WO2019184386A1 - 无人飞行器电池安全保护方法及其装置 - Google Patents

无人飞行器电池安全保护方法及其装置 Download PDF

Info

Publication number
WO2019184386A1
WO2019184386A1 PCT/CN2018/115448 CN2018115448W WO2019184386A1 WO 2019184386 A1 WO2019184386 A1 WO 2019184386A1 CN 2018115448 W CN2018115448 W CN 2018115448W WO 2019184386 A1 WO2019184386 A1 WO 2019184386A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
discharge
protection function
current threshold
charging
Prior art date
Application number
PCT/CN2018/115448
Other languages
English (en)
French (fr)
Inventor
秦威
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2019184386A1 publication Critical patent/WO2019184386A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]

Definitions

  • the present invention relates to the field of battery management technologies, and in particular, to a battery safety protection method for an unmanned aerial vehicle and a device thereof.
  • An unmanned aerial vehicle is a product that requires a high level of safety. Especially during the flight, a subtle error may cause a bomber accident.
  • battery is particularly important in the safety design of unmanned aerial vehicles.
  • an embodiment of the present invention provides a UAV battery safety protection method and apparatus thereof that can reduce losses as much as possible.
  • the embodiment of the present invention provides the following technical solutions:
  • An unmanned aerial vehicle battery safety protection method includes:
  • the electrical performance parameters including a charging current value and a discharging current value of the battery
  • the method before the discharging short-circuit protection function and/or the over-discharge protection function of the battery is retained, the method further includes:
  • the battery powers an unmanned aerial vehicle in flight.
  • the method further includes:
  • Discharge short-circuit protection function over-discharge protection function, discharge over-temperature protection function, discharge under-temperature protection function and discharge over-current protection function;
  • the second current threshold is less than or equal to the first current threshold.
  • the battery is powered by an unmanned aerial vehicle that is not flying when the discharge current value is less than the second current threshold and greater than the third current threshold.
  • the method further includes:
  • the output line of the battery is disconnected.
  • the voltage threshold is 3.2 volts and the predetermined time is 5 seconds.
  • the voltage threshold is 2.3 volts and the predetermined time is 30 seconds.
  • the method further includes:
  • Charging overcurrent protection function Charging overcurrent protection function, charging over temperature protection function, charging under temperature protection function, charging over voltage protection function and charging short circuit protection function.
  • the first current threshold is 2 amps
  • the second current threshold is 2 amps
  • the third current threshold is 50 milliamps.
  • the embodiment of the present invention further provides the following technical solutions:
  • An unmanned aerial vehicle battery safety protection device comprising:
  • An electrical performance parameter acquisition module configured to collect electrical performance parameters of the battery, where the electrical performance parameters include a charging current value and a discharging current value of the battery;
  • a processing module configured to retain only the discharge short circuit protection function and/or the over discharge protection function of the battery when the discharge current value is greater than or equal to the first current threshold according to the electrical performance parameter.
  • the processing module is further used to: before retaining only the discharge short circuit protection function and/or the over discharge protection function of the battery:
  • the battery powers an unmanned aerial vehicle in flight.
  • processing module is further configured to:
  • Discharge short-circuit protection function over-discharge protection function, discharge over-temperature protection function, discharge under-temperature protection function and discharge over-current protection function;
  • the second current threshold is less than or equal to the first current threshold.
  • the battery is powered by an unmanned aerial vehicle that is not flying when the discharge current value is less than the second current threshold and greater than the third current threshold.
  • processing module is further configured to:
  • the output line of the battery is disconnected.
  • the voltage threshold is 3.2 volts and the predetermined time is 5 seconds.
  • the voltage threshold is 2.3 volts and the predetermined time is 30 seconds.
  • processing module is further configured to:
  • Charging overcurrent protection function Charging overcurrent protection function, charging over temperature protection function, charging under temperature protection function, charging over voltage protection function and charging short circuit protection function.
  • An unmanned aerial vehicle includes a memory and a processor, the memory storing a program that, when read and executed by the processor, implements the above-described unmanned aerial vehicle battery safety protection method.
  • the battery safety protection method of the embodiment of the present invention only retains the electrical performance parameter of the battery by collecting the electrical performance parameter of the battery and determining that the discharge current value is greater than or equal to the first current threshold according to the electrical performance parameter.
