WO2019184961A1 - 一种相变电热水器和水温控制方法 - Google Patents

一种相变电热水器和水温控制方法 Download PDF

Info

Publication number
WO2019184961A1
WO2019184961A1 PCT/CN2019/079952 CN2019079952W WO2019184961A1 WO 2019184961 A1 WO2019184961 A1 WO 2019184961A1 CN 2019079952 W CN2019079952 W CN 2019079952W WO 2019184961 A1 WO2019184961 A1 WO 2019184961A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
outlet
heater
phase change
temperature
Prior art date
Application number
PCT/CN2019/079952
Other languages
English (en)
French (fr)
Inventor
曾云
王明
曲绍鹤
Original Assignee
芜湖美的厨卫电器制造有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810259828.7A external-priority patent/CN108489099A/zh
Priority claimed from CN201820424639.6U external-priority patent/CN208312701U/zh
Priority claimed from CN201810260304.XA external-priority patent/CN108278778A/zh
Priority claimed from CN201820424736.5U external-priority patent/CN208312702U/zh
Application filed by 芜湖美的厨卫电器制造有限公司, 美的集团股份有限公司 filed Critical 芜湖美的厨卫电器制造有限公司
Priority to EP19776346.9A priority Critical patent/EP3757478B1/en
Publication of WO2019184961A1 publication Critical patent/WO2019184961A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • F24H7/02Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid
    • F24H7/0208Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid using electrical energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/238Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/305Control of valves
    • F24H15/315Control of valves of mixing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/37Control of heat-generating means in heaters of electric heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/12Arrangements for connecting heaters to circulation pipes
    • F24H9/13Arrangements for connecting heaters to circulation pipes for water heaters
    • F24H9/133Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • F24H9/2021Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/128Preventing overheating
    • F24H15/132Preventing the operation of water heaters with low water levels, e.g. dry-firing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present application relates to a water heater, and in particular to a phase change electric water heater and a water temperature control method.
  • the electric water heater is convenient and comfortable to use, and is widely used compared with other types of water heaters such as solar water heaters.
  • an electric water heater has a large storage tank to store heat, which causes the electric water heater to have a large volume and requires a large installation space.
  • the electric water heater usually uses the thermostatic valve to adjust the opening degree of the hot and cold water of the outlet pipe.
  • this method can achieve a certain constant temperature effect, the water in the water tank or the water pipe will generate a local temperature. High or dry burning, not only the thermostatic effect is poor, but also the waste of electrical energy, and sometimes damage to some parts of the water heater.
  • the embodiment of the present application provides a phase change electric water heater and a water temperature control method.
  • the phase change electric water heater includes: a circulation line and a phase change material for storing heat; a liner, wherein the inner tank is provided with a receiving space, The phase change material and a portion of the circulation line in contact with the phase change material are disposed in the accommodating space.
  • the phase change electric water heater further includes: an inlet pipe connected to a circulation pipe disposed inside the phase change material through an inlet end of the circulation pipe, and an outlet pipe, the outlet pipe A water pipe is connected to a circulation line disposed inside the phase change material through a water outlet end of the circulation line.
  • a pump and a heater are disposed on the water inlet end or the water outlet end of the circulation line.
  • an inlet of the at least one heater is connected to an outlet of the pump
  • a first flow sensor for measuring the flow rate of water in the circulation line is further disposed on the water inlet end or the water outlet end of the circulation line.
  • a first temperature sensor for measuring the temperature of the water in the circulation line is further disposed on the water inlet end or the water outlet end of the circulation line.
  • the first flow sensor or the first temperature sensor is disposed on a connecting pipe section between the water outlet of the heater and the phase change material.
  • a second temperature sensor configured to measure the temperature of the phase change material is further disposed on the circulation pipeline.
  • the inlet pipe is provided with a second flow sensor for measuring the inflow of water in the inlet pipe.
  • the outlet pipe is connected to the water outlet end of the circulation pipeline through a thermostatic valve, one end of the outlet pipe is in communication with the thermostatic valve, and the other end of the outlet pipe is used as a water outlet.
  • the circulation pipeline further includes: a first branch pipe, a three-way valve and a second branch pipe, wherein the first end of the three-way valve communicates with the water outlet end of the circulation pipe through the first branch pipe, The second end of the three-way valve is communicated with the inlet pipe through the second branch pipe, and the third end of the three-way valve is in communication with the outlet pipe; or the three-way valve is connected to the circulation pipe The water inlet end and the water outlet end, one end of the outlet pipe is connected to the three-way valve, and the other end is used as a water outlet.
  • the outlet pipe is further provided with a third temperature sensor for measuring the temperature of the outlet water in the outlet pipe.
  • the phase change electric water heater further includes a one-way valve disposed on the circulation line, the one-way valve connecting the water outlet end and the water inlet end of the circulation line.
  • the phase change electric water heater further includes a temperature limiter capable of defining a maximum heating temperature, the temperature limiter being disposed on the heater.
  • the phase change electric water heater further includes: a one-way safety valve, the one-way safety valve is disposed on the water inlet pipe, and the one-way safety valve is spaced apart from the second flow sensor, and is located at the The upstream of the second flow sensor.
  • the phase change electric water heater includes: a circulation line and a phase change material for storing heat; at least one side of the circulation line is attached to the phase a variable material, a water inlet end or a water outlet end of the circulation line is sequentially provided with a pump, a heater, a first flow sensor and a first temperature sensor respectively measuring an outlet water flow rate and a water temperature of the heater; the heating The inlet of the pump is connected to the outlet of the pump; the outlet end of the circulation pipeline is provided with a second temperature sensor for measuring the temperature of the phase change material; and the inlet end of the circulation pipeline is further provided with an inlet pipe.
  • the inlet water pipe is provided with a second flow sensor for measuring the flow rate of the inlet water in the inlet pipe;
  • the circulation pipe is further provided with a three-way valve and an outlet pipe, and the first end of the three-way valve passes through the first branch pipe and the a water outlet end of the circulation line is connected, a second end of the three-way valve is connected to the water inlet pipe through a second branch pipe, and a third end of the three-way valve is connected to the water outlet pipe; or, the three a valve connected to the inlet end and the outlet of the circulation line At the water end, one end of the outlet pipe is connected to the three-way valve, and the other end is used as a water outlet; and the outlet pipe is further provided with a third temperature sensor for measuring the temperature of the outlet water in the outlet pipe.
  • the water temperature control method is the phase change electric water heater according to the first aspect embodiment or the second aspect, wherein the water temperature control method comprises: closing an inlet pipe, opening the pump, And starting the heater; the pump drives water flow in the circulation line, the water flows into the heater, and after the heater heats the incoming water, the heated water flows from the inflow Provided in a partial circulation line in the phase change material, the phase change material exchanges heat with the heated water in the circulation line; the pump is stopped, and the heater stops working.
  • the method further includes detecting the temperature of the phase change material, turning on the pump when the temperature of the phase change material is lower than the first temperature threshold, and initiating heating of the heater.
  • the water temperature control method further includes: opening an inlet pipe and an outlet pipe, detecting an outlet water temperature of the outlet pipe, and adjusting when a difference between an outlet water temperature of the outlet pipe and a second temperature threshold exceeds a preset range; An opening degree of a hot end of the three-way valve communicating with a water outlet end of the circulation line and an opening degree of a cold end of the three-way valve communicating with a water inlet end of the circulation line, and at the third temperature
  • the sensor controls the outlet pipe to discharge water when the difference between the outlet water temperature of the outlet pipe and the second temperature threshold is within a preset range.
  • the water temperature control method further includes: when the pump drives the water to flow in the direction of the heater after the pump is turned on, the first flow sensor measures the outlet water flow of the heater is lower than a setting At the threshold, the pump stops driving.
  • the water temperature control method further includes: opening the water inlet pipe, and closing the water inlet of the three-way valve and the circulation pipeline when the water flows from the water inlet pipe to the circulation pipeline for the first time The cold end of the end connection.
  • the water temperature control method further includes: detecting the temperature of the heater outlet water when the water inlet pipe is closed, and stopping the driving when the heater water outlet temperature reaches a third temperature threshold, and The heater stops working.
  • the water temperature control method further includes: opening the water inlet pipe, water flowing from the water inlet pipe into the heater through a water inlet end of the circulation pipeline, when the heater outlet water temperature is less than The heater is activated when the temperature threshold is four; the heater heats the entered water to detect the temperature of the heater outlet water, and when the heater outlet water temperature reaches a fourth temperature threshold, the heating The device stops working.
  • the water temperature control method further includes: opening an inlet pipe and an outlet pipe, detecting an outlet water temperature of the outlet pipe, and adjusting when a difference between an outlet water temperature of the outlet pipe and a second temperature threshold exceeds a preset range;
  • the thermostatic valve controls a difference between a water outlet temperature of the water outlet pipe and a second temperature threshold to be within a preset range, and controls the outlet pipe to discharge water.
  • the embodiment of the present application provides a phase change electric water heater and a water temperature control method.
  • the phase change material can store heat. When the water temperature in the circulation pipeline is low, the water in the circulation pipeline replaces the heat stored in the phase change material. Avoid using the storage tank to store heat and reduce the volume of the electric water heater.
  • the first temperature sensor is used to measure the temperature of the heater outlet water
  • the second temperature sensor is used to measure the temperature of the phase change material
  • the third temperature sensor is used to measure the water outlet temperature of the water pipe, thereby avoiding the local water temperature overheating and ensuring
  • the constant temperature of the effluent increases the constant temperature effect.
  • the first flow sensor is used to detect the water flow at the heater outlet, avoiding the pump idling or stalling.
  • FIG. 1 is an optional structural schematic view of a phase change electric water heater according to an embodiment of the present application
  • FIG. 2 is another schematic structural diagram of a phase change electric water heater according to an embodiment of the present application.
