WO2019184948A1 - 基于毫米波通信的射频系统、发射功率的调整方法及终端 - Google Patents

基于毫米波通信的射频系统、发射功率的调整方法及终端 Download PDF

Info

Publication number
WO2019184948A1
WO2019184948A1 PCT/CN2019/079853 CN2019079853W WO2019184948A1 WO 2019184948 A1 WO2019184948 A1 WO 2019184948A1 CN 2019079853 W CN2019079853 W CN 2019079853W WO 2019184948 A1 WO2019184948 A1 WO 2019184948A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
power
radio frequency
antenna array
power amplifier
Prior art date
Application number
PCT/CN2019/079853
Other languages
English (en)
French (fr)
Inventor
王坤
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP19777666.9A priority Critical patent/EP3780398A4/en
Publication of WO2019184948A1 publication Critical patent/WO2019184948A1/zh
Priority to US17/037,171 priority patent/US20210014801A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0483Transmitters with multiple parallel paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/045Circuits with power amplifiers with means for improving efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a radio frequency system based on millimeter wave communication, a method for adjusting transmit power, and a terminal.
  • uplink signals are mostly single-carrier frequency-division multiple access (Single-carrier Frequency-Division Multiple Access, SC-FDMA) technology generation.
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • the uplink (UL) modulation method corresponding to the uplink signal in order to improve the processing efficiency of the signal, generally adopts Orthogonal Frequency Division Multiplexing (OFDM).
  • OFDM Orthogonal Frequency Division Multiplexing
  • the peaks of the uplink signals generated by the orthogonal frequency division multiplexing technology are relatively high, and the peak-to-average ratio of the uplink signals can be as high as 8 dB to 12 dB, and the peak-to-average ratio of the uplink signals in the uplink signal is improved by at least the peak-to-average ratio of the uplink signals in the 4G network. 3dB.
  • the maximum transmission power of the power amplifier of the terminal device in order to satisfy the coverage, the maximum transmission power of the power amplifier of the terminal device must be correspondingly increased, so that the power consumption of the terminal device is naturally greatly increased, and the standby time is obviously decreased;
  • the power amplifier of the terminal device In order to maintain the quality of the transmitted signal, the power amplifier of the terminal device must work in the state of power back-off, and the power back-off will bring about a decrease in efficiency. Therefore, under the premise of ensuring the signal quality, it is necessary to improve as much as possible.
  • the efficiency of the power amplifier, and how to improve the transmission efficiency of the terminal device, while controlling the power consumption of the terminal device becomes a key technology of the wireless communication network.
  • the embodiment of the present application provides a radio frequency system based on millimeter wave communication, a method and a terminal for adjusting a transmission power, so as to solve the problem of ensuring the signal quality in the related art, the efficiency of the power amplifier needs to be improved as much as possible, and the terminal is controlled at the same time.
  • the problem of power consumption of the device is not limited.
  • an embodiment of the present application provides a radio frequency system based on millimeter wave communication, where the radio frequency system includes a Doherty power amplifier unit, an antenna array unit, and a micro control unit MCU, where:
  • An output end of the Doherty power amplifier unit is connected to an input end of the antenna array unit, and a control end of the Doherty power amplifier unit and a control end of the antenna array unit are respectively connected to the MCU, where the MCU control center The radiation direction of the antenna in the antenna array unit;
  • the Doherty power amplifier unit is composed of two power amplifiers, the saturation powers of the two power amplifiers are not equal, and each power amplifier has a switch controller connected in series, and the MCU controls the switch controller in the Doherty power amplifier unit. Turning on and off, controlling the transmit power of the Doherty power amplifier unit.
  • an embodiment of the present application provides a mobile terminal, including the millimeter wave communication based radio frequency system according to the above first aspect.
  • the embodiment of the present application provides a method for adjusting a transmit power, where the method is applied to the mobile terminal provided by the second aspect, where the method includes:
  • the level value corresponding to the downlink signal of the received network side device is increased, and the MCU in the radio frequency system controls the Doherty power amplifier unit in the radio frequency system to reduce the transmission power.
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, the method for adjusting the transmit power provided by the third aspect is implemented. A step of.
  • the radio frequency system includes a Doherty power amplifier unit, an antenna array unit, and a micro control unit MCU, wherein: an output end of the Doherty power amplifier unit and an input end of the antenna array unit are Connected, the control end of the Doherty power amplifier unit and the control end of the antenna array unit are respectively connected to the MCU, the MCU controls the radiation direction of the antenna in the antenna array unit, and the Doherty power amplifier unit is composed of two power amplifiers, and the saturation power of the two power amplifiers Not equal, and each power amplifier is connected in series with a switch controller.
  • the MCU controls the transmit power of the Doherty power amplifier unit by controlling the opening and closing of the switch controller in the Doherty power amplifier unit.
  • the switching controller of the Doherty power amplifier unit is turned on and off to control the transmit power of the Doherty power amplifier unit, so as to improve the efficiency of the power amplifier as much as possible while ensuring the signal quality, and at the same time, by controlling the transmit power of the Doherty power amplifier unit.
  • Control the radio frequency system The system's transmit power consumption can increase the standby time of the mobile terminal.
  • FIG. 1 is a schematic structural view of a radio frequency system based on millimeter wave communication according to the present application
  • FIG. 2 is a schematic structural diagram of another radio frequency system based on millimeter wave communication according to the present application.
  • FIG. 3 is a schematic structural diagram of another radio frequency system based on millimeter wave communication according to the present application.
  • FIG. 4 is a schematic structural diagram of a radio frequency system based on millimeter wave communication according to the present application.
  • FIG. 5 is a schematic structural diagram of a radio frequency system based on millimeter wave communication according to the present application.
  • FIG. 6 is a schematic structural diagram of a radio frequency system based on millimeter wave communication according to the present application.
  • FIG. 8 is a schematic diagram of another method for adjusting transmit power according to the present application.
  • FIG. 9 is a mobile terminal embodiment of the present application.
  • 100-Doherty power amplifier unit 101-two power splitter, 102-switch controller, 1021-first switch controller, 1022-second switch controller, Vcc1-first power supply, Vcc2-second power supply, Z01-Z03 - First quarter-wave impedance line - Third quarter-wave impedance line, 103-main amplifier, 104-peak amplifier, 200-antenna array unit, 201-antenna array, 300-micro control unit MCU, 400 - Network side equipment.
  • the embodiment of the present application provides a radio frequency system based on millimeter wave communication, a method for adjusting transmit power, and a terminal.
  • Millimeter Wave will become an important communication frequency band, and the millimeter wave band has a large amount of available spectrum resources, which can meet the increasing traffic demand of mobile communication.
  • the antenna size of the millimeter wave system can also be small, so that a plurality of antennas can be placed in a small space, which is advantageous for a large-scale antenna array system (Massive MIMO system) ) in real-world applications.
  • Massive MIMO system massive MIMO system
  • the millimeter wave system has the disadvantage of excessive channel path fading
  • the beamforming technique provided by the large-scale antenna can be used to compensate for the shortcoming of the millimeter wave channel path fading, thereby applying the millimeter wave technology to the mobile.
  • the radio frequency front end of the terminal device can be combined with the technical characteristics of the beamforming of the antenna system (ie, the directionality is good, and the array array gain is high), and the antenna array is improved by completing the handshake communication with the base station.
  • the array gain thereby reducing the transmission power of the terminal device, to achieve the purpose of power saving.
  • the embodiment of the present application provides a radio frequency system based on millimeter wave communication. As shown in FIG. 1 , the radio frequency system includes a Doherty power unit 100, an antenna array unit 200, and a micro control unit MCU300, where:
  • the Doherty power amplifier unit 100 may be a power amplifying unit that constitutes a Doherty structure by combining two power amplifiers.
  • the Doherty power amplifier unit 100 may include a main amplifier 103 and a peak amplifier 104 (or auxiliary amplifier).
  • Power amplifiers can be used in a number of different categories, such as Class A amplifiers, Class B amplifiers, and Class AB amplifiers.
  • Class A amplifiers are a complete linear amplification amplifier. When operating in a Class A amplifier, the transistor is positive. The negative channel is normally open regardless of the presence or absence of a signal, and its distortion rate is extremely low.
  • Class B amplifiers are linear amplifiers.
  • Class B amplifiers When Class B amplifiers are in operation, the positive and negative channels of the transistor are normally turned off, unless the positive and negative channels of the transistor are turned on when there is a signal input, that is, only the positive phase channel operates when the positive phase signal is input. The negative phase channel is closed and the two channels do not work at the same time, so there is no power loss in the part without signal.
  • Class AB amplifiers are amplifiers that are compatible with Class A and Class B amplifiers.
  • the positive and negative channels of the transistor When there is no signal or signal, the positive and negative channels of the transistor are normally open. When the signal is a positive phase signal, the negative phase channel is strong before the signal becomes strong. Normally open, the negative channel is turned off after the signal is strong. When the signal is a negative phase signal, the positive and negative channels work just the opposite.
  • the class AB power amplifier is superior to its efficiency ratio and fidelity.
  • the main amplifier 103 can be a class B amplifier or a class AB amplifier, and the peak amplifier (ie, 104 in FIG. 2) can be a class C amplifier.
  • the main amplifier 103 can be always in operation, and the peak amplifier 104 operates only to the set peak value (peak amplifier is also called peak amplifier). Further, the saturation powers of the main amplifier 103 and the peak amplifier 104 are not equal, and the ratio of the saturation power of the main amplifier 103 and the peak amplifier 104 may be 1:2 or 1:3 or the like.
  • the transmission efficiency of the transmission system in the case of deep back-off can be greatly improved, and the transmission power requirements of different levels can be adaptively satisfied, so that the power amplifier can achieve the full power level. Maintain work at higher efficiency.
  • the antenna array unit 200 may include a plurality of antenna elements 201.
  • the antenna array unit 200 may implement beamforming.
  • the beamforming may be performed by adjusting the weighting coefficient of each antenna element 201 in the antenna array.
  • the process of generating a beam with directivity enables a significant array gain to be obtained. Therefore, beamforming technology has great advantages in terms of expanding coverage, improving edge throughput, and suppressing interference.
  • the micro control unit MCU300 may be a component unit that sends a control instruction.
  • the micro control unit MCU300 may be preset with an algorithm for coordinated control between the antenna array unit 200 and the Doherty power amplifier unit 100.
  • the micro control unit MCU300 may send an antenna array unit based on the algorithm. Control instructions of the 200 and/or Doherty power amplifier unit 100 to control the output power of the Doherty power amplifier unit 100 and the radiation direction of the antenna array unit 200.
  • the control end of the Doherty power amplifier unit 100 and the control end of the antenna array unit 200 may be respectively associated with the MCU 300.
  • the output end of the Doherty power amplifier unit 100 is connected to the input end of the antenna array unit 200, so that the micro control unit MCU300 can respectively send corresponding control commands to the Doherty power amplifier unit 100 and the antenna array unit 200 through the control command.
  • the radiation direction of each antenna in the antenna array unit 200 can be controlled, the radiation direction of the antenna array can be controlled, and the array gain of the antenna array unit 200 can be adjusted in combination with the beamforming technology, thereby reducing the transmission power of the radio frequency system and saving power. .
  • the Doherty power amplifier unit 100 may be set as a power amplifier unit composed of a plurality of power amplifiers. Specifically, as shown in FIG. 2, the Doherty power amplifier unit 100 may be configured by two paths.
  • a power amplifier component wherein the power amplifier can be an amplifier capable of generating a maximum power output to drive a certain load under a given distortion rate, and the power amplifier can include a plurality of power amplifiers in the embodiment of the present application.
  • the main amplifier 103 and the peak amplifier 104 may be included.
  • the main amplifier 103 may be a class B amplifier or a class AB amplifier.
  • the peak amplifier 104 may be a class C amplifier or the like.
  • the specific structure of the power amplifier may be set according to actual conditions. This is not limited.
  • the main amplifier 103 in the Doherty power amplifier unit 100 includes a quarter-wavelength impedance line which is an impedance conversion, and is intended to serve the main amplifier 103 when the auxiliary power amplifier operates.
  • the apparent impedance reduction acts to ensure that the active load impedance of the circuit composed of the peak amplifier 104 and the subsequent circuit becomes low, so that the output current of the main amplifier 103 becomes large. Since the main amplifier 103 is connected to a quarter-wave impedance line, in order to make the two power amplifier outputs in phase, a 90° phase shift is also required in front of the peak amplifier.
  • the micro control unit MCU300 can control the output power of the Doherty power amplifier unit 100, if one wants to accurately control the output power of the Doherty power amplifier unit 100, one or two powers in the two power amplifiers in the Doherty power amplifier unit 100 are required.
  • the amplifiers are respectively controlled.
  • a switch controller 102 can be connected in series for each power amplifier, that is, the first switch controller 1021 and the second switch controller 1022 in FIG. 2, so that the micro control unit MCU300 can pass
  • the opening and closing of the switch controller 102 in the Doherty power amplifier unit 100 is controlled to control the transmit power of the Doherty power amplifier unit 100.
  • the Doherty power amplifier unit and the antenna array unit 200 implement adaptive control through the micro control unit MCU300, that is, handshaking between a mobile terminal (such as a mobile device or a tablet computer, etc.) and a network side device 400 (such as a base station).
  • a mobile terminal such as a mobile device or a tablet computer, etc.
  • a network side device 400 such as a base station.
  • the antenna array unit 200 can enhance the array gain of the antenna in the antenna array unit 200 in a certain direction by beamforming technology, and then, by controlling the opening and closing of the switch controller 102, the Doherty power amplifier unit can be reduced. 100 transmit power.
  • the micro control unit MCU300 controls the direction of the antennas in the antenna array unit 200, and can perform array gain on the antennas based on beamforming when a certain direction is not reached, if the array gain of the antenna array unit 200 is changed in a certain direction.
