unit.
  • the data in the time domain appears as a sequence of two negative signs.
  • the sequence received by the second device is a sequence of phase-specific phases, which phase can be determined by the frequency offset and the sequence length, and the second device can use the phase to achieve frequency synchronization.
  • the frequency domain resource unit may be The data of the adjacent j frequency-domain resource units is not mapped, and j is a positive integer.
  • the value of j in the embodiment of the present application is not specifically limited herein.
  • the first device may be mapped by the first resource mapping manner under the instruction of the network device.
  • the network device may send the first indication information to the first device, where the first indication information is used to indicate that the first device uses the first resource mapping manner to map data, so that the first device receives the first indication.
  • the data is mapped by the first resource mapping method.
  • the network device may also send the second indication information to the first device, where the second indication information is used to indicate that the first device uses the first resource mapping manner to map data when the preset condition is met, so that the first device After the second indication information is received, the data is mapped by using the first resource mapping manner, and the preset condition includes at least one of the following: the preset geographical area, the communication with the fourth device, and the speed The second device is opposite to the second device, and the fourth device is in opposite direction to the first device. If the second device is a network device, the first indication information and the second indication information may be sent by the second device.
  • the first device may also not need the indication of the network device, but map the data according to the pre-configured parameters or according to the predefined first mapping manner.
  • the first device may be pre-configured or predefined as: mapping data by using a first resource mapping manner.
  • the data may be pre-configured or pre-defined to: use the first resource mapping manner to map data when the first device meets the preset condition, where the preset condition includes at least one of the following: a preset geographic area, a required third, and a third
  • the device communicates, the speed is greater than a first threshold, and the third device and the first device are in opposite directions.
  • the preset geographic location may be a German infinite speed highway, or a status area where the speed of the terminal may be relatively high, and the like, and the preset geographic location is not specifically limited herein.
  • the first device may use the second resource mapping manner to map data when determining that the device does not meet the preset condition.
  • the second resource mapping manner is: sequentially mapping data on consecutive frequency domain resource units.
  • the receiving side device can receive the data using one SCS mapping, thereby simplifying the design of the receiving side device.
  • the terminal in the high-speed scene uses the first resource mapping manner to reduce the ICI, and the generated ICI is similar to the ICI generated by the terminal in the non-high-speed scene using the second resource mapping manner, and thus can be the terminal in the high-speed scene and Terminals in non-high speed scenarios are assigned MCS ranges of the same order range, which simplifies configuration and/or provisioning.
  • the first device may further send third indication information indicating a resource mapping manner to the second device, so that the second device may determine a resource mapping manner of the first device mapping data.
  • the third indication information may occupy one or more bit information in a physical sidelink control channel (PSCCH).
  • PSCCH physical sidelink control channel
  • the third indication information may occupy one bit of the PSCCH, the value of the bit is 1, the third indication information indicates a first resource mapping manner, the value of the bit is 0, and the third indication information indicates a second resource mapping manner.
  • the value of the bit is 1, the third indication information indicates a second resource mapping manner, the value of the bit is 0, and the third indication information indicates a first resource mapping manner.
  • the second device determines the resource mapping manner of the first device mapping data according to the received PSCCH, and receives the data according to the resource mapping manner of the first device mapping data.
  • the second device may obtain the resource mapping manner corresponding to the PSSCH according to the indication information in the received PSCCH, so that the PSSCH sent by the first device can be correctly received, instead of using the resource mapping manner in the PSCCH. Additional blind detection is required.
  • the first device may send the third indication information and the mapped data at the same time, or the first device may also send the third indication information and then send the mapped data.
  • the embodiment of the present application sends the third indication information and sends the mapped data. The order between the two is not specifically limited here.
  • the first device may use the first resource mapping manner to map the reference signal, or the second resource mapping manner may be used to map the reference signal, or the reference signal may be mapped in other manners.
  • the mapping manner of the reference signal in the embodiment of the present application is not specifically limited herein.
  • the first device may not map the reference signal on the at least one frequency domain resource unit adjacent to the frequency domain resource unit mapped with the data, or may be at least one frequency adjacent to the frequency domain resource unit mapped with the reference signal. Data is not mapped on the domain resource unit.
  • the present application further provides a first device.
  • the first device includes a mapping module 601 and a sending module 602.
  • the mapping module 601 is configured to map data by using a first resource mapping manner, where the first resource mapping manner is: mapping, on the n frequency domain resource units in consecutive m frequency domain resource units, the n Any two adjacent frequency domain resource units in the frequency domain resource unit are separated by at least one frequency domain resource unit, where m and n are positive integers, and m is greater than n.
  • the sending module 602 is configured to send the processor-mapped data to the second device.
  • the mapping module 601 may be specifically configured to: map data on the 2ith frequency domain resource unit of the consecutive m frequency domain resource units. Alternatively, the mapping module 601 may be specifically configured to: map data on the 2i-1th frequency domain resource unit of the consecutive m frequency domain resource units, where the i is a positive integer.
  • the first device may further include a determining module 603.
  • the determining module 603 is configured to determine that the first device meets a preset condition, where the preset condition includes at least one of: being located in a preset geographic area, requiring communication with a third device, and the speed is greater than a first threshold, The third device and the first device are in opposite directions.
  • the first device may further include a receiving module 604.
  • the receiving module 604 is configured to receive first indication information that is sent by the network device, where the first indication information is used to indicate that the first device uses the first resource mapping manner to map data.
  • the receiving module 604 is configured to receive the second indication information that is sent by the network device, where the second indication information is used to indicate that the first device uses the first resource mapping manner to map data when the preset condition is met.
  • the preset condition includes at least one of: located in a preset geographical area, needs to communicate with the fourth device, the speed is greater than a second threshold, and the fourth device and the first device are in opposite motions.
  • the sending module 602 is further configured to: send the third indication information to the second device, where the third indication information is used to indicate the first resource mapping manner.
  • mapping module 601 is further configured to: use the first resource mapping manner to map the reference signal.
  • the mapping module 601 is further configured to: map, by using a second resource mapping manner, the reference signal, where the second resource mapping manner is: in the consecutive m frequency domains Map on resource units.
  • mapping module 601 is further configured to: when the first device does not meet the preset condition, use the second resource mapping manner to map data, where the second resource mapping manner is: Mapping on consecutive m frequency domain resource units.
  • the sending module 602 is further configured to: send fourth indication information to the second device, where the fourth indication information is used to indicate the second resource mapping manner.
  • each functional module in each embodiment of the present application may be integrated into one processing. In the device, it can also be physically existed alone, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the first device may include the processor 702.
  • the hardware of the entity corresponding to the above module may be the processor 702.
  • the processor 702 can be a central processing unit (English: central processing unit, CPU for short), or a digital processing module or the like.
  • the first device may further include a transceiver 701, and the processor 702 transmits and receives data through the transceiver 701.
  • the apparatus also includes a memory 703 for storing programs executed by the processor 702.
  • the memory 703 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid state drive (SSD), or a volatile memory (English: volatile) Memory), such as random access memory (English: random-access memory, abbreviation: RAM).
  • Memory 703 is any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the processor 702 is configured to execute the program code stored in the memory 703, specifically for performing the method described in the embodiments shown in FIG. 1 to FIG. For the method described in the embodiment shown in FIG. 1 to FIG. 5, the application is not described herein again.
  • the specific connection medium between the above transceiver 701, the processor 702, and the memory 703 is not limited in the embodiment of the present application.
  • the memory 703, the processor 702, and the transceiver 701 are connected by a bus 704 in FIG. 7.
  • the bus is indicated by a thick line in FIG. 7, and the connection manner between other components is only schematically illustrated. , not limited to.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 7, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the invention further provides a computer readable storage medium for storing computer software instructions required to execute the above-mentioned processor, which comprises a program for executing the above-mentioned processor.
  • the embodiment of the present application provides a computer program product comprising instructions that, when run on a computer, cause the computer to perform the data transmission method described in FIGS. 2 to 5.
  • the embodiment of the present application provides a chip system, including a processor, for supporting a first device to implement the functions involved in the data transmission method described in FIG. 2 to FIG.
  • the chip system also includes a memory for storing the necessary program instructions and data for the first device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application further provides a second device.
  • the second device includes a determining module 801 and a receiving module 802.
  • the determining module 801 is configured to determine a frequency domain resource of the first device mapping data according to the first resource mapping manner, where the first resource mapping manner is: n frequency in consecutive m frequency domain resource units. Mapping on the domain resource unit, at least one frequency domain resource unit between any two adjacent frequency domain resource units in the n frequency domain resource units, where m and n are positive integers, and m is greater than n.
