WO2019184701A1 - 上行传输方法及终端 - Google Patents

上行传输方法及终端 Download PDF

Info

Publication number
WO2019184701A1
WO2019184701A1 PCT/CN2019/077795 CN2019077795W WO2019184701A1 WO 2019184701 A1 WO2019184701 A1 WO 2019184701A1 CN 2019077795 W CN2019077795 W CN 2019077795W WO 2019184701 A1 WO2019184701 A1 WO 2019184701A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
configuration information
multiple access
dmrs configuration
access identifier
Prior art date
Application number
PCT/CN2019/077795
Other languages
English (en)
French (fr)
Inventor
陈晓航
孙鹏
潘学明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP19776683.5A priority Critical patent/EP3780458B1/en
Priority to JP2020553535A priority patent/JP7328986B2/ja
Priority to ES19776683T priority patent/ES2953702T3/es
Priority to KR1020207030568A priority patent/KR102589486B1/ko
Publication of WO2019184701A1 publication Critical patent/WO2019184701A1/zh
Priority to US17/036,496 priority patent/US11736327B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03866Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using scrambling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to an uplink transmission method and a terminal.
  • NR New Radio
  • eMBB enhanced mobile broadband
  • mMTC massive machine type of communication
  • URLLC ultra-reliable ultra-low latency communication
  • the terminal In the traditional uplink transmission mode, if the terminal needs to send uplink data, it first needs to send a scheduling request (SR). After receiving the SR sent by the terminal, the base station allocates the uplink transmission resource by using the uplink grant (UL grant). After receiving the UL grant, the terminal performs the uplink data transmission according to the scheduling information.
  • SR scheduling request
  • UL grant uplink grant
  • the terminal After receiving the UL grant, the terminal performs the uplink data transmission according to the scheduling information.
  • This method can achieve better system performance when the bandwidth is not limited or the number of connections is small.
  • the NR supports a semi-statically scheduled (configured grant) mode to reduce the signaling interaction process, thereby reducing the power consumption of the terminal. In order to improve resource utilization, multiple terminals can send uplink data in an unlicensed manner on the same resource.
  • the transmissions of different terminals are orthogonal in the time-frequency domain. Therefore, after the terminal is identified by the Demodulation Reference Signal (DMRS), the base station no longer needs to distinguish the terminal.
  • the base station In the non-orthogonal transmission mode, the base station not only needs to identify the terminal, but also performs multi-user detection on the uplink received signal. This increases the complexity of the reception of the base station and the processing delay.
  • the manner in which the limited terminal identification signal is in one-to-one correspondence with the terminal is difficult to satisfy the scenario that needs to support a large number of terminal accesses.
  • the embodiments of the present disclosure provide an uplink transmission method and a terminal, which are used to solve the problem that the limited terminal identification signal and the terminal are in one-to-one correspondence in the non-orthogonal transmission mode, which increases the receiving complexity and processing delay of the base station, and is difficult to implement. Meet the need to support a large number of terminal access issues.
  • an embodiment of the present disclosure provides an uplink transmission method, which is applied to a terminal, and includes:
  • the DMRS configuration information corresponds to one multiple access identifier, and the different multiple access identifiers correspond to different DMRS configuration information.
  • an embodiment of the present disclosure provides a terminal, including:
  • An acquiring module configured to acquire at least one demodulation reference signal DMRS configuration information and at least one multiple access identifier configured by the network device;
  • a transmitting module configured to select, in the at least one DMRS configuration information and the at least one multiple access identifier, a target DMRS configuration information and a target multiple access identifier that have a corresponding relationship, and perform uplink transmission;
  • the DMRS configuration information corresponds to one multiple access identifier, and the different multiple access identifiers correspond to different DMRS configuration information.
  • an embodiment of the present disclosure provides a terminal, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, where the computer program is implemented by the processor to implement the uplink The steps of the transfer method.
  • an embodiment of the present disclosure provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program, and when the computer program is executed by a processor, the steps of the uplink transmission method are implemented.
  • the beneficial effect of the embodiment of the present disclosure is that, by selecting at least one DMRS configuration information and at least one multiple access identifier configured by the network device, selecting the target DMRS configuration information and the target multiple access identifier having the corresponding relationship, performing uplink transmission, thereby reducing
  • the complexity and processing delay of the base station can support the access of a large number of terminals and improve the performance of network communication.
  • FIG. 1 is a schematic flowchart of an uplink transmission method applied to a terminal side according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of correspondence between DMRS configuration information and multiple access identifiers of UE1;
  • 3 is a schematic diagram of a correspondence relationship between DMRS configuration information and multiple access identifiers of UE2;
  • FIG. 4 is a second schematic diagram of the correspondence between the DMRS configuration information and the multiple access identifier of the UE2;
  • 5 is a third schematic diagram of the correspondence between the DMRS configuration information and the multiple access identifier of the UE2;
  • FIG. 6 is a schematic diagram of a correspondence relationship between a scrambling parameter and a multiple access identifier in DMRS configuration information of UE1 when a cyclic prefix orthogonal frequency division multiplexing waveform is used;
  • FIG. 7 is a second schematic diagram of the correspondence between the scrambling parameter and the multiple access identifier in the DMRS configuration information of the UE1 when the cyclic prefix orthogonal frequency division multiplexing waveform is used;
  • FIG. 8 is a block diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a structural block diagram of a terminal according to an embodiment of the present disclosure.
  • the words “exemplary” or “such as” are used to mean an example, illustration, or illustration. Any embodiment or design described as “exemplary” or “for example” in the disclosed embodiments should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of the words “exemplary” or “such as” is intended to present the concepts in a particular manner.
  • the interception indication method, the terminal, and the network device provided by the embodiments of the present disclosure may be applied to a wireless communication system.
  • the wireless communication system may be a system using a fifth generation (5th generation, 5G) mobile communication technology (hereinafter referred to as a 5G system for short), and those skilled in the art may understand that the 5G NR system is merely an example and is not limited.
  • 5G fifth generation
  • the terminal can use the non-orthogonal technology to process the uplink signals in the uplink transmission.
  • different terminals can adopt different multiple access signatures.
  • the multiple access identifier may be one or more of the following:
  • Preamble Preamble
  • the base station When receiving, the base station uses an advanced receiver to perform multi-user detection, and distinguishes the signal of the terminal according to the multiple access identifier used by the terminal and decodes the signal.
  • the base station When the terminal transmits in the uplink semi-persistent scheduling, the base station does not know which terminals will send the uplink data. Therefore, the base station needs to identify the terminal that transmits the uplink data.
  • the existing method is to use a demodulation reference signal (DMRS) as a signal recognized by the terminal. In this case, the base station can know which terminals are transmitting the uplink transmission signal by detecting the DMRS.
  • DMRS demodulation reference signal
  • multiple terminals can send uplink data in a semi-persistent scheduling manner on the same resource.
  • the base station When receiving the uplink data, the base station performs blind detection and identifies the terminal that performs uplink transmission and performs multi-user detection.
  • An embodiment of the present disclosure provides an uplink transmission method and a terminal.
  • an embodiment of the present disclosure provides an uplink transmission method, which is applied to a terminal, and includes:
  • Step 101 Acquire at least one demodulation reference signal DMRS configuration information and at least one multiple access identifier configured by the network device.
  • one DMRS configuration information corresponds to one multiple access identifier
  • different multiple access identifiers correspond to different DMRS configuration information DMRS configuration information, that is, DMRS configuration information and
  • the multiple access identifiers have a one-to-one correspondence. That is, one DMRS configuration information only corresponds to one multiple access identifier, and one multiple access identifier only corresponds to one DMRS configuration information.
  • the network device configures two DMRS configuration information for the terminal. And two multiple access identifiers, one-to-one correspondence between two DMRS configuration information and two multiple access identifiers.
  • Step 102 Select target DMRS configuration information and target multiple access identifiers with corresponding relationships in at least one DMRS configuration information and the at least one multiple access identifier, and perform uplink transmission.