  • FIG. 3 is another schematic structural diagram of a phase change electric water heater according to an embodiment of the present application.
  • the terms “mounted,” “connected,” “connected,” “fixed,” and the like, are to be understood broadly unless otherwise specifically defined and defined.
  • it may be a fixed connection, a detachable connection, or an integral connection.
  • It can be a mechanical connection or an electrical connection, and it can be a direct connection or an indirect connection through an intermediate medium, which can be internal communication between two components.
  • the specific meanings of the above terms in this application can be understood as appropriate.
  • the embodiment of the first aspect of the present application provides a phase change electric water heater.
  • FIG. 1 to FIG. 3 an optional structural schematic diagram of the phase change electric water heater of the embodiment of the present application is illustrated.
  • the phase change electric water heater of the embodiment of the present application includes a circulation line 130 and a phase change material 120 for heat storage.
  • the inner casing 100 is provided with an accommodating space 110.
  • the phase change material 120 and a part of the circulation line 130 contacting the phase change material 120 are disposed in the accommodating space 110.
  • the liner 100 is used to mount the phase change material 120 and has a heat insulating effect, which reduces the loss of heat of the phase change material 120.
  • the phase change electric water heater further includes: an inlet pipe 160, and the inlet pipe 160 is connected to the phase through the water inlet end 131 of the circulation pipe 130.
  • the circulation line 130 inside the variable material 120, the outlet pipe 150, and the outlet pipe 150 are connected to the circulation line 130 disposed inside the phase change material 120 through the water outlet end 132 of the circulation line 130.
  • a pump 180 and a heater 190 are disposed on the water inlet end 131 or the water outlet end 132 of the circulation line 130 as shown in FIGS.
  • the inlet of at least one heater 190 is coupled to the outlet of pump 180.
  • the water inlet end 131 or the water outlet end 132 of the circulation line 130 is further provided with a first flow sensor 192 for measuring the water flow rate in the circulation line 130. .
  • the water inlet end 131 or the water outlet end 132 of the circulation line 130 is further provided with a first temperature sensor 193 for measuring the temperature of the water in the circulation line 130. .
  • the first flow sensor 192 or the first temperature sensor 193 is disposed on the connecting pipe section between the water outlet of the heater 190 and the phase change material 120.
  • the circulation line 130 is further provided with a second temperature sensor 140 for measuring the temperature of the phase change material 120.
  • the inlet pipe 160 is provided with a second flow sensor 162 that measures the flow of incoming water into the inlet pipe 160.
  • the outlet pipe 150 is connected to the water outlet end 132 of the circulation line 130 through a thermostatic valve 153, and one end of the outlet pipe 150 is connected to the thermostatic valve 153.
  • the other end of the water pipe 150 serves as a water outlet.
  • the circulation line 130 further includes: a first branch pipe, a three-way valve and a second branch pipe, and the first end of the three-way valve passes through the first branch pipe
  • the second end of the three-way valve communicates with the water inlet pipe 160 through the second branch pipe, and the third end of the three-way valve communicates with the water outlet pipe 150; or the three-way valve is connected to the circulation pipe.
  • the water inlet end 131 and the water outlet end 132 of the 130, one end of the outlet pipe 150 is in communication with the three-way valve, and the other end serves as a water outlet.
  • the outlet pipe 150 is further provided with a third temperature sensor 152 for measuring the temperature of the outlet water in the water pipe 150.
  • the phase change electric water heater further includes a one-way valve 170 disposed on the circulation line 130.
  • the one-way valve 170 is connected to the water outlet end 132 of the circulation line 130 and into the inlet. Water end 131.
  • the phase change electric water heater further includes a temperature limiter 191 capable of defining a maximum heating temperature, and the temperature limiter 191 is disposed on the heater 190.
  • the phase change electric water heater further includes: a one-way safety valve 163, the one-way safety valve 163 is disposed on the water inlet pipe 160, and the one-way safety valve 163 is The second flow sensor 162 is spaced apart and located upstream of the second flow sensor 162.
  • 1 to 3 exemplarily show a one-way safety valve 163 provided on the inlet pipe 160, which prevents the water in the circulation line 130 from flowing back to the water inlet 161.
  • the phase change material 120 is used to store or release heat. Specifically, the phase change material 120 can exchange heat with the heated water in the circulation line 130 to circulate the water in the circulation line 130. Heat is stored. The phase change material 120 can also release the heat stored in the circulation line 130 by the heat stored therein so that the hot water of the outlet pipe 150 satisfies the supply demand.
  • One end of the inlet pipe 160 is connected to the circulation line 130, and the other end is used as the water inlet 161.
  • the water inlet 161 can be connected with the water source device outside the phase change electric water heater.
  • the water inlet 161 can be connected with the user's water pipe, and the water outlet pipe 150 One end is connected to the three-way valve, and the other end is used as the water outlet 151, and the water outlet 151 can be connected to the shower head of the bathroom.
  • the water temperature of the outlet of the heater 190 and the temperature of the phase change material 120 are respectively monitored by the first temperature sensor 193 and the second temperature sensor 140, thereby avoiding the local water temperature overheating or dry burning, and effectively ensuring the constant outlet water temperature.
  • the contact area of the circulation line 130 and the phase change material 120 is increased, and the partial circulation line 130 contacting the phase change material 120 may be arranged in a spiral or a serpentine shape, and the phase change material 120.
  • the partial circulation lines 130 that are in contact may be arranged in parallel or in series.
  • FIG. 1 exemplarily shows that the partial circulation line 130 in contact with the phase change material 120 is in a serpentine arrangement in which the circulating flow direction of water in the circulation line 130 is counterclockwise.
  • the first end of the three-way valve ie, the left end of the three-way valve in FIGS.
  • the three-way valve is a hot end
  • the second end of the three-way valve ie, the right end of the three-way valve in FIGS. 1-3
  • the third end of the three-way valve is the outlet end.
  • the second embodiment of the present application provides a phase change electric water heater.
  • FIG. 1 to FIG. 3 an optional structural schematic diagram of the phase change electric water heater of the embodiment of the present application is described.
  • the phase change electric water heater of the embodiment of the present application includes a circulation line 130 and a phase change material 120 for heat storage.
  • At least one side of the circulation line 130 is attached to the phase change material 120, and the water inlet end 131 of the circulation line is provided with a pump 180, a heater 190, and an outlet water flow rate and a water temperature of the heater 190, respectively.
  • a flow sensor 192 and a first temperature sensor 193 (as shown in FIG. 1 and FIG. 2), or a water outlet end 132 of the circulation line are sequentially provided with a pump 180, a heater 190, and an outlet water flow rate of the heater 190, respectively.
  • the first flow sensor 192 of the water temperature and the first temperature sensor 193 (shown in FIG.
  • the inlet of the heater 190 is connected to the outlet of the pump 180; the outlet end 132 of the circulation line is provided with the temperature of the phase change material 120.
  • the second temperature sensor 140; the water inlet end 131 of the circulation pipeline is further provided with an inlet pipe 160, and the inlet pipe 160 is provided with a second flow sensor 162 for measuring the flow rate of the water in the inlet pipe 160; the outlet end 132 of the circulation pipe is further a first branch pipe, a three-way valve, an outlet pipe 150 and a second branch pipe are provided.
  • the first end of the three-way valve communicates with the water outlet end 132 of the circulation line through the first branch pipe, and the second end of the three-way valve passes through the second branch pipe Connected to the inlet pipe 160, the third end of the three-way valve and the outlet pipe 150 communication (as shown in FIG. 1), or a three-way valve and an outlet pipe 150 are connected to the circulation pipeline, and the three-way valve is connected to the inlet end 131 and the outlet end 132 of the circulation pipeline, and one end of the outlet pipe 150 and the three-way The valve is connected, and the other end is used as a water outlet (as shown in FIG. 2 and FIG. 3); the outlet pipe 150 is further provided with a third temperature sensor 152 for measuring the temperature of the outlet water in the water pipe 150.
  • the phase change material 120 is used to store or release heat. Specifically, the phase change material 120 can exchange heat with the heated water in the circulation line 130 to circulate the water in the circulation line 130. Heat is stored. The phase change material 120 can also release the heat stored in the circulation line 130 by the heat stored therein so that the hot water of the outlet pipe 150 satisfies the supply demand.
  • One end of the inlet pipe 160 is connected to the circulation line 130, and the other end is used as the water inlet 161.
  • the water inlet 161 can be connected with the water source device outside the phase change electric water heater.
  • the water inlet 161 can be connected with the user's water pipe, and the water outlet pipe 150 One end is connected to the three-way valve, and the other end is used as the water outlet 151, and the water outlet 151 can be connected to the shower head of the bathroom.
  • the water temperature of the outlet of the heater 190 and the temperature of the phase change material 120 are respectively monitored by the first temperature sensor 193 and the second temperature sensor 140, thereby avoiding the local water temperature overheating or dry burning, and effectively ensuring the constant outlet water temperature.
  • the contact area of the circulation line 130 and the phase change material 120 is increased, and the partial circulation line 130 contacting the phase change material 120 may be arranged in a spiral or a serpentine shape, and the phase change material 120.
  • the partial circulation lines 130 that are in contact may be arranged in parallel or in series.
  • FIG. 1 exemplarily shows that the partial circulation line 130 in contact with the phase change material 120 is in a serpentine arrangement in which the circulating flow direction of water in the circulation line 130 is counterclockwise.
  • the first end of the three-way valve ie, the left end of the three-way valve in FIGS.
  • the three-way valve is a hot end
  • the second end of the three-way valve ie, the right end of the three-way valve in FIGS. 1-3
  • the third end of the three-way valve is the outlet end.
  • the phase change electric water heater further includes a check valve 170 disposed on the circulation line 130, and the check valve 170 is connected to the water outlet end 132 of the circulation line and Inlet end.
  • the one-way valve 170 only allows water to flow from the water outlet end 132 of the circulation line to the water inlet end 131 of the circulation line, and does not flow in the reverse direction, ensuring that cold water enters the circulation line 130 and flows toward the heater 190.
  • the phase change electric water heater further includes a temperature limiter 191 capable of defining a maximum heating temperature, and the temperature limiter 191 is disposed on the heater 190.
  • the temperature limiter 191 is arranged on the heater 190 to prevent the temperature of the water from being too high and vaporized during the heating process, thereby avoiding overheating of the water temperature and improving the constant temperature effect.