  • the battery has a short-circuit protection function and/or an over-discharge protection function, which is equivalent to automatically turning off some protection functions (such as over-current, under-temperature, over-temperature) when certain special conditions are met (such as during flight discharge) Etc.), only the short-circuit protection function and/or the over-discharge protection function are retained, so that the battery can have a corresponding protection strategy for different situations, so that the battery life and the severity of the aircraft bomber can be weighed to minimize the safety of various batteries. The damage caused by the accident.
  • FIG. 1 is a schematic diagram of an application environment according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a method for protecting a battery of an unmanned aerial vehicle according to an embodiment of the present invention
  • FIG. 3 is a partial flow chart of a method for safety protection of an unmanned aerial vehicle battery according to an embodiment of the present invention
  • FIG. 4 is a schematic partial flow chart of a method for safety protection of an unmanned aerial vehicle battery according to another embodiment of the present invention.
  • FIG. 5 is a schematic partial flow chart of a method for safety protection of an unmanned aerial vehicle battery according to still another embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method for protecting a battery safety of an unmanned aerial vehicle in a specific scenario according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a battery safety protection device for an unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 8 is a block diagram showing the hardware structure of an unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an application environment according to an embodiment of the present invention. As shown in FIG. 1, the application environment includes a battery 10, a fuel gauge 20, and a microcontroller 30.
  • the battery 10 is composed of one or more cells, and is formed in any form to form a battery pack for supplying a DC power source to an electric device such as an electric motor.
  • the battery 10 can have a corresponding capacity, volume, or package form depending on the actual situation.
  • the battery 10 can be discharged or charged under controlled conditions to simulate normal operating conditions.
  • the fuel gauge 20 can be any type or brand of fuel gauge system or chip that calculates the current state of the battery by collecting corresponding data.
  • the fuel gauge 20 can be run with one or more suitable software programs, record data and perform calculations based on the data.
  • a necessary electrical connection is established between the fuel gauge 20 and the battery 10 (the electrical connection may be an indirect connection formed by a related electrical performance parameter acquisition circuit, such as a current sampling circuit, a voltage sampling circuit, a temperature sampling circuit, etc.),
  • the fuel gauge 20 collects and acquires the data of the battery 10 through these electrical connections to determine the current power, current, voltage and other electrical performance parameters of the battery 10, and implements related protection functions (such as short circuit protection, over current protection, over voltage protection, and Temperature protection, etc., of course, can also achieve the above related protection functions by designing corresponding peripheral circuits.
  • the microcontroller 30 is in communication connection with the fuel gauge 20, and the microcontroller 30 can control the opening or closing of the relevant protection function according to the relevant electrical performance parameters transmitted by the fuel gauge 20. If the microcontroller 30 determines that the discharge current value of the battery 10 is greater than or equal to the first current threshold according to the electrical performance parameter transmitted by the fuel gauge 20, the fuel gauge 20 or the related peripheral circuit is controlled to retain only the discharge short circuit protection function of the battery. And / or over-discharge protection.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 2 is a schematic flowchart of a method for protecting a battery of an unmanned aerial vehicle according to an embodiment of the present invention. The technical solution in the first embodiment is described together with FIG. 1 .
  • the unmanned aerial vehicle battery safety protection method comprises:
  • Step S110 Collecting electrical performance parameters of the battery, the electrical performance parameters including a charging current value and a discharging current value of the battery.
  • the "current value” that appears is only a value, and there is no positive or negative, and the preceding charging and discharging are used to indicate the direction of the current.
  • the collection of electrical performance parameters is generally accomplished by a corresponding sampling circuit.
  • Step S120 When it is determined that the discharge current value is greater than or equal to the first current threshold according to the electrical performance parameter, only the discharge short circuit protection function and/or the over discharge protection function of the battery are retained.
  • the microcontroller 30 controls the fuel gauge 20 or related peripheral circuits to turn on all discharge protection functions, including but not limited to discharge overcurrent, discharge overtemperature, and discharge under temperature. Protection functions such as overdischarge, discharge short circuit.