  • the control unit may send a control signal to the Doherty power amplifier unit 100, and the control signal may include which switch controller 102 is turned on and/or off.
  • the Doherty power amplifier unit 100 may control according to the control.
  • the content in the signal indicates that the corresponding switch controller 102 is turned on or off, so that the radio frequency system has optimal transmit power and radiation directivity, reducing power consumption.
  • the embodiment of the present application provides a radio frequency system based on millimeter wave communication, including a Doherty power amplifier unit, an antenna array unit, and a micro control unit MCU, wherein: an output end of the Doherty power amplifier unit is connected to an input end of the antenna array unit, and a Doherty power amplifier unit is connected.
  • the control end and the control end of the antenna array unit are respectively connected to the MCU, the MCU controls the radiation direction of the antenna in the antenna array unit, the Doherty power amplifier unit is composed of two power amplifiers, the saturation power of the two power amplifiers is not equal, and each channel The power amplifiers are connected in series with a switch controller.
  • the MCU controls the transmit power of the Doherty power amplifier unit by controlling the opening and closing of the switch controller in the Doherty power amplifier unit.
  • the switch control can be controlled by the Doherty power amplifier unit.
  • the opening and closing of the device controls the transmit power of the Doherty power amplifier unit, so as to improve the efficiency of the power amplifier as much as possible while ensuring the signal quality, and at the same time, control the emission of the radio frequency system by controlling the transmit power of the Doherty power amplifier unit. Power consumption can be increased Long standby mobile terminal.
  • the embodiment of the present application provides another radio frequency system based on millimeter wave communication.
  • the millimeter wave communication-based radio frequency system includes all the functional units of the millimeter wave communication-based radio frequency system shown in FIGS. 1 to 2, and on the basis of it, the improvement is as follows:
  • the above two-way power amplifier may include a main amplifier 103 and a peak amplifier 104, wherein the main amplifier 103 is connected in parallel with the peak amplifier 104, and the main amplifier 103 and the peak amplifier are connected.
  • the ratio of the saturated power of 104 can be 1:2.
  • the main amplifier 103 and the peak amplifier 104 may constitute a 2-way Doherty power amplifier (at this time, the first switch controller 1021 connected to the main amplifier 103 is in a closed state, and the second switch controller 1022 connected to the peak amplifier 104 is also closed. State), the above-mentioned 2-way Doherty power amplifier can be used for high-power transmission.
  • the high-efficiency characteristic of the 2-way Doherty power amplifier can be utilized to greatly improve the efficiency value under high-power transmission conditions, as shown in the figure. 4 is shown.
  • the Doherty power amplifier unit 100 can form a single power amplifier link, the single The power amplifier link can be used for low power level transmission requirements, which can greatly improve the efficiency value of low power levels.
  • the Doherty power amplifier unit 100 can form a single power amplifier link, the single The power amplifier link can be used for medium power level transmission requirements, which can greatly increase the efficiency value of the medium power level.
  • the main amplifier 103 can operate in the class AB state, and the main amplifier 103 can maintain the normally open state.
  • the peaking amplifier 104 operates in a Class C state, and the peaking amplifier 104 can be turned off at low power and will not turn on when the output power rises to a certain value.
  • the main amplifier 103 therein can be responsible for low power amplification, and the peak amplifier 104 can be responsible for peak power amplification and the like.
  • the two power splitters 101 may be connected to the input end of the Doherty power amplifier unit 100. In this way, the two power splitters 101 can be respectively connected to each power amplifier in the Doherty power amplifier unit 100, thereby achieving the purpose of dividing the input signal into two.
  • the power split ratio of the second power splitter 101 can be flexibly set according to requirements. That is, if the ratio of the saturation power of the main amplifier 103 to the peak amplifier 104 is 1:2, the power split ratio of the two power splitters can be a 1:2 allocation.
  • the input power can be divided into two parts by the above two power splitters 101, and input to each power amplifier respectively.
  • each power amplifier is connected with a switch controller 102, and the corresponding power can be controlled by the switch controller 102.
  • the power transmission and processing of the amplifier in addition, a certain degree of isolation and power loss can be ensured between the output ports of the two power splitters 101, so that the power loss can be reduced as much as possible.
  • the radio frequency system further includes a plurality of quarter-wave impedance lines, and the quarter-wave impedance line can realize impedance conversion, that is, the low resistance of the bias circuit is converted into high resistance, thereby achieving high The purpose of frequency isolation.
  • the quarter-wave impedance line can be respectively disposed at the output of the main amplifier 103 and the input of the peak amplifier 104, that is, the main amplifier 103. an output terminal is provided with a first quarter-wave line impedances, Z 01 in FIG.
  • the input terminal of the peak amplifier 104 is provided with a third quarter-wavelength impedance line, as shown in 3 Z 03, Further, The output of the main amplifier 103 is connected to the output of the peak amplifier 104 through the first quarter-wave impedance line Z 01 and also to the second quarter-wave impedance line (Z 02 in FIG. 3).
  • the quarter-wavelength impedance lines are respectively placed at the input and output ends of the two power amplifiers, and the quarter-wavelength impedance line is placed at the input end to function as a phase balance, and the quarter-wavelength impedance line is placed at the output.
  • the terminal can function as impedance traction and matching, and Z 03 can be a characteristic network of 50 ohm impedance, while Z 01 can be a 70.7 ohm characteristic impedance network, and Z 02 can be a 40.8 ohm characteristic impedance network.
  • the Doherty power amplifier unit 100 may include two power sources, that is, a first power source Vcc1 and a second power source Vcc2, wherein the main amplifier 103 may be connected to the first power source Vcc1, and the peak amplifier 104 may be connected to the second power source Vcc2.
  • the RF system may further include a plurality of APT circuits, that is, a first APT circuit and a second APT circuit.
  • the first APT circuit and the second APT circuit are independent of each other, and two independent APT circuits can respectively implement the APT function, thereby improving the power amplifier.
  • the emission efficiency wherein the first power source Vcc1 can also be connected to the first APT circuit, and the second power source Vcc2 can be connected to the second APT circuit.
  • the antenna array unit 200 may include a plurality of antenna elements 201, wherein the antenna array 201 may synthesize a common interface through a matching network and be connected to an output end of the Doherty power amplifier unit 100 through a synthesized common interface.
  • the antenna array unit 200 is composed of m ⁇ n antenna elements 201, where n represents n rows and m represents m columns.
  • the m ⁇ n antenna elements 201 are combined into a common port through the matching network, and are connected to the output of the Doherty power unit 100 through the same port.
  • the MUC is connected to the Doherty power amplifier unit 100 and the antenna array unit 200 through the control terminal, respectively, to achieve coordinated control.
  • the antenna array unit 200 can enhance the array gain of the antenna in the antenna array unit 200 in a certain direction by using beamforming technology. Then, by controlling the opening and closing of the switch controller 102, the transmission power of the Doherty power amplifier unit 100 can be reduced, so that the radio frequency system has the optimal transmission power and radiation directivity, and the power consumption is reduced.
  • the embodiment of the present application provides a radio frequency system based on millimeter wave communication, including a Doherty power amplifier unit, an antenna array unit, and a micro control unit MCU, wherein: an output end of the Doherty power amplifier unit is connected to an input end of the antenna array unit, and a Doherty power amplifier unit is connected.
  • the control end and the control end of the antenna array unit are respectively connected to the MCU, the MCU controls the radiation direction of the antenna in the antenna array unit, the Doherty power amplifier unit is composed of two power amplifiers, the saturation power of the two power amplifiers is not equal, and each channel The power amplifiers are connected in series with a switch controller.
  • the MCU controls the transmit power of the Doherty power amplifier unit by controlling the opening and closing of the switch controller in the Doherty power amplifier unit.
  • the switch control can be controlled by the Doherty power amplifier unit.
  • the opening and closing of the device controls the transmit power of the Doherty power amplifier unit, so as to improve the efficiency of the power amplifier as much as possible while ensuring the signal quality, and at the same time, control the emission of the radio frequency system by controlling the transmit power of the Doherty power amplifier unit. Power consumption can be increased Long standby mobile terminal.
  • an embodiment of the present application provides a method for adjusting a transmit power, where an execution body of the method may be a mobile terminal, where the mobile terminal may include a radio frequency system based on millimeter wave communication, where the mobile terminal may be A mobile phone, a tablet, etc., the mobile terminal can be a mobile terminal used by a user.
  • the method can be applied to the process of adjusting the transmit power of the radio frequency system in the mobile terminal.
  • the method may specifically include the following steps:
  • step S702 level information corresponding to the downlink signal is determined according to the downlink signal of the network side device.
  • the network side device 400 may be a device for communicating with a mobile terminal (such as a mobile device or a tablet computer), and the network side device 400 may be a Global System of Mobile communication (GSM) or a code division.
  • Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA) which may also be a base station (NodeB, NB) in Wideband Code Division Multiple Access (WCDMA), or may be long-term Evolutionary Node B (eNB or eNodeB) or access point in Evolution (LTE), or in-vehicle device, wearable device, network-side device 400 in future 5G network, or public land in future evolution
  • PLMN Public Land Mobile Network
  • the mobile terminal can receive the downlink signal sent by the network side device 400.
  • the received downlink signal can be converted into a level value.
  • Information the value of each level can correspond to a power value, used to display the signal strength of the current downlink signal. Since the antenna transceiver signals are mutually different processes, the information of the level signals corresponding to the received downlink signals can be used as a control basis for beamforming to improve the transmission performance.
  • step S704 the direction of the antenna array in the radio frequency system based on millimeter wave communication in the mobile terminal is adjusted based on the above level information.
  • the mobile terminal may record level information corresponding to the downlink signal, and the level information may be corresponding to the last received downlink signal.
  • the level information or the reference level information is compared to determine whether the level value in the level information acquired this time is increased or decreased compared to the level information in the last acquired level information or the reference level information.
  • the direction of each antenna element 201 in the antenna array unit 200 in the radio frequency system may be adjusted correspondingly according to the result of the increase or decrease, for example, if the level information obtained last time or the level value in the reference level information If it is increased, the current moving direction can be maintained, and the direction of the antenna array in the radio frequency system can be adjusted. If the level information in the last acquired level information or the reference level information is reduced, the current movement can be moved. In the opposite direction, adjust the direction of the antenna array in the RF system.
  • step S706 if the level corresponding to the downlink signal of the received network side device 400 is increased after the direction of the antenna array is adjusted, the MCU in the radio frequency system controls the Doherty power amplifier unit in the radio frequency system to reduce the transmission power.
  • the mobile terminal may find the maximum value of the level corresponding to the received downlink signal by changing the direction of the beam sent by the antenna array unit 200 (ie, the beam direction). That is, the antenna direction of the network side device 400.
  • the beam width of the antenna array can be adjusted to make the transmission signal more concentrated, thereby improving the array gain of the antenna array in this direction.
  • the micro control unit MCU300 can control the on and off conditions of the two switch controllers 102 in the Doherty power amplifier unit 100 according to a preset adaptive algorithm. Thereby, the operating state of the power amplifier in the antenna array unit 200 is synchronously controlled, thereby reducing the transmission power of the mobile terminal, thereby achieving an optimum efficiency value.
  • the embodiment of the present application provides a method for adjusting transmit power, which may be applied to a radio frequency system based on millimeter wave communication, and the radio frequency system may include a Doherty power amplifier unit, an antenna array unit, and a micro control unit MCU, where: a Doherty power amplifier unit The output end is connected to the input end of the antenna array unit, and the control end of the Doherty power amplifier unit and the control end of the antenna array unit are respectively connected to the MCU, the MCU controls the radiation direction of the antenna in the antenna array unit, and the Doherty power amplifier unit is powered by two channels.
  • the amplifier is composed of two power amplifiers whose saturation powers are not equal, and each power amplifier is connected in series with a switch controller.
  • the MCU controls the transmit power of the Doherty power amplifier unit by controlling the opening and closing of the switch controller in the Doherty power amplifier unit.
  • the transmission power of the Doherty power amplifier unit can be controlled by controlling the opening and closing of the switch controller in the Doherty power amplifier unit, so as to improve the efficiency of the power amplifier as much as possible while ensuring the signal quality.
  • by controlling Doherty Transmit power amplifier means further control the transmission power RF systems, can increase the duration of the standby mobile terminal.
  • an embodiment of the present application provides a method for adjusting a transmit power, where an execution body of the method may be a mobile terminal, where the mobile terminal may include millimeter-wave communication according to the first embodiment and the second embodiment.
  • the radio frequency system wherein the mobile terminal can be a mobile phone, a tablet computer, etc., and the mobile terminal can be a mobile terminal used by a user.
  • the method can be applied to the process of adjusting the transmit power of the radio frequency system in the mobile terminal.
  • the method may specifically include the following steps:
  • step S802 level information corresponding to the downlink signal is determined according to the downlink signal of the network side device 400.
  • step S804 the direction of the antenna array in the radio frequency system based on millimeter wave communication in the mobile terminal is adjusted based on the above level information.
  • step S806 if the level corresponding to the downlink signal of the received network side device 400 is increased after the direction of the antenna array is adjusted, the MCU in the radio frequency system controls the Doherty power amplifier unit in the radio frequency system to reduce the transmission power.