  • the receiving module 802 is configured to receive data sent by the first device on the n frequency domain resource units.
  • the receiving module 802 may be specifically configured to: receive data sent by the first device on a second i-th frequency-domain resource unit of the consecutive m frequency-domain resource units. Alternatively, the receiving module 802 may be specifically configured to: receive, according to the 2i-1th frequency domain resource unit of the consecutive m frequency domain resource units, data sent by the first device, where the i Is a positive integer.
  • the receiving module 802 is further configured to: receive a first indication message sent by the first device, where the first indication message is used to indicate the first resource mapping manner.
  • the receiving module 802 is further configured to: receive, by using the n frequency domain resource units, a reference signal sent by the first device.
  • the determining module 801 is further configured to: determine, according to the second resource mapping manner, a frequency domain resource of the first device mapping reference signal.
  • the second resource mapping manner is: mapping on the consecutive m frequency domain resource units.
  • the receiving module 802 is further configured to: receive the reference signal sent by the first device on the consecutive m frequency domain resource units.
  • the receiving module 802 is further configured to: receive a second indication message that is sent by the first device, where the second indication message is used to indicate a second resource mapping manner, where the second resource mapping manner is: Mapping on consecutive m frequency domain resource units.
  • the determining module 801 is further configured to: determine a frequency domain resource of the first device mapping data according to the second resource mapping manner.
  • the receiving module 802 is further configured to: receive data sent by the first device on the consecutive m frequency domain resource units.
  • the second device may further include a sending module 803.
  • the sending module 803 is configured to send third indication information to the first device, where the determining module 801 determines the frequency domain resource of the first device mapping data according to the first resource mapping manner, the third indication The information is used to indicate that the first device uses the first resource mapping manner to map data.
  • the sending module 803, configured to send fourth indication information to the first device, where the determining module 801 determines the frequency domain resource of the first device mapping data according to the first resource mapping manner, the fourth The indication information is used to indicate that the first device uses the first resource mapping manner to map data when the preset condition is met, and the preset condition includes at least one of: located in a preset geographic area, and needs to communicate with the third device.
  • the speed is greater than a preset threshold, and the third device and the first device are in opposite directions.
  • each functional module in each embodiment of the present application may be integrated into one processing. In the device, it can also be physically existed alone, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the second device may include the processor 902.
  • the hardware of the entity corresponding to the above module may be the processor 902.
  • the processor 902 can be a CPU, or a digital processing module or the like.
  • the second device may further include a transceiver 901, and the processor 902 sends and receives messages through the transceiver 901.
  • the apparatus also includes a memory 903 for storing programs executed by the processor 902.
  • the memory 903 may be a nonvolatile memory such as an HDD or an SSD or the like, or may be a volatile memory such as a RAM.
  • Memory 903 is any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the processor 902 is configured to execute the program code stored in the memory 903, specifically for performing the method described in the embodiments shown in FIG. 2 to FIG. For the method described in the embodiment shown in FIG. 2 to FIG. 5, the application is not described herein again.
  • the specific connection medium between the above transceiver 901, the processor 902, and the memory 903 is not limited in the embodiment of the present application.
  • the memory 903, the processor 902, and the transceiver 901 are connected by a bus 904 in FIG. 9.