  • the microcontroller 30 will adopt an associated protection strategy, such as controlling the fuel gauge 20 or the associated peripheral circuit to only retain the battery short-circuit protection function and/or over-discharge. Protective function.
  • the battery safety protection method of the embodiment of the present invention only retains the electrical performance parameter of the battery by collecting the electrical performance parameter of the battery and determining that the discharge current value is greater than or equal to the first current threshold according to the electrical performance parameter.
  • the discharge short circuit protection function and/or the over discharge protection function of the battery which is equivalent to other than the discharge short circuit protection function and/or the over discharge protection function when some special conditions are met (such as during flight discharge)
  • the protection functions are turned off, so that the battery can have a corresponding protection strategy for different situations, so that the battery life and the severity of the aircraft bomber can be weighed to minimize the damage caused by various battery safety accidents.
  • the first current threshold is 2 amps. According to various test data, the aircraft is discharged without flying, and the general discharge current value is at most 1 amp, so when the discharge current of the battery 10 is greater than 2 amps, the battery 10 is in flight. Unmanned aerial vehicles are powered. It can be understood that in other embodiments, the first current threshold may also be other values, such as 1.8 amps, 1.9 amps, or 2.1 amps, etc., which are not strictly limited herein.
  • the microcontroller 30 controls the shutdown of other protection functions, and only retains the discharge short circuit protection function of the battery and/or Discharge protection function.
  • the functions of the discharge short circuit protection function and the over discharge protection function are generally retained, so as to minimize the loss caused by the battery safety accident. . Because the discharge short circuit and over discharge can cause the bomber, the loss caused by the crash is greater than the battery is stopped. It can be understood that, in other embodiments, it is not within the scope of the present invention to retain only one of the protection functions after calculating the probability of occurrence of discharge short-circuit and over-discharge.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the method further includes:
  • Step S130 When it is determined that the discharge current value is less than the second current threshold and greater than the third current threshold according to the electrical performance parameter, turn on at least the following functions in the battery: discharge short circuit protection function, over discharge protection function, and discharge Over temperature protection function, discharge under temperature protection function and discharge over current protection function.
  • the second current threshold is less than or equal to the first current threshold.
  • the second current threshold is 2 amps and the third current threshold is 50 milliamps.
  • the aircraft is discharged without flying, and the general discharge current value is at most 1 amp, so when the discharge current value of the battery 10 is less than 2 amps, the battery 10 is not flying.
  • the human aircraft is powered.
  • the second current threshold may also be other values, such as 1.8 amps, 1.9 amps, or 1.5 amps, etc., which are not strictly limited herein.
  • the third current threshold is set here mainly to prevent false positives, because sometimes some reverse currents may occur due to some unexpected situations during charging, but this current value is generally not greater than 50 milliamperes.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the implementation process of the over-discharge protection function appearing in the foregoing Embodiment 1 and Embodiment 2 includes:
  • step S410 Determine whether the discharge voltage of the battery is lower than a preset voltage threshold and the duration is greater than a preset time. If yes, step S420 is performed.
  • the voltage threshold is 3.2 volts and the predetermined time is 5 seconds.
  • the voltage threshold is 2.3 volts and the predetermined time is 30 seconds.
  • the discharge overvoltage protection function is realized, so that the battery turns off its main circuit discharge MOS switch tube (ie, disconnects the output line of the battery) .
  • the battery is considered to be powered by a flying unmanned aerial vehicle, it is necessary to weigh the advantages and disadvantages of the battery life and the explosion machine, and the voltage threshold is appropriately reduced to 2.3 volts, and the preset time is extended to 30 seconds. This gives the user enough time to control the landing of the UAV.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the method further includes:
  • Step S140 When it is determined that the charging current value is less than the fourth current threshold and greater than the fifth current threshold according to the electrical performance parameter, turn on at least the following functions in the battery: charging overcurrent protection function, charging over temperature protection function, charging Under temperature protection, charging overvoltage protection and charge short circuit protection.
  • the fourth current threshold is 8 amps and the fifth current threshold is 50 milliamps.
  • the charging current value is generally controlled below 8 amps under the charging state, otherwise the battery will be prone to heat, causing short circuit or even explosion, burning and other accidents.
  • the fourth current threshold may also be other values, such as 7.9 amps, 7.8 amps, or 8.1 amps, etc., which are not strictly limited herein.