  • the content of the steps S802 to S806 is the same as the content of the steps S702 to S706 in the third embodiment, and the specific processing of the steps S802 to S806 can be referred to the related content of the above steps S702 to S706, respectively. This will not be repeated here.
  • step S808 if the level of the downlink signal corresponding to the received network side device 400 is decreased after the direction of the antenna array is adjusted, the direction of the antenna array in the radio frequency system is adjusted.
  • the current antenna array unit 200 is indicated.
  • the array gain of the emitted beam in the current direction is not improved.
  • the direction of the antenna array in the radio frequency system can be continuously adjusted to find the maximum level of the received downlink signal (ie, the beam direction is the network side device 400). Antenna direction).
  • the beam width of the antenna array can be adjusted to make the transmitted signal more concentrated.
  • the micro control unit MCU300 can control the on/off condition of the two switch controllers 102 in the Doherty power amplifier unit 100 according to a preset adaptive algorithm, thereby synchronously controlling the working state of the power amplifier in the antenna array unit 200, This reduces the transmit power of the mobile terminal and achieves an optimal efficiency value.
  • the embodiment of the present application provides a method for adjusting transmit power, which may be applied to a radio frequency system based on millimeter wave communication, and the radio frequency system may include a Doherty power amplifier unit, an antenna array unit, and a micro control unit MCU, where: a Doherty power amplifier unit The output end is connected to the input end of the antenna array unit, and the control end of the Doherty power amplifier unit and the control end of the antenna array unit are respectively connected to the MCU, the MCU controls the radiation direction of the antenna in the antenna array unit, and the Doherty power amplifier unit is powered by two channels.
  • the amplifier is composed of two power amplifiers whose saturation powers are not equal, and each power amplifier is connected in series with a switch controller.
  • the MCU controls the transmit power of the Doherty power amplifier unit by controlling the opening and closing of the switch controller in the Doherty power amplifier unit.
  • the transmission power of the Doherty power amplifier unit can be controlled by controlling the opening and closing of the switch controller in the Doherty power amplifier unit, so as to improve the efficiency of the power amplifier as much as possible under the premise of ensuring signal quality.
  • the transmit power of the power amplifier unit controls the transmit power consumption of the radio frequency system, which can increase the standby time of the mobile terminal.
  • FIG. 9 is a schematic structural diagram of hardware of a mobile terminal that implements various embodiments of the present application.
  • the mobile terminal 900 includes a radio frequency system 901 based on millimeter wave communication, and may further include, but not limited to, a network module 902, an audio output unit 903, an input unit 904, a sensor 905, a display unit 906, a user input unit 907, and an interface unit. 908, memory 909, processor 910, and power supply 911 and the like.
  • a network module 902 an audio output unit 903, an input unit 904, a sensor 905, a display unit 906, a user input unit 907, and an interface unit. 908, memory 909, processor 910, and power supply 911 and the like.
  • the mobile terminal structure shown in FIG. 9 does not constitute a limitation of the mobile terminal, and the mobile terminal may include more or less components than those illustrated, or combine some components, or different components. Arrangement.
  • the mobile terminal includes but is not limited to a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle terminal, a wearable device, a pedometer, and the like.
  • the radio frequency system 901 based on millimeter wave communication includes a Doherty power amplifier unit, an antenna array unit, and a micro control unit MCU, wherein:
  • An output end of the Doherty power amplifier unit is connected to an input end of the antenna array unit, and a control end of the Doherty power amplifier unit and a control end of the antenna array unit are respectively connected to the MCU, where the MCU control center The radiation direction of the antenna in the antenna array unit;
  • the Doherty power amplifier unit is composed of two power amplifiers, the saturation powers of the two power amplifiers are not equal, and each power amplifier has a switch controller connected in series, and the MCU controls the switch controller in the Doherty power amplifier unit. Turning on and off, controlling the transmit power of the Doherty power amplifier unit.
  • the input end of the Doherty power amplifier unit is connected to two power splitters, and the two power splitters are respectively connected to each power amplifier.
  • the two-way power amplifier includes a main amplifier, a peak amplifier, a ratio of a saturation power of the main amplifier to the peak amplifier of 1:2, and the main amplifier is connected in parallel with the peak amplifier.
  • the radio frequency system 901 further includes a plurality of quarter-wavelength impedance lines, an output end of the main amplifier is provided with a first quarter-wavelength impedance line, and an input end of the peak amplifier is provided with a third four Sub-wavelength impedance line, the output of the main amplifier is connected to the output of the peak amplifier through the first quarter-wave impedance line and is also connected to the second quarter-wave impedance line.
  • the main amplifier is connected to the first power source, and the peak amplifier is connected to the second power source.
  • first power source is connected to the first APT circuit
  • second power source is connected to the second APT circuit
  • the antenna array unit includes a plurality of antenna elements, and the antenna array synthesizes a common interface through a matching network, and is connected to an output end of the Doherty power amplifier unit through the common interface.
  • the radio frequency system 901 is configured to determine, according to a downlink signal of the network side device, level information corresponding to the downlink signal.
  • the radio frequency system 901 is further configured to adjust, according to the level information, a direction of an antenna array in a radio frequency system based on millimeter wave communication in the mobile terminal;
  • the radio frequency system 901 is further configured to: when the direction of the antenna array is adjusted, the level value corresponding to the downlink signal of the received network side device increases, and the MCU in the radio frequency system controls the Doherty power amplifier unit to reduce the transmission in the radio frequency system. power.
  • the radio frequency system 901 is further configured to adjust a direction of the antenna array in the radio frequency system after the direction of the antenna array is adjusted, and the level value corresponding to the downlink signal of the received network side device is decreased.
  • the embodiment of the present application provides a mobile terminal, which may include a radio frequency system based on millimeter wave communication, and the radio frequency system may include a Doherty power amplifier unit, an antenna array unit, and a micro control unit MCU, where: an output end of the Doherty power amplifier unit The input ends of the antenna array unit are connected, the control end of the Doherty power amplifier unit and the control end of the antenna array unit are respectively connected to the MCU, and the MCU controls the radiation direction of the antenna in the antenna array unit, and the Doherty power amplifier unit is composed of two power amplifiers. The saturation power of the two power amplifiers is not equal, and each power amplifier has a switch controller connected in series.
  • the MCU controls the transmit power of the Doherty power amplifier unit by controlling the opening and closing of the switch controller in the Doherty power amplifier unit.
  • the structure of the system can control the transmit power of the Doherty power amplifier unit by controlling the opening and closing of the switch controller in the Doherty power amplifier unit, so as to improve the efficiency of the power amplifier as much as possible while ensuring the signal quality, and at the same time, Control Doherty power amplifier unit
  • the transmit power controls the transmit power consumption of the RF system, which can increase the standby time of the mobile terminal.
  • the radio frequency system 901 can be used for receiving and transmitting signals during the transmission and reception of information or during a call. Specifically, after receiving downlink data from the base station, the processing is performed on the processor 910; The uplink data is sent to the base station.
  • radio frequency system 901 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency system 901 can also communicate with the network and other devices through a wireless communication system.
  • the mobile terminal provides the user with wireless broadband Internet access through the network module 902, such as helping the user to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 903 can convert the audio data received by the radio frequency system 901 or the network module 902 or stored in the memory 909 into an audio signal and output as sound. Moreover, the audio output unit 903 can also provide audio output (eg, call signal reception sound, message reception sound, etc.) related to a particular function performed by the mobile terminal 900.
  • the audio output unit 903 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 904 is for receiving an audio or video signal.
  • the input unit 904 may include a graphics processing unit (GPU) 9041 and a microphone 9042 that images an still picture or video obtained by an image capturing device (such as a camera) in a video capturing mode or an image capturing mode.
  • the data is processed.
  • the processed image frame can be displayed on the display unit 906.
  • the image frames processed by the graphics processor 9041 may be stored in the memory 909 (or other storage medium) or transmitted via the radio frequency system 901 or the network module 902.
  • the microphone 9042 can receive sound and can process such sound as audio data.
  • the processed audio data can be converted to a format output that can be transmitted to the mobile communication base station via the radio frequency system 901 in the case of a telephone call mode.
  • the mobile terminal 900 also includes at least one type of sensor 905, such as a light sensor, motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 9061 according to the brightness of the ambient light, and the proximity sensor can close the display panel 9061 when the mobile terminal 900 moves to the ear. / or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity. It can be used to identify the attitude of the mobile terminal (such as horizontal and vertical screen switching, related games).
  • sensor 905 may also include a fingerprint sensor, a pressure sensor, an iris sensor, a molecular sensor, a gyroscope, a barometer, a hygrometer, a thermometer, Infrared sensors and the like are not described here.
  • the display unit 906 is for displaying information input by the user or information provided to the user.
  • the display unit 906 can include a display panel 9061.
  • the display panel 9061 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the user input unit 907 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the mobile terminal.
  • the user input unit 907 includes a touch panel 9071 and other input devices 9072.
  • the touch panel 9071 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 9071 or near the touch panel 9071. operating).
  • the touch panel 9071 may include two parts of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 910 receives the commands from the processor 910 and executes them.
  • the touch panel 9071 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 907 may also include other input devices 9072.
  • other input devices 9072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, and are not described herein again.
  • the touch panel 9071 may be overlaid on the display panel 9061.
  • the touch panel 9071 detects a touch operation on or near the touch panel 9071, the touch panel 9071 transmits to the processor 910 to determine the type of the touch event, and then the processor 910 according to the touch.
  • the type of event provides a corresponding visual output on display panel 9061.
  • the touch panel 9071 and the display panel 9061 are two independent components to implement the input and output functions of the mobile terminal, in some embodiments, the touch panel 9071 and the display panel 9061 may be integrated. The input and output functions of the mobile terminal are implemented, and are not limited herein.
  • the interface unit 908 is an interface in which an external device is connected to the mobile terminal 900.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device having an identification module, and an audio input/output. (I/O) port, video I/O port, headphone port, and more.
  • the interface unit 908 can be configured to receive input from an external device (eg, data information, power, etc.) and transmit the received input to one or more components within the mobile terminal 900 or can be used at the mobile terminal 900 and externally Data is transferred between devices.
  • Memory 909 can be used to store software programs as well as various data.
  • the memory 909 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • the memory 909 may include a high speed random access memory, and may also include a nonvolatile memory such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the processor 910 is a control center of the mobile terminal that connects various portions of the entire mobile terminal using various interfaces and lines, by running or executing software programs and/or modules stored in the memory 909, and recalling data stored in the memory 909.
  • the mobile terminal performs various functions and processing data to perform overall monitoring on the mobile terminal.
  • the processor 910 may include one or more processing units; optionally, the processor 910 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, etc., and a modulation solution
  • the processor mainly handles wireless communication. It can be understood that the above modem processor may not be integrated into the processor 910.
  • the mobile terminal 900 may further include a power source 911 (such as a battery) for supplying power to various components.
  • a power source 911 such as a battery
  • the power source 911 may be logically connected to the processor 910 through a power management system to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • the embodiment of the present application further provides a mobile terminal, including a processor 910, a memory 909, a computer program stored on the memory 909 and executable on the processor 910, where the computer program is executed by the processor 910.
  • a mobile terminal including a processor 910, a memory 909, a computer program stored on the memory 909 and executable on the processor 910, where the computer program is executed by the processor 910.
  • the embodiment of the present application further provides a computer readable storage medium.
  • the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, implements the processes of the foregoing method for adjusting the transmit power, and can achieve the same The technical effect, in order to avoid duplication, will not be repeated here.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the embodiment of the present application provides a computer readable storage medium.
  • the structure of the radio frequency system can control the transmit power of the Doherty power amplifier unit by controlling the opening and closing of the switch controller in the Doherty power amplifier unit, thereby ensuring signal quality.
  • the efficiency of the power amplifier can be improved as high as possible, and at the same time, by controlling the transmission power of the Doherty power amplifier unit and controlling the transmission power consumption of the radio frequency system, the standby time of the mobile terminal can be increased.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • the memory may include non-persistent memory, random access memory (RAM), and/or non-volatile memory in a computer readable medium, such as read only memory (ROM) or flash memory.
  • RAM random access memory
  • ROM read only memory
  • Memory is an example of a computer readable medium.
  • Computer readable media includes both permanent and non-persistent, removable and non-removable media.
  • Information storage can be implemented by any method or technology.
  • the information can be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.
  • computer readable media does not include temporary storage of computer readable media, such as modulated data signals and carrier waves.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)