  • the terminal when performing uplink transmission, the terminal needs to select one of a plurality of DMRS configuration information and multiple multiple access identifiers configured by the network device for uplink transmission, specifically, the terminal is at least After selecting the target DMRS configuration information and the target multiple access identifier of the DMRS configuration information and the at least one multiple access identifier, determining the data scrambling according to the target DMRS configuration information and the target multiple access identifier Parameters to implement control of data transmission using the data scrambling parameters.
  • the at least one DMRS configuration information and the at least one multiple access identifier are configured by the network device as a terminal, and the at least one DMRS configuration information and the at least one multiple access identifier may be sent by the network device to the terminal together after the configuration is completed, or The network device allocates at least one DMRS configuration information and at least one multiple access identifier to the terminal in time sharing. For example, when transmitting, the network device may send at least one DMRS configuration information to the terminal at the first moment, and send at least one multiple access identifier to the terminal at the second moment.
  • the mapping relationship between the at least one DMRS configuration information and the at least one multiple access identifier may be a protocol agreement, and the terminal side may directly learn the information, or may be notified by the network device to the terminal, and the network device may The mapping relationship is sent to the terminal together with the at least one DMRS configuration information and the at least one multiple access identifier, and may also be sent in a time-sharing manner.
  • the network device may perform the foregoing information transmission by using a broadcast mode or a radio resource control (RRC) signaling (for example, a dedicated RRC signaling).
  • RRC radio resource control
  • the terminal acquires at least one by using a broadcast mode or preset RRC signaling.
  • DMRS configuration information and at least one multiple access identifier may be used.
  • the network device may be configured in one of the following manners.
  • Manner 1 When the network device performs at least one DMRS configuration information and at least one multiple access identifier configuration, the DMRS configuration information and the multiple access identifier configured for different terminals are different.
  • the network device configures different DMRS configuration information for the UE1 and the UE2, and the corresponding multiple access identifiers are different.
  • the DMRS configuration information of the UE1 is DMRS configuration information 1, DMRS configuration information 2, respectively.
  • DMRS configuration information of UE2 The DMRS configuration information 5, the DMRS configuration information 6, the DMRS configuration information 7, and the DMRS configuration information 8, respectively, the corresponding multiple access identifiers are: multiple access identifier 5, multiple access identifier 6, multiple access identifier 7 and multiple access identifier 9 .
  • the network device configures at least one DMRS configuration information and at least one multiple access identifier for UE1 and UE2, where the candidate set of UE1 and UE2 includes partially identical DMRS configuration information, and multiple addresses corresponding to the same DMRS configuration information.
  • the logo is the same.
  • the DMRS parameters of the UE1 are DMRS configuration information 1, DMRS configuration information 2, DMRS configuration information 3, and DMRS configuration information 4, respectively, and the corresponding multiple access identifiers are: multiple access identifier 1, multiple access identifier 2 The multiple access identifier 3 and the multiple access identifier 4; as shown in FIG.
  • the DMRS configuration information of the UE2 is DMRS configuration information 1, DMRS configuration information 2, DMRS configuration information 5, and DMRS configuration information 6, respectively, corresponding to the multiple access identifier. They are: multiple access identifier 1, multiple access identifier 2, multiple access identifier 5, and multiple access identifier 6.
  • Mode 3 When the DMRS configuration information configured by the network device is different for different terminals, the same DMRS configuration information is different for the multiple access identifiers of the different terminals.
  • the network device configures at least one DMRS configuration information and at least one multiple access identifier for the UE1 and the UE2, where the candidate set of the UE1 and the UE2 includes partially the same DMRS configuration information, and the same DMRS configuration information configured by different terminals.
  • the corresponding multiple access identifier is also different.
  • the DMRS configuration information of the UE1 is DMRS configuration information 1, DMRS configuration information 2, DMRS configuration information 3, and DMRS configuration information 4, respectively, and the corresponding multiple access identifiers are: multiple access identifier 1, multiple access identifier 2.
  • Multiple access identifier 3 and multiple access identifier 4 as shown in FIG.
  • the DMRS configuration information of UE2 is DMRS configuration information 1, DMRS configuration information 2, DMRS configuration information 5, and DMRS configuration information 6, respectively, corresponding to multiple access.
  • the identifiers are: multiple access identifier 5, multiple access identifier 6, multiple access identifier 7 and multiple access identifier 8.
  • one DMRS configuration information includes at least one scrambling parameter generated by the DMRS sequence, that is, the same terminal belongs to the same DMRS configuration information.
  • the scrambling parameters correspond to the same multiple access identifier.
  • the UE1 includes multiple DMRS configuration information, and each DMRS configuration information includes at least two scrambling parameters, and the scrambling parameters belonging to the same DMRS configuration information are all the same multiple access identifier.
  • the UE1 includes DMRS configuration information 1 and DMRS configuration information 2, where the DMRS configuration information 1 includes a scrambling parameter 1, and the corresponding multiple access identifiers are: multiple access identifier 1; DMRS configuration information 2
  • the scrambling parameter 2 is included, and the corresponding multiple access identifier is: multiple access identifier 2; as shown in FIG.
  • UE1 includes DMRS configuration information 1 and DMRS configuration information 2, where DMRS configuration information 1 includes scrambling parameters 1 and plus The interference parameter 2, which corresponds to the multiple access identifier: the multiple access identifier 1; the DMRS configuration information 2 includes the scrambling parameter 1 and the scrambling parameter 2, and the corresponding multiple access identifier is: the multiple access identifier 2.
  • the target DMRS configuration information and the target multiple access identifier may be used for uplink transmission, and it is required that, when the transmission is performed, the identifier information of the terminal is used. For example, the ID of the terminal is transmitted together with the data.
  • one of the following methods may be implemented:
  • the identifier information of the terminal is sent by a media access control layer control unit (MAC CE);
  • MAC CE media access control layer control unit
  • the network device needs to successfully decode the data to obtain the identification information of the terminal.
  • the identification information of the terminal is scrambled to the CRC check bit of the data, and the CRC check bit is used for verifying the data, and is sent along with the data.
  • the identifier information of the terminal is carried in the data channel for transmission;
  • the identifier information of the terminal is carried in the resource reserved in the data channel, and the identifier information of the terminal is carried in the data channel in an independently coded manner.
  • the information such as the coding rate and the beta offset (beta offset) when the terminal identification information is carried on the data channel can be configured by the network device.
  • A4 The terminal identification information is attached to the transport block and then sent.
  • the identification information of the terminal is attached to the transport block by means of independent coding, or the identification information of the terminal is attached to the transport block by means of joint coding.
  • the information such as the encoding rate when the terminal identification information is attached to the transport block and is separately encoded may be configured by the network device.
  • the target DMRS configuration information and the target multiple access identifier having the corresponding relationship are selected in the at least one DMRS configuration information and the at least one multiple access identifier configured by the network device, and uplink transmission is performed, thereby reducing
  • the complexity of the reception of the base station and the processing delay can support the access of a large number of terminals and improve the performance of network communication.
  • the embodiment of the present disclosure further provides a terminal 800, including:
  • the obtaining module 801 is configured to acquire at least one demodulation reference signal DMRS configuration information and at least one multiple access identifier configured by the network device;
  • the transmitting module 802 is configured to select, in the at least one DMRS configuration information and the at least one multiple access identifier, target DMRS configuration information and a target multiple access identifier that have corresponding relationships, and perform uplink transmission;
  • the DMRS configuration information corresponds to one multiple access identifier, and the different multiple access identifiers correspond to different DMRS configuration information.
  • the obtaining module 801 is configured to:
  • the network device Obtaining, by the network device, the at least one DMRS configuration information and the at least one multiple access identifier configured by the terminal by using a broadcast mode or a radio resource control RRC signaling manner.
  • one DMRS configuration information includes at least one scrambling parameter generated by the DMRS sequence.
  • the transmitting module 802 selects the target DMRS configuration information and the target multiple access identifier that have the corresponding relationship in the at least one DMRS configuration information and the at least one multiple access identifier, the method further includes:
  • a determining module configured to determine a data scrambling parameter according to the target DMRS configuration information and the target multiple access identifier.
