WO2019085718A1 - 随机接入方法和用户终端 - Google Patents

随机接入方法和用户终端 Download PDF

Info

Publication number
WO2019085718A1
WO2019085718A1 PCT/CN2018/109806 CN2018109806W WO2019085718A1 WO 2019085718 A1 WO2019085718 A1 WO 2019085718A1 CN 2018109806 W CN2018109806 W CN 2018109806W WO 2019085718 A1 WO2019085718 A1 WO 2019085718A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
configuration information
measurement result
resource configuration
signal quality
Prior art date
Application number
PCT/CN2018/109806
Other languages
English (en)
French (fr)
Inventor
吴昱民
陈力
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to US16/652,064 priority Critical patent/US11259323B2/en
Priority to EP18872713.5A priority patent/EP3706486B1/en
Priority to ES18872713T priority patent/ES2954329T3/es
Publication of WO2019085718A1 publication Critical patent/WO2019085718A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/027Services making use of location information using location based information parameters using movement velocity, acceleration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a random access method and a user terminal.
  • MCG master cell group
  • SCG Secondary Cell Group
  • BWP Bandwidth Part
  • a user terminal may have multiple beams, and in a random access process, the user terminal may only need to initiate random access through a partial beam, for example, initiate random access through one beam. How to select a beam to initiate a random access process is a technical problem that needs to be solved urgently.
  • an embodiment of the present disclosure further provides a random access method, including:
  • configuration information includes random access resource configuration information of at least two beams
  • an embodiment of the present disclosure provides a user terminal, including:
  • a first acquiring module configured to acquire configuration information, where the configuration information includes random access resource configuration information of at least two beams;
  • a second acquiring module configured to acquire signal quality measurement measurement information of the at least two beams
  • a selection module configured to select at least one beam according to signal quality measurement measurement information of the at least two beams
  • a random access module configured to determine, according to the random access resource configuration information of the at least one beam, a random access resource of the at least one beam, and initiate a random use on the determined random access resource by using a corresponding beam Access.
  • an embodiment of the present disclosure provides a user terminal, including: a memory, a processor, and a program stored on the memory and executable on the processor, when the program is executed by the processor. The steps in the random access method provided by the embodiments of the present disclosure are implemented.
  • an embodiment of the present disclosure provides a computer readable storage medium, where the program is stored by a processor, and when the program is executed by a processor, the random access method provided by the embodiment of the present disclosure is implemented. step.
  • FIG. 1 is a schematic structural diagram of a random access system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a random access method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of another random access method according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a user terminal according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another user terminal according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a random access system according to an embodiment of the present disclosure.
  • the user terminal 11 and the base station 12 are included, where the user terminal 11 may be a User Equipment (UE).
  • UE User Equipment
  • the user terminal 11 can be a mobile phone, a tablet personal computer, a laptop computer, a personal digital assistant (PDA), a mobile internet device (MID), or a wearable device.
  • PDA personal digital assistant
  • MID mobile internet device
  • a terminal device such as a Wearable Device, it should be noted that the specific type of the user terminal 11 is not limited in the embodiment of the present disclosure.
  • the base station 12 may be a base station of 5G or later (for example, gNB, 5G NR NB), or a base station in another communication system, or a node B. It should be noted that only 5G is used in the embodiment of the present disclosure.
  • the base station is taken as an example, but the specific type of the base station 12 is not limited.
  • FIG. 2 is a flowchart of a random access method according to an embodiment of the present disclosure. The method is used in a user terminal. As shown in FIG. 2, the following steps 201 to 204 are included.
  • Step 201 Acquire configuration information, where the configuration information includes random access resource configuration information of at least two beams.
  • the configuration information configured by the network side or the protocol is obtained, and the configuration information may be configured to configure one random access resource configuration information for each beam of the user terminal.
  • the random access resource configuration information of each beam may indicate a random access resource of the corresponding beam, for example, at least one of a time domain, a spatial domain, a frequency domain, and a coding resource indicating a random access resource of the beam.
  • the configuration information may further include a signal quality threshold configuration, where the signal quality threshold configuration may include a signal quality measurement threshold, and may further include a type of the measurement result and a reference signal type corresponding to the measurement result, where the measurement
  • the result type may include Reference Symbol Received Power (RSRP) or Reference Signal Received Quality (RSRQ) or Signal to Interference plus Noise Ratio (SINR).
  • the reference signal type may include a Synchronization Signal Block (SSB) or a Channel State Information Reference Signal (CSI-RS).
  • the foregoing configuration information may be configuration information received in a Radio Resource Control (RRC) layer or a Physical (PHY) layer, and after receiving the configuration information, the RRC layer or the PHY layer may indicate to the media. Access Control (MAC) layer.
  • RRC Radio Resource Control
  • PHY Physical
  • MAC Access Control
  • Step 202 Acquire signal quality measurement measurement information of the at least two beams.
  • the step may be to perform signal quality measurement on each beam to obtain signal quality measurement information of each beam, where the measurement may be to measure the reference signal, for example, measuring the SSB or the CSI-RS, and obtaining the measurement result. It can be RSRP, RSRQ or SINR.
  • the measurement time of each beam may be different, and each measurement result may be time-sensitive.
  • Step 203 Select at least one beam according to the signal quality measurement measurement information of the at least two beams.
  • the selection here may be to select a beam with the best measurement result according to the measurement result of each beam, or select a beam whose measurement result is equal to or exceeds the signal quality measurement threshold value, and the like. And in different embodiments, one or more beams can be selected.
  • Step 204 Determine, according to the random access resource configuration information of the at least one beam, a random access resource of the at least one beam, and initiate a random access by using a corresponding beam on the determined random access resource.
  • the random access resources of the beams may be determined according to the random access resource configuration information of the beams, and then the corresponding beams may be used to initiate random access on the determined random access resources. If multiple beams are selected in step 203, one random access resource may be selected among the random access resources of the multiple beams and random access is initiated using the corresponding beam. If only one beam is selected in step 203, the beam is used to initiate random access directly on the random access resource of the beam.
  • the initiated random access may be a contention random access or a non-contention random access.
  • the random access can be selectively initiated by using the foregoing steps, and the beam with good signal quality or best can be selected to initiate random access, thereby improving the success rate of random access.
  • configuration information is acquired, where the configuration information includes random access resource configuration information of at least two beams; and signal quality measurement measurement information of the at least two beams is acquired; according to the at least two The signal quality measurement measurement information of the beam, selecting at least one beam; determining, according to the random access resource configuration information of the at least one beam, a random access resource of the at least one beam, and on the determined random access resource Random access is initiated using the corresponding beam.
  • the corresponding random access resource is selected to use the corresponding beam to initiate random access, and the beam with good signal quality can be selected to initiate random access, so as to improve the success rate of random access.
  • FIG. 3 is a flowchart of another random access method according to an embodiment of the present disclosure. The method is applied to a user terminal. As shown in FIG. 3, the following steps 301 to 304 are included.
  • Step 301 Acquire configuration information, where the configuration information includes random access resource configuration information of at least two beams.
  • the random access resource configuration information of each beam may include one or more of the following:
  • Time resource configuration information Time resource configuration information, frequency resource configuration information, encoding resource configuration information, and space resource configuration information.
  • the random access resources of each beam can be accurately determined.
  • the configuration information may be determined by means of pre-configuration or protocol definition.
  • time resource configuration information may include one or more of the following:
  • Wireless frame configuration subframe configuration, and slot configuration.
  • the radio frame configuration may be a system frame number (SFN).
  • SFN system frame number
  • the time resource configuration information can accurately determine the time of random access resources of each beam.
  • the foregoing frequency resource configuration information may include one or more of the following:
  • the frequency point identifier the minimum bandwidth agreed by the protocol, the bandwidth part (BWP) identifier, the physical resource block (PRB) identifier, the cell identifier, and the subcarrier spacing.
  • BWP bandwidth part
  • PRB physical resource block
  • the minimum bandwidth specified by the foregoing protocol may be a predefined minimum bandwidth in the protocol, for example, 5 MHz, and the BWP identifier may be an identifier of a default BWP or an identifier of a currently activated BWP.
  • the frequency resource configuration information can accurately determine the frequency configuration of the random access resources of each beam.
  • the above-mentioned coding resource configuration information includes a random access preamble (preamble).
  • preamble a random access preamble
  • other coding resource configurations may also be included.
  • the space resource configuration information may include one or more of the following:
  • Identification information of the beam identification information of the beam pair, and transmission node identifier.
  • the identification information of the beam is understood to be that the beam is directly or indirectly determined by the identifier information, and the identifier information of the beam pair is the same, and is not described herein.
  • the identification information of the beam includes one or more of the following:
  • Beam ID Beam ID
  • SSB ID Beam ID
  • CSI-RS ID Beam ID
  • one beam may correspond to one SSB or CSI-RS, so that the beam may also be determined indirectly through the SSB identifier or the CSI-RS identifier.
  • the above beam pairs can also be determined in this indirect or direct manner.
  • Step 302 Acquire signal quality measurement measurement information of the at least two beams.
  • the signal quality measurement may be performed on the beam at the RRC layer or the PHY layer, and specifically, the signal quality measurement may be performed on the reference signal corresponding to each beam.
  • Step 303 Select at least one beam according to the signal quality measurement measurement information of the at least two beams.
  • selecting the at least one beam may be performed at the MAC layer or at the RRC layer PHY layer, for example, selecting at least one beam according to signal quality measurement result information of the at least two beams, including:
  • the medium access control MAC layer selects at least one beam according to signal quality measurement result information of the at least two beams provided by the radio resource control RRC layer or the physical PHY layer; or
  • the MAC layer instructs the RRC layer or the PHY layer to provide signal quality measurement result information of the at least two beams, and selects at least one beam according to the signal quality measurement result information of the at least two beams.
  • the measured signal quality measurement result information is sent to the MAC layer at the RRC layer or the PHY layer, and the at least one beam is selected at the MAC layer.
  • the signal quality measurement result information may be actively provided through the RRC layer or the PHY layer, or provided according to the MAC layer indication.
  • the RRC layer or the PHY layer provides the signal quality measurement result information to the MAC layer before performing random access resource selection; or
  • the RRC layer or the PHY layer periodically provides the signal quality measurement result information to the MAC layer;
  • the RRC layer or the PHY layer provides the signal quality measurement result information to the MAC layer according to the request for the MAC indication.
  • the RRC layer or the PHY layer may be configured to provide the signal quality measurement result information to the MAC layer before performing random access resource selection, so as to ensure that the at least one beam is selected quickly and efficiently.
  • the RRC layer or the PHY layer may also be configured to periodically provide the signal quality measurement result information to the MAC layer, thereby periodically updating the signal quality measurement result information, so that the selected beam is more accurate.
  • the foregoing period may be a protocol agreement or a network side configuration.
  • the RRC layer or the PHY layer may further provide the signal quality measurement result information to the MAC layer according to the request for the MAC indication, so that when the MAC needs the signal quality measurement result information, the information is obtained in time to improve the selected beam. Timeliness.
  • the RRC layer or the PHY layer provides the signal quality measurement result information, and if it is provided by the RRC layer, the RRC layer may determine, by the RRC layer, the signal quality measurement result information to the MAC layer. If the PHY layer provides, the PHY layer provides the signal quality measurement result information to the MAC layer, or the PHY layer provides the signal quality measurement result information to the MAC layer according to the indication of the RRC layer. The providing, by the PHY layer, the signal quality measurement result information to the MAC layer may be provided by the PHY layer to the MAC layer.