Abstract

本申请实施例公开了一种基于毫米波通信的射频系统、发射功率的调整方法及终端,该基于毫米波通信的射频系统包括Doherty功放单元、天线阵列单元和微控制单元MCU,其中:Doherty功放单元的输出端与所述天线阵列单元的输入端相连接,Doherty功放单元的控制端和所述天线阵列单元的控制端分别与所述MCU相连接,所述MCU控制所述天线阵列单元中天线的辐射方向;Doherty功放单元由二路功率放大器组成,二路功率放大器的饱和功率不相等,且每路功率放大器均串联有开关控制器,所述MCU通过控制Doherty功放单元中开关控制器的开启与闭合,控制Doherty功放单元的发射功率。

Description

基于毫米波通信的射频系统、发射功率的调整方法及终端
相关申请的交叉引用
本申请主张在2018年3月30日在中国提交的中国专利申请号No.201810275910.9的优先权,其全部内容通过引用包含于此。
技术领域
本申请涉及通信技术领域,尤其涉及一种基于毫米波通信的射频系统、发射功率的调整方法及终端。
背景技术
相关技术中,在3G和4G网络中,为了利于终端设备的射频系统的发射功效,延长终端设备的待机时长,通常会选用具有较低信号峰均比(Peak to Average Power Ratio,PAPR)的上行信号,为此,产生了多种生成较低信号峰均比的上行信号的技术,例如,在3G和4G网络中上行信号大多采用单载频频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)技术生成。
然而,在5G或更高端的通信网络中,为了提高信号的处理效率,其上行信号对应的上行(Upload,UL)调制方式通常采用正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM),通过正交频分复用技术生成的上行信号的峰均比较高,其上行信号的峰均比可以高达8dB~12dB,该上行信号的峰均比较4G网络中的上行信号的峰均比提高至少3dB。而且,在5G或更高端的通信网络中,为了满足覆盖范围,终端设备的功率放大器的最大发射功率必须相应的提高,这样,终端设备的耗电自然会大大增加,待机时长会明显下降;同时,为了保持发射信号质量,终端设备的功率放大器必须在功率回退的状态下工作,而功率回退又会带来效率的降低,因此,在确保信号质量的前提下,需要尽可能高的提高功率放大器的效率,而如何提高终端设备的发射效率,同时控制终端设备的功耗,成为无线通信网络的关键技术。
发明内容
本申请实施例提供一种基于毫米波通信的射频系统、发射功率的调整方法及终端,以解决相关技术中在确保信号质量的前提下,需要尽可能高的提高功率放大器的效率,同时控制终端设备的功耗的问题。
为解决上述技术问题,本申请实施例是这样实现的:
第一方面,本申请实施例提供的一种基于毫米波通信的射频系统,所述射频系统包括Doherty功放单元、天线阵列单元和微控制单元MCU,其中:
所述Doherty功放单元的输出端与所述天线阵列单元的输入端相连接,所述Doherty功放单元的控制端和所述天线阵列单元的控制端分别与所述MCU相连接,所述MCU控制所述天线阵列单元中天线的辐射方向;
所述Doherty功放单元由二路功率放大器组成,所述二路功率放大器的饱和功率不相等,且每路功率放大器均串联有开关控制器,所述MCU通过控制所述Doherty功放单元中开关控制器的开启与闭合,控制所述Doherty功放单元的发射功率。
第二方面,本申请实施例提供一种移动终端,包括如上述第一方面所述的基于毫米波通信的射频系统。
第三方面,本申请实施例提供了一种发射功率的调整方法,所述方法应用于如第二方面提供的移动终端,所述方法包括:
根据网络侧设备的下行信号,确定与所述下行信号对应的电平信息;
基于所述电平信息,调整所述移动终端中基于毫米波通信的射频系统中天线阵列的方向;
如果调整天线阵列的方向后,接收的网络侧设备的下行信号对应的电平值增大,则通过所述射频系统中MCU控制所述射频系统中Doherty功放单元降低发射功率。
第四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现上述第三方面提供的发射功率的调整方法的步骤。
由以上本申请实施例提供的技术方案可见,本申请实施例提供的射频系统包括Doherty功放单元、天线阵列单元和微控制单元MCU,其中:Doherty 功放单元的输出端与天线阵列单元的输入端相连接,Doherty功放单元的控制端和天线阵列单元的控制端分别与MCU相连接,该MCU控制天线阵列单元中天线的辐射方向,Doherty功放单元由二路功率放大器组成,二路功率放大器的饱和功率不相等,且每路功率放大器均串联有开关控制器,MCU通过控制Doherty功放单元中开关控制器的开启与闭合,控制Doherty功放单元的发射功率,这样,通过上述射频系统的结构,可以通过控制Doherty功放单元中开关控制器的开启与闭合,来控制Doherty功放单元的发射功率,实现在确保信号质量的前提下,尽可能高的提高功率放大器的效率,同时,通过控制Doherty功放单元的发射功率进而控制射频系统的发射功耗,可以增加移动终端的待机时长。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一种基于毫米波通信的射频系统的结构示意图;
图2为本申请另一种基于毫米波通信的射频系统的结构示意图;
图3为本申请又一种基于毫米波通信的射频系统的结构示意图;
图4为本申请一种基于毫米波通信的射频系统的结构示意图;
图5为本申请一种基于毫米波通信的射频系统的结构示意图;
图6为本申请一种基于毫米波通信的射频系统的结构示意图;
图7为本申请一种发射功率的调整方法实施例;
图8为本申请另一种发射功率的调整方法实施例;
图9为本申请一种移动终端实施例。
图例说明:
100-Doherty功放单元,101-二功分器,102-开关控制器,1021-第一开关控制器,1022-第二开关控制器,Vcc1-第一电源,Vcc2-第二电源,Z01~Z03- 第一四分之一波长阻抗线~第三四分之一波长阻抗线,103-主放大器,104-峰值放大器,200-天线阵列单元,201-天线阵子,300-微控制单元MCU,400-网络侧设备。
具体实施方式
本申请实施例提供一种基于毫米波通信的射频系统、发射功率的调整方法及终端。
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
实施例一
在5G网络中,毫米波(Millimeter Wave)将会成为重要的通信频段,毫米波频段具有大量可用频谱资源,能够满足移动通信日益增长的业务流量需求。此外,由于毫米波的波长较短,根据天线理论,毫米波系统的天线尺寸也可以较小,这样,可以使得能够在小范围空间中放置多根天线,有利于大规模天线阵列系统(Massive MIMO)在现实系统中的应用。虽然毫米波系统存在信道路径衰落过大的缺点,但可以利用大规模天线所提供的波束赋形技术(Beam Forming)来弥补毫米波信道路径衰落过大的缺点,从而为毫米波技术应用于移动通信提供了可能。波束赋形技术可以改善天线的方向性,从而获得更明显的阵列增益。因此,波束赋形技术在扩大覆盖范围、改善边缘吞吐量以及干扰抑止等方面都有很大的优势。基于上述内容,对于终端设备的射频前端,可以结合天线系统的波束赋形的技术特点(即方向性好、天线阵列的阵列增益高),在完成和基站握手通信的情况下,通过提高天线阵列的阵列增益,从而降低终端设备的发射功率,达到节电的目的。本申请实施例提供一种基于毫米波通信的射频系统,如图1所示,该射频系统包括陶赫蒂Doherty功放单元100、天线阵列单元200和微控制单元MCU300,其中:
如图2所示,Doherty功放单元100可以是通过将2路功率放大器组成 Doherty结构的功率放大单元,Doherty功放单元100中可以包括一个主放大器103和一个峰值放大器104(或辅放大器)。功率放大器可以包括多个不同的类别,如A类放大器、B类放大器和AB类放大器等,其中的A类放大器是一种完全的线性放大形式的放大器,在A类放大器工作时,晶体管的正负通道不论有或没有信号都处于常开状态,其失真率极低。B类放大器为线性放大器,B类放大器在工作时,晶体管的正负通道通常处于关闭状态,除非有信号输入时晶体管的正负通道才会打开,即在正相信号输入时只有正相通道工作,负相通道关闭,两个通道不会同时工作,因此在没有信号的部分,完全没有功率损失。AB类放大器是兼容A类放大器与B类放大器的优势的一种放大器,当没有信号或信号非常小时,晶体管的正负通道常开,当信号是正相信号时,负相通道在信号变强前还是常开的,在信号转强后负通道关闭,当信号是负相信号时,正负通道的工作刚好相反,AB类功率放大器相对于它的效率比以及保真度而言,都优于A类放大器和B类放大器。主放大器103可以为B类放大器或者AB类放大器,峰值放大器(即图2中的104)可以为C类放大器。主放大器103可以一直处于工作状态,峰值放大器104只有到设定的峰值才工作(峰值放大器也称为peak amplifier)。此外,主放大器103和峰值放大器104的饱和功率不相等,主放大器103和峰值放大器104的饱和功率的比值可以为1:2或1:3等。
通过Doherty功放单元100中的Doherty结构,可以大大提高深度回退情况下的发射系统的发射效率,而且,还可以自适应的满足不同等级的发射功率需求,从而实现全功率等级下功率放大器都能够维持在较高的效率下工作。
如图1或图2所示,天线阵列单元200中可以包括多个天线阵子201,天线阵列单元200可以实现波束赋形,波束赋形可以是通过调整天线阵列中每个天线阵子201的加权系数产生具有指向性的波束,从而能够获得明显的阵列增益的过程,因此,波束赋形技术在扩大覆盖范围、改善边缘吞吐量以及干扰抑止等方面有很大的优势。
微控制单元MCU300可以是发送控制指令的组件单元,微控制单元MCU300中可以预先设置有天线阵列单元200和Doherty功放单元100之间协调控制的算法,微控制单元MCU300可以基于该算法发出天线阵列单元200 和/或Doherty功放单元100的控制指令,以控制Doherty功放单元100的输出功率和天线阵列单元200的辐射方向。
如图1或图2所示,为了达到微控制单元MCU300对天线阵列单元200和Doherty功放单元100的协调控制,可以将Doherty功放单元100的控制端和天线阵列单元200的控制端分别与MCU300相连接,同时,Doherty功放单元100的输出端与天线阵列单元200的输入端相连接,这样,微控制单元MCU300可以分别将相应的控制指令发送给Doherty功放单元100和天线阵列单元200,通过控制指令可以控制天线阵列单元200中各个天线的辐射方向,通过控制天线阵列的辐射方向,以及结合波束赋形技术可以调整天线阵列单元200的阵列增益,从而降低射频系统的发射功率,达到节省电量的目的。
此外,为了从根本上控制Doherty功放单元100的输出功率,可以将Doherty功放单元100设置为由多个功率放大器组成的功放单元,具体地,如图2所示,Doherty功放单元100可以由二路功率放大器组成,其中的功率放大器可以是指在给定失真率条件下,能产生最大功率输出以驱动某一负载的放大器,功率放大器可以包括多种,本申请实施例中,二路功率放大器中可以包括主放大器103和峰值放大器104,主放大器103可以为B类放大器或者AB类放大器,峰值放大器104可以为C类放大器等,功率放大器的具体结构可以根据实际情况设定,本申请实施例对此不做限定。此外,根据Doherty结构的功率放大单元的结构特性,Doherty功放单元100中的主放大器103后面包括四分之一波长阻抗线是阻抗变换,目的是在辅助功率放大器工作时,起到将主放大器103的视在阻抗减小的作用,从而保证峰值放大器104工作时和后面的电路组成的有源负载阻抗变低,这样主放大器103输出电流就变大。由于主放大器103连接有四分之一波长阻抗线,为了使两个功率放大器输出同相,在峰值放大器前面也需要设置90°相移。由于微控制单元MCU300可以控制Doherty功放单元100的输出功率,因此,如果想要精准控制Doherty功放单元100的输出功率,就需要对Doherty功放单元100中的二路功率放大器中的一路或二路功率放大器分别进行控制,为此,可以为每路功率放大器均串联一个开关控制器102,即如图2中的第一开关控制器1021和第二开 关控制器1022,这样,微控制单元MCU300可以通过控制Doherty功放单元100中开关控制器102的开启与闭合,控制Doherty功放单元100的发射功率。