  • the transmitting module 802 performs uplink transmission, including one of the following manners:
  • the identification information of the terminal is carried in the data channel for transmission;
  • the identification information of the terminal is attached to the transport block and then transmitted.
  • the identifier information of the terminal is carried in the data channel for transmission, the identifier information of the terminal is carried in a resource reserved in the data channel, and the identifier information of the terminal is carried in the independent coding manner. In the data channel.
  • the identifier information of the terminal is attached to the transport block by means of independent coding, or the identifier information of the terminal is attached to the transport by means of joint coding. After the block.
  • the terminal embodiment is a terminal corresponding to the uplink transmission method applied to the terminal side. All the implementation manners of the foregoing embodiments are applicable to the terminal embodiment, and the same technical effects can be achieved.
  • FIG. 9 is a schematic diagram of a hardware structure of a terminal that implements an embodiment of the present disclosure.
  • the terminal 90 includes, but is not limited to, a radio frequency unit 910, a network module 920, an audio output unit 930, an input unit 940, a sensor 950, a display unit 960, a user input unit 970, an interface unit 980, a memory 990, a processor 911, and a power supply. 912 and other components. It will be understood by those skilled in the art that the terminal structure shown in FIG. 9 does not constitute a limitation of the terminal, and the terminal may include more or less components than those illustrated, or some components may be combined, or different component arrangements. In the embodiments of the present disclosure, the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle terminal, a wearable device, and a pedometer.
  • the processor 911 is configured to acquire at least one demodulation reference signal DMRS configuration information and at least one multiple access identifier configured by the network device, and select a target having a corresponding relationship among the at least one DMRS configuration information and the at least one multiple access identifier.
  • the DMRS configuration information corresponds to one multiple access identifier, and the different multiple access identifiers correspond to different DMRS configuration information.
  • the terminal of the embodiment of the present disclosure performs uplink transmission by selecting target DMRS configuration information and target multiple access identifiers having corresponding relationships in at least one DMRS configuration information and at least one multiple access identifier configured by the network device, thereby reducing reception by the base station.
  • the complexity and processing delay can support the access of a large number of terminals and improve the performance of network communication.
  • the radio frequency unit 910 can be used for receiving and transmitting signals during the transmission and reception of information or during a call, and specifically, after receiving downlink data from the network device, processing the processor 911; Send the uplink data to the network device.
  • radio frequency unit 910 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio unit 910 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides the user with wireless broadband Internet access through the network module 920, such as helping the user to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 930 can convert audio data received by the radio frequency unit 910 or the network module 920 or stored in the memory 990 into an audio signal and output as sound. Moreover, the audio output unit 930 can also provide audio output (eg, call signal reception sound, message reception sound, etc.) associated with a particular function performed by the terminal 90.
  • the audio output unit 930 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 940 is for receiving an audio or video signal.
  • the input unit 940 may include a graphics processing unit (GPU) 941 and a microphone 942 that images an still picture or video obtained by an image capturing device (such as a camera) in a video capturing mode or an image capturing mode.
  • the data is processed.
  • the processed image frame can be displayed on the display unit 960.
  • Image frames processed by graphics processor 941 may be stored in memory 990 (or other storage medium) or transmitted via radio unit 910 or network module 920.
  • the microphone 942 can receive sound and can process such sound as audio data.
  • the processed audio data can be converted to a format output that can be transmitted to the mobile communication network device via the radio unit 910 in the case of a telephone call mode.
  • Terminal 90 also includes at least one type of sensor 950, such as a light sensor, motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 961 according to the brightness of the ambient light, and the proximity sensor can close the display panel 961 and/or when the terminal 90 moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • sensor 950 may also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be described here.
  • the display unit 960 is for displaying information input by the user or information provided to the user.
  • the display unit 960 can include a display panel 961.
  • the display panel 961 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the user input unit 970 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 970 includes a touch panel 971 and other input devices 972.
  • the touch panel 971 also referred to as a touch screen, can collect touch operations on or near the user (such as a user using a finger, a stylus, or the like on the touch panel 971 or near the touch panel 971. operating).
  • the touch panel 971 can include two parts of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 911 receives the commands from the processor 911 and executes them.
  • the touch panel 971 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 970 can also include other input devices 972.
  • other input devices 972 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, and are not described herein.
  • the touch panel 971 can be overlaid on the display panel 961.
  • the touch panel 971 detects a touch operation on or near the touch panel 971, it is transmitted to the processor 911 to determine the type of the touch event, and then the processor 911 according to the touch.
  • the type of event provides a corresponding visual output on display panel 961.
  • the touch panel 971 and the display panel 961 are used as two independent components to implement the input and output functions of the terminal in FIG. 9, in some embodiments, the touch panel 971 and the display panel 961 may be integrated.
  • the input and output functions of the terminal are implemented, and are not limited herein.
  • the interface unit 980 is an interface in which an external device is connected to the terminal 90.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device having an identification module, and an audio input/output. (I/O) port, video I/O port, headphone port, and more.
  • the interface unit 980 can be configured to receive input from an external device (eg, data information, power, etc.) and transmit the received input to one or more components within the terminal 90 or can be used at the terminal 90 and external devices Transfer data between.
  • Memory 990 can be used to store software programs as well as various data.
  • the memory 990 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 990 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the processor 911 is the control center of the terminal, and connects various parts of the entire terminal using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 990, and calling data stored in the memory 990, executing The terminal's various functions and processing data, so as to monitor the terminal as a whole.
  • the processor 911 may include one or more processing units; optionally, the processor 911 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, an application, etc., and a modulation solution
  • the processor mainly handles wireless communication. It can be understood that the above modem processor may not be integrated into the processor 911.
  • the terminal 90 can also include a power source 912 (such as a battery) for powering various components.
  • a power source 912 such as a battery
  • the power source 912 can be logically coupled to the processor 911 through a power management system to manage charging, discharging, and power management through the power management system. And other functions.
  • terminal 90 includes some functional modules not shown, and details are not described herein again.
  • an embodiment of the present disclosure further provides a terminal, including a processor 911, a memory 990, a computer program stored on the memory 990 and executable on the processor 911, when the computer program is executed by the processor 911.
  • a terminal including a processor 911, a memory 990, a computer program stored on the memory 990 and executable on the processor 911, when the computer program is executed by the processor 911.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, implements various processes applied to the uplink transmission method embodiment of the terminal side, and can To achieve the same technical effect, to avoid repetition, we will not repeat them here.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the network device in the embodiment of the present disclosure may be a base station (Base Transceiver Station) in Global System of Mobile communication (GSM) or Code Division Multiple Access (CDMA).
  • the BTS may also be a base station (NodeB, NB for short) in Wideband Code Division Multiple Access (WCDMA), or may be an evolved Node B (eNB or eNodeB) in LTE. , or a relay station or an access point, or a base station in a future 8G network, etc., is not limited herein.
  • the foregoing embodiment method can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is better.
  • Implementation Based on such understanding, the technical solution of the present disclosure, which is essential or contributes to the related art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal (which may be a cell phone, computer, server, air conditioner, or network device, etc.) to perform the methods described in various embodiments of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本公开提供了一种上行传输方法及终端。该上行传输方法,应用于终端,包括:获取网络设备配置的至少一个解调参考信号DMRS配置信息和至少一个多址标识;在至少一个DMRS配置信息和所述至少一个多址标识中选择具有对应关系的目标DMRS配置信息和目标多址标识,进行上行传输;其中,一个DMRS配置信息对应一个多址标识、且不同的多址标识对应不同的DMRS配置信息。