  • the RRC layer instructs the PHY layer to provide signal quality measurement result information before performing random access resource selection, and the PHY layer provides signal quality measurement result information to the MAC layer before performing random access resource selection.
  • the RRC layer instructs the PHY layer to periodically provide signal quality measurement result information, and the PHY layer periodically provides signal quality measurement result information to the MAC layer.
  • the PHY layer can provide signal quality measurement information to the MAC layer according to the indication of the RRC layer, the PHY layer entity is simplified.
  • selecting, according to the signal quality measurement result information of the at least two beams, selecting at least one beam includes:
  • the RRC layer or the PHY layer selects at least one beam according to the signal quality measurement information of the at least two beams, and indicates to the MAC layer.
  • the foregoing at least one beam may be selected at the RRC layer or the PHY layer, so that the interaction between the protocol layers may be reduced to simplify the process of initiating the random access procedure.
  • the selected measurement result of the at least one beam is equal to or exceeds the signal quality measurement threshold, and
  • the preset measurement conditions are met.
  • at least one beam that meets a measurement result equal to or exceeds the signal quality measurement threshold and meets a preset measurement condition may be selected among the at least two beams; or
  • the at least one beam satisfies the preset measurement condition, and specifically, at least one beam that meets the preset measurement condition is selected among the at least two beams.
  • the foregoing at least one beam may be selected according to the preset measurement condition and the signal quality measurement threshold, so as to ensure that the signal measurement signal of the selected beam is better or better, thereby improving randomness.
  • the success rate of access may be selected according to the preset measurement condition and the signal quality measurement threshold, so as to ensure that the signal measurement signal of the selected beam is better or better, thereby improving randomness.
  • At least one beam may be selected according to the foregoing signal quality measurement threshold, and the preset measurement condition may be disregarded, so that a beam with better or better signal quality may be selected to improve randomness.
  • the success rate of access may be selected according to the foregoing signal quality measurement threshold, and the preset measurement condition may be disregarded, so that a beam with better or better signal quality may be selected to improve randomness. The success rate of access.
  • the preset measurement condition may be pre-configured, and may be pre-defined in the protocol or pre-configured on the network side.
  • the preset measurement condition may include one or more of the following:
  • the measurement result is a valid measurement result, and is in a downlink synchronization state
  • each beam corresponds to a reference signal.
  • Each of the beams corresponds to one reference signal, for example, an SSB or a CSI-RS, so that the selected beam can detect the corresponding reference signal by using the preset measurement condition to ensure that the selected beam corresponds to the beam.
  • the reference signal is detectable, so that the success rate of using the beam to initiate a random access procedure is relatively high.
  • the measurement result is time-sensitive, that is, the measurement result is available within the effective time, because the user terminal can perform multiple measurements, and each measurement result is valid only for a specific time.
  • the measurement result of the nth measurement is valid before the n+1th measurement, or is valid for a specific time after the n+1th measurement.
  • the downlink synchronization state may be that the beam and the network side are downlink synchronized, so that the selected beam is downlink synchronization, thereby improving the success rate of random access.
  • the selected beam may satisfy the foregoing multiple items, for example, the selected beam is, the corresponding reference signal of the beam is detected, and It is a beam in the downlink synchronization state. This can further provide the success rate of random access.
  • the obtained configuration information further includes at least one of a measurement result type and a reference signal type corresponding to the measurement result, where the foregoing measurement result includes:
  • the measurement result of the type of measurement result or
  • the measurement result of the type of the measurement result in the measurement result of the reference signal type can be understood as the measurement result of the reference signal type and the measurement result of the type of the measurement result.
  • the measurement result is the RSRP of the SSB.
  • the measurement result that is compared with the above-mentioned signal quality measurement threshold value can be a measurement result of a specific type and a specific reference signal, so that the accuracy of the selection beam can be improved.
  • the type of the measurement result and the type of the signal quality threshold may be configured according to a protocol or a network, and the two are the same.
  • the type of the signal quality threshold is RSRQ
  • the type of measurement result compared is also RSRQ.
  • the reference signal type corresponding to the foregoing measurement result and the reference signal type corresponding to the signal quality threshold may be configured according to a protocol or a network, and the two may be the same.
  • the type of the signal quality threshold is SSB
  • the type of measurement used for comparison is also SSB.
  • a specific time measurement result may also be acquired to improve the accuracy of the measurement result.
  • the measurement results include:
  • the latest valid measurement result the measurement result measured when the measurement report is reported to the network side, the measurement result when the random access is triggered, the measurement result measured when the random access resource is selected, or the measurement result measured when the downlink synchronization is performed.
  • the latest effective measurement result may be the latest measurement result of the effective time, and may be an effective measurement result that is closest to the time when the random access is initiated, so as to ensure that the measurement result of the selected beam is the latest to improve the selected beam. accuracy.
  • the measurement result measured when the measurement report is reported to the network side can ensure that the measurement result reported to the network side is the same as the measurement result of the selected beam, thereby ensuring synchronization between the measurement result of the network side and the user terminal.
  • the random access may be triggered by the PHY layer of the user terminal receiving the physical downlink control channel (PDCCH) indication (ie, Msg0) triggered by the network side
  • the random access resource selection may be that the PHY layer of the user terminal notifies the MAC layer to initiate a random access procedure, and the user terminal performs random access resource selection according to the random access resource indicated by Msg0.
  • PDCCH physical downlink control channel
  • the random access may be triggered by a protocol layer (such as the RRC layer) of the user terminal to indicate that the MAC layer triggers the random access process, and the random access resource selection may be, the MAC layer triggers the random access process. After that, the MAC layer performs random access resource selection.
  • a protocol layer such as the RRC layer
  • the measurement result measured when the random access is triggered, the measurement result measured when the random access resource is selected, or the measurement result measured when the downlink synchronization is performed can ensure the timeliness of the measurement result, so as to improve the accuracy of the selected beam.
  • the signal quality measurement threshold is provided by the RRC layer or the PHY layer to the MAC layer.
  • the PHY layer may configure the signal quality measurement result information and the signal quality measurement threshold value together with the MAC layer to the MAC layer.
  • the signal quality measurement result information includes a measurement result, and may further include at least one of a type of the measurement result and a reference signal type corresponding to the measurement result.
  • the signal quality measurement threshold value configuration may include a signal quality measurement threshold value, and may also include a measurement result type corresponding to the signal quality measurement threshold value, and a reference signal type corresponding to the corresponding measurement result.
  • Step 304 The MAC layer determines a random access resource of the at least one beam according to the random access resource configuration information of the at least one beam, and initiates random access by using the corresponding beam on the determined random access resource. .
  • the random access resource that is determined to initiate the random access in the MAC layer is not limited, and may be determined by other protocol layers, and is initiated, which is not limited in this embodiment of the disclosure.
  • the random access resource configuration information of each beam includes time resource configuration information
  • the determined random access resource includes: a random access resource with the latest time. For example, using the corresponding beam to initiate random access on the determined random access resource, including: selecting the most recent random access resource from the random access resources of the at least one beam, and selecting the selected Random access is initiated on the random access resource using the corresponding beam.
  • the foregoing time may be understood as a random access resource whose time is closest to the current time in the random access resources after the random access resources of the at least one beam are selected, or may be understood as a random connection of at least one beam.
  • the random access resource closest to the above time is an available random access resource.
  • each random access resource has time resource configuration information, the time of each random access resource can be determined, so that when multiple beams are selected in step 303, one time can be selected recently, and available random access resources are initiated. Random access to improve access efficiency.
  • the random access resource that initiates random access is selected by the MAC layer, and the random access resource configuration information of the at least one beam is provided by the RRC layer or the PHY layer to the MAC layer.
  • the RRC layer or the PHY layer performs random access resource selection at the MAC layer, and provides at least one beam of random access resource configuration information to the MAC layer.
  • the RRC layer or the PHY layer may provide random access resource configuration information of all beams to the MAC.
  • the RRC layer or the PHY layer may be selected before the MAC layer performs random access resource selection, and the random access of the at least one beam is provided to the MAC layer.
  • Resource configuration information of course, it is also possible to provide random access resource configuration information for all beams in this case.
  • the RRC layer or the PHY layer provides the MAC layer with random access resource configuration information of the at least one beam;
  • the RRC layer or the PHY layer provides random access resource configuration information of the at least one beam to the MAC layer according to the indication of the MAC.
  • the foregoing providing may be that the RRC layer or the PHY layer provides random access resource configuration information of the at least one beam to the MAC layer before performing random access resource selection; or may be the RRC layer or PHY layer period. And providing, to the MAC layer, random access resource configuration information of the at least one beam.
  • the PHY layer may provide random access resource configuration information of the at least one beam to the MAC layer, or the PHY layer may provide the at least one beam to the MAC layer according to the indication of the RRC layer. Random access resource configuration information.
  • FIG. 4 is a schematic structural diagram of a user terminal according to an embodiment of the present disclosure. As shown in FIG. 4, the user terminal 400 includes:
  • the first obtaining module 401 is configured to acquire configuration information, where the configuration information includes random access resource configuration information of at least two beams;
  • the second obtaining module 402 is configured to acquire signal quality measurement measurement information of the at least two beams
  • the selecting module 403 is configured to select at least one beam according to the signal quality measurement measurement information of the at least two beams;
  • the random access module 404 is configured to determine, according to the random access resource configuration information of the at least one beam, a random access resource of the at least one beam, and use the corresponding beam to initiate on the determined random access resource. Random access.
  • modules may be implemented as software, or as hardware, or as a combination of hardware and software.
  • the random access resource configuration information of each beam includes time resource configuration information
  • the determined random access resource includes: a random access resource with the latest time.
  • the selecting module 403 is configured to select, by the MAC layer, at least one beam according to signal quality measurement result information of the at least two beams provided by the radio resource control RRC layer or the physical PHY layer; or
  • the selecting module 403 is configured to: the MAC layer indicates that the RRC layer or the PHY layer provides the signal quality measurement result information of the at least two beams, and selects at least one beam according to the signal quality measurement result information of the at least two beams; or
  • the selecting module 403 is configured to select, by the RRC layer or the PHY layer, at least one beam according to the signal quality measurement result information of the at least two beams, and indicate the MAC layer.
  • the PHY layer provides the signal quality measurement result information to the MAC layer, or the PHY layer provides the signal quality measurement result information to the MAC layer according to the indication of the RRC layer.
  • the measurement result of the at least one beam is equal to or exceeds the signal quality measurement threshold, and the preset measurement condition is met;
  • the at least one beam satisfies a preset measurement condition.
  • the acquired configuration information further includes at least one of a measurement result type and a reference signal type corresponding to the measurement result;
  • the measurement results include:
  • the measurement result of the type of measurement result or
  • the signal quality measurement threshold is provided by the RRC layer or the PHY layer to the MAC layer.
  • the preset measurement condition includes one or more of the following:
  • the measurement result is a valid measurement result, and is in a downlink synchronization state