在实际应用中,Doherty功放单元和天线阵列单元200通过微控制单元MCU300实现自适应控制,即在移动终端(如手机或平板电脑等终端设备等)和网络侧设备400(如基站等)进行握手通信后,天线阵列单元200通过波束赋形技术可以增强天线阵列单元200中的天线在某方向上的阵列增益,然后,就可以通过控制开关控制器102的开启与闭合,来实现降低Doherty功放单元100的发射功率。例如,微控制单元MCU300控制天线阵列单元200中天线的方向,并在没到达某一个方向时可以基于波束赋形对天线进行阵列增益,如果在某一个方向上,天线阵列单元200的阵列增益变大,则微控制单元MCU300可以向Doherty功放单元100发送控制信号,该控制信号中可以包括开启和/或关闭哪个或哪些开关控制器102,Doherty功放单元100接收到该控制信号后,可以根据控制信号中的内容指示相应的开关控制器102开启或关闭,从而使得射频系统具备最优的发射功率和辐射方向性,减少电量的损耗。
本申请实施例提供一种基于毫米波通信的射频系统包括Doherty功放单元、天线阵列单元和微控制单元MCU,其中:Doherty功放单元的输出端与天线阵列单元的输入端相连接,Doherty功放单元的控制端和天线阵列单元的控制端分别与MCU相连接,该MCU控制天线阵列单元中天线的辐射方向,Doherty功放单元由二路功率放大器组成,二路功率放大器的饱和功率不相等,且每路功率放大器均串联有开关控制器,MCU通过控制Doherty功放单元中开关控制器的开启与闭合,控制Doherty功放单元的发射功率,这样,通过上述射频系统的结构,可以通过控制Doherty功放单元中开关控制器的开启与闭合,来控制Doherty功放单元的发射功率,实现在确保信号质量的前提下,尽可能高的提高功率放大器的效率,同时,通过控制Doherty功放单元的发射功率进而控制射频系统的发射功耗,可以增加移动终端的待机时长。
实施例二
本申请实施例提供又一种基于毫米波通信的射频系统。该基于毫米波通 信的射频系统包含了图1~图2所示的基于毫米波通信的射频系统的全部功能单元,并在其基础上,对其进行了改进,改进内容如下:
如图3所示,基于Doherty结构的功率放大单元的特性,上述二路功率放大器中可以包括主放大器103、峰值放大器104,其中,主放大器103与峰值放大器104并联,且主放大器103与峰值放大器104的饱和功率的比值可以为1:2。另外,主放大器103和峰值放大器104可以组成2路Doherty功放(此时,与主放大器103连接的第一开关控制器1021处于闭合状态,与峰值放大器104连接的第二开关控制器1022也处于闭合状态),上述组成的2路Doherty功放可以用于大功率发射的情况下,此时,可以利用2路Doherty功放回退的高效率特性,可以大大提升大功率发射情况下的效率值,如图4所示。另外,当与主放大器103连接的第一开关控制器1021处于闭合状态,而与峰值放大器104连接的第二开关控制器1022处于开启状态时,Doherty功放单元100可以形成单功放链路,该单功放链路可以用于低功率等级的发射需求,可以大幅度提高低功率等级的效率值。此外,当与主放大器103连接的第一开关控制器1021处于开启状态,而与峰值放大器104连接的第二开关控制器1022处于闭合状态时,Doherty功放单元100可以形成单功放链路,该单功放链路可以用于中等功率等级的发射需求,可以大幅度提高中等功率等级的效率值。其中,主放大器103可以工作在AB类状态,主放大器103可以保持常开状态。峰值放大器104工作在C类状态,峰值放大器104在低功率下可以关闭,当输出功率升高到一定数值后才会开启。其中的主放大器103可以负责低功率放大,峰值放大器104可以负责峰值功率放大等。
此外,如图3所示,考虑到Doherty功放单元100由二路功率放大器组成,为了使得输入到Doherty功放单元100中的功率分配均匀,可以在Doherty功放单元100的输入端连接二功分器101,这样,二功分器101可以分别与Doherty功放单元100中的每路功率放大器相连接,从而实现将输入信号一分为二的目的,二功分器101的功率分配比可以根据需求灵活设置,即如果主放大器103与峰值放大器104的饱和功率的比值为1:2,则二功分器的功率分配比可以采用1:2的分配方式。通过上述二功分器101可以将输入的功率分配成2个部分,分别输入到每一路功率放大器中,同时,每一路功率放大器 连接有开关控制器102,通过开关控制器102还可以控制相应功率放大器的功率传输与处理,另外,二功分器101的输出端口之间可以保证一定的隔离度和功率损耗,从而可以尽最大可能减少功率的损耗。
另外,如图3所示,该射频系统还包括多个四分之一波长阻抗线,四分之一波长阻抗线可以实现阻抗变换,即将偏置电路的低阻变换为高阻,从而达到高频隔离的目的。基于四分之一波长阻抗线的作用,以及Doherty结构的功放单元的特性,四分之一波长阻抗线可以分别设置于主放大器103的输出端和峰值放大器104的输入端,即主放大器103的输出端设置有第一四分之一波长阻抗线,如图3中的Z 01,峰值放大器104的输入端设置有第三四分之一波长阻抗线,如图3中的Z 03,另外,主放大器103的输出端通过第一四分之一波长阻抗线Z 01与峰值放大器104的输出端连接后还与第二四分之一波长阻抗线(如图3中的Z 02)相连接,其中,四分之一波长阻抗线分别放到两路功率放大器的输入输出端,四分之一波长阻抗线放置在输入端可以起到相位平衡的作用,四分之一波长阻抗线放置在输出端可以起到阻抗牵引和匹配的作用,而且,Z 03可以是50欧姆阻抗的特征网络,而Z 01可以是70.7欧姆特征阻抗网络,而Z 02可以是40.8欧姆特征阻抗网络。
此外,Doherty功放单元100中可以包括两个电源,即第一电源Vcc1和第二电源Vcc2,其中,主放大器103可以连接于第一电源Vcc1,峰值放大器104可以连接于第二电源Vcc2。射频系统中还可以包括多个APT电路,即第一APT电路和第二APT电路,第一APT电路和第二APT电路相互独立,两个独立的APT电路可以分别实现APT功能,从而提高功率放大器的发射效率,其中,第一电源Vcc1还可以连接于第一APT电路,第二电源Vcc2可以连接于第二APT电路。
另外,天线阵列单元200中可以包括多个天线阵子201,其中的天线阵子201可以通过匹配网络合成公共接口,并通过合成的公共接口与Doherty功放单元100的输出端相连接。
如图5所示,天线阵列单元200由m×n个天线阵子201组成,其中的n表示n行,m表示m列。m×n个天线阵子201通过匹配网络合成一个公共的port口,通过同一个port口和Doherty功放单元100的输出端相连接。MUC 通过控制端分别和Doherty功放单元100以及天线阵列单元200相连接,实现协同控制。
在实际应用中,如图6所示,在移动终端和网络侧设备400进行握手通信后,天线阵列单元200通过波束赋形技术可以增强天线阵列单元200中的天线在某方向上的阵列增益,然后,就可以通过控制开关控制器102的开启与闭合,来实现降低Doherty功放单元100的发射功率,从而使得射频系统具备最优的发射功率和辐射方向性,减少电量的损耗。
本申请实施例提供一种基于毫米波通信的射频系统包括Doherty功放单元、天线阵列单元和微控制单元MCU,其中:Doherty功放单元的输出端与天线阵列单元的输入端相连接,Doherty功放单元的控制端和天线阵列单元的控制端分别与MCU相连接,该MCU控制天线阵列单元中天线的辐射方向,Doherty功放单元由二路功率放大器组成,二路功率放大器的饱和功率不相等,且每路功率放大器均串联有开关控制器,MCU通过控制Doherty功放单元中开关控制器的开启与闭合,控制Doherty功放单元的发射功率,这样,通过上述射频系统的结构,可以通过控制Doherty功放单元中开关控制器的开启与闭合,来控制Doherty功放单元的发射功率,实现在确保信号质量的前提下,尽可能高的提高功率放大器的效率,同时,通过控制Doherty功放单元的发射功率进而控制射频系统的发射功耗,可以增加移动终端的待机时长。
实施例三
如图7所示,本申请实施例提供一种发射功率的调整方法,该方法的执行主体可以为移动终端,该移动终端中可以包含基于毫米波通信的射频系统,其中,该移动终端可以如手机、平板电脑等,该移动终端可以为用户使用的移动终端。该方法可以应用于对移动终端中射频系统的发射功率进行调整等处理中。该方法具体可以包括以下步骤:
在步骤S702中,根据网络侧设备的下行信号,确定与该下行信号对应的电平信息。
其中,网络侧设备400可以是用于与移动终端(如手机或平板电脑等终端设备)通信的设备,网络侧设备400可以是全球移动通信系统(Global System  of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB)或接入点,或者车载设备、可穿戴设备,未来5G网络中的网络侧设备400或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的网络侧设备400等。
在实施中,移动终端与网络侧设备400建立通信连接后,移动终端可以接收网络侧设备400发送的下行信号,为了更好的控制波束赋形,可以将接收的下行信号转换为电平的数值信息,每个电平的数值可以对应一个功率值,用于显示当前的下行信号的信号强度。由于天线收发信号是互异的过程,所以,可以利用接收的下行信号对应的电平信号的信息作为波束赋形的控制依据,以改善发射性能。
在步骤S704中,基于上述电平信息,调整该移动终端中基于毫米波通信的射频系统中天线阵列的方向。
在实施中,移动终端接收到下行信号,并将该下行信号转换为电平信息后,可以记录该下行信号对应的电平信息,可以将该电平信息与上一次接收到的下行信号对应的电平信息或基准电平信息进行对比,确定本次获取的电平信息中的电平值相较于上一次获取的电平信息或基准电平信息中的电平值增大还是减小,可以根据增大或减小的结果,相应的调整上述射频系统中天线阵列单元200中的各个天线阵子201的方向,例如,如果上一次获取的电平信息或基准电平信息中的电平值增大,则可以继续保持当前的移动方向,调整该射频系统中天线阵列的方向,如果上一次获取的电平信息或基准电平信息中的电平值减小,则可以向与当前的移动方向相反的方向,调整该射频系统中天线阵列的方向等。
在步骤S706中,如果调整天线阵列的方向后,接收的网络侧设备400的下行信号对应的电平值增大,则通过该射频系统中MCU控制该射频系统中Doherty功放单元降低发射功率。
在实施中,在移动终端和网络侧设备400建立通信的过程中,移动终端 可以通过改变天线阵列单元200发出的波束的方向,从而找到接收的下行信号对应的电平的最大值(即波束方向就是网络侧设备400的天线方向),确定天线阵列单元200发出的波束方向后,便可通过调节天线阵列的波束宽度,使得发射信号更集中,从而提高天线阵列在此方向上的阵列增益。在优化了天线阵列单元200中的天线的方向性和波束宽度后,微控制单元MCU300便可以根据预设定的自适应算法,控制Doherty功放单元100中的二个开关控制器102的通断情况,从而,同步控制天线阵列单元200中功率放大器的工作状态,以此来降低移动终端的发射功率,从而实现最优的效率值。
本申请实施例提供一种发射功率的调整方法,该方法可以应用于基于毫米波通信的射频系统,该射频系统可以包括Doherty功放单元、天线阵列单元和微控制单元MCU,其中:Doherty功放单元的输出端与天线阵列单元的输入端相连接,Doherty功放单元的控制端和天线阵列单元的控制端分别与MCU相连接,该MCU控制天线阵列单元中天线的辐射方向,Doherty功放单元由二路功率放大器组成,二路功率放大器的饱和功率不相等,且每路功率放大器均串联有开关控制器,MCU通过控制Doherty功放单元中开关控制器的开启与闭合,控制Doherty功放单元的发射功率,这样,通过上述射频系统的结构,可以通过控制Doherty功放单元中开关控制器的开启与闭合,来控制Doherty功放单元的发射功率,实现在确保信号质量的前提下,尽可能高的提高功率放大器的效率,同时,通过控制Doherty功放单元的发射功率进而控制射频系统的发射功耗,可以增加移动终端的待机时长。
实施例四
如图8所示,本申请实施例提供一种发射功率的调整方法,该方法的执行主体可以为移动终端,该移动终端中可以包含如上述实施例一和实施例二中的基于毫米波通信的射频系统,其中,该移动终端可以如手机、平板电脑等,该移动终端可以为用户使用的移动终端。该方法可以应用于对移动终端中射频系统的发射功率进行调整等处理中。该方法具体可以包括以下步骤:
在步骤S802中,根据网络侧设备400的下行信号,确定与该下行信号对应的电平信息。
在步骤S804中,基于上述电平信息,调整该移动终端中基于毫米波通信的射频系统中天线阵列的方向。
在步骤S806中,如果调整天线阵列的方向后,接收的网络侧设备400的下行信号对应的电平值增大,则通过该射频系统中MCU控制该射频系统中Doherty功放单元降低发射功率。