Description

上行传输方法及终端
相关申请的交叉引用
本申请主张在2018年3月30日在中国提交的中国专利申请号No.201810276657.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别涉及一种上行传输方法及终端。
背景技术
与以往的通信系统相比,未来第五代(5G)移动通信系统需要适应更加多样化的场景和业务需求。新空口(New radio,NR)的主要场景包括移动宽带增强(enhanced mobile broadband,eMBB)、大规模物联网(massive machine type of communication,mMTC)和超高可靠超低时延通信(Ultra-Reliable and Low Latency Communications,URLLC),这些场景对系统提出了高可靠、低时延、大带宽、广覆盖等要求。
在传统的上行传输模式下,终端如果需要发送上行数据,首先要发送调度请求(scheduling request,SR)。基站在收到终端发送的SR后,通过上行授权(UL grant)分配终端上行传输的资源,终端收到UL grant后根据调度信息进行那些上行数据的传输。这种方式在带宽不受限或连接数不多的时候,能够获得较好的系统性能。NR支持半静态调度(configured grant)方式,减少信令交互流程,从而能够降低终端的功耗。为了提高资源的利用率,多个终端可以在相同的资源上采用免授权的方式发送上行数据。
在正交传输方式下,不同终端的传输在时频域上是正交的,因此通过解调参考信号(Demodulation Reference Signal,DMRS)识别终端之后,基站不再需要区分终端。而在非正交传输方式下,基站不仅要识别终端,同时也要对上行接收信号进行多用户检测。这增加了基站的接收的复杂度和处理时延。同时,有限的终端识别信号与终端一一对应的方式难以满足需要支持大量终端接入的场景。
发明内容
本公开实施例提供一种上行传输方法及终端,以解决在非正交传输方式下,有限的终端识别信号与终端一一对应的方式,增加了基站的接收的复杂度和处理时延,难以满足需要支持大量终端接入的问题。
为了解决上述技术问题,本公开采用如下方案:
第一方面,本公开实施例提供一种上行传输方法,应用于终端,包括:
获取网络设备配置的至少一个解调参考信号DMRS配置信息和至少一个多址标识;
在至少一个DMRS配置信息和所述至少一个多址标识中选择具有对应关系的目标DMRS配置信息和目标多址标识,进行上行传输;
其中,一个DMRS配置信息对应一个多址标识、且不同的多址标识对应不同的DMRS配置信息。
第二方面,本公开实施例提供一种终端,包括:
获取模块,用于获取网络设备配置的至少一个解调参考信号DMRS配置信息和至少一个多址标识;
传输模块,用于在至少一个DMRS配置信息和所述至少一个多址标识中选择具有对应关系的目标DMRS配置信息和目标多址标识,进行上行传输;
其中,一个DMRS配置信息对应一个多址标识、且不同的多址标识对应不同的DMRS配置信息。
第三方面,本公开实施例提供一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述的上行传输方法的步骤。
第四方面,本公开实施例提供一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述的上行传输方法的步骤。
本公开实施例的有益效果是通过在网络设备配置的至少一个DMRS配置信息和至少一个多址标识中,选择具有对应关系的目标DMRS配置信息和目标多址标识,进行上行传输,以此降低了基站的接收的复杂度和处理时延,可以支持大量终端的接入,提升了网络通信的性能。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为根据本公开实施例的应用于终端侧的上行传输方法的流程示意图;
图2为UE1的DMRS配置信息和多址标识对应关系示意图;
图3为UE2的DMRS配置信息和多址标识对应关系示意图之一;
图4为UE2的DMRS配置信息和多址标识对应关系示意图之二;
图5为UE2的DMRS配置信息和多址标识对应关系示意图之三;
图6为在采用循环前缀正交频分复用波形时,UE1的DMRS配置信息中的加扰参数和多址标识对应关系示意图之一;
图7为在采用循环前缀正交频分复用波形时,UE1的DMRS配置信息中的加扰参数和多址标识对应关系示意图之二;
图8为根据本公开实施例的终端的模块示意图;
图9为根据本公开实施例的终端的结构框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单 元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本公开的实施例。本公开实施例提供的侦听指示方法、终端及网络设备可以应用于无线通信系统中。该无线通信系统可以为采用第五代(5th Generation,5G)移动通信技术的系统(以下均简称为5G系统),所述领域技术人员可以了解,5G NR系统仅为示例,不为限制。
在进行本公开实施例的说明时,首先对下面描述中所用到的一些概念进行解释说明。
为了能够区分不同终端的信号,终端在上行传输时可采用非正交技术对上行信号进行处理,具体来说,不同终端可采用不同的多址标识(Multiple Access signature)。其中,多址标识可以是以下的一种或多种:
码本(Codebook)/码字(Codeword);
顺序(Sequence);
Interleaver和/或映射模式(mapping pattern);
解调参考信号(Demodulation reference signal);
前导码(Preamble);
空间范围(Spatial-dimension);
功率范围(Power-dimension)。
基站在接收的时候,采用高级接收机(advanced receiver)进行多用户检测,根据终端所采用的多址标识区分终端的信号并解码。
终端在上行半静态调度的传输时,基站并不知道哪些终端何时会发送上行数据。因此基站需要对发送上行数据的终端进行识别。现有的方法是通过解调参考信号(DMRS)来作为终端识别的信号。在这种情况下,基站通过 检测DMRS,可以获知哪些终端在发送上行传输信号。
为了节省功耗和信令开销,多个终端可以在相同的资源上采用半静态调度的方式发送上行数据。基站在接收上行数据时,进行盲检并识别出进行上行传输的终端并进行多用户检测。本公开实施例给出了一种上行传输方法及终端。
具体地,如图1所示,本公开实施例提供一种上行传输方法,应用于终端,包括:
步骤101,获取网络设备配置的至少一个解调参考信号DMRS配置信息和至少一个多址标识;
需要说明的是,对于至少一个DMRS配置信息和至少一个多址标识,其中一个DMRS配置信息对应一个多址标识、且不同的多址标识对应不同的DMRS配置信息DMRS配置信息,即DMRS配置信息与多址标识为一一对应的关系,也就是说,一个DMRS配置信息只对应一个多址标识,一个多址标识也只对应一个DMRS配置信息,例如,网络设备为终端配置了两个DMRS配置信息以及两个多址标识,两个DMRS配置信息和两个多址标识之间为一一对应的关系。
步骤102,在至少一个DMRS配置信息和所述至少一个多址标识中选择具有对应关系的目标DMRS配置信息和目标多址标识,进行上行传输;
需要说明的是,终端在进行上行传输时,需要在网络设备为其配置的多个DMRS配置信息和多个多址标识中选择一对用于进行上行传输,具体地,终端在所述在至少一个DMRS配置信息和所述至少一个多址标识中选择具有对应关系的目标DMRS配置信息和目标多址标识之后,还需要根据所述目标DMRS配置信息和所述目标多址标识,确定数据加扰参数,以利用该数据加扰参数实现对数据发送的控制。