  • each beam corresponds to a reference signal.
  • the measurement result includes:
  • the latest valid measurement result the measurement result measured when the measurement report is reported to the network side, the measurement result when the random access is triggered, the measurement result measured when the random access resource is selected, or the measurement result measured when the downlink synchronization is performed.
  • the random access resource configuration information of each beam includes one or more of the following:
  • Time resource configuration information Time resource configuration information, frequency resource configuration information, encoding resource configuration information, and space resource configuration information.
  • the time resource configuration information includes one or more of the following:
  • Wireless frame configuration subframe configuration, and slot configuration
  • the frequency resource configuration information includes one or more of the following:
  • Frequency point identifier minimum bandwidth agreed by protocol, BWP identifier, physical resource block PRB identifier, cell identifier, and subcarrier spacing;
  • the coding resource configuration information includes a random access preamble preamble
  • the space resource configuration information includes one or more of the following:
  • Identification information of the beam identification information of the beam pair, and transmission node identifier.
  • the identifier information of the beam includes one or more of the following:
  • Beam ID Beam ID
  • SSB ID Beam ID
  • CSI-RS ID Beam ID
  • the random access resource that initiates the random access is selected by the MAC layer, and the random access resource configuration information of the at least one beam is provided by the RRC layer or the PHY layer to the MAC layer.
  • the RRC layer or the PHY layer provides the MAC layer with random access resource configuration information of the at least one beam;
  • the RRC layer or the PHY layer provides random access resource configuration information of the at least one beam to the MAC layer according to the indication of the MAC.
  • the PHY layer provides random access resource configuration information of the at least one beam to the MAC layer, or the PHY layer provides the at least one beam to the MAC layer according to the indication of the RRC layer. Random access resource configuration information.
  • the first acquiring module is configured to acquire configuration information that is configured by the network side or defined by the protocol.
  • the user terminal provided by the embodiment of the present disclosure can implement various processes implemented by the user terminal in the method embodiment of FIG. 2 to FIG. 3, and to avoid repetition, details are not described herein, and the success rate of random access is improved.
  • FIG. 5 is a schematic structural diagram of hardware of a user terminal that implements various embodiments of the present disclosure
  • the user terminal 500 includes, but is not limited to, a radio frequency unit 501, a network module 502, an audio output unit 503, an input unit 504, a sensor 505, a display unit 506, a user input unit 507, an interface unit 508, a memory 509, a processor 510, and Power supply 511 and other components. It will be understood by those skilled in the art that the user terminal structure shown in FIG. 5 does not constitute a limitation on the user terminal, and the user terminal may include more or less components than the illustration, or combine some components, or different components. Arrangement.
  • the user terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle user terminal, a wearable device, a pedometer, and the like.
  • the processor 510 is configured to acquire configuration information, where the configuration information includes random access resource configuration information of at least two beams;
  • the random access resource configuration information of each beam includes time resource configuration information
  • the determined random access resource includes: a random access resource with the latest time.
  • the selecting, by the processor 510, the at least one beam according to the signal quality measurement information of the at least two beams including:
  • the MAC layer selects at least one beam according to signal quality measurement result information of the at least two beams provided by the radio resource control RRC layer or the physical PHY layer; or
  • the MAC layer instructs the RRC layer or the PHY layer to provide signal quality measurement result information of the at least two beams, and selects at least one beam according to the signal quality measurement result information of the at least two beams; or
  • the RRC layer or the PHY layer selects at least one beam according to the signal quality measurement result information of the at least two beams, and indicates to the MAC layer.
  • the PHY layer provides the signal quality measurement result information to the MAC layer, or the PHY layer provides the signal quality measurement result information to the MAC layer according to the indication of the RRC layer.
  • the measurement result of the at least one beam is equal to or exceeds the signal quality measurement threshold, and the preset measurement condition is met;
  • the at least one beam satisfies a preset measurement condition.
  • the acquired configuration information further includes at least one of a measurement result type and a reference signal type corresponding to the measurement result;
  • the measurement results include:
  • the measurement result of the type of measurement result or
  • the signal quality measurement threshold is provided by the RRC layer or the PHY layer to the MAC layer.
  • the preset measurement condition includes one or more of the following:
  • the measurement result is a valid measurement result, and is in a downlink synchronization state
  • each beam corresponds to a reference signal.
  • the measurement result includes:
  • the latest valid measurement result the measurement result measured when the measurement report is reported to the network side, the measurement result when the random access is triggered, the measurement result measured when the random access resource is selected, or the measurement result measured when the downlink synchronization is performed.
  • the random access resource configuration information of each beam includes one or more of the following:
  • Time resource configuration information Time resource configuration information, frequency resource configuration information, encoding resource configuration information, and space resource configuration information.
  • the time resource configuration information includes one or more of the following:
  • Wireless frame configuration subframe configuration, and slot configuration
  • the frequency resource configuration information includes one or more of the following:
  • Frequency point identification minimum bandwidth agreed by protocol, BWP identity, PRB identity, cell identity, and subcarrier spacing;
  • the encoding resource configuration information includes a random access preamble
  • the space resource configuration information includes one or more of the following:
  • Identification information of the beam identification information of the beam pair, and transmission node identifier.
  • the identifier information of the beam includes one or more of the following:
  • Beam ID Beam ID
  • SSB ID Beam ID
  • CSI-RS ID Beam ID
  • the random access resource that initiates the random access is selected by the MAC layer, and the random access resource configuration information of the at least one beam is provided by the RRC layer or the PHY layer to the MAC layer.
  • the RRC layer or the PHY layer provides the MAC layer with random access resource configuration information of the at least one beam;
  • the RRC layer or the PHY layer provides random access resource configuration information of the at least one beam to the MAC layer according to the indication of the MAC.
  • the PHY layer provides random access resource configuration information of the at least one beam to the MAC layer, or the PHY layer provides the at least one beam to the MAC layer according to the indication of the RRC layer. Random access resource configuration information.
  • the processor 510 obtains configuration information, including:
  • the above user terminal can improve the success rate of random access.
  • the radio frequency unit 501 can be used for receiving and transmitting signals during and after receiving or transmitting information, and specifically, receiving downlink data from the base station, and then processing the data to the processor 510; The uplink data is sent to the base station.
  • radio frequency unit 501 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio unit 501 can also communicate with the network and other devices through a wireless communication system.
  • the user terminal provides the user with wireless broadband Internet access through the network module 502, such as helping the user to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 503 can convert the audio data received by the radio frequency unit 501 or the network module 502 or stored in the memory 509 into an audio signal and output as sound. Moreover, the audio output unit 503 can also provide audio output (eg, call signal reception sound, message reception sound, etc.) related to a particular function performed by the user terminal 500.
  • the audio output unit 503 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 504 is for receiving an audio or video signal.
  • the input unit 504 may include a graphics processing unit (GPU) 5041 and a microphone 5042 that images an still picture or video obtained by an image capturing device (such as a camera) in a video capturing mode or an image capturing mode.
  • the data is processed.
  • the processed image frame can be displayed on the display unit 506.
  • the image frames processed by the graphics processor 5041 may be stored in the memory 509 (or other storage medium) or transmitted via the radio unit 501 or the network module 502.
  • the microphone 5042 can receive sound and can process such sound as audio data.
  • the processed audio data can be converted to a format output that can be transmitted to the mobile communication base station via the radio unit 501 in the case of a telephone call mode.
  • User terminal 500 also includes at least one type of sensor 505, such as a light sensor, motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 5061 according to the brightness of the ambient light, and the proximity sensor can close the display panel 5061 when the user terminal 500 moves to the ear. / or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity. It can be used to identify the posture of the user terminal (such as horizontal and vertical screen switching, related games).
  • sensor 505 may also include a fingerprint sensor, a pressure sensor, an iris sensor, a molecular sensor, a gyroscope, a barometer, a hygrometer, a thermometer, Infrared sensors and the like are not described here.
  • the display unit 506 is for displaying information input by the user or information provided to the user.
  • the display unit 506 can include a display panel 5061.
  • the display panel 5061 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the user input unit 507 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function controls of the user terminal.
  • the user input unit 507 includes a touch panel 5071 and other input devices 5072.
  • the touch panel 5071 also referred to as a touch screen, can collect touch operations on or near the user (such as a user using a finger, a stylus, or the like on the touch panel 5071 or near the touch panel 5071. operating).
  • the touch panel 5071 may include two parts of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 510 receives the commands from the processor 510 and executes them.
  • the touch panel 5071 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 507 may also include other input devices 5072.
  • the other input devices 5072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control button, a switch button, etc.), a trackball, a mouse, and a joystick, which are not described herein.
  • the touch panel 5071 can be overlaid on the display panel 5061. After the touch panel 5071 detects a touch operation thereon or nearby, the touch panel 5071 transmits to the processor 510 to determine the type of the touch event, and then the processor 510 according to the touch. The type of event provides a corresponding visual output on display panel 5061.
  • the touch panel 5071 and the display panel 5061 are two independent components to implement the input and output functions of the user terminal, in some embodiments, the touch panel 5071 and the display panel 5061 may be integrated. The input and output functions of the user terminal are implemented, and are not limited herein.
  • the interface unit 508 is an interface in which an external device is connected to the user terminal 500.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device having an identification module, and an audio input/output. (I/O) port, video I/O port, headphone port, and more.
  • the interface unit 508 can be configured to receive input from an external device (eg, data information, power, etc.) and transmit the received input to one or more components within the user terminal 500 or can be used at the user terminal 500 and externally Data is transferred between devices.
  • an external device eg, data information, power, etc.
  • Memory 509 can be used to store software programs as well as various data.
  • the memory 509 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 509 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • Processor 510 is the control center of the user terminal, connecting various portions of the entire user terminal using various interfaces and lines, by running or executing software programs and/or modules stored in memory 509, and recalling data stored in memory 509.
  • the user terminal performs various functions and processing data, thereby performing overall monitoring on the user terminal.
  • Processor 510 can include one or more processing units.
  • the processor 510 can integrate an application processor and a modem processor, wherein the application processor primarily processes an operating system, a user interface, an application, etc., and the modem processor primarily processes wireless communications. It can be understood that the above modem processor may not be integrated into the processor 510.
  • the user terminal 500 may also include a power source 511 (such as a battery) that supplies power to the various components.
  • a power source 511 such as a battery
  • the power source 511 may be logically coupled to the processor 510 through a power management system to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • the user terminal 500 includes some functional modules not shown, and details are not described herein again.
  • an embodiment of the present disclosure further provides a user terminal, including a processor 510, a memory 509, a computer program stored on the memory 509 and executable on the processor 510, and the computer program is executed by the processor 510.
  • a user terminal including a processor 510, a memory 509, a computer program stored on the memory 509 and executable on the processor 510, and the computer program is executed by the processor 510.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer program is stored, and the computer program is executed by the processor, and the processes of the random access method embodiment are implemented, and can reach the same Technical effects, to avoid repetition, will not be repeated here.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)