  • the phase change electric water heater further includes a one-way safety valve 163, the one-way safety valve 163 is disposed on the water inlet pipe 160, and the one-way safety valve 163 is The second flow sensor 162 is spaced apart and located upstream of the second flow sensor 162. 1 to 3 exemplarily show a one-way safety valve 163 provided on the inlet pipe 160, which prevents the water in the circulation line 130 from flowing back to the water inlet 161.
  • the phase change electric water heater further includes a liner 100, and the inner tank 100 is provided with an accommodating space 110, a phase change material 120 and a phase change material. A portion of the circulation line 130 that is in contact with 120 is disposed in the accommodating space 110.
  • the liner 100 is used to mount the phase change material 120 and has a heat insulating effect, which reduces the loss of heat of the phase change material 120.
  • the water temperature control method is used in the phase change electric water heater of the above embodiment.
  • the water temperature control method includes: closing the water inlet pipe 160, turning on the pump 180, and starting the heater 190; and the pump 180 driving the circulation pipeline
  • the water in 130 flows, the water flows into the heater 190, and after the heater 190 heats the incoming water, the heated water flows into a portion of the circulation line 130 disposed in the phase change material 120, and the phase change material 120 is
  • the heated water in the circulation line 130 performs heat exchange; the pump 180 is stopped, and the heater 190 is stopped.
  • the water temperature control method further includes: detecting the temperature of the phase change material 120, and when the temperature of the phase change material 120 is lower than the first temperature threshold, turning on the pump 180, and starting the heating 190 heating.
  • the water temperature control method further includes: detecting the temperature of the phase change material 120, and when the temperature of the phase change material 120 is lower than the second temperature threshold, turning off the pump 180 and stopping heating The heater 190 is heated.
  • the water temperature control method further includes: opening the inlet pipe 160 and the outlet pipe 150, detecting the outlet water temperature of the water pipe 150, and when the outlet water temperature of the outlet pipe 150 is the second When the difference of the temperature threshold exceeds the preset range, the opening degree of the hot end of the three-way valve communicating with the water outlet end 132 of the circulation line 130 and the opening degree of the cold end of the three-way valve communicating with the water inlet end 131 of the circulation line 130 are adjusted. And when the third temperature sensor 152 measures that the difference between the outlet water temperature of the water pipe 150 and the second temperature threshold is within a preset range, the outlet pipe 150 is controlled to be out of water.
  • the water temperature control method further includes: after the pump 180 is turned on, the first flow sensor 192 measures the outlet water of the heater 190 when the pump 180 drives the water to flow toward the heater 190. When the flow rate is below the set threshold, the pump 180 stops driving.
  • the water temperature control method further includes: opening the water inlet pipe 160, and closing the three-way valve and the circulation pipeline when the water flows from the inlet pipe 160 to the circulation pipe 130 for the first time.
  • the cold end of the inlet end of 130 is connected.
  • the water temperature control method further includes: when the inlet pipe 160 is closed, detecting the outlet water temperature of the heater 190, when the outlet temperature of the heater 190 reaches the third temperature threshold, The pump 180 stops driving and the heater 190 stops operating.
  • the water temperature control method further includes: opening the water inlet pipe 160, and the water flows from the inlet pipe 160 through the water inlet end 131 of the circulation pipe 130 into the heater 190, when the heater When the outlet water temperature of 190 is less than the fourth temperature threshold, the heater 190 is activated; the heater 190 heats the incoming water, detects the outlet water temperature of the heater 190, and heats when the outlet water temperature of the heater 190 reaches the fourth temperature threshold. The 190 stops working.
  • the water temperature control method further includes: opening the inlet pipe 160 and the outlet pipe 150, detecting the outlet water temperature of the water pipe 150, and the outlet temperature of the outlet pipe 150 and the second temperature threshold.
  • the thermostatic valve 153 is adjusted such that the difference between the outlet water temperature of the outlet pipe 150 and the second temperature threshold is within a preset range, and the outlet pipe 150 is controlled to be out of water.
  • the water temperature control method is used in the phase change electric water heater of the above embodiment.
  • the water temperature control method includes: when the inlet pipe 160 is closed, the second temperature sensor 140 measures the temperature of the phase change material 120 is lower than the first When a temperature threshold is reached, the pump 180 is turned on, and the heater 190 is turned on; the water in the circulation line 130 is driven by the pump 180 to flow toward the water inlet end through the water outlet end 132 of the circulation line, and the water flows into the heater 190, and the heater 190 After heating the entered water, the heated water flows into the circulation line 130 again from the inlet end 131 of the circulation line, and the phase change material 120 exchanges heat with the heated water in the circulation line 130; When the temperature sensor 140 measures that the temperature of the phase change material 120 reaches the first temperature threshold, the pump 180 stops driving and the heater 190 stops operating.
  • the pump 180 when the inlet pipe 160 is closed, when the second temperature sensor 140 measures that the temperature of the phase change material 120 is lower than the first temperature threshold, the pump 180 is turned on. The pump 180 may be restarted after the temperature of the phase change material 120 is less than the first temperature threshold for a certain temperature range. If the temperature of the phase change material 120 is less than the first temperature threshold -5 ° C, the pump 180 is activated.
  • the temperature of the phase change material 120 may be the temperature of the phase change material 120 itself or the temperature of the water in a portion of the circulation line 130 that is in contact with the phase change material 120.
  • the first temperature sensor 193 measures the outlet water temperature of the heater 190 at a time, and the first temperature sensor 193 measures when the outlet water temperature of the heater 190 is less than the third temperature threshold, such as when the first temperature sensor 193 measures the outlet water temperature of the heater 190 to be less than 88.
  • the heater 190 is activated for a first predetermined time, such as starting the heater 190 within 6s, 10s, 12s or 15s.
  • the pump 180 drives the water in the circulation line 130 to flow toward the inlet end through the outlet end 132 of the circulation line, the water flows into the heater 190, and the heater 190 heats the incoming water, and the heated water is passed through the circulation tube.
  • the water inlet end 131 of the road again flows into the circulation line 130, and the phase change material 120 exchanges heat with the heated water in the circulation line 130; the second temperature sensor 140 measures the temperature of the phase change material 120 to reach the first temperature threshold.
  • the pump 180 stops driving and the heater 190 stops operating.
  • the heater 190 stops working, such as turning off the power of the heater 190, and the pump 180 continues to operate for a second predetermined time and then stops, the second preset time.
  • the above control mode is an operation mode of the phase change electric water heater when the inlet pipe 160 is closed, that is, when the second flow sensor 162 detects that the inlet flow rate of the inlet pipe 160 is zero.
  • the first flow sensor 192 measures the outlet water flow of the heater 190 is greater than the preset flow rate, and the first When the temperature sensor 193 measures that the outlet water temperature of the heater 190 is greater than the fourth temperature threshold, the first flow sensor 192 measures the outlet water flow of the heater 190 to be greater than 2L/MIN, 3L/MIN or 5L/MIN, and the first temperature sensor 193 measures When the outlet water temperature of the heater 190 is greater than 88 ° C, 90 ° C, 91 ° C, 93 ° C, 95 ° C or 98 ° C, the heater 190 is activated, otherwise the heater 190 is not heated.
  • the fourth temperature threshold may be equal to the first temperature threshold.
  • the water temperature control method further includes: when the third temperature sensor 152 measures that the difference between the water outlet temperature of the water pipe 150 and the second temperature threshold exceeds a preset range, adjusting the tee The opening of the hot end of the valve communicating with the outlet end 132 of the circulation line and the opening of the cold end of the three-way valve communicating with the inlet end 131 of the circulation line, and measuring the outlet temperature of the water pipe 150 at the third temperature sensor 152 When the difference of the second temperature threshold is within the preset range, the outlet pipe 150 is controlled to be out of water.
  • the third temperature sensor 152 may be disposed at one end of the outlet pipe 150 connected to the three-way valve, that is, the temperature of the outlet pipe 150 measured by the third temperature sensor 152 refers to the water temperature at the outlet end of the three-way valve.
  • the three-way valve can be connected to the motor, and the three-way valve can control the opening of the cold end and the hot end by the motor.
  • the preset range of the difference between the outlet temperature of the three-way valve and the fourth temperature threshold may be set to 0 to 2 ° C, 0 to 3 ° C, 0 to 4 ° C or 0 to 5 ° C.
  • the three-way valve when the outlet water temperature of the outlet pipe 150, such as the outlet end water temperature of the three-way valve is greater than the fourth preset temperature by more than 2 ° C, the three-way valve reduces the hot end opening by the motor, and increases the cold. End opening.
  • the three-way valve increases the hot end opening by the motor, reduces the cold end opening, and continuously measures and adjusts until the three-way The difference between the water temperature at the outlet end of the valve and the fourth temperature threshold is within 2 ° C, and the outlet pipe 150 is controlled to be out of water.
  • the water temperature control method further includes: after the pump 180 is turned on, the first flow sensor 192 measures the outlet water of the heater 190 when the pump 180 drives the water to flow toward the heater 190. When the flow rate is below the set threshold, the pump 180 stops driving.
  • the first flow sensor 192 measures the outlet water flow of the heater 190 to be 0 L/MIN, or less than 0.1 L/MIN or 0.5 L/MIN.
  • the pump 180 stops driving. If the first flow sensor 192 measures that the outlet water flow of the heater 190 is not 0 L/MIN, or is not less than 0.1 L/MIN or 0.5 L/MIN, the pump 180 continues to operate.
  • the water temperature control method further includes: opening the water inlet pipe 160, and closing the three-way valve and the circulation pipeline when the water flows from the inlet pipe 160 to the circulation pipe 130 for the first time.
  • the cold end of the inlet end 131 is connected. It can be understood that when the phase change electric water heater is used for the first time, it is necessary to first water, to ensure that there is water in the circulation line 130.
  • the water temperature control method further includes: when the inlet pipe 160 is closed, when the first temperature sensor 193 measures the outlet water temperature of the heater 190 reaches the third temperature threshold, the pump 180 stops driving. And the heater 190 stops working.
  • the water temperature control method further includes: opening the inlet pipe 160, the water flowing from the inlet pipe 160 through the inlet end 131 of the circulation pipe into the heater 190, the first temperature sensor 193.
  • the heater 190 is activated; the heater 190 heats the entered water, and the first temperature sensor 193 measures the temperature of the outlet water of the heater 190 to reach the fourth temperature threshold. The heater 190 stops working.
  • phase change electric water heater According to embodiments of the present application are understandable and easily realized by those skilled in the art, and thus will not be described in detail.