需要说明的是,至少一个DMRS配置信息和至少一个多址标识为网络设备为终端配置,该至少一个DMRS配置信息和至少一个多址标识可以是网络设备在配置完成后一同发送给终端,也可以是网络设备分时将至少一个DMRS配置信息和至少一个多址标识发送给终端。例如,在进行发送时,网络设备可以在第一时刻将至少一个DMRS配置信息发送给终端,在第二时刻 将至少一个多址标识发送给终端。因至少一个DMRS配置信息和至少一个多址标识之间存在映射关系,该二者的映射关系可以是协议约定,终端侧可以直接获知的,也可以是网络设备通知给终端的,网络设备可以将该映射关系与至少一个DMRS配置信息和至少一个多址标识一同发送给终端,也可以分时的进行发送。
具体地,网络设备可以采用广播方式或无线资源控制(RRC)信令(例如,专用RRC信令)方式进行上述信息的发送,具体地,终端也是通过广播方式或预设RRC信令获取至少一个DMRS配置信息和至少一个多址标识。
还需要说明的是,网络设备在进行DMRS配置信息和多址标识配置时,可以采用如下方式中的一种进行配置。
方式一、网络设备在进行至少一个DMRS配置信息和至少一个多址标识配置时,为不同终端配置的DMRS配置信息和多址标识是不同的。
例如,网络设备为UE1和UE2分别配置了不同的DMRS配置信息,且对应的多址标识也是不同的,如图2所示,UE1的DMRS配置信息分别为DMRS配置信息1、DMRS配置信息2、DMRS配置信息3和DMRS配置信息4,其对应地多址标识分别为:多址标识1、多址标识2、多址标识3和多址标识4;如图3所示,UE2的DMRS配置信息分别为DMRS配置信息5、DMRS配置信息6、DMRS配置信息7和DMRS配置信息8,其对应地多址标识分别为:多址标识5、多址标识6、多址标识7和多址标识9。
方式二、网络设备为不同的终端所配置的DMRS配置信息存在部分相同时,相同的DMRS配置信息在不同终端对应的多址标识相同。
例如,网络设备为UE1和UE2分别配置了至少一个DMRS配置信息和至少一个多址标识,其中,UE1和UE2的候选集中包含了部分相同的DMRS配置信息,且同一个DMRS配置信息对应的多址标识相同。如图2所示,UE1的DMRS参数分别为DMRS配置信息1、DMRS配置信息2、DMRS配置信息3和DMRS配置信息4,其对应地多址标识分别为:多址标识1、多址标识2、多址标识3和多址标识4;如图4所示,UE2的DMRS配置信息分别为DMRS配置信息1、DMRS配置信息2、DMRS配置信息5和DMRS配置信息6,其对应地多址标识分别为:多址标识1、多址标识2、多址标识5和 多址标识6。
方式三、网络设备为不同的终端所配置的DMRS配置信息存在部分相同时,相同的DMRS配置信息在不同终端对应的多址标识不相同。
例如,网络设备为UE1和UE2分别配置了至少一个DMRS配置信息和至少一个多址标识,其中,UE1和UE2的候选集中包含了部分相同的DMRS配置信息,且不同终端配置的相同的DMRS配置信息对应的多址标识也是不同的。如图2所示,UE1的DMRS配置信息分别为DMRS配置信息1、DMRS配置信息2、DMRS配置信息3和DMRS配置信息4,其对应地多址标识分别为:多址标识1、多址标识2、多址标识3和多址标识4;如图5所示,UE2的DMRS配置信息分别为DMRS配置信息1、DMRS配置信息2、DMRS配置信息5和DMRS配置信息6,其对应地多址标识分别为:多址标识5、多址标识6、多址标识7和多址标识8。
还需要说明的是,当采用循环前缀正交频分复用波形时,一个DMRS配置信息中包含至少一个DMRS序列生成的加扰参数,即同一个终端中,属于同一个DMRS配置信息中的加扰参数对应的都是相同的多址标识。
例如,UE1包含了多个DMRS配置信息,且每个DMRS配置信息中包含至少两个加扰参数,属于同一个DMRS配置信息中的加扰参数对应的都是相同的多址标识。例如,如图6所示,UE1包含DMRS配置信息1和DMRS配置信息2,其中,DMRS配置信息1包含加扰参数1,其对应地多址标识均为:多址标识1;DMRS配置信息2包含加扰参数2,其对应地多址标识为:多址标识2;如图7所示,UE1包含DMRS配置信息1和DMRS配置信息2,其中,DMRS配置信息1包含加扰参数1和加扰参数2,其对应地多址标识均为:多址标识1;DMRS配置信息2包含加扰参数1和加扰参数2,其对应地多址标识为:多址标识2。
进一步地,在确定目标DMRS配置信息和目标多址标识后,便可以利用该目标DMRS配置信息和目标多址标识进行上行传输,需要说明的是,在进行传输时,是将终端的标识信息(例如,终端的ID)与数据一起进行发送,具体地,在进行上行传输时,可以采用如下方式中的一种实现:
A1、通过媒体接入控制层控制单元(MAC CE)发送终端的标识信息;
需要说明的是,在此种情况下,网络设备需要成功解码数据后才能获取终端的标识信息。
A2、将终端的标识信息加扰在循环冗余校验码(CRC)中进行发送;
需要说明的是,在此种情况下,是把终端的标识信息加扰到数据的CRC校验比特上,该CRC校验比特是用于校验数据的,会随着数据一起发送。
A3、将终端的标识信息承载于数据信道中进行发送;
需要说明的是,在此种情况下,所述终端的标识信息承载于数据信道中预留的资源中,且所述终端的标识信息以独立编码的方式承载于所述数据信道中。终端标识信息承载于数据信道时的编码速率、beta偏移因子(beta offset)等信息可由网络设备配置。
A4、将终端的标识信息附着在传输块后进行发送。
需要说明的是,在此种情况下,所述终端的标识信息采用独立编码的方式附着在传输块后,或所述终端的标识信息采用联合编码的方式附着在传输块后。终端标识信息附着在传输块后采用单独编码时的编码速率等信息可由网络设备配置。
需要说明的是,本公开实施例通过在网络设备配置的至少一个DMRS配置信息和至少一个多址标识中,选择具有对应关系的目标DMRS配置信息和目标多址标识,进行上行传输,以此降低了基站的接收的复杂度和处理时延,可以支持大量终端的接入,提升了网络通信的性能。
如图8所示,本公开实施例还提供一种终端800,包括:
获取模块801,用于获取网络设备配置的至少一个解调参考信号DMRS配置信息和至少一个多址标识;
传输模块802,用于在至少一个DMRS配置信息和所述至少一个多址标识中选择具有对应关系的目标DMRS配置信息和目标多址标识,进行上行传输;
其中,一个DMRS配置信息对应一个多址标识、且不同的多址标识对应不同的DMRS配置信息。
进一步地,所述获取模块801,用于:
获取所述网络设备通过广播方式或无线资源控制RRC信令方式,为终端 配置的所述至少一个DMRS配置信息和所述至少一个多址标识。
进一步地,在采用循环前缀正交频分复用波形时,一个DMRS配置信息中包含至少一个DMRS序列生成的加扰参数。
进一步地,在所述传输模块802在至少一个DMRS配置信息和所述至少一个多址标识中选择具有对应关系的目标DMRS配置信息和目标多址标识之后,还包括:
确定模块,用于根据所述目标DMRS配置信息和所述目标多址标识,确定数据加扰参数。
进一步地,所述传输模块802进行上行传输,包括以下方式中的一项:
通过媒体接入控制层控制单元发送终端的标识信息;
将终端的标识信息加扰在循环冗余校验码中进行发送;
将终端的标识信息承载于数据信道中进行发送;
将终端的标识信息附着在传输块后进行发送。
具体地,在将终端的标识信息承载于数据信道中进行发送时,所述终端的标识信息承载于数据信道中预留的资源中,所述终端的标识信息以独立编码的方式承载于所述数据信道中。
具体地,在将终端的标识信息附着在传输块后进行发送时,所述终端的标识信息采用独立编码的方式附着在传输块后,或所述终端的标识信息采用联合编码的方式附着在传输块后。
需要说明的是,该终端实施例是与上述应用于终端侧的上行传输方法相对应的终端,上述实施例的所有实现方式均适用于该终端实施例中,也能达到与其相同的技术效果。
图9为实现本公开实施例的一种终端的硬件结构示意图。