Abstract

本公开实施例提供一种随机接入方法和用户终端,该方法包括:获取配置信息,其中,所述配置信息包括至少两个波束的随机接入资源配置信息;获取所述至少两个波束的信号质量测量测量信息;根据所述至少两个波束的信号质量测量测量信息,选择至少一个波束;根据所述至少一个波束的随机接入资源配置信息,确定所述至少一个波束的随机接入资源,并在所述确定的随机接入资源上使用对应的波束发起随机接入。

Description

随机接入方法和用户终端
相关申请的交叉引用
本申请主张在2017年11月3日在中国提交的中国专利申请No.201711072301.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种随机接入方法和用户终端。
背景技术
相对于以往的移动通信系统,第五代(5th Generation,5G)移动通信系统中会引入各种新功能,例如:主小区组(Master Cell Group,MCG)承载、辅小区组(Secondary Cell Group,SCG)承载、分离承载(Split Bearer)或者复制(Duplicate)承载等等,以及还会引入带宽部分(Bandwidth Part,BWP)和波束等概念。其中,在5G通信系统中,一个用户终端可以有多个波束,而在随机接入过程中,用户终端可能只需要通过部分波束发起随机接入,例如:通过一个波束发起随机接入。这样如何选择波束发起随机接入过程是当前急需要解决的技术问题。
发明内容
第一方面,本公开实施例还提供了一种随机接入方法,包括:
获取配置信息,其中,所述配置信息包括至少两个波束的随机接入资源配置信息;
获取所述至少两个波束的信号质量测量测量信息;
根据所述至少两个波束的信号质量测量测量信息,选择至少一个波束;
根据所述至少一个波束的随机接入资源配置信息,确定所述至少一个波束的随机接入资源,并在所述确定的随机接入资源上使用对应的波束发起随机接入。
第二方面,本公开实施例提供了一种用户终端,包括:
第一获取模块,用于获取配置信息,其中,所述配置信息包括至少两个波束的随机接入资源配置信息;
第二获取模块,用于获取所述至少两个波束的信号质量测量测量信息;
选择模块,用于根据所述至少两个波束的信号质量测量测量信息,选择至少一个波束;
随机接入模块,用于根据所述至少一个波束的随机接入资源配置信息,确定所述至少一个波束的随机接入资源,并在所述确定的随机接入资源上使用对应的波束发起随机接入。
第三方面,本公开实施例提供了一种用户终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现本公开实施例提供的随机接入方法中的步骤。
第四方面,本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现本公开实施例提供的随机接入方法的步骤。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种随机接入系统的结构示意图;
图2是本公开实施例提供的一种随机接入方法的示意图;
图3是本公开实施例提供的另一种随机接入方法的示意图;
图4是本公开实施例提供的一种用户终端的结构示意图;
图5是本公开实施例提供的另一种用户终端的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是 全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
参见图1,图1是本公开实施例提供的一种随机接入系统的结构示意图,如图1所示,包括用户终端11和基站12,其中,用户终端11可以是UE(User Equipment),例如:可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开实施例中并不限定用户终端11的具体类型。上述基站12可以是5G及以后版本的基站(例如:gNB、5G NR NB),或者其他通信系统中的基站,或者称之为节点B,需要说明的是,在本公开实施例中仅以5G基站为例,但是并不限定基站12的具体类型。
需要说明的是,上述用户终端11和基站12的具体功能将通过以下多个实施例进行具体描述。
请参见图2,图2是本公开实施例提供的一种随机接入方法的流程图,所述方法用于用户终端,如图2所示,包括以下步骤201至204。
步骤201、获取配置信息,其中,所述配置信息包括至少两个波束的随机接入资源配置信息。
其中,上述获取网络侧配置的或者协议定义的配置信息,且上述配置信息可以为用户终端的每个波束均配置一个随机接入资源配置信息。每个波束的随机接入资源配置信息可以指示对应波束的随机接入资源,例如:指示该波束的随机接入资源的时域、空间域、频域和编码资源中的至少一项。
当然,上述配置信息还可以包括信号质量门限值配置,该信号质量门限值配置可以包括信号质量测量门限值,以及还可以包括测量结果类型和测量结果对应的参考信号类型,其中,测量结果类型可以包括参考符号接收强度(Reference Symbol Received Power,RSRP)或参考信号接收质量(Reference Signal Received Quality,RSRQ)或者信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)。而上述参考信号类型可以包括同步信号 块(Synchronization Signal Block,SSB)或者信道状态信息参考信号Channel State Information Reference Signal,CSI-RS)。
另外,上述获取配置信息可以是在无线资源控制(Radio Resource Control,RRC)层或者物理(Physical,PHY)层接收到的配置信息,且RRC层或者PHY层接收到配置信息后,可以指示向媒体接入控制(Media Access Control,MAC)层。
步骤202、获取所述至少两个波束的信号质量测量测量信息。
该步骤可以是针对各个波束均进行信号质量测量,得到各波束的信号质量测量信息,其中,这里的测量可以是对参考信号进行测量,例如:对SSB或者CSI-RS进行测量,得到的测量结果可以是RSRP、RSRQ或者SINR。另外,每个波束的测量时间可以是不相同的,且每个测量结果可以存在一定时效性。
步骤203、根据所述至少两个波束的信号质量测量测量信息,选择至少一个波束。
这里选择可以是,根据每个波束的测量结果选择测量结果最好的波束,或者选择测量结果等于或者超过信号质量测量门限值的波束等等。且在不同的实施方式,可以选择一个或者多个波束。
步骤204、根据所述至少一个波束的随机接入资源配置信息,确定所述至少一个波束的随机接入资源,并在所述确定的随机接入资源上使用对应的波束发起随机接入。
在选择好上述至少一个波束后,可以根据这些波束的随机接入资源配置信息,确定这些波束的随机接入资源,之后,可以在确定的随机接入资源上使用对应的波束发起随机接入。若步骤203选择出多个波束,则可以在这些多个波束的随机接入资源中选择一个随机接入资源并使用对应的波束发起随机接入。若步骤203只选择一个波束,则直接在该波束的随机接入资源上使用该波束发起随机接入。
其中,发起的随机接入可以是竞争随机接入或者非竞争随机接入。
本实施例中,通过上述步骤可以实现选择性地发起随机接入,且可以选择信号质量较好或者最好的波束发起随机接入,从而提高随机接入的成功率。
需要说明的是,本公开实施例中提供的上述方法可以应用于5G系统,但对此不作限定,只要能够实现基本相同的功能,适用于其他通信系统,例如:但是不限于应用6G系统等等。
在本公开实施例中,获取配置信息,其中,所述配置信息包括至少两个波束的随机接入资源配置信息;获取所述至少两个波束的信号质量测量测量信息;根据所述至少两个波束的信号质量测量测量信息,选择至少一个波束;根据所述至少一个波束的随机接入资源配置信息,确定所述至少一个波束的随机接入资源,并在所述确定的随机接入资源上使用对应的波束发起随机接入。这样能够实现根据各波束的信号质量测量结果选择相应的随机接入资源使用对应的波束发起随机接入,且可以选择信号质量好的波束发起随机接入,以提高随机接入的成功率。
请参见图3,图3是本公开实施例提供的另一种随机接入方法的流程图,该方法应用于用户终端,如图3所示,包括以下步骤301至304。
步骤301、获取配置信息,其中,所述配置信息包括至少两个波束的随机接入资源配置信息。
其中,每个波束的随机接入资源配置信息均可以包括如下一项或者多项:
时间资源配置信息、频率资源配置信息、编码资源配置信息和空间资源配置信息。
通过上述信息可以准确地确定每个波束的随机接入资源。
需要说明的是,上述四个配置信息,若存在一些不属于步骤301接收的,则这些配置信息可以是通过预配置或者协议定义等方式确定。
另外,所述时间资源配置信息可以包括如下一项或者多项:
无线帧配置、子帧(subframe)配置和时隙(slot)配置。
其中,上述无线帧配置可以是系统帧号(System Frame Number,SFN)。通过该时间资源配置信息可以准确确定每个波束的随机接入资源的时间。
上述频率资源配置信息可以包括如下一项或者多项:
频点标识、协议约定的最小带宽、带宽部分(Bandwidth Part,BWP)标识、物理资源块(Physical Resource Block,PRB)标识、小区标识和子载波间隔。
其中,上述协议约定的最小带宽可以是协议中预先定义的最小带宽,例如:5MHz,则上述BWP标识可以是默认的BWP的标识,或者当前激活的BWP的标识。
通过该频率资源配置信息可以准确确定每个波束的随机接入资源的频率配置。
上述编码资源配置信息包括随机接入前导码(preamble),当然,也可以也可以包括其他编码资源配置,对此本公开实施例不作限定。
而上述空间资源配置信息可以包括如下一项或多项:
波束的标识信息、波束对的标识信息和传输节点标识。
其中,上述波束的标识信息可以理解为,通过该标识信息可以直接或者间接地确定上述波束,波束对的标识信息同理,不作赘述。例如:所述波束的标识信息包括如下一项或者多项:
波束标识(Beam ID)、SSB标识和CSI-RS标识。
本实施例中,一个波束可以对应一个SSB或者CSI-RS,从而通过SSB标识或者CSI-RS标识也可以间接确定波束。当然,上述波束对也可以通过这种间接或者直接的方式确定。
步骤302、获取所述至少两个波束的信号质量测量测量信息。
该步骤可以是在RRC层或者PHY层对波束进行信号质量测量,具体可以是对各波束对应的参考信号进行信号质量测量。
步骤303、根据所述至少两个波束的信号质量测量测量信息,选择至少一个波束。
该步骤中,选择上述至少一个波束可以是在MAC层,或者在RRC层PHY层选择,例如:根据所述至少两个波束的信号质量测量结果信息,选择至少一个波束,包括:
媒体接入控制MAC层根据无线资源控制RRC层或者物理PHY层提供的所述至少两个波束的信号质量测量结果信息,选择至少一个波束;或者
MAC层指示RRC层或者PHY层提供所述至少两个波束的信号质量测量结果信息,并根据所述至少两个波束的信号质量测量结果信息,选择至少一个波束。
该实施方式中,可以实现在RRC层或者PHY层将测量得到信号质量测量结果信息给MAC层,在MAC层选择上述至少一个波束。且信号质量测量结果信息可以通过RRC层或者PHY层主动提供,或者根据MAC层指示提供。例如:所述RRC层或者PHY层在进行随机接入资源选择前向所述MAC层提供所述信号质量测量结果信息;或者
所述RRC层或者PHY层周期性向所述MAC层提供所述信号质量测量结果信息;或者
所述RRC层或者PHY层根据所述MAC指示的提供请求,向所述MAC层提供所述信号质量测量结果信息。
该实施方式中,可以实现RRC层或者PHY层在进行随机接入资源选择前向所述MAC层提供所述信号质量测量结果信息,这样可以保证快速、高效地选择出上述至少一个波束。
另外,还可以实现RRC层或者PHY层周期性向所述MAC层提供所述信号质量测量结果信息,从而周期性地更新信号质量测量结果信息,使得选择出的波束更加准确。其中,上述周期可以是协议约定或网络侧配置的。
以及,还可以实现RRC层或者PHY层根据所述MAC指示的提供请求,向MAC层提供所述信号质量测量结果信息,从而达到MAC需要信号质量测量结果信息时,及时得到,以提高选择波束的时效性。