  • the fifth current threshold is set here mainly to prevent false positives, because sometimes some reverse currents may occur due to some unexpected situations during charging, but this current value is generally not greater than 50 milliamperes.
  • the charging current value when it is determined that the charging current value is less than the fourth current threshold and greater than the fifth current threshold, only a part of the protection functions of the battery, such as the charging short circuit protection function, the overcharge protection function, and the charging, may be turned on. Overcurrent protection.
  • the battery charging and discharging state is determined.
  • three states of the battery need to be determined: powering the unmanned aerial vehicle in flight state. Power and charge unmanned aerial vehicles without flying. Differentiating whether the battery is charged or placed depends mainly on the direction of the current, and the corresponding sampling circuit collects the electrical performance parameters of the battery, and the electrical performance parameters include the charging current value and the discharging current value of the battery.
  • the battery If a charging current is detected and it is determined that the charging current is greater than 50 mA and less than 8 amps, the battery is considered to be in a charging state, and the charging overcurrent protection function, the charging over temperature protection function, and the charging under temperature protection in the battery at this time
  • the function, charging overvoltage protection function and charging short circuit protection function will be turned on and function to ensure that the battery has corresponding safety protection during charging, that is, real-time detection of battery charging safety event occurs when any one of the safety events occurs.
  • the battery turns off its main circuit charging MOS switch tube, so that it can no longer continue charging until the safety event is removed before returning to normal.
  • the battery will make corresponding alarm indications according to different safety states, such as sound. Tips, light tips, etc.
  • the battery If a discharge current is detected and the discharge current is determined to be greater than 50 mA and less than 2 amps, the battery is considered to be powered by an unmanned aerial vehicle that is not flying, and the corresponding protection function of the battery is turned on, ie Real-time detection of whether a battery discharge safety event occurs, in the event of any one of the safety events such as discharge overcurrent, discharge over temperature, discharge under temperature, overdischarge voltage less than 3.2 volts, overdischarge time greater than 5 seconds, discharge short circuit, etc. Turn off the main circuit discharge MOS switch tube so that it can no longer continue to discharge until the safety event is removed before returning to normal. At the same time, when a safety event occurs, the battery will make corresponding alarm indication according to different safety status, such as voice prompt, light prompt. Wait.
  • the safety events such as discharge overcurrent, discharge over temperature, discharge under temperature, overdischarge voltage less than 3.2 volts, overdischarge time greater than 5 seconds, discharge short circuit, etc.
  • the battery If a discharge is detected and it is determined that the discharge current is greater than or equal to 2 amps and the aircraft has communication, the battery is considered to be supplying power to the unmanned aerial vehicle in flight, so the safety protection strategy for the discharge is turned on. Shielding off discharge over-current, discharge over-temperature, and discharge under-temperature are not particularly important protection functions. Only the over-discharge protection function and the discharge short-circuit protection function are retained, that is, only the safety accidents of discharge short-circuit or over-discharge voltage are detected. Occurs when the discharge short circuit or the overdischarge voltage drops to 2.3 volts and the discharge time is greater than 30 seconds, the battery turns off the main circuit discharge MOS switch tube, so that it can no longer continue to discharge.
  • the two node values of the overdischarge voltage of 2.3 volts and the time of 30 seconds are set, mainly because the battery voltage is almost close to zero when the battery voltage is around 3 volts, and the overdischarge voltage is low due to the adjustment and the delay time of the turn-off. It is also very long, so when the discharge current is turned off at 2.3 volts, it is almost equivalent to shielding the over-discharge protection function.
  • the protection value of the short circuit protection needs to be set as large as possible within the safe range of the battery core, such as 10 times the normal discharge current.
  • the discharge protection function is retained during the flight is because when the aircraft is lowered to the ground, the battery discharge current may be greater than 2 amps and there is communication, the battery is still in flight mode, if there is no over-discharge protection function, In addition, if the user pulls the battery out of time, the battery will be completely depleted. When the battery voltage is lower than 1 volt, the internal chemical material of the battery will irreversibly react, resulting in capacity reduction and even battery bulging.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the UAV battery safety protection device includes an electrical performance parameter acquisition module 610 and a processing module 620.