  • the bus is indicated by a thick line in FIG. 9, and the connection manner between other components is only schematically illustrated. , not limited to.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 9, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the invention further provides a computer readable storage medium for storing computer software instructions required to execute the above-mentioned processor, which comprises a program for executing the above-mentioned processor.
  • the embodiment of the present application provides a computer program product comprising instructions that, when run on a computer, cause the computer to perform the data transmission method described in FIGS. 2 to 5.
  • the embodiment of the present application provides a chip system, where the chip system includes a processor for supporting a second device to implement the functions involved in the data transmission method described in FIG. 2 to FIG.
  • the chip system also includes a memory for storing the necessary program instructions and data for the second device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法和装置,用于解决车联网系统中处于高速场景的终端以及处于非高速场景的终端采用相同的SCS映射数据,当终端间的相对速度较高时,无法使用阶数较高的MCS的问题。方法具体包括:第一设备采用第一资源映射方式映射数据,第一资源映射方式为:在连续的m个频域资源单位中的n个频域资源单位上映射,n个频域资源单位中任意两个相邻频域资源单位之间间隔至少一个频域资源单位,m、n为正整数,且m大于n。第一设备向第二设备发送映射的数据。

Description

一种数据传输方法和装置
本申请要求在2018年03月30日提交中国专利局、申请号201810297918.5、发明名称为“一种数据传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法和装置。
背景技术
近年来车联网(vehicle to X,V2X)技术越来越受到人们的关注,车联网系统通过车与车、交通设施、行人之间进行通信以提高道路交通的安全性、可靠性,提升交通通行效率。车联网系统包括车与车(vehicle to vehicle,V2V)之间的通信,车与基础设施(vehicle to infrastructure,V2I)之间的通信、车与人(vehicle to pedestrian,V2P)之间的通信,车与网络(vehicle to network,V2N)之间的通信等等。
为保证车辆安全行驶,V2X系统中的终端之间需要周期性的交互一些数据,如周期性状态信息(periodic status message,PSM)等,PSM携带车的位置、速度、状态等信息。V2X中终端基于设备到设备(Device-to-Device,D2D)技术在侧行链路上向其它终端广播自身的PSM。其它终端通过分析接收到的PSM,可判断并预警即将发生的危险,减少灾害的发生。
目前,长期演进(long term evolution,LTE)V2X系统中采用子载波间隔(subcarrier spacing,SCS)为15kHz,在载波频率不变时,终端间的相对速度越大,终端在发送数据时产生的多普勒扩展和频偏现象越严重,若SCS不变,多普勒扩展和频偏导致载波间干扰(inter carrier interference,ICI)也越高,信干比(signal to interference ratio,SIR)也就越低,因此V2X系统中处于高速场景的终端在通信时产生的ICI较高,若采用的SCS不变,则处于高速场景的终端只能采用阶数较小的MCS,而阶数较小的MCS的码率较低,频谱利用率也比较小,造成资源浪费,高速场景即移动速度较高的场景,如在德国无限速高速公路上。针对V2X系统中处于高速场景的终端在通信时产生的ICI较高的问题,一种解决方法为V2X系统中处于高速场景的终端在通信时采用SCS较大的资源池。若V2X系统中处于高速场景的终端与处于非高速场景的终端采用不同的资源池,则V2X系统需要为处于高速场景的终端以及处于非高速场景的终端分别分配资源池,从而可能存在由于分配的资源池比例不合理导致资源浪费的问题。
发明内容
本申请实施例提供一种数据传输方法和装置,用于解决车联网系统中处于高速场景的终端以及处于非高速场景的终端采用相同的SCS映射数据,当终端间的相对速度较高时,无法使用阶数较高的MCS的问题。
第一方面,本申请提供了一种数据传输方法,包括:第一设备采用第一资源映射方式映射数据,并向第二设备发送映射的数据。所述第一资源映射方式为:在连续的m个频域 资源单位中的n个频域资源单位上映射,所述n个频域资源单位中任意两个相邻频域资源单位之间间隔至少一个频域资源单位,m、n为正整数,且m大于n。第二设备根据第一资源映射方式确定第一设备映射数据的频域资源,并在所述n个频域资源单位上接收所述第一设备发送的数据。
本申请实施例中第一设备在处于高速场景时可以在映射了数据的任意两个相邻频域资源单位之间间隔至少一个频域资源单位,间隔的至少一个频域资源单位上未映射数据,未映射数据的频域资源单位不会对映射了数据的频域资源单位产生干扰,从而可以降低第一设备在在高速场景下进行通信时产生的ICI,而通过在映射了数据的频域资源单位相邻的至少一个频域资源单位上不映射数据的方式来降低高速场景下的ICI,使得第一设备不仅可以在处于高速场景下以及处于非高速场景下使用相同SCS的资源池,还可以在处于高速场景下使用较高阶数的MCS。由于处于高速场景的终端以及处于非高速场景的终端可以使用相同SCS的资源池,因此车联网系统无需为处于高速场景的终端重新分配资源池,从而可以避免车联网系统分别为处于高速场景的终端以及非高速场景的终端配置资源池时由于分配的资源比例不合理导致的资源浪费。并且,由于车联网中的终端可以使用相同的SCS映射数据,因此接收侧终端只要能接收使用一种SCS映射的数据即可,从而可以简化接收侧终端的设计。此外,通过本申请实施例提供的数据传输方法,处于非高速场景的终端以及处于高速场景的终端均可以采用阶数较高的MCS,因此,针对处于非高速场景的终端以及处于高速场景的终端,可以配置相同阶数范围的MCS,这样可以简化配置和/或预配置。
在一种可能的设计中,第一设备采用第一资源映射方式映射数据,包括:所述第一设备在所述连续的m个频域资源单位中的第2i个频域资源单位上映射数据,第二设备在所述连续的m个频域资源单位中的第2i个频域资源单位上接收所述第一设备发送的数据。上述设计中,通过在第2i-1个频域资源单位上映射0,因此第2i-1个频域资源单位不会对第2i个频域资源单位产生干扰,从而可以降低了第一设备以及第二设备在通信时产生的ICI。
在一种可能的设计中,第一设备采用第一资源映射方式映射数据,包括:第一设备在所述连续的m个频域资源单位中的第2i-1个频域资源单位上映射数据,所述i为正整数,第二设备在所述连续的m个频域资源单位中的第2i-1数个频域资源单位上接收所述第一设备发送的数据。上述设计中,通过在第2i个频域资源单位上映射0,因此第2i个频域资源单位不会对第2i-1个频域资源单位的干扰,从而可以降低了第一设备以及第二设备在通信时产生的ICI。
在一种可能的设计中,第一设备采用第一资源映射方式映射数据时,若在某个频域资源单位映射数据,则可以在该频域资源单位相邻的j个频域资源单位上不映射数据。第二设备在所述某个频域资源单位上接收数据,不在所述某个频域资源单位相邻的j个频域资源单位上接收数据。其中,j为正整数,本申请实施例对j的数值在这里不做具体限定。
在一种可能的设计中,所述第一设备确定所述第一设备符合预设条件,所述预设条件包括如下至少一个:位于预设地理区域、需要与第三设备进行通信、速度大于第一阈值,所述第三设备与所述第一设备为相向运动。上述设计中,第一设备可以根据自身预配置的参数或根据预定义,在处于高速场景时采用第一资源映射方式映射数据,从而车联网系统无需为处于高速场景下的终端单独分配资源,进而可以避免车联网系统分别为处于高速场 景的终端以及非高速场景的终端配置资源池时由于分配的资源比例不合理导致的资源浪费。
在一种可能的设计中,所述第一设备接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一设备采用所述第一资源映射方式映射数据。或者,所述第一设备接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一设备在符合预设条件时采用所述第一资源映射方式映射数据,所述预设条件包括如下至少一个:位于预设地理区域、需要与第四设备进行通信、速度大于第二阈值,所述第四设备与所述第一设备为相向运动。当第二设备为网络设备时,第一指示信息以及第二指示信息可以由第二设备发送。上述设计中,第一设备可以是网络设备的指示下采用第一资源映射方式映射数据,从而车联网系统无需为处于高速场景下的终端单独分配资源,进而可以避免车联网系统分别为处于高速场景的终端以及非高速场景的终端配置资源池时由于分配的资源比例不合理导致的资源浪费。
在一种可能的设计中,所述第一设备向所述第二设备发送第三指示信息,所述第三指示信息用于指示所述第一资源映射方式,第二设备根据第三指示信息确定第一设备采用第一资源映射方式映射数据,并根据第一资源映射方式接收数据。上述设计中,第一设备通过发送指示消息向第二设备指示对应的资源映射方式,第二设备可以根据接收的第三指示信息,确定第一设备的资源映射方式,从而可以正确接收第一设备发送的数据,而不需要额外的盲检测。
在一种可能的设计中,第一设备可以同时发送第三指示信息以及映射的数据,或者,第一设备也可以先发送第三指示信息,再发送映射的数据。
在一种可能的设计中,当第一设备采用第一资源映射方式映射数据时,所述第一设备可以采用所述第一资源映射方式映射参考信号,第二设备根据第一资源映射方式接收所述第一设备发送的参考信号。或者,当第一设备采用第一资源映射方式映射数据时,所述第一设备也可以采用第二资源映射方式映射所述参考信号,所述第二资源映射方式为:在所述连续的m个频域资源单位上映射,第二设备根据第二资源映射方式接收所述第一设备发送的参考信号。上述设计中,当第一设备采用第一资源映射方式映射数据时,第一设备可以采用第一资源映射方式映射参考信号,也可以采用第二资源映射参考信号,或者,也可以采用其他方式映射参考信号,这里对参考信号的映射方式不做具体限定。