Abstract

本申请实施例公开了一种相变电热水器和水温控制方法,相变电热水器包括:循环管路和用于蓄热的相变材料;内胆,所述内胆内设有容置空间,所述相变材料和与所述相变材料接触的部分所述循环管路设置在所述容置空间内。本申请的相变电热水器提高了恒温效果。

Description

一种相变电热水器和水温控制方法
相关申请的交叉引用
本申请要求芜湖美的厨卫电器制造有限公司、美的集团股份有限公司于2018年03月27日提交的,申请名称为“一种相变电热水器和水温控制方法”的、中国专利申请号为“CN201810260304.X”的优先权,以及申请名称为“一种相变电热水器和水温控制方法”的、中国专利申请号为“CN201810259828.7”的优先权,以及实用新型名称为“一种相变电热水器”的、中国专利申请号为“CN201820424639.6”的优先权,以及实用新型名称为“一种相变电热水器”的、中国专利申请号为“CN201820424736.5”的优先权。
技术领域
本申请涉及热水器,特别涉及一种相变电热水器和水温控制方法。
背景技术
电热水器使用方便舒适,与太阳能热水器等其他类热水器相比售价较低而得到广泛使用。通常,电热水器带有较大的储水箱积存热量,造成电热水器体积较大,需要较大的安装空间。为了提高洗浴舒适度,达到恒温效果,通常电热水器会利用恒温阀调节出水管的冷热水开度,这种方式虽然能达到一定的恒温效果,但水箱或水管内的水会产生局部温度过高或干烧现象,不仅恒温效果较差,而且浪费电能,有时还会对热水器的一些部件造成损害。
申请内容
为解决上述技术问题,本申请实施例提供了一种相变电热水器和水温控制方法。
为达到上述目的,本申请实施例的技术方案是这样实现的:
根据本申请第一方面实施例的相变电热水器,所述相变电热水器包括:循环管路和用于蓄热的相变材料;内胆,所述内胆内设有容置空间,所述相变材料和与所述相变材料接触的部分所述循环管路设置在所述容置空间内。
进一步地,所述相变电热水器还包括:进水管,所述进水管通过所述循环管路的进水端连接于设置在所述相变材料内部的循环管路,出水管,所述出水管通过所述循环管路的出水端连接于设置在所述相变材料内部的循环管路。
进一步地,所述循环管路的进水端或出水端上设置泵和加热器。
进一步地,至少一个加热器的进口与所述泵的出口连接
进一步地,所述循环管路的进水端或出水端上还设置有测量所述循环管路中水流量的第一流量传感器。
进一步地,所述循环管路的进水端或出水端上还设置有测量所述循环管路中水温度的第一温度传感器。
进一步地,所述第一流量传感器或所述第一温度传感器设置在所述加热器的出水口与相变材料之间的连接管段上。
进一步地,所述循环管路上还设置有设有测量所述相变材料温度的第二温度传感器。
进一步地,所述进水管上设有测量所述进水管内进水流量的第二流量传感器。
进一步地,所述出水管通过一个恒温阀连接于所述循环管路的出水端,所述出水管的一端与所述恒温阀连通,所述出水管的另一端作为出水口。
进一步地,所述循环管路上还包括:第一支管、三通阀和第二支管,所述三通阀的第一端通过所述第一支管与所述循环管路的出水端连通,所述三通阀的第二端通过所述第二支管与所述进水管连通,所述三通阀的第三端与所述出水管连通;或者,所述三通阀连接所述循环管路的进水端和出水端,所述出水管的一端与所述三通阀连通,另一端作为出水口。
进一步地,所述出水管上还设有测量所述出水管内出水温度的第三温度传感器。
进一步地,所述相变电热水器还包括设置在所述循环管路上的单向阀,所述单向阀连接所述循环管路的出水端和进水端。
进一步地,所述相变电热水器还包括能够限定最高加热温度的限温器,所述限温器设置在所述加热器上。
进一步地,所述相变电热水器还包括:单向安全阀,所述单向安全阀设置在所述进水管上,所述单向安全阀与所述第二流量传感器间隔设置,且位于所述第二流量传感器的上游。
根据本申请第二方面实施例的相变电热水器,所述相变电热水器包括:循环管路和用于蓄热的相变材料;所述循环管路的至少一侧贴设于所述相变材料,所述循环管路的进水端或出水端依次设有泵、加热器、分别测量所述加热器的出口水流量和水温度的第一流量传感器和第一温度传感器;所述加热器的进口与所述泵的出口连接;所述循环管路的出水端设有测量所述相变材料温度的第二温度传感器;所述循环管路的进水端还设有进水管,所述进水管上设有测量所述进水管内进水流量的第二流量传感器;所述循环管路上还设有三通阀和出水管,所述三通阀的第一端通过第一支管与所述循环管路的出水端连通,所述 三通阀的第二端通过第二支管与所述进水管连通,所述三通阀的第三端与所述出水管连通;或者,所述三通阀连接所述循环管路的进水端和出水端,所述出水管的一端与所述三通阀连通,另一端作为出水口;所述出水管上还设有测量所述出水管内出水温度的第三温度传感器。
根据本申请第二方面实施例的水温控制方法,用于第一方面实施例或第二方面实施例所述的相变电热水器,所述水温控制方法包括:关闭进水管,开启所述泵,并启动所述加热器;所述泵驱动所述循环管路内的水流动,所述水流进所述加热器,所述加热器对所进入的水进行加热后,加热后的水由流入所述设置在所述相变材料中的部分循环管路内,所述相变材料与所述循环管路中的加热后的水进行热交换;停止所述泵,且所述加热器停止工作。
进一步地,所述方法还包括:检测所述相变材料温度,当所述相变材料的温度低于第一温度阈值时,开启所述泵,并启动加热器加热。
进一步地,所述水温控制方法还包括:打开进水管及出水管,检测所述出水管的出水温度,当所述出水管的出水温度与第二温度阈值的差值超过预设范围时,调节所述三通阀与所述循环管路的出水端连通的热端的开度和所述三通阀与所述循环管路的进水端连通的冷端的开度,并在所述第三温度传感器测量所述出水管的出水温度与第二温度阈值的差值在预设范围内时,控制所述出水管出水。
进一步地,所述水温控制方法还包括:开启所述泵后,所述泵驱动水向所述加热器方向流动时,所述第一流量传感器测量所述加热器的出口水流量低于设定阈值时,所述泵停止驱动。
进一步地,所述水温控制方法还包括:开启所述进水管,水由所述进水管第一次流向所述循环管路内时,关闭所述三通阀与所述循环管路的进水端连通的冷端。
进一步地,所述水温控制方法还包括:所述进水管关闭时,检测所述所述加热器出口水温度,当所述加热器出水温度达到第三温度阈值时,所述泵停止驱动,且所述加热器停止工作。
进一步地,所述水温控制方法还包括:开启所述进水管,水由所述进水管经所述循环管路的进水端流进所述加热器,当所述加热器出口水温度小于第四温度阈值时,启动所述加热器;所述加热器对所进入的水进行加热,检测所述加热器出口水温度,当所述加热器出口水温度达到第四温度阈值时,所述加热器停止工作。
进一步地,所述水温控制方法还包括:打开进水管及出水管,检测所述出水管的出水温度,当所述出水管的出水温度与第二温度阈值的差值超过预设范围时,调节所述恒温阀,使所述出水管的出水温度与第二温度阈值的差值在预设范围内,控制所述出水管出水。
本申请实施例提供了一种相变电热水器和水温控制方法,相变材料能够储存热量,当循环管路内的水温较低时,循环管路内的水会置换相变材料存储的热量,避免使用储水箱储存热量,减小了电热水器的体积。第一温度传感器用于测量加热器出口水温度,第二温度传感器用于测量相变材料的温度,第三温度传感器用于测量出水管的出水温度,既避免了局部水温度过热,又保证了出水温度的恒定,提高了恒温效果。第一流量传感器用于检测加热器出口的水流量,避免了泵空转或堵转。
附图说明
图1为本申请实施例的相变电热水器的一个可选的结构示意图;
图2为本申请实施例的相变电热水器的另一个可选的结构示意图;
图3为本申请实施例的相变电热水器的另一个可选的结构示意图;
附图标记:内胆100;容置空间110;相变材料120;循环管路130;循环管路的进水端131;循环管路的出水端132;第二温度传感器140;出水管150;出水口151;第三温度传感器152;恒温阀153;进水管160;进水口161;第二流量传感器162;单向安全阀163;单向阀170;泵180;加热器190;限温器191;第一流量传感器192;第一温度传感器193。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例的附图,对本申请实施例的技术方案进行清除、完整地描述。显然,所描述的实施例是本申请的一部分实施例,而不是全部实施例。基于所描述的本申请的实施例,本领域技术人员所获得的所有其他实施例,都属于本申请保护范围。
在本申请的描述中,需要理解的是,术语“上”、“下”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或者位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或隐含只能所指示的技术特征的数量。术语“上游”、“下游”是以水流动的方向为参考。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等应做广义理解。例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接,可以是直接连接,也可以通过中间媒介间接连接,可以是两个元件内部的连通。对于本领域的技术人员而言,可以根据情况理解上述术语在本申 请中的具体含义。