  • the electrical performance parameter collection module 610 is configured to collect electrical performance parameters of the battery, where the electrical performance parameters include a charging current value and a discharging current value of the battery.
  • the processing module 620 is configured to retain only the discharge short circuit protection function and/or the over discharge protection function of the battery when the discharge current value is greater than or equal to the first current threshold according to the electrical performance parameter.
  • processing module 620 is further configured to determine that there is communication between the battery and the UAV.
  • the processing module 620 is further configured to turn on at least the following functions in the battery when the discharge current value is less than the second current threshold and greater than the third current threshold according to the electrical performance parameter
  • the processing module 620 is further configured to disconnect the output line of the battery when the discharge voltage of the battery is lower than a preset voltage threshold and the duration is greater than a preset time.
  • the voltage threshold is 3.2 volts and the predetermined time is 5 seconds.
  • the voltage threshold is 2.3 volts and the predetermined time is 30 seconds.
  • the processing module is further configured to: when the charging current value is less than the fourth current threshold and greater than the fifth current threshold, according to the electrical performance parameter, turn on at least the following function in the battery: charging overcurrent Protection function, charging over temperature protection function, charging under temperature protection function, charging over voltage protection function and charging short circuit protection function.
  • FIG. 8 is a schematic structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention.
  • the UAV can perform the unmanned aerial vehicle battery safety protection method as provided by the above method embodiments.
  • the UAV 70 includes one or more processors 701 and a memory 702. Wherein, a processor 701 is taken as an example in FIG.
  • the unmanned aerial vehicle described above may further include an alarm indicating device 703.
  • other suitable device modules can also be added or subtracted according to actual needs.
  • the processor 701, the memory 702, and the alarm indicating device 703 may be connected by a bus or other means, and the bus connection is taken as an example in FIG.