在一种可能的设计中,在所述第一设备不符合所述预设条件时,所述第一设备采用第二资源映射方式映射数据,所述第二资源映射方式为:在所述连续的m个频域资源单位上映射。上述设计中,第一设备在处于非高速情况下可以采用依次在连续的频域资源单位上映射数据,从而可以提高频域资源的利用率。
在一种可能的设计中,所述第一设备向所述第二设备发送第四指示信息,所述第四指示信息用于指示所述第二资源映射方式,第二设备根据第四指示信息确定第一设备采用第二资源映射方式映射数据,并根据第二资源映射方式接收数据。上述设计中,第一设备通过向第二设备发送第四指示信息以指示第二资源映射方式,从而第二设备可以正确接收第一数据发送的数据,而不需要进行盲检侧。
第二方面,本申请提供了一种第一设备,包括:映射模块,用于采用第一资源映射方式映射数据,所述第一资源映射方式为:在连续的m个频域资源单位中的n个频域资源单位上映射,所述n个频域资源单位中任意两个相邻频域资源单位之间间隔至少一个频域资 源单位,m、n为正整数,且m大于n。发送模块,用于向第二设备发送所述处理器映射的数据。
在一种可能的设计中,所述映射模块,具体用于:在所述连续的m个频域资源单位中的第2i个频域资源单位上映射数据。或者,所述映射模块,具体用于:在所述连续的m个频域资源单位中的第2i-1个频域资源单位上映射数据,所述i为正整数。
在一种可能的设计中,所述第一设备,还包括确定模块。所述确定模块,用于确定所述第一设备符合预设条件,所述预设条件包括如下至少一个:位于预设地理区域、需要与第三设备进行通信、速度大于第一阈值,所述第三设备与所述第一设备为相向运动。
在一种可能的设计中,所述第一设备还包括接收模块。所述接收模块,用于接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一设备采用所述第一资源映射方式映射数据。或者,所述接收模块,用于接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一设备在符合预设条件时采用所述第一资源映射方式映射数据,所述预设条件包括如下至少一个:位于预设地理区域、需要与第四设备进行通信、速度大于第二阈值,所述第四设备与所述第一设备为相向运动。
在一种可能的设计中,所述发送模块,还用于:向所述第二设备发送第三指示信息,所述第三指示信息用于指示所述第一资源映射方式。
在一种可能的设计中,所述映射模块,还用于:采用所述第一资源映射方式映射参考信号。或者,所述映射模块,还用于:采用第二资源映射方式映射所述参考信号,所述第二资源映射方式为:在所述连续的m个频域资源单位上映射。
在一种可能的设计中,所述映射模块,还用于:在所述第一设备不符合所述预设条件时,采用第二资源映射方式映射数据,所述第二资源映射方式为:在所述连续的m个频域资源单位上映射。
在一种可能的设计中,所述发送模块,还用于:向所述第二设备发送第四指示信息,所述第四指示信息用于指示所述第二资源映射方式。
第三方面,本申请提供了一种第二设备,包括:确定模块,用于根据第一资源映射方式确定第一设备映射数据的频域资源,所述第一资源映射方式为:在连续的m个频域资源单位中的n个频域资源单位上映射,所述n个频域资源单位中任意两个相邻频域资源单位之间间隔至少一个频域资源单位,m、n为正整数,且m大于n。接收模块,用于在所述n个频域资源单位上接收所述第一设备发送的数据。
在一种可能的设计中,所述接收模块,具体用于:在所述连续的m个频域资源单位中的第2i个频域资源单位上接收所述第一设备发送的数据。或者,所述接收模块,具体用于:在所述连续的m个频域资源单位中的第2i-1数个频域资源单位上接收所述第一设备发送的数据,所述i为正整数。
在一种可能的设计中,所述接收模块,还用于:接收所述第一设备发送的第一指示消息,所述第一指示消息用于指示所述第一资源映射方式。
在一种可能的设计中,所述接收模块,还用于:在所述n个频域资源单位上接收所述第一设备发送的参考信号。
在一种可能的设计中,所述确定模块,还用于:根据第二资源映射方式确定所述第一设备映射参考信号的频域资源,所述第二资源映射方式为:在所述连续的m个频域资源单位上映射。所述接收模块,还用于:在所述连续的m个频域资源单位上接收所述第一设备 发送的参考信号。
在一种可能的设计中,所述接收模块,还用于:接收所述第一设备发送的第二指示消息,所述第二指示消息用于指示第二资源映射方式,所述第二资源映射方式为:在所述连续的m个频域资源单位上映射。所述确定模块,还用于:根据所述第二资源映射方式确定所述第一设备映射数据的频域资源。所述接收模块,还用于:在所述连续的m个频域资源单位上接收所述第一设备发送的数据。
在一种可能的设计中,所述第二设备为网络设备,所述第二设备还包括发送模块。所述发送模块,用于:在所述确定模块根据第一资源映射方式确定第一设备映射数据的频域资源之前,向所述第一设备发送第三指示信息,所述第三指示信息用于指示所述第一设备采用所述第一资源映射方式映射数据。或者,所述发送模块,用于在所述确定模块根据第一资源映射方式确定第一设备映射数据的频域资源之前,向所述第一设备发送第四指示信息,所述第四指示信息用于指示所述第一设备在符合预设条件时采用所述第一资源映射方式映射数据,所述预设条件包括如下至少一个:位于预设地理区域、需要与第三设备进行通信、速度大于预设阈值,所述第三设备与所述第一设备为相向运动。
第四方面,本申请提供了一种第一设备,该设备包括收发器、存储器以及处理器,存储器用于存储处理器所需执行的程序代码。收发器用于接收或发送数据。处理器用于执行存储器所存储的程序代码,具体用于执行第一方面或第一方面的任一种设计所述的方法。
第五方面,本申请提供了一种第二设备,该设备包括收发器、存储器以及处理器,存储器用于存储处理器所需执行的程序代码。收发器用于接收或发送数据。处理器用于执行存储器所存储的程序代码,具体用于执行第一方面或第一方面的任一种设计所述的方法。
第六方面,本申请还提供了一种计算机可读存储介质,用于存储为执行上述第一方面、第一方面的任意一种设计的功能所用的计算机软件指令,其包含用于执行上述第一方面、第一方面的任意一种设计的方法所设计的程序。
第七方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意可能的设计方式中的方法。
第八方面,本申请实施例提供一种芯片系统,该芯片系统包括处理器,用于支持第一设备实现上述第一方面或第一方面的任意可能的设计方式中所涉及的功能。在一种可能的设计中,芯片系统还包括存储器,用于保存第一设备必要的程序指令和数据。芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
第九方面,本申请实施例提供一种芯片系统,该芯片系统包括处理器,用于支持第二设备实现上述第一方面或第一方面的任意可能的设计方式中所涉及的功能。在一种可能的设计中,芯片系统还包括存储器,用于保存第二设备必要的程序指令和数据。芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
图1为本申请提供的一种支持D2D技术的通信系统的架构示意图;
图2为本申请提供的一种数据传输方法的流程示意图;
图3为本申请提供的一种第一资源映射方式的示意图;
图4为本申请提供的一种第一资源映射方式的示意图;
图5为本申请提供的一种第一资源映射方式的示意图;
图6为本申请提供的一种第一设备的结构示意图;
图7为本申请提供的一种第一设备的结构示意图;
图8为本申请提供的一种第二设备的结构示意图;
图9为本申请提供的一种第二设备的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施例作进一步地详细描述。
本申请实施例提供的数据传输方法可以应用于支持设备到设备(device-to-device,D2D)技术的通信系统,支持D2D技术的通信系统包括至少两个终端设备。支持D2D技术的通信系统还可以包括网络设备。例如,如图1所示,支持D2D技术的通信系统可以包括网络设备101以及终端102和终端103。
其中,终端,是指向用户提供语音和/或数据连通性的设备,例如包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端可以包括车辆、用户设备(user equipment,UE)、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,窄带物联网(narrow band internet of things,NB-IoT)中的专用终端设备,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。例如,个人通信业务(personal communicationservice,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。在本发明实施例中,终端还可以包括车联网(vehicle to X,V2X)设备,例如为车联网中的车载单元(on broad unit,OBU),且下文中主要以终端是V2X设备为例。其中,终端之间可以基于D2D技术进行直接通信,也可以与网络设备进行通信,并且,终端可以根据预配置的参数自主选择发送进行通信的资源,也可以由网络设备调度分配进行通信的资源。
网络设备,例如包括接入网设备和核心网设备。接入网设备例如包括基站(例如,接入点),可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与网际协议(internet protocol,IP)分组进行相互转换,作为终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。例如,基站可以包括LTE系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(eNB或e-NodeB,evolutional Node B),或LTE系统或LTE-A系统中的小基站(micro/pico eNB),或者也可以包括NR系统中的下一代节点B(next generation node B,gNB),或者是传输点(transmission point,TP),也可以是收发节点(transmission and receiver point,TRP),等等,本发明实施例并不限定。核心网设备例如包括移动管理实体(mobility management entity,MME),或者也可以包括新空口(new radio,NR)系统中的相应功能实体。网络设备具有无线资源的管理功能,与终端进行通信,或者 作为中央控制器协助终端间进行直接通信。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