本申请第一方面实施例提供了一种相变电热水器,参见图1-图3所示的本申请实施例相变电热水器的可选的结构示意图进行说明。
如图1-图3所示,本申请实施例的相变电热水器包括:循环管路130和用于蓄热的相变材料120。
内胆100,内胆100内设有容置空间110,相变材料120和与相变材料120接触的部分循环管路130设置在容置空间110内。
内胆100用于安装相变材料120,并起到保温效果,减少了相变材料120热量的散失。
如图1-图3所示根据本申请的一个可选的实现方式,所述相变电热水器还包括:进水管160,进水管160通过循环管路130的进水端131连接于设置在相变材料120内部的循环管路130,出水管150,出水管150通过循环管路130的出水端132连接于设置在相变材料120内部的循环管路130。
如图1-图3所示根据本申请的一个可选的实现方式,循环管路130的进水端131或出水端132上设置泵180和加热器190。
如图1-图3所示根据本申请的一个可选的实现方式,至少一个加热器190的进口与泵180的出口连接。
如图1-图3所示根据本申请的一个可选的实现方式,循环管路130的进水端131或出水端132上还设置有测量循环管路130中水流量的第一流量传感器192。
如图1-图3所示根据本申请的一个可选的实现方式,循环管路130的进水端131或出水端132上还设置有测量循环管路130中水温度的第一温度传感器193。
如图1-图3所示根据本申请的一个可选的实现方式,第一流量传感器192或第一温度传感器193设置在加热器190的出水口与相变材料120之间的连接管段上。
如图1-图3所示根据本申请的一个可选的实现方式,循环管路130上还设置有设有测量相变材料120温度的第二温度传感器140。
如图1-图3所示根据本申请的一个可选的实现方式,进水管160上设有测量进水管160内进水流量的第二流量传感器162。
如图1-图3所示根据本申请的一个可选的实现方式,出水管150通过一个恒温阀153连接于循环管路130的出水端132,出水管150的一端与恒温阀153连通,出水管150的另一端作为出水口。
如图1-图3所示根据本申请的一个可选的实现方式,循环管路130上还包括:第一支管、三通阀和第二支管,三通阀的第一端通过第一支管与循环管路130的出水端132连通,三通阀的第二端通过第二支管与进水管160连通,三通阀的第三端与出水管150连通;或 者,三通阀连接循环管路130的进水端131和出水端132,出水管150的一端与三通阀连通,另一端作为出水口。
如图1-图3所示根据本申请的一个可选的实现方式,出水管150上还设有测量出水管150内出水温度的第三温度传感器152。
如图1所示根据本申请的一个可选的实现方式,相变电热水器还包括设置在循环管路130上的单向阀170,单向阀170连接循环管路130的出水端132和进水端131。
如图1-图3所示根据本申请的一个可选的实现方式,相变电热水器还包括能够限定最高加热温度的限温器191,限温器191设置在加热器190上。
如图1-图3所示根据本申请的一个可选的实现方式,相变电热水器还包括:单向安全阀163,单向安全阀163设置在进水管160上,单向安全阀163与第二流量传感器162间隔设置,且位于第二流量传感器162的上游。图1-图3示例性示出了进水管160上设置的单向安全阀163,单向安全阀163避免了循环管路130中的水倒流至进水口161。
本实施例中,相变材料120用于储存或释放热量,具体地,相变材料120可以通过与循环管路130内的被加热过的水进行换热,将循环管路130内的水的热量进行储存。相变材料120还可以通过将其储存的热量释放给循环管路130内的水,以便出水管150的热水满足供应需求。进水管160的一端与循环管路130相连,另一端作为进水口161,进水口161可以与相变电热水器外部的水源装置连接,如进水口161可与用户的自来水管连接,出水管150的一端与三通阀相连,另一端作为出水口151,出水口151可以与浴室的花洒连接。通过第一温度传感器193和第二温度传感器140分别监控加热器190出口的水温度和相变材料120温度,避免了局部水温过热或干烧现象,有效保证了出水温度的恒定。
可以理解的是,为了提高换热效率,增加循环管路130与相变材料120的接触面积,与相变材料120接触的部分循环管路130可以呈螺旋或蛇形设置,与相变材料120接触的部分循环管路130可以是并联设置,也可以串联设置。图1示例性地示出了与相变材料120接触的部分循环管路130呈蛇形设置,其中水在循环管路130内的循环流动方向为逆时针方向。三通阀的第一端(即图1-图3中三通阀的左端)为热端,三通阀的第二端(即图1-图3中三通阀的右端)为冷端,三通阀的第三端(即图1-图3中三通阀的下端)为出口端,通过调节三通阀冷端和热端的开度能够调节出口端的水温度,提高了出水温度的恒温效果。具体地,三通阀可以为恒温阀153。
本申请第二方面实施例提供了一种相变电热水器,参见图1-图3所示的本申请实施例相变电热水器的可选的结构示意图进行说明。
如图1-图3所示,本申请实施例的相变电热水器包括:循环管路130和用于蓄热的相变材料120。
其中,循环管路130的至少一侧贴设于相变材料120,循环管路的进水端131依次设有泵180、加热器190、分别测量加热器190的出口水流量和水温度的第一流量传感器192和第一温度传感器193(如图1、图2所示),或者,循环管路的出水端132依次设有泵180、加热器190、分别测量加热器190的出口水流量和水温度的第一流量传感器192和第一温度传感器193(如图3所示);加热器190的进口与泵180的出口连接;循环管路的出水端132设有测量相变材料120温度的第二温度传感器140;循环管路的进水端131还设有进水管160,进水管160上设有测量进水管160内进水流量的第二流量传感器162;循环管路的出水端132还设有第一支管、三通阀、出水管150和第二支管,三通阀的第一端通过第一支管与循环管路的出水端132连通,三通阀的第二端通过第二支管与进水管160连通,三通阀的第三端与出水管150连通(如图1所示),或者,循环管路上还设有三通阀和出水管150,三通阀连接循环管路的进水端131和出水端132,出水管150的一端与三通阀连通,另一端作为出水口(如图2、图3所示);出水管150上还设有测量出水管150内出水温度的第三温度传感器152。
本实施例中,相变材料120用于储存或释放热量,具体地,相变材料120可以通过与循环管路130内的被加热过的水进行换热,将循环管路130内的水的热量进行储存。相变材料120还可以通过将其储存的热量释放给循环管路130内的水,以便出水管150的热水满足供应需求。进水管160的一端与循环管路130相连,另一端作为进水口161,进水口161可以与相变电热水器外部的水源装置连接,如进水口161可与用户的自来水管连接,出水管150的一端与三通阀相连,另一端作为出水口151,出水口151可以与浴室的花洒连接。通过第一温度传感器193和第二温度传感器140分别监控加热器190出口的水温度和相变材料120温度,避免了局部水温过热或干烧现象,有效保证了出水温度的恒定。
可以理解的是,为了提高换热效率,增加循环管路130与相变材料120的接触面积,与相变材料120接触的部分循环管路130可以呈螺旋或蛇形设置,与相变材料120接触的部分循环管路130可以是并联设置,也可以串联设置。图1示例性地示出了与相变材料120接触的部分循环管路130呈蛇形设置,其中水在循环管路130内的循环流动方向为逆时针方向。三通阀的第一端(即图1-图3中三通阀的左端)为热端,三通阀的第二端(即图1-图3中三通阀的右端)为冷端,三通阀的第三端(即图1-图3中三通阀的下端)为出口端,通过调节三通阀冷端和热端的开度能够调节出口端的水温度,提高了出水温度的恒温效果。具体地,三通阀可以为恒温阀153。
如图1所示,在本申请的一个可选的实现方式中,相变电热水器还包括设置在循环管路130上的单向阀170,单向阀170连接循环管路的出水端132和进水端。单向阀170只允许水自循环管路的出水端132流向循环管路的进水端131,而不能逆向流动,保证了冷 水进入循环管路130后向加热器190方向流动。
如图1-图3所示根据本申请的一个可选的实现方式,相变电热水器还包括能够限定最高加热温度的限温器191,限温器191设置在加热器190上。在加热器190上设置限温器191,可以防止加热过程中水的温度过高而汽化,避免了水温过热,提高了恒温效果。
如图1-图3所示根据本申请的另一个可选的实现方式,相变电热水器还包括单向安全阀163,单向安全阀163设置在进水管160上,单向安全阀163与第二流量传感器162间隔设置,且位于第二流量传感器162的上游。图1-图3示例性示出了进水管160上设置的单向安全阀163,单向安全阀163避免了循环管路130中的水倒流至进水口161。