  • the memory 702 is a non-volatile computer readable storage medium, and can be used for storing a non-volatile software program, a non-volatile computer executable program, and a module, such as an unmanned aerial vehicle battery security protection method in an embodiment of the present invention.
  • Corresponding program instructions or modules for example, the electrical performance parameter acquisition module 610 and the processing module 620 shown in FIG. 7, and the alarm indication device 703 in the UAV may be a voice playback device or a light indicating device, etc. Strict restrictions.
  • the processor 701 executes various functional applications of the server and data processing by executing non-volatile software programs, instructions, and modules stored in the memory 702, that is, the unmanned aircraft battery security protection method of the above method embodiments.
  • the memory 702 can include a storage program area and an storage data area, wherein the storage program area can store an operating system, an application required for at least one function; the storage data area can store some historical data calculated by the fuel gauge, and the like.
  • memory 702 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • memory 702 can optionally include a memory remotely located relative to processor 701, examples of which include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the computer software can be stored in a computer readable storage medium, which, when executed, can include the flow of an embodiment of the methods described above.
  • the storage medium may be a magnetic disk, an optical disk, a read-only storage memory, or a random storage memory.

Abstract

一种无人飞行器电池(10)安全保护方法及其装置,方法包括:采集电池(10)的电性能参数,电性能参数包括电池(10)的充电电流值和放电电流值(S110);根据电性能参数确定放电电流值大于或等于第一电流阈值时,仅保留电池(10)的放电短路保护功能和/或过放电保护功能(S120)。无人飞行器电池(10)安全保护方法可以尽可能降低各种电池(10)安全事故所造成的损失。

Description

无人飞行器电池安全保护方法及其装置
申请要求于2018年3月29日申请的、申请号为201810270381.3、申请名称为“无人飞行器电池安全保护方法及其装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本发明涉及电池管理技术领域,尤其涉及一种无人飞行器电池安全保护方法及其装置。
【背景技术】
无人飞行器是一种对安全性要求比较高的产品,尤其是在飞行过程中,一个细微的错误都有可能导致炸机事故发生。而电池作为无人飞行器安全的核心,在无人飞行器安全设计中显得尤为重要。
然而,现有的电池安全保护方案中,当出现电池安全事故时,都采用统一的保护策略,而且这种保护策略主要考虑电池的寿命来进行相关保护功能的实现,却没有很好地考虑这些相关保护功能的启动对飞行中的无人飞行器可能带来的风险,最终导致损失惨重。
【发明内容】
为了解决上述技术问题,本发明实施例提供一种可以尽可能降低损失的无人飞行器电池安全保护方法及其装置。
为解决上述技术问题,本发明实施例提供以下技术方案:
一种无人飞行器电池安全保护方法,包括:
采集电池的电性能参数,所述电性能参数包括电池的充电电流值和放电电流值;
根据所述电性能参数确定所述放电电流值大于或等于第一电流阈值时,仅保留所述电池的放电短路保护功能和/或过放电保护功能。
在其中一个实施例中,所述仅保留所述电池的放电短路保护功能和/或过放电保护功能之前,还包括:
确定所述电池与无人飞行器之间有通信。
在其中一个实施例中,所述电池为处于飞行状态的无人飞行器供电。
在其中一个实施例中,还包括:
根据所述电性能参数确定所述放电电流值小于第二电流阈值且大于第三电流阈值时,开启所述电池中的至少下述功能:
放电短路保护功能、过放电保护功能、放电过温保护功能、放电欠温保护功能和放电过流保护功能;
其中,所述第二电流阈值小于或等于所述第一电流阈值。
在其中一个实施例中,所述放电电流值小于所述第二电流阈值且大于所述第三电流阈值时,所述电池为没有飞行的无人飞行器供电。
在其中一个实施例中,还包括:
确定所述电池的放电电压低于预设的电压阈值且持续时间大于预设时间时,断开所述电池的输出线路。
在其中一个实施例中,所述电压阈值为3.2伏特,所述预设的时间为5秒。
在其中一个实施例中,所述电压阈值为2.3伏特,所述预设的时间为30秒。
在其中一个实施例中,还包括:
根据所述电性能参数确定充电电流值小于第四电流阈值且大于第五电流阈值时,开启所述电池中的至少下述功能:
充电过流保护功能、充电过温保护功能、充电欠温保护功能、充电过压保护功能和充电短路保护功能。
在其中一个实施例中,所述第一电流阈值为2安培,所述第二电流阈值为2安培,所述第三电流阈值为50毫安培。
为解决上述技术问题,本发明实施例还提供以下技术方案:
一种无人飞行器电池安全保护装置,包括:
电性能参数采集模块,用于采集电池的电性能参数,所述电性能参数包 括电池的充电电流值和放电电流值;
处理模块,用于在根据所述电性能参数确定所述放电电流值大于或等于第一电流阈值时,仅保留所述电池的放电短路保护功能和/或过放电保护功能。
在其中一个实施例中,所述处理模块在仅保留所述电池的放电短路保护功能和/或过放电保护功能之前,还用于:
确定所述电池与无人飞行器之间有通信。
在其中一个实施例中,所述电池为处于飞行状态的无人飞行器供电。
在其中一个实施例中,所述处理模块还用于:
根据所述电性能参数确定所述放电电流值小于第二电流阈值且大于第三电流阈值时,开启所述电池中的至少下述功能:
放电短路保护功能、过放电保护功能、放电过温保护功能、放电欠温保护功能和放电过流保护功能;
其中,所述第二电流阈值小于或等于所述第一电流阈值。
在其中一个实施例中,所述放电电流值小于所述第二电流阈值且大于所述第三电流阈值时,所述电池为没有飞行的无人飞行器供电。
在其中一个实施例中,所述处理模块还用于:
确定所述电池的放电电压低于预设的电压阈值且持续时间大于预设时间时,断开所述电池的输出线路。
在其中一个实施例中,所述电压阈值为3.2伏特,所述预设的时间为5秒。
在其中一个实施例中,所述电压阈值为2.3伏特,所述预设的时间为30秒。
在其中一个实施例中,所述处理模块还用于:
根据所述电性能参数确定充电电流值小于第四电流阈值且大于第五电流阈值时,开启所述电池中的至少下述功能:
充电过流保护功能、充电过温保护功能、充电欠温保护功能、充电过压保护功能和充电短路保护功能。
本发明实施例还提供以下技术方案:
一种无人飞行器,包括存储器和处理器,所述存储器存储有程序,所述程序在被所述处理器读取执行时,实现上述的无人飞行器电池安全保护方法。
与现有技术相比较,本发明实施例的电池安全保护方法,通过采集电池的电性能参数,并在根据所述电性能参数确定所述放电电流值大于或等于第一电流阈值时,仅保留所述电池的放电短路保护功能和/或过放电保护功能,这样相当于在满足一些特殊条件的情况下(如飞行放电时)会自动关闭掉一些保护功能(如过流、欠温、过温等),仅保留放电短路保护功能和/或过放电保护功能,使得电池可以针对不同的情况有对应的保护策略,这样可以权衡电池寿命和飞机炸机的严重性从而尽可能降低各种电池安全事故所造成的损失。
【附图说明】
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明实施例提供的应用环境示意图;
图2为本发明一实施例提供的无人飞行器电池安全保护方法流程示意图;
图3为本发明一实施例提供的无人飞行器电池安全保护方法部分流程示意图;
图4为本发明另一实施例提供的无人飞行器电池安全保护方法部分流程示意图;
图5为本发明再一实施例提供的无人飞行器电池安全保护方法部分流程示意图;
图6为本发明一实施例提供的具体场景中的无人飞行器电池安全保护方法流程示意图;
图7为本发明一实施例提供的无人飞行器电池安全保护装置示意图;
图8为本发明实施例提供的无人飞行器的硬件结构框图。
【具体实施方式】
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可 执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。术语“第一”、“第二”“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
图1为本发明实施例提供的应用环境示意图。如图1所示,所述应用环境包括电池10、电量计20以及微控制器30。
电池10由一个或者多个电芯组成,以任何形式排列形成的电芯组,用于为电动机等电器设备提供直流电源。电池10可以根据实际情况,具有相应的容量、体积大小或者封装形式。电池10可以在受控的情况下放电或者充电,模拟正常的工作运行情况。
电量计20可以是任何类型或者品牌的电量计量系统或芯片,通过采集相应的数据来计算确定电池当前的电量情况。该电量计20可以运行有一种或者多种合适的软件程序,记录数据并基于这些数据进行运算。