以下,对本发明实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)V2X:目前,车辆可以通过车辆与车辆之间通信(vehicle to vehicle,V2V)或者车辆与路边基础设施通信(vehicle to infrastructure,V2I),或者车辆与行人之间的通信(vehicle to pedestrian,V2P),或者车辆与网络通信(vehicle to network,V2N)等方式来及时获取路况信息或接收信息,这些通信方式可以统称为V2X通信。以最常见的V2V和V2I为例:车辆通过V2V通信,可以将自身的车速、行驶方向、具体位置、是否踩了紧急刹车等信息广播给周围车辆,周围车辆通过获取该类信息,使得驾驶员可以更好地感知视距外的交通状况,从而对危险状况作出提前预判,进而作出及时避让。而对于V2I通信,除了上述安全信息的交互外,路边基础设施还可以为车辆提供各类服务信息和数据网络的接入等,不停车收费、车内娱乐等功能都极大地提高了交通智能化。一般将V2X通信所使用的网络称为车联网。
2)D2D技术:可以支持终端和终端之间使用专用的空中接口技术进行直接数据通信,是一种端到端的直接通信的技术。与传统的蜂窝通信技术最大的不同在于,在D2D技术支持下,终端与终端之间不需要基站的中转就可以直接进行通信,基站可以进行资源的配置、调度、及协调等,辅助终端之间进行直接通信。D2D技术可以应用于车联网业务。
3)“系统”和“网络”可被互换使用。“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
V2X系统为保证车辆安全行驶,车辆之间需要周期性的交互状态信息,美国将车辆之间的周期性的状态信息称为基本安全消息(basic safety message,BSM),欧洲将终端之间的周期性的状态信息称为合作意识信息(cooperative-awareness message,CAM),本申请实施例中统称为周期性的状态信息(periodic status message,PSM)。PSM可以理解为车辆的“心跳包”,包含车的位置、速度、运动状态等信息。车辆网中的车辆将PSM广播给周围车辆,从而车辆网中的车辆可以在接收到周围车辆广播的PSM后,通过分析接收到的周围车辆的PSM,可判断并预警即将发生的危险,减少灾害的发生。PSM的业务周期可根据车辆的运动状态发生变化,不同运动状态的车辆的业务周期可以在[100ms,1000ms]之间取值。
LTE V2X系统采用15kHz子载波间隔和对应的常规循环前缀(normal cyclic prefix,NCP),而LTE V2X系统中物理侧行共享信道(pysical sidelink share channel,PSSCH)可用的调制和编码方案(modulation and coding scheme,MCS)范围和终端的移动速度有关。当终端的移动速度比较大时,多普勒扩展和频偏比较大,多普勒扩展和频偏占子载波间隔(subcarrier spacing,SCS)的比例比较高,载波间干扰(inter carrier interference,ICI)较高导致信干比(signal to interference ratio,SIR)较低。当SIR与采用的MCS的解调门限信噪比接近时,会严重影响该MCS下的解调性能;当此SIR等于甚至低于该MCS的解调信 噪比门限时,解调性能会非常差,导致该MCS不可用。因此V2X系统若支持更高的移动速度和更高的载波频率,则需要选择阶数较小的MCS,因为阶数较小的MCS的解调门限信噪比低,链路性能受ICI影响小。然而阶数较小的MCS的码率较低,频谱利用率也比较小,造成资源浪费。
随着互联网技术的发展,5G NR V2X系统将支持更多类型的业务,如车队业务、传感器信息共享业务等,对车联网通信的覆盖距离和可靠性等指标也有更高要求,其中覆盖距离要求达到700m甚至1000m。
由于5G NR技术比LTE技术支持更高频段和更大的带宽,因此5G NR技术设计了多种可选的SCS和循环前缀(cyclic prefix,CP)长度组合,如表1所示,为当前标准讨论中支持的部分SCS和CP长度组合,每个SCS对应两个NCP,其中,较长的NCP用于在每个0.5ms边界之后的第一个符号的CP使用,例如,15kHz的SCS对应两个NCP,分别为4.7us和5.2us,其中,5.2us用于在每个0.5ms边界之后的第一个符号的CP使用。
表1
SCS以及对应的不含CP的符号长度 NCP长度 ECP长度
15kHz(67us) 4.7us(5.2us) -
30kHz(33us) 2.3us(2.9us) -
60kHz(17us) 1.2us(1.7us) 4.2us
120kHz(8.3us) 0.59us(1.1us) -
240kHz(4.2us) 0.29us(0.81us) -
480kHz(2.1us) 0.15us(0.67us) -
SCS增大则对应NCP长度减小,以使NCP产生的额外开销不随SCS变化。
5G NR V2X技术选择终端间通信时采用的SCS和CP长度组合时,需要考虑如下因素:多普勒扩展和频偏占SCS的比例不能太高。此外,V2X系统中终端通信时采用的CP长度不能太短,以支持更大的时延扩展和定时偏差。并且,尽量使用NCP,以降低CP开销。由于多普勒扩展与终端间的相对速度成正比关系,并且多普勒扩展与终端通信时采用的载波频率成正比关系,因此5G NR V2X系统中处于高速场景的终端在通信时产生的ICI较高。高速场景即移动速度较高的场景,如在德国无限速高速公路上,在德国无限速高速公路上相向运动的两个终端间通信时需要支持最大500km/h的相对速度,其它情况和地域,需要支持的最大相对速度为280km/h。针对5G NR V2X系统中处于高速场景的终端在通信时产生的ICI较高,只能采用阶数较小的MCS的问题,一种解决方法为5G NR V2X系统中处于高速场景的终端在通信时采用SCS较大的资源池。若5G NR V2X系统中处于高速场景的终端与处于非高速场景的终端采用不同的资源池,则5G NR V2X系统需要为处于高速场景的终端以及处于非高速场景的终端分别分配资源池,从而可能存在由于分配的资源池比例不合理导致资源浪费的问题。由于终端在处于不同场景下使用不同的SCS映射数据,因此接收侧终端需要支持接收采用不同SCS映射的数据,增加了接收侧终端的设计复杂度。
基于此,本申请实施例提供一种数据传输方法及装置,用于解决车联网系统中处于高速场景的终端以及处于非高速场景的终端采用相同的SCS映射数据,当终端间的相对速度较高时,无法使用阶数较高的MCS的问题。接下来结合附图介绍本发明实施例提供的技术方案。
基于图1所示的通信系统,本申请实施例提供一种数据传输方法,其中,第一设备可 以为终端102或者终端103,第二设备可以为终端102或者终端103或者网络设备101。图2为本申请实施例提供的数据传输方法的流程图,请参考图2,该方法的具体过程如下所述。
S201:第一设备采用第一资源映射方式映射数据。
第一资源映射方式为:若数据映射在某个频域资源单位上,则在该频域资源单位相邻的至少一个频域资源单位上不映射数据,或者在映射了数据的频域资源单位相邻的至少一个频域资源单位上映射0。其中,频域资源单位可以为子载波或者资源单位(resource element,RE)等等。第一资源映射方式可以如图3所示。
本申请实施例中涉及的频域资源单位的SCS可以是根据V2X系统中比较低的速度需求在5G NR中支持的SCS中所选择的,根据比较低的速度需求可以选择出比较小的SCS,更小的SCS对应符号长度更长,终端以最大功率发射时,每个符号的能量更大,因此在相同MCS下覆盖性能更好,并且,更小的SCS对应CP长度更长,可以支持的定时偏差和时延扩展就更大。例如,V2X系统在除了德国无限速高速公路外的其他场景下,最高需要支持280km/h的相对速度需求,则可以根据280km/h的相对速度需求选择V2X系统的SCS。
当然,本申请实施例中涉及的频域资源单位的SCS也可以为5G NR中支持的SCS中的任意一种,也可以是LTE中支持的SCS,或其它SCS,本申请实施例在这里不做具体限定。
S202,所述第一设备向第二设备发送映射的数据。其中,第一设备可以通过广播的方式向第二设备发送映射的数据。
S203,第二设备根据第一资源映射方式确定第一设备映射数据的频域资源。
S204,第二设备在确定的频域资源上上接收所述第一设备发送的数据。
本申请实施例中处于高速场景的终端可以在映射了数据的任意两个相邻频域资源单位之间间隔至少一个频域资源单位,间隔的至少一个频域资源单位上未映射数据,未映射数据的频域资源单位不会对映射了数据的频域资源单位产生干扰,从而可以降低第一设备在通信时产生的ICI。通过在与映射了数据的频域资源单位相邻的至少一个频域资源单位上不映射数据的方式来降低高速场景下的ICI,使得第一设备不仅可以在处于高速场景下以及处于非高速场景下使用相同SCS的资源池,并且第一设备还可以在处于高速场景下使用较高阶数的MCS。由于处于高速场景的终端以及处于非高速场景的终端可以使用相同SCS的资源池,因此车联网系统无需为处于高速场景的第一设备重新分配资源池,从而可以避免车联网系统分别为处于高速场景的终端以及非高速场景的终端配置资源池时由于分配的资源比例不合理导致的资源浪费。
并且,由于车联网中的设备可以使用相同的SCS映射数据,因此接收侧设备只要能接收使用一种SCS映射的数据即可,从而可以简化接收侧设备的设计。
此外,处于高速场景的终端与处于非高速场景的终端可以使用相同的资源池,也就是处于高速场景的终端与处于非高速场景的终端可以使用相同的SCS,而SCS越小,符号越长,终端以最大功率发射时,每个符号的能量越大,因此覆盖性能越好。并且,SCS越小,符号越长,相同CP开销下CP越长,可以支持的定时偏差和时延扩展就更大。因此,处于高速场景的终端可以在不增大SCS的情况下使用较大的MCS。
在一种可能的实现方式中,第一设备在采用第一资源映射方式映射数据时,可以在所述连续的m个频域资源单位中的第2i个频域资源单位上映射数据,在所述连续的m个频 域资源单位中的第2i-1个频域资源单位上映射0,i为正整数。因此,第二设备在所述连续的m个频域资源单位中的第2i个频域资源单位上接收所述第一设备发送的数据,如图4所示。本申请实施例中通过在第2i个频域资源单位上映射数据,在第2i-1个频域资源单位上映射0,由于第2i-1个频域资源单位上映射0,因此第二设备在接收到第一设备发送的数据后,不存在第2i-1个频域资源单位对其他频域资源单位的干扰,从而降低了ICI。
另一种可能的实现方式中,第一设备在采用第一资源映射方式映射数据时,也可以在所述连续的m个频域资源单位中的第2i-1个频域资源单位上映射数据,在所述连续的m个频域资源单位中的第2i个频域资源单位上映射0。因此,第二设备在所述连续的m个频域资源单位中的第2i-1个频域资源单位上接收所述第一设备发送的数据,如图5所示。本申请实施例中通过在第2i-1个频域资源单位上映射数据,在第2i个频域资源单位上映射0,由于第2i个频域资源单位上映射0,因此第二设备在接收到第一设备发送的数据后,不存在第2i个频域资源单位对其他频域资源单位的干扰,从而降低了ICI。