可选的,RRC层或者PHY层提供所述信号质量测量结果信息中,如果是由RRC层提供,则RRC层可以自行决定向MAC层提供所述信号质量测量结果信息。若是PHY层提供,则所述PHY层向所述MAC层提供所述信号质量测量结果信息,或者所述PHY层根据所述RRC层的指示向所述MAC层提供所述信号质量测量结果信息。其中,所述PHY层向所述MAC层提供所述信号质量测量结果信息可以是PHY层自行决定向MAC层提供。
例如:RRC层指示PHY层在进行随机接入资源选择前提供信号质量测量结果信息,则PHY层在进行随机接入资源选择前向MAC层提供信号质量测量结果信息。或者RRC层指示PHY层周期性提供信号质量测量结果信息,则PHY层周期性向MAC层提供信号质量测量结果信息。
由于PHY层可以根据RRC层的指示向MAC层提供信号质量测量结果 信息,从而简化PHY层实体。
另一种实施方式中,上述根据所述至少两个波束的信号质量测量结果信息,选择至少一个波束,包括:
RRC层或者PHY层根据所述至少两个波束的信号质量测量结果信息,选择至少一个波束,并指示给所述MAC层。
该实施方式中,可以实现在RRC层或者PHY层选择出上述至少一个波束,这样可以减少协议层之间的交互,以简化发起随机接入过程的流程。
作为一种可选的实施方式中,若所述获取的配置信息包括信号质量测量门限值,则所选择的所述至少一个波束的测量结果等于或者超过所述信号质量测量门限值,以及满足预设测量条件。具体可以是在所述至少两个波束中选择测量结果等于或者超过所述信号质量测量门限值,且满足预设测量条件的至少一个波束;或者
若所述获取的配置信息未包括信号质量测量门限值,则所述至少一个波束满足预设测量条件,具体可以是在所述至少两个波束中选择满足预设测量条件的至少一个波束。
该实施方式中,可以实现根据上述预设测量条件,以及上述信号质量测量门限值来选择上述至少一个波束,从而保证选择出的波束的信号测量信号是较好或者最好的,从而提高随机接入的成功率。
当然,在一些实施方式中,可以仅根据上述信号质量测量门限值选择至少一个波束,而可以不考虑上述预设测量条件,从而可以达到选择信号质量较好或者最好的波束,以提高随机接入的成功率。
其中,上述预设测量条件可以是预先配置的,具体可以是,协议中预先定义的,或者网络侧预先配置的。其中,所述预设测量条件可以包括如下一项或者多项:
检测到对应的参考信号、测量结果为有效测量结果和处于下行同步状态;
其中,每个波束各自对应的一个参考信号。
由于每个波束各个对应一个参考信号,例如:SSB或者CSI-RS,这样通过上述预设测量条件,可以实现选择出的波束是能够检测到对应的参考信号的,以保证选择出的波束对应的参考信号是可以检测到的,这样在使用该波 束发起随机接入过程的成功率比较高。
另外,本实施例中,测量结果是存在时效性的,即在有效时间内为可用的测量结果,因为,用户终端可以进行多次测量,每个测量的测量结果只在特定时间内是有效,例如:第n测量的测量结果,在第n+1测量之前是有效,或者在第n+1测量之后的特定时间内是有效。
这样通过上述预设测量条件,可以保证选择出的波束的测量结果是有效的,从而可以更加准确地选择出适合的波束。
另外,上述处于下行同步状态可以是,波束与网络侧是下行同步的,这样保证选择出的波束是下行同步,从而提高随机接入的成功率。
需要说明的是,由于上述预设条件可以包括上述三项中的一个或者多项,则选择出的波束可以满足上述多项,例如:选择出的波束是,检测到该波束对应参考信号,且是处于下行同步状态的波束。这样可以更进一步提供随机接入的成功率。
可选的,所述获取的配置信息还包括测量结果类型和测量结果对应的参考信号类型中的至少一项,则上述测量结果包括:
所述测量结果类型的测量结果;或者
所述参考信号类型的测量结果;或者
所述参考信号类型的测量结果中的所述测量结果类型的测量结果。
其中,上述参考信号类型的测量结果中的所述测量结果类型的测量结果可以理解为,测量结果是上述参考信号类型的测量结果,以及是上述测量结果类型的测量结果。例如:上述参考信号类型包括SSB,上述测量结果类型为RSRP,则该测量结果为SSB的RSRP。
该实施方式中,可以实现与上述信号质量测量门限值比较的测量结果是特定类型、特定参考信号的测量结果,这样可以提高选择波束的精确度。
另外,需要说明的是,上述测量结果类型和上述信号质量门限值的类型可以根据协议约定或网路配置,且两者是相同的,如信号质量门限值的类型为RSRQ,则用于比较的测量结果类型也为RSRQ。另外,上述测量结果对应的参考信号类型和上述信号质量门限值对应的参考信号类型可以根据协议约定或网路配置,且两者可以相同,如信号质量门限值的类型为SSB,则用 于比较的测量结果的类型也为SSB。
本实施例中,除通过获取不同类型的测量结果提高随机接入的成功率之外,还可以获取特定时间测量结果,以提高测量结果的准确性。例如:所述测量结果包括:
最新的有效测量结果、向网络侧上报测量报告时测量的测量结果、触发随机接入时测量的测量结果、进行随机接入资源选择时测量的测量结果或者进行下行同步时测量的测量结果。
其中,上述最新的有效测量结果可以是有效时间最新的测量结果,具体可以是离发起随机接入的时间最近的有效测量结果,这样可以保证选择波束的测量结果是最新的,以提高选择波束的准确性。
另外,上述向网络侧上报测量报告时测量的测量结果可以保证向网络侧上报的测量结果与选择波束的测量结果是相同的,从而保证网络侧和用户终端测量结果的同步。
其中,非竞争随机接入的过程中触发随机接入可以是用户终端的PHY层接收到网络侧发送的物理下行控制信道(Physical Downlink Control Channel,PDCCH)指示(即Msg0)触发随机接入过程,而随机接入资源选择可以是,用户终端的PHY层通知MAC层发起随机接入过程,用户终端根据Msg0指示的随机接入资源,进行随机接入资源选择。
而在竞争随机接入的过程触发随机接入可以是用户终端的某协议层(如RRC层)指示MAC层触发随机接入过程,而随机接入资源选择可以是,MAC层触发随机接入过程后,MAC层进行随机接入资源选择。
这样通过上述触发随机接入时测量的测量结果、进行随机接入资源选择时测量的测量结果或者进行下行同步时测量的测量结果,可以保证测量结果的及时性,以提高选择波束的准确性。
可选的,若在所述MAC层选择所述至少一个波束,则所述信号质量测量门限值由所述RRC层或者PHY层向MAC层提供。
另外,该实施方式中,PHY层向MAC层可以将信号质量测量结果信息和信号质量测量门限值配置一起给MAC层。其中,该信号质量测量结果信息包括测量结果,以及还可以包括测量结果类型和测量结果对应的参考信号 类型中的至少一项。信号质量测量门限值配置可以包括信号质量测量门限值,以及还可以包括信号质量测量门限值对应的测量结果类型,以及对应的测量结果对应的参考信号类型。
步骤304、MAC层根据所述至少一个波束的随机接入资源配置信息,确定所述至少一个波束的随机接入资源,并在所述确定的随机接入资源上使用对应的波束发起随机接入。
需要说明的是,本实施例中,并不限定在MAC层确定发起随机接入的随机接入资源,也可以是其他协议层确定,并发起,对此本公开实施例不作限定。
作为一种可选的实施方式,每个波束的随机接入资源配置信息包括时间资源配置信息;所述确定的随机接入资源包括:时间最近的随机接入资源。例如:在所述确定的随机接入资源上使用对应的波束发起随机接入,包括:从所述至少一个波束的随机接入资源中选择时间最近的随机接入资源,并在所述选择的随机接入资源上使用对应的波束发起随机接入。
其中,上述时间最近可以理解为,在选择上述至少一个波束的随机接入资源后,在这些随机接入资源中时间离当前时间最近的随机接入资源,或者可以理解为至少一个波束的随机接入资源中时间离确定随机接入资源的时间最近的随机接入资源。当然,上述时间最近的随机接入资源为可用的随机接入资源。
由于每个随机接入资源都有时间资源配置信息,这样可以确定各随机接入资源的时间,从而在步骤303选择出多个波束时,可以选择一个时间最近,以及可用的随机接入资源发起随机接入,以提高接入效率。
作为一种可选的实施方式,若发起随机接入的随机接入资源由MAC层选择,且所述至少一个波束的随机接入资源配置信息由RRC层或者PHY层向MAC层提供。
例如:可以是用户终端在接收到步骤301中的配置信息后,RRC层或者PHY层在MAC层进行随机接入资源选择,向MAC层提供至少一个波束的随机接入资源配置信息。另外,在MAC选择上述至少一个波束的实施方式中,RRC层或者PHY层可以向MAC提供所有波束的随机接入资源配置信息。 而在RRC层或者PHY层选择上述至少一个波束的实施方式中,RRC层或者PHY层可以是在MAC层进行随机接入资源选择前进行选择,并向MAC层提供这至少一个波束的随机接入资源配置信息,当然,在该情况提供所有波束的随机接入资源配置信息也是可以的。
可选的,所述RRC层或者PHY层向所述MAC层提供所述至少一个波束的随机接入资源配置信息;或者
所述RRC层或者PHY层根据所述MAC的指示,向所述MAC层提供所述至少一个波束的随机接入资源配置信息。
其中,上述提供可以是上述RRC层或者PHY层在进行随机接入资源选择前向所述MAC层提供所述至少一个波束的随机接入资源配置信息;或者可以是所述RRC层或者PHY层周期性向所述MAC层提供所述至少一个波束的随机接入资源配置信息。
其中,这里提供随机接入资源配置信息的实施方式可以参见上述描述的提供信号质量测量结果信息的实施方式,此处作不赘述,且可以达到相同有益效果。例如:所述PHY层可以向所述MAC层提供所述至少一个波束的随机接入资源配置信息,或者所述PHY层可以根据所述RRC层的指示向所述MAC层提供所述至少一个波束的随机接入资源配置信息。
本实施例中,在图2所示的实施例的基础上增加了多种可选的实施方式,且可以进一步提高随机接入的成功率。
请参见图4,图4是本公开实施例提供的一种用户终端的结构示意图,如图4所示,用户终端400包括:
第一获取模块401,用于获取配置信息,其中,所述配置信息包括至少两个波束的随机接入资源配置信息;
第二获取模块402,用于获取所述至少两个波束的信号质量测量测量信息;
选择模块403,用于根据所述至少两个波束的信号质量测量测量信息,选择至少一个波束;
随机接入模块404,用于根据所述至少一个波束的随机接入资源配置信息,确定所述至少一个波束的随机接入资源,并在所述确定的随机接入资源 上使用对应的波束发起随机接入。
所述领域技术人员可以理解,上述模块可以实现为软件,或者硬件,或者硬件以及软件的组合。
可选的,每个波束的随机接入资源配置信息包括时间资源配置信息;所述确定的随机接入资源包括:时间最近的随机接入资源。
可选的,所述选择模块403用于MAC层根据无线资源控制RRC层或者物理PHY层提供的所述至少两个波束的信号质量测量结果信息,选择至少一个波束;或者
所述选择模块403用于MAC层指示RRC层或者PHY层提供所述至少两个波束的信号质量测量结果信息,并根据所述至少两个波束的信号质量测量结果信息,选择至少一个波束;或者
所述选择模块403用于RRC层或者PHY层根据所述至少两个波束的信号质量测量结果信息,选择至少一个波束,并指示给所述MAC层。
可选的,所述PHY层向所述MAC层提供所述信号质量测量结果信息,或者所述PHY层根据所述RRC层的指示向所述MAC层提供所述信号质量测量结果信息。
可选的,若所述获取的配置信息包括信号质量测量门限值,则所述至少一个波束的测量结果等于或者超过所述信号质量测量门限值,以及满足预设测量条件;或者
若所述获取的配置信息未包括信号质量测量门限值,则所述至少一个波束满足预设测量条件。
可选的,所述获取的配置信息还包括测量结果类型和测量结果对应的参考信号类型中的至少一项;
所述测量结果包括:
所述测量结果类型的测量结果;或者
所述参考信号类型的测量结果;或者
所述参考信号类型的测量结果中的所述测量结果类型的测量结果。
可选的,若在所述MAC层选择所述至少一个波束,则所述信号质量测量门限值由所述RRC层或者PHY层向MAC层提供。
可选的,所述预设测量条件包括如下一项或者多项:
检测到对应的参考信号、测量结果为有效测量结果和处于下行同步状态;
其中,每个波束各自对应的一个参考信号。
可选的,所述测量结果包括:
最新的有效测量结果、向网络侧上报测量报告时测量的测量结果、触发随机接入时测量的测量结果、进行随机接入资源选择时测量的测量结果或者进行下行同步时测量的测量结果。
可选的,每个波束的随机接入资源配置信息均包括如下一项或者多项:
时间资源配置信息、频率资源配置信息、编码资源配置信息和空间资源配置信息。
可选的,所述时间资源配置信息包括如下一项或者多项:
无线帧配置、subframe配置和slot配置;
所述频率资源配置信息包括如下一项或者多项:
频点标识、协议约定的最小带宽、BWP标识、物理资源块PRB标识、小区标识和子载波间隔;
所述编码资源配置信息包括随机接入前导码preamble;
所述空间资源配置信息包括如下一项或多项:
波束的标识信息、波束对的标识信息和传输节点标识。
可选的,所述波束的标识信息包括如下一项或者多项:
Beam ID、SSB标识和CSI-RS标识。
可选的,发起随机接入的随机接入资源由MAC层选择,且所述至少一个波束的随机接入资源配置信息由RRC层或者PHY层向MAC层提供。
可选的,所述RRC层或者PHY层向所述MAC层提供所述至少一个波束的随机接入资源配置信息;或者
所述RRC层或者PHY层根据所述MAC的指示,向所述MAC层提供所述至少一个波束的随机接入资源配置信息。
可选的,所述PHY层向所述MAC层提供所述至少一个波束的随机接入资源配置信息,或者所述PHY层根据所述RRC层的指示向所述MAC层提供所述至少一个波束的随机接入资源配置信息。
可选的,所述第一获取模块用于获取网络侧配置的或者协议定义的配置信息。
本公开实施例提供的用户终端能够实现图2至图3的方法实施例中用户终端实现的各个过程,为避免重复,这里不再赘述,且提高随机接入的成功率。
图5为实现本公开各个实施例的一种用户终端的硬件结构示意图,
该用户终端500包括但不限于:射频单元501、网络模块502、音频输出单元503、输入单元504、传感器505、显示单元506、用户输入单元507、接口单元508、存储器509、处理器510、以及电源511等部件。本领域技术人员可以理解,图5中示出的用户终端结构并不构成对用户终端的限定,用户终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,用户终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载用户终端、可穿戴设备、以及计步器等。
处理器510,用于获取配置信息,其中,所述配置信息包括至少两个波束的随机接入资源配置信息;
获取所述至少两个波束的信号质量测量测量信息;
根据所述至少两个波束的信号质量测量测量信息,选择至少一个波束;
根据所述至少一个波束的随机接入资源配置信息,确定所述至少一个波束的随机接入资源,并在所述确定的随机接入资源上使用对应的波束发起随机接入。
可选的,每个波束的随机接入资源配置信息包括时间资源配置信息;所述确定的随机接入资源包括:时间最近的随机接入资源。
可选的,所述处理器510执行的根据所述至少两个波束的信号质量测量结果信息,选择至少一个波束,包括:
MAC层根据无线资源控制RRC层或者物理PHY层提供的所述至少两个波束的信号质量测量结果信息,选择至少一个波束;或者
MAC层指示RRC层或者PHY层提供所述至少两个波束的信号质量测量结果信息,并根据所述至少两个波束的信号质量测量结果信息,选择至少一个波束;或者
RRC层或者PHY层根据所述至少两个波束的信号质量测量结果信息,选择至少一个波束,并指示给MAC层。
可选的,所述PHY层向所述MAC层提供所述信号质量测量结果信息,或者所述PHY层根据所述RRC层的指示向所述MAC层提供所述信号质量测量结果信息。
可选的,若所述获取的配置信息包括信号质量测量门限值,则所述至少一个波束的测量结果等于或者超过所述信号质量测量门限值,以及满足预设测量条件;或者
若所述获取的配置信息未包括信号质量测量门限值,则所述至少一个波束满足预设测量条件。
可选的,所述获取的配置信息还包括测量结果类型和测量结果对应的参考信号类型中的至少一项;
所述测量结果包括:
所述测量结果类型的测量结果;或者
所述参考信号类型的测量结果;或者
所述参考信号类型的测量结果中的所述测量结果类型的测量结果。
可选的,若在所述MAC层选择所述至少一个波束,则所述信号质量测量门限值由所述RRC层或者PHY层向MAC层提供。
可选的,所述预设测量条件包括如下一项或者多项:
检测到对应的参考信号、测量结果为有效测量结果和处于下行同步状态;
其中,每个波束各自对应的一个参考信号。
可选的,所述测量结果包括:
最新的有效测量结果、向网络侧上报测量报告时测量的测量结果、触发随机接入时测量的测量结果、进行随机接入资源选择时测量的测量结果或者进行下行同步时测量的测量结果。
可选的,每个波束的随机接入资源配置信息均包括如下一项或者多项:
时间资源配置信息、频率资源配置信息、编码资源配置信息和空间资源配置信息。
可选的,所述时间资源配置信息包括如下一项或者多项:
无线帧配置、subframe配置和slot配置;
所述频率资源配置信息包括如下一项或者多项:
频点标识、协议约定的最小带宽、BWP标识、PRB标识、小区标识和子载波间隔;
所述编码资源配置信息包括随机接入preamble;
所述空间资源配置信息包括如下一项或多项:
波束的标识信息、波束对的标识信息和传输节点标识。
可选的,所述波束的标识信息包括如下一项或者多项:
Beam ID、SSB标识和CSI-RS标识。
可选的,发起随机接入的随机接入资源由MAC层选择,且所述至少一个波束的随机接入资源配置信息由RRC层或者PHY层向MAC层提供。
可选的,所述RRC层或者PHY层向所述MAC层提供所述至少一个波束的随机接入资源配置信息;或者
所述RRC层或者PHY层根据所述MAC的指示,向所述MAC层提供所述至少一个波束的随机接入资源配置信息。
可选的,所述PHY层向所述MAC层提供所述至少一个波束的随机接入资源配置信息,或者所述PHY层根据所述RRC层的指示向所述MAC层提供所述至少一个波束的随机接入资源配置信息。
可选的,处理器510获取配置信息,包括:
获取网络侧配置的或者协议定义的配置信息。
上述用户终端可以提高随机接入的成功率。
应理解的是,本公开实施例中,射频单元501可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器510处理;另外,将上行的数据发送给基站。通常,射频单元501包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元501还可以通过无线通信系统与网络和其他设备通信。
用户终端通过网络模块502为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元503可以将射频单元501或网络模块502接收的或者在存 储器509中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元503还可以提供与用户终端500执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元503包括扬声器、蜂鸣器以及受话器等。
输入单元504用于接收音频或视频信号。输入单元504可以包括图形处理器(Graphics Processing Unit,GPU)5041和麦克风5042,图形处理器5041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元506上。经图形处理器5041处理后的图像帧可以存储在存储器509(或其它存储介质)中或者经由射频单元501或网络模块502进行发送。麦克风5042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元501发送到移动通信基站的格式输出。
用户终端500还包括至少一种传感器505,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板5061的亮度,接近传感器可在用户终端500移动到耳边时,关闭显示面板5061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别用户终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器505还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元506用于显示由用户输入的信息或提供给用户的信息。显示单元506可包括显示面板5061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板5061。
用户输入单元507可用于接收输入的数字或字符信息,以及产生与用户终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元507 包括触控面板5071以及其他输入设备5072。触控面板5071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板5071上或在触控面板5071附近的操作)。触控面板5071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器510,接收处理器510发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板5071。除了触控面板5071,用户输入单元507还可以包括其他输入设备5072。具体地,其他输入设备5072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板5071可覆盖在显示面板5061上,当触控面板5071检测到在其上或附近的触摸操作后,传送给处理器510以确定触摸事件的类型,随后处理器510根据触摸事件的类型在显示面板5061上提供相应的视觉输出。虽然在图5中,触控面板5071与显示面板5061是作为两个独立的部件来实现用户终端的输入和输出功能,但是在某些实施例中,可以将触控面板5071与显示面板5061集成而实现用户终端的输入和输出功能,具体此处不做限定。
接口单元508为外部装置与用户终端500连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元508可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到用户终端500内的一个或多个元件或者可以用于在用户终端500和外部装置之间传输数据。
存储器509可用于存储软件程序以及各种数据。存储器509可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外, 存储器509可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器510是用户终端的控制中心,利用各种接口和线路连接整个用户终端的各个部分,通过运行或执行存储在存储器509内的软件程序和/或模块,以及调用存储在存储器509内的数据,执行用户终端的各种功能和处理数据,从而对用户终端进行整体监控。处理器510可包括一个或多个处理单元。可选地,处理器510可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器510中。
用户终端500还可以包括给各个部件供电的电源511(比如电池),可选地,电源511可以通过电源管理系统与处理器510逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,用户终端500包括一些未示出的功能模块,在此不再赘述。
可选地,本公开实施例还提供一种用户终端,包括处理器510,存储器509,存储在存储器509上并可在所述处理器510上运行的计算机程序,该计算机程序被处理器510执行时实现上述随机接入方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现的随机接入方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (32)