该终端90包括但不限于:射频单元910、网络模块920、音频输出单元930、输入单元940、传感器950、显示单元960、用户输入单元970、接口单元980、存储器990、处理器911、以及电源912等部件。本领域技术人员可以理解,图9中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车 载终端、可穿戴设备、以及计步器等。
其中,处理器911,用于获取网络设备配置的至少一个解调参考信号DMRS配置信息和至少一个多址标识;在至少一个DMRS配置信息和所述至少一个多址标识中选择具有对应关系的目标DMRS配置信息和目标多址标识,进行上行传输;
其中,一个DMRS配置信息对应一个多址标识、且不同的多址标识对应不同的DMRS配置信息。
本公开实施例的终端通过在网络设备配置的至少一个DMRS配置信息和至少一个多址标识中选择具有对应关系的目标DMRS配置信息和目标多址标识,进行上行传输,以此降低了基站的接收的复杂度和处理时延,可以支持大量终端的接入,提升了网络通信的性能。
应理解的是,本公开实施例中,射频单元910可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自网络设备的下行数据接收后,给处理器911处理;另外,将上行的数据发送给网络设备。通常,射频单元910包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元910还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块920为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元930可以将射频单元910或网络模块920接收的或者在存储器990中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元930还可以提供与终端90执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元930包括扬声器、蜂鸣器以及受话器等。
输入单元940用于接收音频或视频信号。输入单元940可以包括图形处理器(Graphics Processing Unit,GPU)941和麦克风942,图形处理器941对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元960上。经图形处理器941处理后的图像帧可以存储在存储器990(或其它存储 介质)中或者经由射频单元910或网络模块920进行发送。麦克风942可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元910发送到移动通信网络设备的格式输出。
终端90还包括至少一种传感器950,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板961的亮度,接近传感器可在终端90移动到耳边时,关闭显示面板961和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器950还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元960用于显示由用户输入的信息或提供给用户的信息。显示单元960可包括显示面板961,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板961。
用户输入单元970可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元970包括触控面板971以及其他输入设备972。触控面板971,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板971上或在触控面板971附近的操作)。触控面板971可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器911,接收处理器911发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板971。除了触控面板971,用户输入单元970还可以包括其他输入设备972。具体地,其他输入设备972可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨 迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板971可覆盖在显示面板961上,当触控面板971检测到在其上或附近的触摸操作后,传送给处理器911以确定触摸事件的类型,随后处理器911根据触摸事件的类型在显示面板961上提供相应的视觉输出。虽然在图9中,触控面板971与显示面板961是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板971与显示面板961集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元980为外部装置与终端90连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元980可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端90内的一个或多个元件或者可以用于在终端90和外部装置之间传输数据。
存储器990可用于存储软件程序以及各种数据。存储器990可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器990可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器911是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器990内的软件程序和/或模块,以及调用存储在存储器990内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器911可包括一个或多个处理单元;可选的,处理器911可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器911中。
终端90还可以包括给各个部件供电的电源912(比如电池),可选的,电源912可以通过电源管理系统与处理器911逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端90包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种终端,包括处理器911,存储器990,存储在存储器990上并可在所述处理器911上运行的计算机程序,该计算机程序被处理器911执行时实现应用于终端侧的上行传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现应用于终端侧的上行传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
其中,本公开实施例中所说的网络设备可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是LTE中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者未来8G网络中的基站等,在此并不限定。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光 盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (16)