本申请实施例中通过在所述连续的m个频域资源单位中的第2i个频域资源单位上映射数据,或者,在所述连续的m个频域资源单位中的第2i-1个频域资源单位上映射数据,可以实现频域等间隔映射数据,而频域等间隔映射的数据在时域表现为规律的序列。如,第一设备通过在第2i个频域资源单位上映射数据的方式映射的数据在时域表现为两个重复的序列,通过在第2i-1个频域资源单位上映射数据的方式映射的数据在时域表现为两个相差负号的序列。在信道频率偏差的影响下,第二设备收到的序列是相差特定相位的序列,该相位可以由频率偏差和序列长度确定,第二设备可以利用所述相位可以实现频率同步。
在另一种可能的实现方式中,在一种可能的设计中,第一设备采用第一资源映射方式映射数据时,若在某个频域资源单位映射数据,则可以在该频域资源单位相邻的j个频域资源单位上不映射数据,其中,j为正整数,本申请实施例对j的数值在这里不做具体限定。
第一设备可以是网络设备的指示下采用第一资源映射方式映射数据。具体的,网络设备可以向第一设备发送第一指示信息,该第一指示信息用于指示所述第一设备采用所述第一资源映射方式映射数据,从而第一设备在接收到第一指示信息后采用第一资源映射方式映射数据。或者,网络设备也可以向第一设备发送第二指示信息,该第二指示信息用于指示所述第一设备在符合预设条件时采用所述第一资源映射方式映射数据,从而第一设备在接收到第二指示信息后在确定自身符合预设条件时采用第一资源映射方式映射数据,所述预设条件包括如下至少一个:位于预设地理区域、需要与第四设备进行通信、速度大于第二阈值,所述第四设备与所述第一设备为相向运动。若第二设备为网络设备,则第一指示信息、第二指示信息可以由第二设备发送。
或者,第一设备也可以不需要网络设备的指示,而是根据自身预配置的参数或根据预定义,采用第一资源映射方式映射数据。具体的,所述第一设备可以预配置或预定义为:采用第一资源映射方式映射数据。也可以预配置或预定义为:在确定所述第一设备符合预设条件时采用第一资源映射方式映射数据,所述预设条件包括如下至少一个:位于预设地理区域、需要与第三设备进行通信、速度大于第一阈值,所述第三设备与所述第一设备为相向运动。
预设地理位置可以为德国无限速高速公路,或者终端的移动速度可能比较高的地位区域等等,本申请实施例对预设地理位置在这里不做具体限定。
可选的,第一设备在确定自身不符合预设条件时,可以采用第二资源映射方式映射数 据。所述第二资源映射方式为:依次在连续的频域资源单位上映射数据。通过本申请实施例提供的数据传输方法,车联网系统的处于高速场景的终端可以通过在使用车联网系统为处于非高速场景的终端分配的资源池时改变资源映射方式,从而降低ICI,而车联网系统无需为处于高速场景的终端重新分配资源池,从而可以避免分别为处于高速场景的终端以及处于非高速场景的终端分配资源池时由于分配的资源池比例不合理导致的资源浪费。并且,由于车联网中的设备可以使用相同的SCS映射数据,因此接收侧设备只要能接收使用一种SCS映射的数据即可,从而可以简化接收侧设备的设计。此外,处于高速场景的终端,使用第一资源映射方式降低ICI后,产生的ICI与处于非高速场景的终端使用第二资源映射方式产生的ICI程度相似,因此可以为处于高速场景的终端以及处于非高速场景的终端分配相同阶数范围的MCS范围,这样可以简化配置和/或预配置。
第一设备还可以向第二设备发送用于指示资源映射方式的第三指示信息,使得第二设备可以确定第一设备映射数据的资源映射方式。其中,第三指示信息可以占用物理侧行控制信道(pysical sidelink control channel,PSCCH)中的一个或多个比特信息。例如,第三指示信息可以占用PSCCH的一个比特,所述比特的值为1,第三指示信息指示第一资源映射方式,所述比特的值为0,第三指示信息指示第二资源映射方式。或者,所述比特的值为1,第三指示信息指示第二资源映射方式,所述比特的值为0,第三指示信息指示第一资源映射方式。从而,第二设备根据接收到的PSCCH确定第一设备映射数据的资源映射方式,并根据第一设备映射数据的资源映射方式来接收数据。通过在PSCCH中指示对应的PSSCH使用哪种资源映射方式,第二设备可以根据收到PSCCH中的指示信息,获得对应PSSCH使用的资源映射方式,从而可以正确接收第一设备发送的PSSCH,而不需要额外的盲检测。
第一设备可以同时发送第三指示信息以及映射的数据,或者,第一设备也可以先发送第三指示信息,再发送映射的数据,本申请实施例对发送第三指示信息以及发送映射的数据之间的先后顺序在这里不做具体限定。
在第一设备采用第一资源映射方式映射数据时,第一设备可以采用第一资源映射方式映射参考信号,也可以采用第二资源映射方式映射参考信号,或者,也可以采用其他方式映射参考信号,本申请实施例对参考信号的映射方式在这里不做具体限定。
可选的,第一设备可以在映射了数据的频域资源单位相邻的至少一个频域资源单位上不映射参考信号,也可以在映射了参考信号的频域资源单位相邻的至少一个频域资源单位上不映射数据。
基于与方法实施例同样的发明构思,本申请还提供了一种第一设备,如图6所示,所述第一设备包括映射模块601、发送模块602。其中,映射模块601,用于采用第一资源映射方式映射数据,所述第一资源映射方式为:在连续的m个频域资源单位中的n个频域资源单位上映射,所述n个频域资源单位中任意两个相邻频域资源单位之间间隔至少一个频域资源单位,m、n为正整数,且m大于n。发送模块602,用于向第二设备发送所述处理器映射的数据。
所述映射模块601,可以具体用于:在所述连续的m个频域资源单位中的第2i个频域资源单位上映射数据。或者,所述映射模块601,也可以具体用于:在所述连续的m个频域资源单位中的第2i-1个频域资源单位上映射数据,所述i为正整数。
所述第一设备,还可以包括确定模块603。所述确定模块603,用于确定所述第一设 备符合预设条件,所述预设条件包括如下至少一个:位于预设地理区域、需要与第三设备进行通信、速度大于第一阈值,所述第三设备与所述第一设备为相向运动。
所述第一设备还可以包括接收模块604。所述接收模块604,用于接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一设备采用所述第一资源映射方式映射数据。或者,所述接收模块604,用于接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一设备在符合预设条件时采用所述第一资源映射方式映射数据,所述预设条件包括如下至少一个:位于预设地理区域、需要与第四设备进行通信、速度大于第二阈值,所述第四设备与所述第一设备为相向运动。
可选的,所述发送模块602,还可以用于:向所述第二设备发送第三指示信息,所述第三指示信息用于指示所述第一资源映射方式。
在一种可能的实现方式中,所述映射模块601,还用于:采用所述第一资源映射方式映射参考信号。
在另一种可能的实现方式中,所述映射模块601,还用于:采用第二资源映射方式映射所述参考信号,所述第二资源映射方式为:在所述连续的m个频域资源单位上映射。
可选的,所述映射模块601,还可以用于:在所述第一设备不符合所述预设条件时,采用第二资源映射方式映射数据,所述第二资源映射方式为:在所述连续的m个频域资源单位上映射。
所述发送模块602,还可以用于:向所述第二设备发送第四指示信息,所述第四指示信息用于指示所述第二资源映射方式。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
其中,集成的模块既可以采用硬件的形式实现时,如图7所示,第一设备可以包括处理器702。上述模块对应的实体的硬件可以为处理器702。处理器702,可以是一个中央处理模块(英文:central processing unit,简称CPU),或者为数字处理模块等等。第一设备还可以包括收发器701,处理器702通过收发器701收发数据。该装置还包括:存储器703,用于存储处理器702执行的程序。存储器703可以是非易失性存储器,比如硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD)等,还可以是易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM)。存储器703是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
处理器702用于执行存储器703存储的程序代码,具体用于执行图1至图5所示实施例所述的方法。可以参见图1至图5所示实施例所述的方法,本申请在此不再赘述。
本申请实施例中不限定上述收发器701、处理器702以及存储器703之间的具体连接介质。本申请实施例在图7中以存储器703、处理器702以及收发器701之间通过总线704连接,总线在图7中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明实施例还提供了一种计算机可读存储介质,用于存储为执行上述处理器所需执 行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行图2至图5所述的数据传输方法。
本申请实施例提供一种芯片系统,该芯片系统包括处理器,用于支持第一设备实现图2至图5中所述的数据传输方法中所涉及的功能。在一种可能的设计中,芯片系统还包括存储器,用于保存第一设备必要的程序指令和数据。芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
基于与方法实施例同样的发明构思,本申请还提供了一种第二设备,如图8所示,所述第二设备包括确定模块801、接收模块802。其中,包括:确定模块801,用于根据第一资源映射方式确定第一设备映射数据的频域资源,所述第一资源映射方式为:在连续的m个频域资源单位中的n个频域资源单位上映射,所述n个频域资源单位中任意两个相邻频域资源单位之间间隔至少一个频域资源单位,m、n为正整数,且m大于n。接收模块802,用于在所述n个频域资源单位上接收所述第一设备发送的数据。
所述接收模块802,可以具体用于:在所述连续的m个频域资源单位中的第2i个频域资源单位上接收所述第一设备发送的数据。或者,所述接收模块802,可以具体用于:在所述连续的m个频域资源单位中的第2i-1数个频域资源单位上接收所述第一设备发送的数据,所述i为正整数。
所述接收模块802,还可以用于:接收所述第一设备发送的第一指示消息,所述第一指示消息用于指示所述第一资源映射方式。
所述接收模块802,还可以用于:在所述n个频域资源单位上接收所述第一设备发送的参考信号。
所述确定模块801,还可以用于:根据第二资源映射方式确定所述第一设备映射参考信号的频域资源。所述第二资源映射方式为:在所述连续的m个频域资源单位上映射。所述接收模块802,还可以用于:在所述连续的m个频域资源单位上接收所述第一设备发送的参考信号。