上述步骤S802~步骤S806的步骤内容分别与上述实施例三中的步骤S702~步骤S706的步骤内容相同,步骤S802~步骤S806的具体处理过程可以分别参见上述步骤S702~步骤S706的相关内容,在此不再赘述。
在步骤S808中,如果调整天线阵列的方向后,接收的网络侧设备400的下行信号对应的电平值减小,则调整该射频系统中天线阵列的方向。
在实施中,在移动终端和网络侧设备400建立通信的过程中,如果调整天线阵列的方向后,接收的网络侧设备400的下行信号对应的电平值减小,则表明当前天线阵列单元200发出的波束在当前方向上的阵列增益并没有提高,此时,可以继续调整该射频系统中天线阵列的方向,找到接收的下行信号对应的电平的最大值(即波束方向就是网络侧设备400的天线方向)。确定天线阵列单元200发出的波束方向后,便可通过调节天线阵列的波束宽度,使得发射信号更集中。同时,微控制单元MCU300可以根据预设定的自适应算法,控制Doherty功放单元100中的二个开关控制器102的通断情况,从而,同步控制天线阵列单元200中功率放大器的工作状态,以此来降低移动终端的发射功率,实现最优的效率值。
本申请实施例提供一种发射功率的调整方法,该方法可以应用于基于毫米波通信的射频系统,该射频系统可以包括Doherty功放单元、天线阵列单元和微控制单元MCU,其中:Doherty功放单元的输出端与天线阵列单元的输入端相连接,Doherty功放单元的控制端和天线阵列单元的控制端分别与MCU相连接,该MCU控制天线阵列单元中天线的辐射方向,Doherty功放单元由二路功率放大器组成,二路功率放大器的饱和功率不相等,且每路功率放大器均串联有开关控制器,MCU通过控制Doherty功放单元中开关控制器的开启与闭合,控制Doherty功放单元的发射功率,这样,通过上述射频系统的结构,可以通过控制Doherty功放单元中开关控制器的开启与闭合, 来控制Doherty功放单元的发射功率,实现在确保信号质量的前提下,尽可能高的提高功率放大器的效率,同时,通过控制Doherty功放单元的发射功率进而控制射频系统的发射功耗,可以增加移动终端的待机时长。
实施例五
图9为实现本申请各个实施例的一种移动终端的硬件结构示意图,
该移动终端900包括基于毫米波通信的射频系统901,此外,还可以包括但不限于:网络模块902、音频输出单元903、输入单元904、传感器905、显示单元906、用户输入单元907、接口单元908、存储器909、处理器910、以及电源911等部件。本领域技术人员可以理解,图9中示出的移动终端结构并不构成对移动终端的限定,移动终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本申请实施例中,移动终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,基于毫米波通信的射频系统901包括Doherty功放单元、天线阵列单元和微控制单元MCU,其中:
所述Doherty功放单元的输出端与所述天线阵列单元的输入端相连接,所述Doherty功放单元的控制端和所述天线阵列单元的控制端分别与所述MCU相连接,所述MCU控制所述天线阵列单元中天线的辐射方向;
所述Doherty功放单元由二路功率放大器组成,所述二路功率放大器的饱和功率不相等,且每路功率放大器均串联有开关控制器,所述MCU通过控制所述Doherty功放单元中开关控制器的开启与闭合,控制所述Doherty功放单元的发射功率。
另外,所述Doherty功放单元的输入端连接有二功分器,所述二功分器分别与每路功率放大器相连接。
此外,二路功率放大器包括主放大器、峰值放大器,所述主放大器与所述峰值放大器的饱和功率的比值为1:2,所述主放大器与所述峰值放大器并联。
另外,所述射频系统901还包括多个四分之一波长阻抗线,所述主放大器的输出端设置有第一四分之一波长阻抗线,所述峰值放大器的输入端设置 有第三四分之一波长阻抗线,所述主放大器的输出端通过所述第一四分之一波长阻抗线与所述峰值放大器的输出端连接后还与第二四分之一波长阻抗线相连接。
本申请实施例中,所述主放大器连接于第一电源,所述峰值放大器连接于第二电源。
此外,所述第一电源连接于第一APT电路,所述第二电源连接于第二APT电路。
另外,所述天线阵列单元中包括多个天线阵子,所述天线阵子通过匹配网络合成公共接口,并通过所述公共接口与所述Doherty功放单元的输出端相连接。
其中,射频系统901,用于根据网络侧设备的下行信号,确定与所述下行信号对应的电平信息;
射频系统901,还用于基于所述电平信息,调整所述移动终端中基于毫米波通信的射频系统中天线阵列的方向;
射频系统901,还用于如果调整天线阵列的方向后,接收的网络侧设备的下行信号对应的电平值增大,则通过所述射频系统中MCU控制所述射频系统中Doherty功放单元降低发射功率。
此外,射频系统901,还用于如果调整天线阵列的方向后,接收的网络侧设备的下行信号对应的电平值减小,则调整所述射频系统中天线阵列的方向。
本申请实施例提供一种移动终端,该移动终端可以包括基于毫米波通信的射频系统,该射频系统可以包括Doherty功放单元、天线阵列单元和微控制单元MCU,其中:Doherty功放单元的输出端与天线阵列单元的输入端相连接,Doherty功放单元的控制端和天线阵列单元的控制端分别与MCU相连接,该MCU控制天线阵列单元中天线的辐射方向,Doherty功放单元由二路功率放大器组成,二路功率放大器的饱和功率不相等,且每路功率放大器均串联有开关控制器,MCU通过控制Doherty功放单元中开关控制器的开启与闭合,控制Doherty功放单元的发射功率,这样,通过上述射频系统的结构,可以通过控制Doherty功放单元中开关控制器的开启与闭合,来控制Doherty 功放单元的发射功率,实现在确保信号质量的前提下,尽可能高的提高功率放大器的效率,同时,通过控制Doherty功放单元的发射功率进而控制射频系统的发射功耗,可以增加移动终端的待机时长。
应理解的是,本申请实施例中,射频系统901可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器910处理;另外,将上行的数据发送给基站。通常,射频系统901包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频系统901还可以通过无线通信系统与网络和其他设备通信。
移动终端通过网络模块902为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元903可以将射频系统901或网络模块902接收的或者在存储器909中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元903还可以提供与移动终端900执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元903包括扬声器、蜂鸣器以及受话器等。
输入单元904用于接收音频或视频信号。输入单元904可以包括图形处理器(Graphics Processing Unit,GPU)9041和麦克风9042,图形处理器9041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元906上。经图形处理器9041处理后的图像帧可以存储在存储器909(或其它存储介质)中或者经由射频系统901或网络模块902进行发送。麦克风9042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频系统901发送到移动通信基站的格式输出。
移动终端900还包括至少一种传感器905,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板9061的亮度,接近传感器可在移动终端900移动到耳边时,关闭显示面板9061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的 大小,静止时可检测出重力的大小及方向,可用于识别移动终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器905还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元906用于显示由用户输入的信息或提供给用户的信息。显示单元906可包括显示面板9061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板9061。
用户输入单元907可用于接收输入的数字或字符信息,以及产生与移动终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元907包括触控面板9071以及其他输入设备9072。触控面板9071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板9071上或在触控面板9071附近的操作)。触控面板9071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器910,接收处理器910发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板9071。除了触控面板9071,用户输入单元907还可以包括其他输入设备9072。具体地,其他输入设备9072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板9071可覆盖在显示面板9061上,当触控面板9071检测到在其上或附近的触摸操作后,传送给处理器910以确定触摸事件的类型,随后处理器910根据触摸事件的类型在显示面板9061上提供相应的视觉输出。虽然在图9中,触控面板9071与显示面板9061是作为两个独立的部件来实现移动终端的输入和输出功能,但是在某些实施例中,可以将触控面板9071与显示面板9061集成而实现移动终端的输入和输出功能,具体此处不做限定。
接口单元908为外部装置与移动终端900连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元908可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到移动终端900内的一个或多个元件或者可以用于在移动终端900和外部装置之间传输数据。
存储器909可用于存储软件程序以及各种数据。存储器909可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器909可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器910是移动终端的控制中心,利用各种接口和线路连接整个移动终端的各个部分,通过运行或执行存储在存储器909内的软件程序和/或模块,以及调用存储在存储器909内的数据,执行移动终端的各种功能和处理数据,从而对移动终端进行整体监控。处理器910可包括一个或多个处理单元;可选的,处理器910可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器910中。
移动终端900还可以包括给各个部件供电的电源911(比如电池),可选的,电源911可以通过电源管理系统与处理器910逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
可选的,本申请实施例还提供一种移动终端,包括处理器910,存储器909,存储在存储器909上并可在所述处理器910上运行的计算机程序,该计算机程序被处理器910执行时实现上述发射功率的调整方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
实施例六
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述发射功率的调整方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例提供一种计算机可读存储介质,通过上述射频系统的结构,可以通过控制Doherty功放单元中开关控制器的开启与闭合,来控制Doherty功放单元的发射功率,实现在确保信号质量的前提下,尽可能高的提高功率放大器的效率,同时,通过控制Doherty功放单元的发射功率进而控制射频系统的发射功耗,可以增加移动终端的待机时长。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域 技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (10)