  1. 一种上行传输方法,应用于终端,包括:
    获取网络设备配置的至少一个解调参考信号DMRS配置信息和至少一个多址标识;
    在至少一个DMRS配置信息和所述至少一个多址标识中选择具有对应关系的目标DMRS配置信息和目标多址标识,进行上行传输;
    其中,一个DMRS配置信息对应一个多址标识、且不同的多址标识对应不同的DMRS配置信息。
  2. 根据权利要求1所述的上行传输方法,其中,所述获取网络设备配置的至少一个解调参考信号DMRS配置信息和至少一个多址标识,包括:
    获取所述网络设备通过广播方式或无线资源控制RRC信令方式,为终端配置的所述至少一个DMRS配置信息和所述至少一个多址标识。
  3. 根据权利要求1所述的上行传输方法,其中,在采用循环前缀正交频分复用波形时,一个DMRS配置信息中包含至少一个DMRS序列生成的加扰参数。
  4. 根据权利要求1所述的上行传输方法,其中,在所述在至少一个DMRS配置信息和所述至少一个多址标识中选择具有对应关系的目标DMRS配置信息和目标多址标识之后,还包括:
    根据所述目标DMRS配置信息和所述目标多址标识,确定数据加扰参数。
  5. 根据权利要求1所述的上行传输方法,其中,所述进行上行传输,包括以下方式中的一项:
    通过媒体接入控制层控制单元发送终端的标识信息;
    将终端的标识信息加扰在循环冗余校验码中进行发送;
    将终端的标识信息承载于数据信道中进行发送;
    将终端的标识信息附着在传输块后进行发送。
  6. 根据权利要求5所述的上行传输方法,其中,在将终端的标识信息承载于数据信道中进行发送时,所述终端的标识信息承载于数据信道中预留的资源中,所述终端的标识信息以独立编码的方式承载于所述数据信道中。
  7. 根据权利要求5所述的上行传输方法,其中,在将终端的标识信息附着在传输块后进行发送时,所述终端的标识信息采用独立编码的方式附着在传输块后,或所述终端的标识信息采用联合编码的方式附着在传输块后。
  8. 一种终端,,包括:
    获取模块,用于获取网络设备配置的至少一个解调参考信号DMRS配置信息和至少一个多址标识;
    传输模块,用于在至少一个DMRS配置信息和所述至少一个多址标识中选择具有对应关系的目标DMRS配置信息和目标多址标识,进行上行传输;
    其中,一个DMRS配置信息对应一个多址标识、且不同的多址标识对应不同的DMRS配置信息。
  9. 根据权利要求8所述的终端,其中,所述获取模块,用于:
    获取所述网络设备通过广播方式或无线资源控制RRC信令方式,为终端配置的所述至少一个DMRS配置信息和所述至少一个多址标识。
  10. 根据权利要求8所述的终端,其中,在采用循环前缀正交频分复用波形时,一个DMRS配置信息中包含至少一个DMRS序列生成的加扰参数。
  11. 根据权利要求8所述的终端,其中,在所述传输模块在至少一个DMRS配置信息和所述至少一个多址标识中选择具有对应关系的目标DMRS配置信息和目标多址标识之后,还包括:
    确定模块,用于根据所述目标DMRS配置信息和所述目标多址标识,确定数据加扰参数。
  12. 根据权利要求8所述的终端,其中,所述传输模块进行上行传输,包括以下方式中的一项:
    通过媒体接入控制层控制单元发送终端的标识信息;
    将终端的标识信息加扰在循环冗余校验码中进行发送;
    将终端的标识信息承载于数据信道中进行发送;
    将终端的标识信息附着在传输块后进行发送。
  13. 根据权利要求12所述的终端,其中,在将终端的标识信息承载于数据信道中进行发送时,所述终端的标识信息承载于数据信道中预留的资源中,所述终端的标识信息以独立编码的方式承载于所述数据信道中。
  14. 根据权利要求12所述的终端,其中,在将终端的标识信息附着在传输块后进行发送时,所述终端的标识信息采用独立编码的方式附着在传输块后,或所述终端的标识信息采用联合编码的方式附着在传输块后。
  15. 一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至7中任一项所述的上行传输方法的步骤。
  16. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至7中任一项所述的上行传输方法的步骤。
PCT/CN2019/077795 2018-03-30 2019-03-12 上行传输方法及终端 WO2019184701A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19776683.5A EP3780458B1 (en) 2018-03-30 2019-03-12 Uplink transmission method and terminal
JP2020553535A JP7328986B2 (ja) 2018-03-30 2019-03-12 上り伝送方法及び端末
ES19776683T ES2953702T3 (es) 2018-03-30 2019-03-12 Método de transmisión de enlace ascendente y terminal
KR1020207030568A KR102589486B1 (ko) 2018-03-30 2019-03-12 업링크 전송 방법 및 단말
US17/036,496 US11736327B2 (en) 2018-03-30 2020-09-29 Uplink transmission method and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810276657.9A CN110324129B (zh) 2018-03-30 2018-03-30 一种上行传输方法及终端
CN201810276657.9 2018-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/036,496 Continuation US11736327B2 (en) 2018-03-30 2020-09-29 Uplink transmission method and terminal