如图1-图3所示在本申请的一个可选的实现方式中,相变电热水器还包括内胆100,内胆100内设有容置空间110,相变材料120和与相变材料120接触的部分循环管路130设置在容置空间110内。
内胆100用于安装相变材料120,并起到保温效果,减少了相变材料120热量的散失。
根据本申请第四方面实施例的水温控制方法,用于上述实施例的相变电热水器,水温控制方法包括:关闭进水管160,开启泵180,并启动加热器190;泵180驱动循环管路130内的水流动,水流进加热器190,加热器190对所进入的水进行加热后,加热后的水由流入设置在相变材料120中的部分循环管路130内,相变材料120与循环管路130中的加热后的水进行热交换;停止泵180,且加热器190停止工作。
在本申请水温控制方法的一个可选的实现方式中,水温控制方法还包括:检测相变材料120温度,当相变材料120的温度低于第一温度阈值时,开启泵180,并启动加热190加热。
在本申请水温控制方法的一个可选的实现方式中,水温控制方法还包括:检测相变材料120温度,当相变材料120的温度低于第二温度阈值时,关闭泵180,并停止加热器190加热。
在本申请水温控制方法的一个可选的实现方式中,所述水温控制方法还包括:打开进水管160及出水管150,检测出水管150的出水温度,当出水管150的出水温度与第二温度阈值的差值超过预设范围时,调节三通阀与循环管路130的出水端132连通的热端的开度和三通阀与循环管路130的进水端131连通的冷端的开度,并在第三温度传感器152测量出水管150的出水温度与第二温度阈值的差值在预设范围内时,控制出水管150出水。
在本申请水温控制方法的一个可选的实现方式中,水温控制方法还包括:开启泵180后,泵180驱动水向加热器190方向流动时,第一流量传感器192测量加热器190的出口水流量低于设定阈值时,泵180停止驱动。
在本申请水温控制方法的一个可选的实现方式中,水温控制方法还包括:开启进水管 160,水由进水管160第一次流向循环管路130内时,关闭三通阀与循环管路130的进水端连通的冷端。
在本申请水温控制方法的一个可选的实现方式中,水温控制方法还包括:进水管160关闭时,检测所述加热器190出口水温度,当加热器190出水温度达到第三温度阈值时,泵180停止驱动,且加热器190停止工作。
在本申请水温控制方法的一个可选的实现方式中,水温控制方法还包括:开启进水管160,水由进水管160经循环管路130的进水端131流进加热器190,当加热器190出口水温度小于第四温度阈值时,启动加热器190;加热器190对所进入的水进行加热,检测加热器190出口水温度,当加热器190出口水温度达到第四温度阈值时,加热器190停止工作。
在本申请水温控制方法的一个可选的实现方式中,水温控制方法还包括:打开进水管160及出水管150,检测出水管150的出水温度,当出水管150的出水温度与第二温度阈值的差值超过预设范围时,调节恒温阀153,使出水管150的出水温度与第二温度阈值的差值在预设范围内,控制出水管150出水。
根据本申请第四方面实施例的水温控制方法,用于上述实施例的相变电热水器,水温控制方法包括:进水管160关闭时,第二温度传感器140测量相变材料120的温度低于第一温度阈值时,开启泵180,并启动加热器190;使泵180驱动循环管路130内的水经循环管路的出水端132向进水端方向流动,水流进加热器190,加热器190对所进入的水进行加热后,加热后的水由循环管路的进水端131再次流入循环管路130内,相变材料120与循环管路130中的加热后的水进行热交换;第二温度传感器140测量相变材料120的温度达到第一温度阈值时,泵180停止驱动,且加热器190停止工作。
本实施例中,进水管160关闭时,第二温度传感器140测量相变材料120的温度低于第一温度阈值时,开启泵180。泵180可以在相变材料120的温度小于第一温度阈值一定温度范围后,再启动,如相变材料120的温度小于第一温度阈值-5℃时,启动泵180。相变材料120的温度可以是相变材料120自身的温度,也可以是与相变材料120接触的部分循环管路130内的水温度。第一温度传感器193时刻测量加热器190出口水温度,第一温度传感器193测量加热器190出口水温度小于第三温度阈值时,如当第一温度传感器193测量加热器190的出口水温度小于88℃、90℃、91℃、93℃、95℃或98℃时,在第一预设时间内启动加热器190,如在6s、10s、12s或15s内启动加热器190。泵180驱动循环管路130内的水经循环管路的出水端132向进水端方向流动,水流进加热器190,加热器190对所进入的水进行加热后,加热后的水由循环管路的进水端131再次流入循环管路130内,相变材料120与循环管路130中的加热后的水进行热交换;第二温度传感器140测量相变 材料120的温度达到第一温度阈值时,泵180停止驱动,且加热器190停止工作。具体地,当相变材料120的温度等于或大于第一温度阈值时,加热器190停止工作,如切断加热器190的电源,泵180继续工作第二预设时间后停止,第二预设时间可以为20s、30s、40s或45s。以上控制模式是进水管160关闭时,即第二流量传感器162检测到进水管160的进水流量为0时,相变电热水器的工作模式。
当进水管160开启,即进水管160内有水流量时,泵180不工作,相变电热水器的工作模式为:第一流量传感器192测量加热器190出口水流量大于预设流量,且第一温度传感器193测量加热器190出口水温度大于第四温度阈值时,如第一流量传感器192测量加热器190出口水流量大于2L/MIN、3L/MIN或5L/MIN,且第一温度传感器193测量加热器190出口水温度大于88℃、90℃、91℃、93℃、95℃或98℃时,启动加热器190,否则,加热器190不加热。第四温度阈值可以与第一温度阈值相等。
在本申请水温控制方法的一个可选的实现方式中,水温控制方法还包括:第三温度传感器152测量出水管150的出水温度与第二温度阈值的差值超过预设范围时,调节三通阀与循环管路的出水端132连通的热端的开度和三通阀与循环管路的进水端131连通的冷端的开度,并在第三温度传感器152测量出水管150的出水温度与第二温度阈值的差值在预设范围内时,控制出水管150出水。
具体地,第三温度传感器152可以设置在出水管150与三通阀相连的一端,即第三温度传感器152测量的出水管150温度即指三通阀出口端的水温度。三通阀可以与电机相连,三通阀可以通过电机控制其冷端和热端的开度。三通阀出水温度与第四温度阈值的差值的预设范围可以设为0~2℃、0~3℃、0~4℃或0~5℃。以0~2℃为例:当出水管150的出水温度,如三通阀的出口端水温度大于第四预设温度2℃以上时,三通阀通过电机减小热端开度,增加冷端开度。当三通阀170的出口端水温度小于第四预设温度2℃以上时,三通阀通过电机增大热端开度,减小冷端开度,通过不断的测量和调节,直至三通阀的出口端水温度与第四温度阈值之差在2℃以内,控制出水管150出水。
在本申请水温控制方法的一个可选的实现方式中,水温控制方法还包括:开启泵180后,泵180驱动水向加热器190方向流动时,第一流量传感器192测量加热器190的出口水流量低于设定阈值时,泵180停止驱动。
例如,开启泵180后,泵180驱动水向加热器190方向流动时,第一流量传感器192测量加热器190的出口水流量为0L/MIN,或低于0.1L/MIN或0.5L/MIN时,泵180停止驱动。若第一流量传感器192测量加热器190的出口水流量不为0L/MIN,或不低于0.1L/MIN或0.5L/MIN时,泵180继续工作。
在本申请水温控制方法的一个可选的实现方式中,水温控制方法还包括:开启进水管 160,水由进水管160第一次流向循环管路130内时,关闭三通阀与循环管路的进水端131连通的冷端。可以理解的是,相变电热水器在第一次使用时,需要先上水,保证循环管路130内有水。
在本申请水温控制方法的一个可选的实现方式中,水温控制方法还包括:进水管160关闭时,第一温度传感器193测量加热器190出口水温度达到第三温度阈值时,泵180停止驱动,且加热器190停止工作。
在本申请水温控制方法的一个可选的实现方式中,水温控制方法还包括:开启进水管160,水由进水管160经循环管路的进水端131流进加热器190,第一温度传感器193测量加热器190出口水温度小于第四温度阈值时,启动加热器190;加热器190对所进入的水进行加热,第一温度传感器193测量加热器190出口水温度达到第四温度阈值时,加热器190停止工作。
根据本申请实施例的相变电热水器的其他结构和操作对于本领域技术人员而言都是可以理解并且容易实现的,因此不再详细描述。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。