  1. 一种随机接入方法,包括:
    获取配置信息,其中,所述配置信息包括至少两个波束的随机接入资源配置信息;
    获取所述至少两个波束的信号质量测量测量信息;
    根据所述至少两个波束的信号质量测量测量信息,选择至少一个波束;以及
    根据所述至少一个波束的随机接入资源配置信息,确定所述至少一个波束的随机接入资源,并在所述确定的随机接入资源上使用对应的波束发起随机接入。
  2. 如权利要求1所述的方法,其中,每个波束的随机接入资源配置信息包括时间资源配置信息;
    所述确定的随机接入资源包括:时间最近的随机接入资源。
  3. 如权利要求1所述的方法,其中,所述根据所述至少两个波束的信号质量测量结果信息,选择至少一个波束,包括:
    媒体接入控制MAC层根据无线资源控制RRC层或者物理PHY层提供的所述至少两个波束的信号质量测量结果信息,选择至少一个波束;或者
    MAC层指示RRC层或者PHY层提供所述至少两个波束的信号质量测量结果信息,并根据所述至少两个波束的信号质量测量结果信息,选择至少一个波束;或者
    RRC层或者PHY层根据所述至少两个波束的信号质量测量结果信息,选择至少一个波束,并指示给所述MAC层。
  4. 如权利要求3所述的方法,其中,所述PHY层向所述MAC层提供所述信号质量测量结果信息,或者所述PHY层根据所述RRC层的指示向所述MAC层提供所述信号质量测量结果信息。
  5. 如权利要求3所述的方法,其中,
    若所述获取的配置信息包括信号质量测量门限值,则所述至少一个波束的测量结果等于或者超过所述信号质量测量门限值,以及满足预设测量条件; 或者
    若所述获取的配置信息未包括信号质量测量门限值,则所述至少一个波束满足预设测量条件。
  6. 如权利要求5所述的方法,其中,所述获取的配置信息还包括测量结果类型和测量结果对应的参考信号类型中的至少一项;
    所述测量结果包括:
    所述测量结果类型的测量结果;或者
    所述参考信号类型的测量结果;或者
    所述参考信号类型的测量结果中的所述测量结果类型的测量结果。
  7. 如权利要求5所述的方法,其中,若在所述MAC层选择所述至少一个波束,则所述信号质量测量门限值由所述RRC层或者PHY层向MAC层提供。
  8. 如权利要求5所述的方法,其中,所述预设测量条件包括如下一项或者多项:
    检测到对应的参考信号、测量结果为有效测量结果和处于下行同步状态;
    其中,每个波束各自对应的一个参考信号。
  9. 如权利要求5所述的方法,其中,所述测量结果包括:
    最新的有效测量结果、向网络侧上报测量报告时测量的测量结果、触发随机接入时测量的测量结果、进行随机接入资源选择时测量的测量结果或者进行下行同步时测量的测量结果。
  10. 如权利要求1至9中任一项所述方法,其中,每个波束的随机接入资源配置信息均包括如下一项或者多项:
    时间资源配置信息、频率资源配置信息、编码资源配置信息和空间资源配置信息。
  11. 如权利要求10所述的方法,其中,所述时间资源配置信息包括如下一项或者多项:
    无线帧配置、子帧subframe配置和时隙slot配置;
    所述频率资源配置信息包括如下一项或者多项:
    频点标识、协议约定的最小带宽、带宽部分BWP标识、物理资源块PRB 标识、小区标识和子载波间隔;
    所述编码资源配置信息包括随机接入前导码preamble;
    所述空间资源配置信息包括如下一项或多项:
    波束的标识信息、波束对的标识信息和传输节点标识;
    其中,所述波束的标识信息包括如下一项或者多项:
    波束标识Beam ID、同步信号块SSB标识和信道状态信息参考信号CSI-RS标识。
  12. 如权利要求1至9中任一项所述方法,其中,发起随机接入的随机接入资源由MAC层选择,且所述至少一个波束的随机接入资源配置信息由RRC层或者PHY层向MAC层提供。
  13. 如权利要求12所述的方法,其中,所述RRC层或者PHY层向所述MAC层提供所述至少一个波束的随机接入资源配置信息;或者
    所述RRC层或者PHY层根据所述MAC的指示,向所述MAC层提供所述至少一个波束的随机接入资源配置信息。
  14. 如权利要求13所述的方法,其中,所述PHY层向所述MAC层提供所述至少一个波束的随机接入资源配置信息,或者所述PHY层根据所述RRC层的指示向所述MAC层提供所述至少一个波束的随机接入资源配置信息。
  15. 如权利要求1至9中任一项所述方法,其中,所述获取配置信息,包括:
    获取网络侧配置的或者协议定义的配置信息。
  16. 一种用户终端,包括:
    第一获取模块,用于获取配置信息,其中,所述配置信息包括至少两个波束的随机接入资源配置信息;
    第二获取模块,用于获取所述至少两个波束的信号质量测量测量信息;
    选择模块,用于根据所述至少两个波束的信号质量测量测量信息,选择至少一个波束;
    随机接入模块,用于根据所述至少一个波束的随机接入资源配置信息,确定所述至少一个波束的随机接入资源,并在所述确定的随机接入资源上使 用对应的波束发起随机接入。
  17. 如权利要求16所述的用户终端,其中,每个波束的随机接入资源配置信息包括时间资源配置信息;
    所述确定的随机接入资源包括:时间最近的随机接入资源。
  18. 如权利要求16所述的用户终端,其中,所述选择模块用于MAC层根据无线资源控制RRC层或者物理PHY层提供的所述至少两个波束的信号质量测量结果信息,选择至少一个波束;或者
    所述选择模块用于MAC层指示RRC层或者PHY层提供所述至少两个波束的信号质量测量结果信息,并根据所述至少两个波束的信号质量测量结果信息,选择至少一个波束;或者
    所述选择模块用于RRC层或者PHY层根据所述至少两个波束的信号质量测量结果信息,选择至少一个波束,并指示给所述MAC层。
  19. 如权利要求18所述的用户终端,其中,所述PHY层向所述MAC层提供所述信号质量测量结果信息,或者所述PHY层根据所述RRC层的指示向所述MAC层提供所述信号质量测量结果信息。
  20. 如权利要求18所述的用户终端,其中,
    若所述获取的配置信息包括信号质量测量门限值,则所述至少一个波束的测量结果等于或者超过所述信号质量测量门限值,以及满足预设测量条件;或者
    若所述获取的配置信息未包括信号质量测量门限值,则所述至少一个波束满足预设测量条件。
  21. 如权利要求20所述的用户终端,其中,所述获取的配置信息还包括测量结果类型和测量结果对应的参考信号类型中的至少一项;
    所述测量结果包括:
    所述测量结果类型的测量结果;或者
    所述参考信号类型的测量结果;或者
    所述参考信号类型的测量结果中的所述测量结果类型的测量结果。
  22. 如权利要求20所述的用户终端,其中,若在所述MAC层选择所述至少一个波束,则所述信号质量测量门限值由所述RRC层或者PHY层向 MAC层提供。
  23. 如权利要求20所述的用户终端,其中,所述预设测量条件包括如下一项或者多项:
    检测到对应的参考信号、测量结果为有效测量结果和处于下行同步状态;
    其中,每个波束各自对应的一个参考信号。
  24. 如权利要求20所述的用户终端,其中,所述测量结果包括:
    最新的有效测量结果、向网络侧上报测量报告时测量的测量结果、触发随机接入时测量的测量结果、进行随机接入资源选择时测量的测量结果或者进行下行同步时测量的测量结果。
  25. 如权利要求16至24中任一项所述用户终端,其中,每个波束的随机接入资源配置信息均包括如下一项或者多项:
    时间资源配置信息、频率资源配置信息、编码资源配置信息和空间资源配置信息。
  26. 如权利要求25所述的用户终端,其中,所述时间资源配置信息包括如下一项或者多项:
    无线帧配置、subframe配置和slot配置;
    所述频率资源配置信息包括如下一项或者多项:
    频点标识、协议约定的最小带宽、BWP标识、物理资源块PRB标识、小区标识和子载波间隔;
    所述编码资源配置信息包括随机接入前导码preamble;
    所述空间资源配置信息包括如下一项或多项:
    波束的标识信息、波束对的标识信息和传输节点标识;
    其中,所述波束的标识信息包括如下一项或者多项:
    Beam ID、SSB标识和CSI-RS标识。
  27. 如权利要求16至24中任一项所述用户终端,其中,发起随机接入的随机接入资源由MAC层选择,且所述至少一个波束的随机接入资源配置信息由RRC层或者PHY层向MAC层提供。
  28. 如权利要求27所述的用户终端,其中,所述RRC层或者PHY层向所述MAC层提供所述至少一个波束的随机接入资源配置信息;或者
    所述RRC层或者PHY层根据所述MAC的指示,向所述MAC层提供所述至少一个波束的随机接入资源配置信息。
  29. 如权利要求28所述的用户终端,其中,所述PHY层向所述MAC层提供所述至少一个波束的随机接入资源配置信息,或者所述PHY层根据所述RRC层的指示向所述MAC层提供所述至少一个波束的随机接入资源配置信息。
  30. 如权利要求16至24中任一项所述用户终端,其中,所述第一获取模块用于获取网络侧配置的或者协议定义的配置信息。
  31. 一种用户终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至15中任一项所述的随机接入方法中的步骤。
  32. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如权利要求1至15中任一项所述的随机接入方法的步骤。
PCT/CN2018/109806 2017-11-03 2018-10-11 随机接入方法和用户终端 WO2019085718A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/652,064 US11259323B2 (en) 2017-11-03 2018-10-11 Random access method and user equipment
EP18872713.5A EP3706486B1 (en) 2017-11-03 2018-10-11 Random access method and user terminal
ES18872713T ES2954329T3 (es) 2017-11-03 2018-10-11 Método de acceso aleatorio y terminal de usuario