Publications (1)

Publication Number Publication Date
WO2019184701A1 true WO2019184701A1 (zh) 2019-10-03

Family

ID=68060900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077795 WO2019184701A1 (zh) 2018-03-30 2019-03-12 上行传输方法及终端

Country Status (9)

Country Link
US (1) US11736327B2 (zh)
EP (1) EP3780458B1 (zh)
JP (1) JP7328986B2 (zh)
KR (1) KR102589486B1 (zh)
CN (1) CN110324129B (zh)
ES (1) ES2953702T3 (zh)
HU (1) HUE062792T2 (zh)
PT (1) PT3780458T (zh)
WO (1) WO2019184701A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110690951A (zh) 2018-07-06 2020-01-14 维沃移动通信有限公司 一种信息传输方法、网络设备及终端
CN116156597A (zh) * 2021-11-19 2023-05-23 维沃软件技术有限公司 混合多址接入通信方法、装置、终端及网络侧设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326758A (zh) * 2012-03-19 2013-09-25 中兴通讯股份有限公司 下行解调参考信号初始化配置参数通知、接收方法及装置
US20170064680A1 (en) * 2011-04-27 2017-03-02 Texas Instruments Incorporated Physical Downlink Control Channel and Physical Hybrid Automatic Repeat Request Indicator Channel Enhancements
CN106559363A (zh) * 2015-09-25 2017-04-05 电信科学技术研究院 一种解调参考信号传输方法、信道估计方法及装置
CN107623563A (zh) * 2016-07-11 2018-01-23 北京信威通信技术股份有限公司 一种v2x通信中的配置dmrs的方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8411626B2 (en) 2008-10-22 2013-04-02 Innovative Sonic Limited Method and apparatus for handling UL-SCH transmission
CN104639486B (zh) * 2013-11-12 2018-04-10 华为技术有限公司 传输方法及装置
JP2017168874A (ja) 2014-08-05 2017-09-21 シャープ株式会社 端末装置、基地局装置、集積回路、および、無線通信方法
EP3255955A4 (en) 2015-02-06 2018-09-05 Kyocera Corporation Communication control device and base station
JPWO2017169825A1 (ja) 2016-03-31 2019-02-07 株式会社Nttドコモ ユーザ装置及び通信方法
CN107466112B (zh) * 2016-06-03 2022-08-12 北京三星通信技术研究有限公司 上行数据传输方法、随机接入方法和相应的终端和基站
JP2019145865A (ja) 2016-07-05 2019-08-29 シャープ株式会社 基地局装置、端末装置およびその通信方法
BR112019000490A2 (pt) 2016-07-12 2019-04-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. método de transmissão de dados, e dispositivo terminal
WO2018056775A1 (ko) * 2016-09-26 2018-03-29 엘지전자 주식회사 상향링크 신호 전송 방법 및 사용자기기와, 상향링크 신호 수신 방법 및 기지국
US10595336B2 (en) * 2016-11-15 2020-03-17 Huawei Technologies Co., Ltd. Systems and methods for grant-free uplink transmissions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170064680A1 (en) * 2011-04-27 2017-03-02 Texas Instruments Incorporated Physical Downlink Control Channel and Physical Hybrid Automatic Repeat Request Indicator Channel Enhancements
CN103326758A (zh) * 2012-03-19 2013-09-25 中兴通讯股份有限公司 下行解调参考信号初始化配置参数通知、接收方法及装置
CN106559363A (zh) * 2015-09-25 2017-04-05 电信科学技术研究院 一种解调参考信号传输方法、信道估计方法及装置
CN107623563A (zh) * 2016-07-11 2018-01-23 北京信威通信技术股份有限公司 一种v2x通信中的配置dmrs的方法及装置

Also Published As

Publication number Publication date
PT3780458T (pt) 2023-08-28
CN110324129B (zh) 2020-09-22
EP3780458B1 (en) 2023-07-26
US11736327B2 (en) 2023-08-22
KR20200133270A (ko) 2020-11-26
EP3780458A4 (en) 2021-05-19
KR102589486B1 (ko) 2023-10-13
ES2953702T3 (es) 2023-11-15
JP7328986B2 (ja) 2023-08-17
JP2021517435A (ja) 2021-07-15
HUE062792T2 (hu) 2023-12-28
US20210067390A1 (en) 2021-03-04
EP3780458A1 (en) 2021-02-17
CN110324129A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
US20210037534A1 (en) Sidelink operation method and terminal
US11343855B2 (en) Method and device for random access and terminal
WO2019128578A1 (zh) 控制信道监听方法、监听指示方法、终端及网络设备
WO2019184697A1 (zh) Pdsch的接收方法和终端
WO2019192472A1 (zh) 信道传输方法、终端及网络设备
JP7170130B2 (ja) フィードバック情報伝送方法及び端末機器
WO2019137276A1 (zh) 通信业务过程冲突的处理方法及终端
WO2019062627A1 (zh) 随机接入方法、移动终端及网络设备
US20210153259A1 (en) Random access method and related device
US20220022085A1 (en) Method for radio link monitoring, terminal, base station, and storage medium
CN109803417B (zh) 确定参考信号的方法、上行探测参考信号发送方法和设备
CN111800867B (zh) 半持续调度物理下行共享信道的反馈方法及终端设备
WO2019085718A1 (zh) 随机接入方法和用户终端
CN111277381A (zh) 物理下行控制信道监听、监听配置方法、终端及网络设备
KR20210137188A (ko) 전송 방법, 네트워크 장치 및 단말
US20210014716A1 (en) Method for processing communication range information and terminal
WO2020228537A1 (zh) 资源确定方法、资源指示方法、终端及网络侧设备
WO2019095917A1 (zh) 时隙格式指示检测方法、配置方法及装置
US11736327B2 (en) Uplink transmission method and terminal
WO2020119243A1 (zh) 物理上行控制信道传输方法、网络侧设备和终端
CN111106909B (zh) 数据传输方法、数据传输配置方法、终端及网络侧设备
WO2021018130A1 (zh) 物理上行链路控制信道传输方法、装置、设备及介质
WO2019157915A1 (zh) Csi资源类型的确定方法、终端和网络侧设备
US20220022198A1 (en) Method for radio link monitoring, terminal, base station, and storage medium
WO2021204152A1 (zh) 资源确定方法及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776683

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553535

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207030568

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019776683

Country of ref document: EP