所述接收模块802,还可以用于:接收所述第一设备发送的第二指示消息,所述第二指示消息用于指示第二资源映射方式,所述第二资源映射方式为:在所述连续的m个频域资源单位上映射。所述确定模块801,还可以用于:根据所述第二资源映射方式确定所述第一设备映射数据的频域资源。所述接收模块802,还可以用于:在所述连续的m个频域资源单位上接收所述第一设备发送的数据。
若所述第二设备为网络设备,所述第二设备还可以包括发送模块803。所述发送模块803,用于:在所述确定模块801根据第一资源映射方式确定第一设备映射数据的频域资源之前,向所述第一设备发送第三指示信息,所述第三指示信息用于指示所述第一设备采用所述第一资源映射方式映射数据。或者,所述发送模块803,用于在所述确定模块801根据第一资源映射方式确定第一设备映射数据的频域资源之前,向所述第一设备发送第四指示信息,所述第四指示信息用于指示所述第一设备在符合预设条件时采用所述第一资源映射方式映射数据,所述预设条件包括如下至少一个:位于预设地理区域、需要与第三设备进行通信、速度大于预设阈值,所述第三设备与所述第一设备为相向运动。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器 中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
其中,集成的模块既可以采用硬件的形式实现时,如图9所示,第二设备可以包括处理器902。上述模块对应的实体的硬件可以为处理器902。处理器902,可以是一个CPU,或者为数字处理模块等等。第二设备还可以包括收发器901,处理器902通过收发器901收发报文。该装置还包括:存储器903,用于存储处理器902执行的程序。存储器903可以是非易失性存储器,比如HDD或SSD等,还可以是volatile memory,例如RAM。存储器903是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
处理器902用于执行存储器903存储的程序代码,具体用于执行图2至图5所示实施例所述的方法。可以参见图2至图5所示实施例所述的方法,本申请在此不再赘述。
本申请实施例中不限定上述收发器901、处理器902以及存储器903之间的具体连接介质。本申请实施例在图9中以存储器903、处理器902以及收发器901之间通过总线904连接,总线在图9中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明实施例还提供了一种计算机可读存储介质,用于存储为执行上述处理器所需执行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行图2至图5所述的数据传输方法。
本申请实施例提供一种芯片系统,该芯片系统包括处理器,用于支持第二设备实现图2至图5中所述的数据传输方法中所涉及的功能。在一种可能的设计中,芯片系统还包括存储器,用于保存第二设备必要的程序指令和数据。芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本领域内的技术人员应明白,本申请实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请中一些可能的实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括本申请实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种数据传输方法,其特征在于,包括:
    第一设备采用第一资源映射方式映射数据,所述第一资源映射方式为:在连续的m个频域资源单位中的n个频域资源单位上映射,所述n个频域资源单位中任意两个相邻频域资源单位之间间隔至少一个频域资源单位,m、n为正整数,且m大于n;
    所述第一设备向第二设备发送映射的数据。
  2. 如权利要求1所述的方法,其特征在于,第一设备采用第一资源映射方式映射数据,包括:
    所述第一设备在所述连续的m个频域资源单位中的第2i个频域资源单位上映射数据,或者,所述第一设备在所述连续的m个频域资源单位中的第2i-1个频域资源单位上映射数据,所述i为正整数。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一设备确定所述第一设备符合预设条件,所述预设条件包括如下至少一个:位于预设地理区域、需要与第三设备进行通信、速度大于第一阈值,所述第三设备与所述第一设备为相向运动。
  4. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一设备采用所述第一资源映射方式映射数据;或者,
    所述第一设备接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一设备在符合预设条件时采用所述第一资源映射方式映射数据,所述预设条件包括如下至少一个:位于预设地理区域、需要与第四设备进行通信、速度大于第二阈值,所述第四设备与所述第一设备为相向运动。
  5. 如权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送第三指示信息,所述第三指示信息用于指示所述第一资源映射方式。
  6. 如权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备采用所述第一资源映射方式映射参考信号,或者,所述第一设备采用第二资源映射方式映射所述参考信号,所述第二资源映射方式为:在所述连续的m个频域资源单位上映射。
  7. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    在所述第一设备不符合所述预设条件时,所述第一设备采用第二资源映射方式映射数据,所述第二资源映射方式为:在所述连续的m个频域资源单位上映射。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送第四指示信息,所述第四指示信息用于指示所述第二资源映射方式。
  9. 一种数据传输方法,其特征在于,包括:
    第二设备根据第一资源映射方式确定第一设备映射数据的频域资源,所述第一资源映射方式为:在连续的m个频域资源单位中的n个频域资源单位上映射,所述n个频域资源 单位中任意两个相邻频域资源单位之间间隔至少一个频域资源单位,m、n为正整数,且m大于n;
    所述第二设备在所述n个频域资源单位上接收所述第一设备发送的数据。
  10. 如权利要求9所述的方法,其特征在于,所述第二设备在所述n个频域资源单位上接收所述第一设备发送的数据,包括:
    所述第二设备在所述连续的m个频域资源单位中的第2i个频域资源单位上接收所述第一设备发送的数据,或者,所述第二设备在所述连续的m个频域资源单位中的第2i-1数个频域资源单位上接收所述第一设备发送的数据,所述i为正整数。
  11. 如权利要求9或10所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收所述第一设备发送的第一指示消息,所述第一指示消息用于指示所述第一资源映射方式。
  12. 如权利要求9至11任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备在所述n个频域资源单位上接收所述第一设备发送的参考信号;或者,
    所述第二设备根据第二资源映射方式确定所述第一设备映射参考信号的频域资源,所述第二资源映射方式为:在所述连续的m个频域资源单位上映射,并在所述连续的m个频域资源单位上接收所述第一设备发送的参考信号。
  13. 如权利要求9至12任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收所述第一设备发送的第二指示消息,所述第二指示消息用于指示第二资源映射方式,所述第二资源映射方式为:在所述连续的m个频域资源单位上映射;
    所述第二设备根据所述第二资源映射方式确定所述第一设备映射数据的频域资源;
    所述第二设备在所述连续的m个频域资源单位上接收所述第一设备发送的数据。
  14. 如权利要求9至13任一项所述的方法,其特征在于,所述第二设备为网络设备,在第二设备根据第一资源映射方式确定第一设备映射数据的频域资源之前,还包括:
    所述第二设备向所述第一设备发送第三指示信息,所述第三指示信息用于指示所述第一设备采用所述第一资源映射方式映射数据;或者,
    所述第二设备向所述第一设备发送第四指示信息,所述第四指示信息用于指示所述第一设备在符合预设条件时采用所述第一资源映射方式映射数据,所述预设条件包括如下至少一个:位于预设地理区域、需要与第三设备进行通信、速度大于预设阈值,所述第三设备与所述第一设备为相向运动。
  15. 一种第一设备,其特征在于,包括:
    处理器,用于采用第一资源映射方式映射数据,所述第一资源映射方式为:在连续的m个频域资源单位中的n个频域资源单位上映射,所述n个频域资源单位中任意两个相邻频域资源单位之间间隔至少一个频域资源单位,m、n为正整数,且m大于n;
    收发器,用于向第二设备发送所述处理器映射的数据。
  16. 如权利要求15所述的第一设备,其特征在于,所述处理器,具体用于:在所述连续的m个频域资源单位中的第2i个频域资源单位上映射数据;或者,
    所述处理器,具体用于:在所述连续的m个频域资源单位中的第2i-1个频域资源单位上映射数据,所述i为正整数。
  17. 如权利要求15或16所述的第一设备,其特征在于,所述处理器,还用于:确定所述第一设备符合预设条件,所述预设条件包括如下至少一个:位于预设地理区域、需要 与第三设备进行通信、速度大于第一阈值,所述第三设备与所述第一设备为相向运动。
  18. 如权利要求15或16所述的第一设备,其特征在于,所述收发器,还用于:接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一设备采用所述第一资源映射方式映射数据;或者,
    所述收发器,还用于:接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一设备在符合预设条件时采用所述第一资源映射方式映射数据,所述预设条件包括如下至少一个:位于预设地理区域、需要与第四设备进行通信、速度大于第二阈值,所述第四设备与所述第一设备为相向运动。
  19. 如权利要求15至18任一项所述的第一设备,其特征在于,所述收发器,还用于:向所述第二设备发送第三指示信息,所述第三指示信息用于指示所述第一资源映射方式。
  20. 如权利要求15至19任一项所述的第一设备,其特征在于,所述处理器,还用于:采用所述第一资源映射方式映射参考信号;或者,
    所述处理器,还用于:采用第二资源映射方式映射所述参考信号,所述第二资源映射方式为:在所述连续的m个频域资源单位上映射。
  21. 如权利要求17所述的第一设备,其特征在于,所述处理器,还用于:在所述第一设备不符合所述预设条件时,采用第二资源映射方式映射数据,所述第二资源映射方式为:在所述连续的m个频域资源单位上映射。