Claims (25)

  1. 一种相变电热水器,其特征在于,所述相变电热水器包括:
    循环管路和用于蓄热的相变材料;
    内胆,所述内胆内设有容置空间,所述相变材料和与所述相变材料接触的部分所述循环管路设置在所述容置空间内。
  2. 根据权利要求1所述的相变电热水器,其特征在于,所述相变电热水器还包括:
    进水管,所述进水管通过所述循环管路的进水端连接于设置在所述相变材料内部的循环管路,出水管,所述出水管通过所述循环管路的出水端连接于设置在所述相变材料内部的循环管路。
  3. 根据权利要求1所述的相变电热水器,其特征在于,所述循环管路的进水端或出水端上设置泵和加热器。
  4. 根据权利要求1所述的相变电热水器,其特征在于,至少一个加热器的进口与所述泵的出口连接。
  5. 根据权利要求1所述的相变电热水器,其特征在于,所述循环管路的进水端或出水端上还设置有测量所述循环管路中水流量的第一流量传感器。
  6. 根据权利要求1所述的相变电热水器,其特征在于,所述循环管路的进水端或出水端上还设置有测量所述循环管路中水温度的第一温度传感器。
  7. 根据权利要求4、5所述的相变电热水器,其特征在于,所述第一流量传感器或所述第一温度传感器设置在所述加热器的出水口与相变材料之间的连接管段上。
  8. 根据权利要求1所述的相变电热水器,其特征在于,所述循环管路上还设置有设有测量所述相变材料温度的第二温度传感器。
  9. 根据权利要求2所述的相变电热水器,其特征在于,所述进水管上设有测量所述进水管内进水流量的第二流量传感器。
  10. 根据权利要求2所述的相变电热水器,其特征在于,所述出水管通过一个恒温阀连接于所述循环管路的出水端,所述出水管的一端与所述恒温阀连通,所述出水管的另一端作为出水口。
  11. 根据权利要求2所述的相变电热水器,其特征在于,所述循环管路上还包括:第一支管、三通阀和第二支管,所述三通阀的第一端通过所述第一支管与所述循环管路的出水端连通,所述三通阀的第二端通过所述第二支管与所述进水管连通,所述三通阀的第三端与所述出水管连通;或者,所述三通阀连接所述循环管路的进水端和出水端,所述出水管的一端与所述三通阀连通,另一端作为出水口。
  12. 根据权利要求2所述的相变电热水器,其特征在于,所述出水管上还设有测量所 述出水管内出水温度的第三温度传感器。
  13. 根据权利要求1所述的相变电热水器,其特征在于,所述相变电热水器还包括设置在所述循环管路上的单向阀,所述单向阀连接所述循环管路的出水端和进水端。
  14. 根据权利要求1所述的相变电热水器,其特征在于,所述相变电热水器还包括能够限定最高加热温度的限温器,所述限温器设置在所述加热器上。
  15. 根据权利要求1所述的相变电热水器,其特征在于,所述相变电热水器还包括:单向安全阀,所述单向安全阀设置在所述进水管上,所述单向安全阀与所述第二流量传感器间隔设置,且位于所述第二流量传感器的上游。
  16. 一种相变电热水器,其特征在于,所述相变电热水器包括:循环管路和用于蓄热的相变材料;
    所述循环管路的至少一侧贴设于所述相变材料,所述循环管路的进水端或出水端依次设有泵、加热器、分别测量所述加热器的出口水流量和水温度的第一流量传感器和第一温度传感器;所述加热器的进口与所述泵的出口连接;所述循环管路的出水端设有测量所述相变材料温度的第二温度传感器;
    所述循环管路的进水端还设有进水管,所述进水管上设有测量所述进水管内进水流量的第二流量传感器;
    所述循环管路上还设有三通阀和出水管,所述三通阀的第一端通过第一支管与所述循环管路的出水端连通,所述三通阀的第二端通过第二支管与所述进水管连通,所述三通阀的第三端与所述出水管连通;
    或者,所述三通阀连接所述循环管路的进水端和出水端,所述出水管的一端与所述三通阀连通,另一端作为出水口;所述出水管上还设有测量所述出水管内出水温度的第三温度传感器。
  17. 一种水温控制方法,其特征在于,用于权利要求1至16任一项所述相变电热水器,所述水温控制方法包括:
    关闭进水管,开启所述泵,并启动所述加热器;
    所述泵驱动所述循环管路内的水流动,所述水流进所述加热器,所述加热器对所进入的水进行加热后,加热后的水由流入所述设置在所述相变材料中的部分循环管路内,所述相变材料与所述循环管路中的加热后的水进行热交换;
    停止所述泵,且所述加热器停止工作。
  18. 根据权利要求17所述的水温控制方法,其特征在于,所述方法还包括:
    检测所述相变材料温度,当所述相变材料的温度低于第一温度阈值时,开启所述泵,并启动加热器加热。
  19. 根据权利要求17所述的水温控制方法,其特征在于,所述方法还包括:
    检测所述相变材料温度,当所述相变材料的温度低于第二温度阈值时,关闭所述泵,并停止所述加热器加热。
  20. 根据权利要求17所述的水温控制方法,其特征在于,所述水温控制方法还包括:打开进水管及出水管,检测所述出水管的出水温度,当所述出水管的出水温度与第二温度阈值的差值超过预设范围时,调节所述三通阀与所述循环管路的出水端连通的热端的开度和所述三通阀与所述循环管路的进水端连通的冷端的开度,并在所述第三温度传感器测量所述出水管的出水温度与第二温度阈值的差值在预设范围内时,控制所述出水管出水。
  21. 根据权利要求17所述的水温控制方法,其特征在于,所述水温控制方法还包括:开启所述泵后,所述泵驱动水向所述加热器方向流动时,
    所述第一流量传感器测量所述加热器的出口水流量低于设定阈值时,所述泵停止驱动。
  22. 根据权利要求17所述的水温控制方法,其特征在于,所述水温控制方法还包括:开启所述进水管,水由所述进水管第一次流向所述循环管路内时,关闭所述三通阀与所述循环管路的进水端连通的冷端。
  23. 根据权利要求17所述的水温控制方法,其特征在于,所述水温控制方法还包括:
    所述进水管关闭时,检测所述所述加热器出口水温度,当所述加热器出水温度达到第三温度阈值时,所述泵停止驱动,且所述加热器停止工作。
  24. 根据权利要求17所述的水温控制方法,其特征在于,所述水温控制方法还包括:
    开启所述进水管,水由所述进水管经所述循环管路的进水端流进所述加热器,当所述加热器出口水温度小于第四温度阈值时,启动所述加热器;
    所述加热器对所进入的水进行加热,检测所述加热器出口水温度,当所述加热器出口水温度达到第四温度阈值时,所述加热器停止工作。
  25. 根据权利要求17所述的水温控制方法,其特征在于,所述水温控制方法还包括:打开进水管及出水管,检测所述出水管的出水温度,当所述出水管的出水温度与第二温度阈值的差值超过预设范围时,调节所述恒温阀,使所述出水管的出水温度与第二温度阈值的差值在预设范围内,控制所述出水管出水。
PCT/CN2019/079952 2018-03-27 2019-03-27 一种相变电热水器和水温控制方法 WO2019184961A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19776346.9A EP3757478B1 (en) 2018-03-27 2019-03-27 Phase-change electric water heater and water temperature control method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201810259828.7 2018-03-27
CN201810260304.X 2018-03-27
CN201810259828.7A CN108489099A (zh) 2018-03-27 2018-03-27 一种相变电热水器和水温控制方法
CN201820424639.6U CN208312701U (zh) 2018-03-27 2018-03-27 一种相变电热水器
CN201820424736.5 2018-03-27
CN201810260304.XA CN108278778A (zh) 2018-03-27 2018-03-27 一种相变电热水器和水温控制方法
CN201820424639.6 2018-03-27
CN201820424736.5U CN208312702U (zh) 2018-03-27 2018-03-27 一种相变电热水器