  1. 一种基于毫米波通信的射频系统,包括Doherty功放单元、天线阵列单元和微控制单元MCU,其中:
    所述Doherty功放单元的输出端与所述天线阵列单元的输入端相连接,所述Doherty功放单元的控制端和所述天线阵列单元的控制端分别与所述MCU相连接,所述MCU控制所述天线阵列单元中天线的辐射方向;
    所述Doherty功放单元由二路功率放大器组成,所述二路功率放大器的饱和功率不相等,且每路功率放大器均串联有开关控制器,所述MCU通过控制所述Doherty功放单元中开关控制器的开启与闭合,控制所述Doherty功放单元的发射功率。
  2. 根据权利要求1所述的射频系统,其中,所述Doherty功放单元的输入端连接有二功分器,所述二功分器分别与每路功率放大器相连接。
  3. 根据权利要求2所述的射频系统,其中,二路功率放大器包括主放大器、峰值放大器,所述主放大器与所述峰值放大器的饱和功率的比值为1:2,所述主放大器与所述峰值放大器并联。
  4. 根据权利要求3所述的射频系统,还包括多个四分之一波长阻抗线,所述主放大器的输出端设置有第一四分之一波长阻抗线,所述峰值放大器的输入端设置有第三四分之一波长阻抗线,所述主放大器的输出端通过所述第一四分之一波长阻抗线与所述峰值放大器的输出端连接后还与第二四分之一波长阻抗线相连接。
  5. 根据权利要求4所述的射频系统,其中,所述主放大器连接于第一电源,所述峰值放大器连接于第二电源。
  6. 根据权利要求5所述的射频系统,其中,所述第一电源连接于第一APT电路,所述第二电源连接于第二APT电路。
  7. 根据权利要求6所述的射频系统,其中,所述天线阵列单元中包括多个天线阵子,所述天线阵子通过匹配网络合成公共接口,并通过所述公共接口与所述Doherty功放单元的输出端相连接。
  8. 一种移动终端,包括如权利要求1-7中任一项所述的基于毫米波通信 的射频系统。
  9. 一种发射功率的调整方法,应用于如权利要求8所述的移动终端,所述方法包括:
    根据网络侧设备的下行信号,确定与所述下行信号对应的电平信息;
    基于所述电平信息,调整所述移动终端中基于毫米波通信的射频系统中天线阵列的方向;
    如果调整天线阵列的方向后,接收的网络侧设备的下行信号对应的电平值增大,则通过所述射频系统中MCU控制所述射频系统中Doherty功放单元降低发射功率。
  10. 根据权利要求9所述的方法,还包括:
    如果调整天线阵列的方向后,接收的网络侧设备的下行信号对应的电平值减小,则调整所述射频系统中天线阵列的方向。
PCT/CN2019/079853 2018-03-30 2019-03-27 基于毫米波通信的射频系统、发射功率的调整方法及终端 WO2019184948A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19777666.9A EP3780398A4 (en) 2018-03-30 2019-03-27 RADIO FREQUENCY SYSTEM BASED ON MILLIMETER WAVE COMMUNICATION, PROCESS FOR ADAPTING TRANSMISSION POWER AND TERMINAL DEVICE
US17/037,171 US20210014801A1 (en) 2018-03-30 2020-09-29 Radio frequency system based on millimeter wave communication, method for adjusting transmit power, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810275910.9A CN108599785B (zh) 2018-03-30 2018-03-30 基于毫米波通信的射频系统、发射功率的调整方法及终端
CN201810275910.9 2018-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/037,171 Continuation US20210014801A1 (en) 2018-03-30 2020-09-29 Radio frequency system based on millimeter wave communication, method for adjusting transmit power, and terminal