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711072301.5 2017-11-03
CN201711072301.5A CN109756977B (zh) 2017-11-03 2017-11-03 随机接入方法和用户终端

Publications (1)

Publication Number Publication Date
WO2019085718A1 true WO2019085718A1 (zh) 2019-05-09

Family

ID=66333427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109806 WO2019085718A1 (zh) 2017-11-03 2018-10-11 随机接入方法和用户终端

Country Status (7)

Country Link
US (1) US11259323B2 (zh)
EP (1) EP3706486B1 (zh)
CN (2) CN109756977B (zh)
ES (1) ES2954329T3 (zh)
HU (1) HUE063339T2 (zh)
PT (1) PT3706486T (zh)
WO (1) WO2019085718A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10869268B2 (en) * 2018-01-19 2020-12-15 Mediatek Inc. NR power saving enhancements
JP7206734B2 (ja) * 2018-09-20 2023-01-18 富士通株式会社 基地局装置、選択方法及び無線システム
US10778317B1 (en) * 2019-07-22 2020-09-15 Sprint Communications Company L.P. System and method for intra-cell beam switching based on configurable physical layer event detection
CN111836396B (zh) * 2019-08-06 2022-02-08 维沃移动通信有限公司 一种随机接入请求资源的选择方法、终端及网络设备
CN113453338B (zh) * 2020-03-24 2023-09-05 维沃移动通信有限公司 接收方法、发送方法、终端及网络侧设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106385710A (zh) * 2016-11-14 2017-02-08 宇龙计算机通信科技(深圳)有限公司 系统信息的传输方法及传输装置
CN106900074A (zh) * 2016-05-13 2017-06-27 中国移动通信有限公司研究院 一种随机接入方法、装置、相关设备和系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI653843B (zh) * 2013-01-25 2019-03-11 內數位專利控股公司 基於所接收波束參考信號在實體隨機存取通道(prach)資源上傳送
PL3123802T3 (pl) * 2014-03-25 2019-02-28 Telefonaktiebolaget Lm Ericsson (Publ) System i sposób dla fizycznego dostępu losowego opartego na wiązce
US10477591B2 (en) * 2015-09-10 2019-11-12 Intel IP Corporation Random access procedure for beam based cell-less operation in 5G RAT
US10849134B2 (en) * 2016-11-04 2020-11-24 Qualcomm Incorporated Indicating a range of beam correspondence in a wireless node
WO2018199692A1 (ko) * 2017-04-28 2018-11-01 엘지전자 주식회사 랜덤 액세스 수행 방법 및 이를 지원하는 장치
US11523427B2 (en) * 2017-04-28 2022-12-06 Lg Electronics Inc. Random access performing method, and device supporting same
EP3621375A4 (en) * 2017-05-05 2020-11-04 Beijing Xiaomi Mobile Software Co., Ltd. METHOD, USER EQUIPMENT UNIT AND BASE STATION FOR RANDOM ACCESS CONTROL TO A NETWORK
JP7182570B2 (ja) * 2017-06-27 2022-12-02 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Nrにおけるネットワーク制御されたビームベースハンドオーバのための無線通信デバイスおよび方法
CN109392185B (zh) 2017-08-02 2020-04-14 维沃移动通信有限公司 一种随机接入方法和用户终端

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106900074A (zh) * 2016-05-13 2017-06-27 中国移动通信有限公司研究院 一种随机接入方法、装置、相关设备和系统
CN106385710A (zh) * 2016-11-14 2017-02-08 宇龙计算机通信科技(深圳)有限公司 系统信息的传输方法及传输装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Beam Selection for Handover in NR", 3GPP TSG-RAN WG2 MEETING #99BIS, R2-1710675, 13 October 2017 (2017-10-13), XP051342705 *

Also Published As

Publication number Publication date
EP3706486A4 (en) 2020-11-18
HUE063339T2 (hu) 2024-01-28
CN109756977A (zh) 2019-05-14
EP3706486A1 (en) 2020-09-09
US20200252966A1 (en) 2020-08-06
US11259323B2 (en) 2022-02-22
PT3706486T (pt) 2023-08-31
CN109756977B (zh) 2021-11-12
CN114007272A (zh) 2022-02-01
EP3706486B1 (en) 2023-08-02
ES2954329T3 (es) 2023-11-21

Similar Documents

Publication Publication Date Title
WO2019137424A1 (zh) 参考信号的测量方法和用户终端
WO2020164594A1 (zh) 测量处理方法、参数配置方法、终端和网络设备
WO2019085718A1 (zh) 随机接入方法和用户终端
WO2019154268A1 (zh) 小区处理方法、终端设备及网络设备
WO2019154082A1 (zh) 波束失败恢复的方法、终端设备及网络设备
WO2019184697A1 (zh) Pdsch的接收方法和终端
US20200252971A1 (en) Method and device for random access and terminal
WO2019095896A1 (zh) 波束失败恢复请求发送、接收方法、装置及系统
CN113517965B (zh) 信道状态信息报告的获取方法及终端
WO2019062627A1 (zh) 随机接入方法、移动终端及网络设备
WO2021078240A1 (zh) 测量处理方法和终端
WO2019218996A1 (zh) 测量控制方法、终端和网络侧设备
WO2020192674A1 (zh) 搜索空间的配置方法及装置、通信设备
WO2019223684A1 (zh) 测量上报方法、测量配置方法、终端和网络侧设备
WO2020063240A1 (zh) 信道接入方法、配置方法、终端及网络侧设备
WO2020228537A1 (zh) 资源确定方法、资源指示方法、终端及网络侧设备
RU2767521C1 (ru) Способ обработки информации о возможностях оконечного устройства, оконечное и сетевое устройства
US20220110036A1 (en) Random access method and terminal
WO2019242633A1 (zh) 测量间隔的处理方法、终端及网络节点
WO2019137368A1 (zh) 系统信息的传输方法和用户终端
CN110034872B (zh) 资源与qcl的关联关系指示方法、确定方法及相关设备
WO2019184701A1 (zh) 上行传输方法及终端
WO2019242477A1 (zh) 随机接入资源的选择方法及终端设备
WO2019242678A1 (zh) 测量方法及终端
WO2019157915A1 (zh) Csi资源类型的确定方法、终端和网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018872713

Country of ref document: EP

Effective date: 20200603