Publications (1)

Publication Number Publication Date
WO2019184961A1 true WO2019184961A1 (zh) 2019-10-03

Family

ID=68060890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079952 WO2019184961A1 (zh) 2018-03-27 2019-03-27 一种相变电热水器和水温控制方法

Country Status (2)

Country Link
EP (1) EP3757478B1 (zh)
WO (1) WO2019184961A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654308A (zh) * 2012-05-10 2012-09-05 江苏启能新能源材料有限公司 一种相变储热式电热水器
CN202581799U (zh) * 2012-05-10 2012-12-05 江苏启能新能源材料有限公司 一种相变储热式电热水器
CN104976765A (zh) * 2015-07-31 2015-10-14 江苏启能新能源材料有限公司 一种相变储热式电热水器
CN205137918U (zh) * 2015-10-22 2016-04-06 江苏启能新能源材料有限公司 一种相变储热式电热水器
CN205717913U (zh) * 2016-04-25 2016-11-23 芜湖美的厨卫电器制造有限公司 相变蓄热式热水器
CN106196604A (zh) * 2016-07-28 2016-12-07 芜湖美的厨卫电器制造有限公司 相变储热式热水器及其控制方法
CN108278778A (zh) * 2018-03-27 2018-07-13 芜湖美的厨卫电器制造有限公司 一种相变电热水器和水温控制方法
CN108489099A (zh) * 2018-03-27 2018-09-04 芜湖美的厨卫电器制造有限公司 一种相变电热水器和水温控制方法
CN208312700U (zh) * 2018-03-27 2019-01-01 芜湖美的厨卫电器制造有限公司 一种相变电热水器
CN208312702U (zh) * 2018-03-27 2019-01-01 芜湖美的厨卫电器制造有限公司 一种相变电热水器
CN208312701U (zh) * 2018-03-27 2019-01-01 芜湖美的厨卫电器制造有限公司 一种相变电热水器
CN208382572U (zh) * 2018-01-25 2019-01-15 芜湖美的厨卫电器制造有限公司 相变储热式热水器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101737843A (zh) * 2008-11-21 2010-06-16 刘军 相变储热罐

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654308A (zh) * 2012-05-10 2012-09-05 江苏启能新能源材料有限公司 一种相变储热式电热水器
CN202581799U (zh) * 2012-05-10 2012-12-05 江苏启能新能源材料有限公司 一种相变储热式电热水器
CN104976765A (zh) * 2015-07-31 2015-10-14 江苏启能新能源材料有限公司 一种相变储热式电热水器
CN205137918U (zh) * 2015-10-22 2016-04-06 江苏启能新能源材料有限公司 一种相变储热式电热水器
CN205717913U (zh) * 2016-04-25 2016-11-23 芜湖美的厨卫电器制造有限公司 相变蓄热式热水器
CN106196604A (zh) * 2016-07-28 2016-12-07 芜湖美的厨卫电器制造有限公司 相变储热式热水器及其控制方法
CN208382572U (zh) * 2018-01-25 2019-01-15 芜湖美的厨卫电器制造有限公司 相变储热式热水器
CN108278778A (zh) * 2018-03-27 2018-07-13 芜湖美的厨卫电器制造有限公司 一种相变电热水器和水温控制方法
CN108489099A (zh) * 2018-03-27 2018-09-04 芜湖美的厨卫电器制造有限公司 一种相变电热水器和水温控制方法
CN208312700U (zh) * 2018-03-27 2019-01-01 芜湖美的厨卫电器制造有限公司 一种相变电热水器
CN208312702U (zh) * 2018-03-27 2019-01-01 芜湖美的厨卫电器制造有限公司 一种相变电热水器
CN208312701U (zh) * 2018-03-27 2019-01-01 芜湖美的厨卫电器制造有限公司 一种相变电热水器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3757478A4 *

Also Published As

Publication number Publication date
EP3757478A1 (en) 2020-12-30
EP3757478A4 (en) 2021-05-26
EP3757478B1 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
CN108679848B (zh) 一种供热水装置的水流性质判断方法及燃气采暖热水炉
CN109489241B (zh) 燃气热水装置及其控制方法
CN104676902A (zh) 热泵热水器及其控制方法
EP2153136A1 (en) Hot water supplying system
CN207035459U (zh) 一种智能恒温电热水器
CN208312700U (zh) 一种相变电热水器
JP4971838B2 (ja) 給湯装置および給湯暖房装置
JP5462009B2 (ja) 太陽熱給湯システム
CN108278778A (zh) 一种相变电热水器和水温控制方法
CN108895672A (zh) 燃气壁挂炉
JP2014016075A (ja) ハイブリッドシステム
CN202660753U (zh) 用水点恒温装置及带该装置的多点供水恒温热水体
CN108489099A (zh) 一种相变电热水器和水温控制方法
CN110806012B (zh) 零冷水燃气热水器的控制方法及零冷水燃气热水器
CN201184686Y (zh) 一种即热储水式电热水器
CN109869911A (zh) 一种燃气恒温采暖炉
WO2019184961A1 (zh) 一种相变电热水器和水温控制方法
CN208312701U (zh) 一种相变电热水器
CN214949876U (zh) 一种太阳能热水系统恒温控制装置
JP5667856B2 (ja) 給湯機
JP2016191493A (ja) 貯湯式給湯装置
CN212619283U (zh) 即热组件、即冷即热结构及燃气热水器
CN208312702U (zh) 一种相变电热水器
CN203375700U (zh) 热水器
CN103836715B (zh) 一种太阳能燃气复合能源热水系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019776346

Country of ref document: EP

Effective date: 20200925