Publications (1)

Publication Number Publication Date
WO2019184948A1 true WO2019184948A1 (zh) 2019-10-03

Family

ID=63623964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079853 WO2019184948A1 (zh) 2018-03-30 2019-03-27 基于毫米波通信的射频系统、发射功率的调整方法及终端

Country Status (4)

Country Link
US (1) US20210014801A1 (zh)
EP (1) EP3780398A4 (zh)
CN (1) CN108599785B (zh)
WO (1) WO2019184948A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108599785B (zh) * 2018-03-30 2019-11-19 维沃移动通信有限公司 基于毫米波通信的射频系统、发射功率的调整方法及终端
CN109669544B (zh) * 2018-12-29 2022-04-15 Oppo广东移动通信有限公司 指纹区域确定方法及装置、终端及可读存储介质
CN114665903B (zh) * 2020-12-23 2023-03-28 大唐移动通信设备有限公司 毫米波前端处理电路
CN113746490B (zh) * 2021-09-10 2023-03-14 维沃移动通信有限公司 射频结构及电子设备
CN117176256A (zh) * 2022-05-25 2023-12-05 华为技术有限公司 一种光电放大电路和信号处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716860A (zh) * 2014-09-03 2017-05-24 株式会社Ntt都科摩 无线发送台
CN107210710A (zh) * 2015-01-30 2017-09-26 三菱电机株式会社 三路顺序功率放大器
US9774362B1 (en) * 2014-11-07 2017-09-26 Amazon Technologies, Inc. Adaptive antenna tuning based on a sensed characteristic
CN107408976A (zh) * 2015-03-09 2017-11-28 威尔逊电子有限责任公司 用于可控天线系统的信号增强器
CN108599785A (zh) * 2018-03-30 2018-09-28 维沃移动通信有限公司 基于毫米波通信的射频系统、发射功率的调整方法及终端

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221646A (ja) * 2003-01-09 2004-08-05 Nec Corp ドハ−ティ増幅器
US20110074504A1 (en) * 2009-01-31 2011-03-31 Sei-Joo Jang Multi mode power output module and method of use with an rf signal amplification system
CN102064774B (zh) * 2009-11-18 2013-11-06 中兴通讯股份有限公司 一种功率放大电路实现方法及功率放大装置
CN102158190A (zh) * 2011-04-29 2011-08-17 中兴通讯股份有限公司 一种多合体功率放大器及其实现方法
CN104333332B (zh) * 2013-07-22 2019-08-27 南京中兴新软件有限责任公司 一种Doherty功放的控制方法和装置
CN103944623B (zh) * 2014-03-04 2017-04-05 清华大学 一种基于空间耦合的有源负载调制发射机
CN106411265B (zh) * 2016-10-12 2019-03-12 杭州电子科技大学 一种拓展带宽的非对称Doherty功率放大器及其实现方法
CN111566940B (zh) * 2017-12-22 2021-08-13 华为技术有限公司 一种信号处理电路、射频信号发射机和通信设备
CN108616975B (zh) * 2018-03-30 2020-06-09 维沃移动通信有限公司 基于毫米波通信的射频系统、发射功率的调整方法及终端
CN110971195B (zh) * 2019-11-08 2023-08-04 江苏大学 一种采用并联辅路的非对称Doherty功率放大器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716860A (zh) * 2014-09-03 2017-05-24 株式会社Ntt都科摩 无线发送台
US9774362B1 (en) * 2014-11-07 2017-09-26 Amazon Technologies, Inc. Adaptive antenna tuning based on a sensed characteristic
CN107210710A (zh) * 2015-01-30 2017-09-26 三菱电机株式会社 三路顺序功率放大器
CN107408976A (zh) * 2015-03-09 2017-11-28 威尔逊电子有限责任公司 用于可控天线系统的信号增强器
CN108599785A (zh) * 2018-03-30 2018-09-28 维沃移动通信有限公司 基于毫米波通信的射频系统、发射功率的调整方法及终端

Also Published As

Publication number Publication date
US20210014801A1 (en) 2021-01-14
EP3780398A1 (en) 2021-02-17
EP3780398A4 (en) 2021-09-01
CN108599785B (zh) 2019-11-19
CN108599785A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2019184948A1 (zh) 基于毫米波通信的射频系统、发射功率的调整方法及终端
CN109714064B (zh) 射频发射通路控制方法及用户终端
US11942979B2 (en) Network radio frequency structure, radio frequency control method, and electronic device
WO2020151744A1 (zh) 信号收发装置及终端设备
CN108632974B (zh) 基于毫米波通信的射频系统、发射功率的调整方法及终端
WO2020215965A1 (zh) 终端控制方法及终端
US11855734B2 (en) Beam failure processing method and related device
WO2021179965A1 (zh) 信息上报方法、接入方式确定方法、终端和网络设备
WO2021098706A1 (zh) 一种供电电路、供电方法及电子设备
WO2021129525A1 (zh) 天线电路、电子设备及天线性能的调整方法
WO2020216178A1 (zh) 功率检测电路及终端
US20230008818A1 (en) Sound masking method and apparatus, and terminal device
WO2020216180A1 (zh) 功率检测电路及终端
WO2020238446A1 (zh) Srs的发送方法及移动终端
US11304134B2 (en) Radio frequency system based on millimeter wave communication, method for adjusting transmit power, and terminal
US11800431B2 (en) Access control method, message broadcasting method, and related devices
US20210144651A1 (en) Power control method for physical random access channel and terminal
WO2021057965A1 (zh) 能力参数确定方法、上行调度方法、终端和网络侧设备
EP3713128B1 (en) Terminal capability indication method, and terminal
CN109714488B (zh) 终端设备工作模式调节方法、装置、终端设备和存储介质
CN111417185A (zh) 一种发射功率控制方法及相关设备
US20210204294A1 (en) Communication method for mobile terminal and mobile terminal
KR20220028918A (ko) 전자 장치 및 전자 장치에서 송신 신호의 경로 설정 방법
CN109309511B (zh) 一种射频电路及无线通信装置
US10880839B2 (en) Power control method and link and related product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777666

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019777666

Country of ref document: EP