  22. 如权利要求21所述的第一设备,其特征在于,所述收发器,还用于:向所述第二设备发送第四指示信息,所述第四指示信息用于指示所述第二资源映射方式。
  23. 一种第二设备,其特征在于,包括:
    处理器,用于根据第一资源映射方式确定第一设备映射数据的频域资源,所述第一资源映射方式为:在连续的m个频域资源单位中的n个频域资源单位上映射,所述n个频域资源单位中任意两个相邻频域资源单位之间间隔至少一个频域资源单位,m、n为正整数,且m大于n;
    收发器,用于在所述n个频域资源单位上接收所述第一设备发送的数据。
  24. 如权利要求23所述的第二设备,其特征在于,所述收发器,具体用于:在所述连续的m个频域资源单位中的第2i个频域资源单位上接收所述第一设备发送的数据;或者,
    所述收发器,具体用于:在所述连续的m个频域资源单位中的第2i-1数个频域资源单位上接收所述第一设备发送的数据,所述i为正整数。
  25. 如权利要求23或24所述的第二设备,其特征在于,所述收发器,还用于:接收所述第一设备发送的第一指示消息,所述第一指示消息用于指示所述第一资源映射方式。
  26. 如权利要求23至25任一项所述的第二设备,其特征在于,所述收发器,还用于:在所述n个频域资源单位上接收所述第一设备发送的参考信号。
  27. 如权利要求23至25任一项所述的第二设备,其特征在于,所述处理器,还用于:根据第二资源映射方式确定所述第一设备映射参考信号的频域资源,所述第二资源映射方式为:在所述连续的m个频域资源单位上映射;
    所述收发器,还用于:在所述连续的m个频域资源单位上接收所述第一设备发送的参考信号。
  28. 如权利要求23至27任一项所述的第二设备,其特征在于,所述收发器,还用于:接收所述第一设备发送的第二指示消息,所述第二指示消息用于指示第二资源映射方式,所述第二资源映射方式为:在所述连续的m个频域资源单位上映射;
    所述处理器,还用于:根据所述第二资源映射方式确定所述第一设备映射数据的频域资源;
    所述收发器,还用于:在所述连续的m个频域资源单位上接收所述第一设备发送的数据。
  29. 如权利要求23至28任一项所述的第二设备,其特征在于,所述第二设备为网络设备,所述收发器,还用于:在所述处理器根据第一资源映射方式确定第一设备映射数据的频域资源之前,向所述第一设备发送第三指示信息,所述第三指示信息用于指示所述第一设备采用所述第一资源映射方式映射数据;或者,
    所述收发器,还用于:在所述处理器根据第一资源映射方式确定第一设备映射数据的频域资源之前,向所述第一设备发送第四指示信息,所述第四指示信息用于指示所述第一设备在符合预设条件时采用所述第一资源映射方式映射数据,所述预设条件包括如下至少一个:位于预设地理区域、需要与第三设备进行通信、速度大于预设阈值,所述第三设备与所述第一设备为相向运动。
  30. 一种计算机存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行权利要求1至14任一项所述的方法。
PCT/CN2019/080264 2018-03-30 2019-03-28 一种数据传输方法和装置 WO2019185001A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810297918.5 2018-03-30
CN201810297918.5A CN110324131B (zh) 2018-03-30 2018-03-30 一种数据传输方法和装置

Publications (1)

Publication Number Publication Date
WO2019185001A1 true WO2019185001A1 (zh) 2019-10-03

Family

ID=68060935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080264 WO2019185001A1 (zh) 2018-03-30 2019-03-28 一种数据传输方法和装置

Country Status (2)

Country Link
CN (1) CN110324131B (zh)
WO (1) WO2019185001A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662344A (zh) * 2009-09-18 2010-03-03 上海华为技术有限公司 多天线空频分组编码下行发射方法及其装置
CN102263722A (zh) * 2010-05-26 2011-11-30 中兴通讯股份有限公司 上行频域资源的映射方法和系统
US20140079018A1 (en) * 2011-05-11 2014-03-20 Lg Electronics Inc. Method and device for transmitting data in a multi antenna wireless communication system
CN103685118A (zh) * 2012-09-11 2014-03-26 株式会社Ntt都科摩 一种数据的发送方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102970270A (zh) * 2012-11-30 2013-03-13 西安交通大学 一种高速移动环境下ofdm 系统的多多普勒频偏估计方法
CN105812106B (zh) * 2014-12-31 2019-05-24 华为技术有限公司 传输上行数据的方法和装置
US9923680B2 (en) * 2015-06-03 2018-03-20 Avago Technologies General Ip (Singapore) Pte. Ltd. Beamforming feedback tone/sub-carrier location within wireless communications
CN107294678B (zh) * 2016-03-31 2020-10-02 上海诺基亚贝尔股份有限公司 用于信道估计的方法和通信设备
CN107734520B (zh) * 2016-08-11 2020-05-08 华为技术有限公司 一种资源配置方法及装置
CN107846373B (zh) * 2016-09-20 2021-02-12 华为技术有限公司 发送或接收物理下行控制信道的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662344A (zh) * 2009-09-18 2010-03-03 上海华为技术有限公司 多天线空频分组编码下行发射方法及其装置
CN102263722A (zh) * 2010-05-26 2011-11-30 中兴通讯股份有限公司 上行频域资源的映射方法和系统
US20140079018A1 (en) * 2011-05-11 2014-03-20 Lg Electronics Inc. Method and device for transmitting data in a multi antenna wireless communication system
CN103685118A (zh) * 2012-09-11 2014-03-26 株式会社Ntt都科摩 一种数据的发送方法及装置

Also Published As

Publication number Publication date
CN110324131A (zh) 2019-10-11
CN110324131B (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
US11018800B2 (en) Information transmission method and user equipment
RU2698322C1 (ru) Способ и устройство для опорного сигнала и отображения для связи посредством прямого соединения
US10904887B2 (en) Resource scheduling method and terminal device
WO2020029278A1 (zh) 车联网设备之间的反馈信息传输方法、装置及系统
WO2018177109A1 (zh) 数据传输方法、装置、终端及存储介质
WO2017133446A1 (zh) 车联网中的v2x通信方法及装置
US20190014577A1 (en) Resource configuration method and device
WO2019007154A1 (zh) 一种反馈信息传输方法、终端设备和接入网设备
JP7471412B2 (ja) Nr v2xにおけるcsiを要求する方法及び装置
CN107113803B (zh) 一种网络设备、终端设备及资源分配方法
WO2017133417A1 (zh) 数据信道子帧的指示方法及装置
CN109565647B (zh) 车联网设备之间的信息传输方法、装置及系统
CN107113914A (zh) 一种终端设备、网络设备及数据传输方法
WO2018082678A1 (zh) 通信方法和通信装置
JP2024500996A (ja) Nr v2xにおけるデフォルトdrx設定に基づいてsl drx動作を実行する方法及び装置
EP4169314A1 (en) Energy-efficient autonomous resource selection for nr v2x sidelink communication
CN114830552A (zh) 在nr v2x中发送关于信道状态的信息的方法和设备
WO2016172972A1 (zh) 一种资源调度方法、装置及系统
WO2017133334A1 (zh) 通信资源的确定方法及装置
WO2019210778A1 (zh) 信息传输方法和信息传输装置
WO2021244299A1 (zh) 通信方法及通信设备
WO2022017037A1 (zh) 由用户设备执行的方法以及用户设备
WO2021190521A1 (zh) 由用户设备执行的方法以及用户设备
CN114930932A (zh) 用于在nr v2x中重传副链路的方法和装置
CN114788385A (zh) 用于支持nr v2x中终端的副链路发送和上行链路发送的同时发送的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776617

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19776617

Country of ref document: EP

Kind code of ref document: A1