电量计20与电池10之间建立有必要的电性连接(该电性连接,可以是通过相关电性能参数采集电路形成的间接连接,如电流采样电路,电压采样电路,温度采样电路等),电量计20通过这些电性连接采集、获取电池10的数据以确定电池10当前的电量、电流、电压等电性能参数,并实现相关保护功能(如短路保护,过流保护、过压保护、过温保护等),当然也可以通过设计相应的外围电路来实现上述相关保护功能。
微控制器30与电量计20之间通信连接,微控制器30可以根据电量计20传输的相关电性能参数对相关保护功能的开启或关闭进行控制。如微控制器30根据电量计20传输的电性能参数确定电池10的放电电流值大于或等于第一电流阈值时,则会控制电量计20或相关外围电路仅保留所述电池的放电短路保护功能和/或过放电保护功能。
实施例一:
图2为本发明实施例提供的无人飞行器电池安全保护方法流程示意图,同时结合图1一起对实施例一中的技术方案进行描述。如图2所示,该无人飞行器电池安全保护方法包括:
步骤S110:采集电池的电性能参数,所述电性能参数包括电池的充电电流值和放电电流值。
在本实施例中,出现的“电流值”只是一个数值,无正负之分,其前面的充电和放电则用于表示电流的方向。电性能参数的采集一般通过相应的采样电路就可以完成。
步骤S120:根据所述电性能参数确定所述放电电流值大于或等于第一电流阈值时,仅保留所述电池的放电短路保护功能和/或过放电保护功能。
正常情况下,只要检测到电池10有放电电流,微控制器30就会控制电量计20或相关外围电路开启所有的放电保护功能,包括但不限于放电过流、放电过温、放电欠温、过放电、放电短路等保护功能。当该放电电流值大于或等于第一电流阈值时,则微控制器30会采取相关的保护策略,如控制电量计20或相关外围电路仅保留所述电池的放电短路保护功能和/或过放电保护功能。
与现有技术相比较,本发明实施例的电池安全保护方法,通过采集电池的电性能参数,并在根据所述电性能参数确定所述放电电流值大于或等于第一电流阈值时,仅保留所述电池的放电短路保护功能和/或过放电保护功能,这样相当于在满足一些特殊条件的情况下(如飞行放电时)将除放电短路保护功能和/或过放电保护功能之外的其他保护功能都关闭了,使得电池可以针对不同的情况有对应的保护策略,这样可以权衡电池寿命和飞机炸机的严重性从而尽可能降低各种电池安全事故所造成的损失。
在一个实施例中,所述第一电流阈值为2安培。根据各种测试数据表明,飞机在没有飞行的状态下放电,一般放电电流值最多在1点多安培,所以当电池10的放电电流大于2安培的情况下,就是电池10在为处于飞行状态的无人飞行器供电。可以理解,在其他实施例中,第一电流阈值还可以为其他值,比如1.8安培、1.9安培或2.1安培等,这里不作严格限定。
在一个实施例中,考虑到人为放电有可能大于或等于第一电流阈值的情况,为防止这种情况的发现,需要进一步确定电池10与无人飞行器之间是否有通信,即当同确定所述放电电流值大于或等于第一电流阈值且所述电池与无人飞行器之间有通信时,微控制器30控制其他保护功能的关闭,仅保留所述电池的放电短路保护功能和/或过放电保护功能。
在一个实施例中,当确定所述放电电流值大于或等于第一电流阈值时,一般会保留放电短路保护功能和过放电保护功能两项功能,这样才能最低限度降低电池安全事故带来的损失。因为放电短路和过放电都可能引起炸机,这样比电池停止供电而导致坠机带来的损失更大。可以理解,不排除在其他实施例中,在计算放电短路和过放电出现的机率后,只保留其中一种保护功能,这种情况也属于本发明的保护范围内。
实施例二:
请参阅图3,在一个实施例中,上述实施例一中的步骤S110之后还包括:
步骤S130:根据所述电性能参数确定所述放电电流值小于第二电流阈值且大于第三电流阈值时,开启所述电池中的至少下述功能:放电短路保护功能、过放电保护功能、放电过温保护功能、放电欠温保护功能和放电过流保护功能。
具体地,所述第二电流阈值小于或等于所述第一电流阈值。
在一个实施例中,所述第二电流阈值为2安培,所述第三电流阈值为50毫安培。根据各种测试数据表明,飞机在没有飞行的状态下放电,一般放电电流值最多在1点多安培,所以当电池10的放电电流值小于2安培的情况下,就是电池10为没有飞行的无人飞行器供电。可以理解,在其他实施例中,第二电流阈值还可以为其他值,比如1.8安培、1.9安培或1.5安培等,这里不作严格限定。另外,这里设置第三电流阈值主要是为了防止误判的情况发现,因为有时在充电的过程中也有可能因一些意外的情况出现一些反向电流,但这个电流值一般不会大于50毫安培。
可以理解,在其他实施例中,当确定所述放电电流值小于第二电流阈值且大于第三电流阈值时,也可以只开启电池中其中一部分保护功能,如放电短路保护功能、过放电保护功能和放电过流保护功能。
实施例三:
请参阅图4,在一个实施例中,上述实施例一和实施例二中出现的过放电保护功能的实现过程包括:
S410:判断所述电池的放电电压是否低于预设的电压阈值且持续时间大于预设时间,若是,则执行步骤S420。
S420:断开所述电池的输出线路。
这里相当于在确定所述电池的放电电压低于预设的电压阈值且持续时间大于预设时间时,断开所述电池的输出线路。
在一个实施例中,所述电压阈值为3.2伏特,所述预设的时间为5秒。
在一个实施例中,所述电压阈值为2.3伏特,所述预设的时间为30秒。
通常情况下,当电池的放电电压低于3.2伏特时,已经算低电量了,如果继续放电就会损耗电池的寿命,所以在一个实施例中,若认为电池在为没有飞行的无人飞行器供电,当电池的放电电压低于3.2伏特且持续于预设时间时,这时放电过压保护功能的实现使得电池就会关闭其主回路放电MOS开关管(即断开所述电池的输出线路)。
在另一个实施例中,若认为电池在为飞行的无人飞行器供电,就需要权衡电池寿命和炸机两种情况的利弊,适当将电压阈值降低为2.3伏特,预设的时间延长至30秒,使得用户有足够时间控制无人飞行器降落。
实施例四:
请参阅图5,在一个实施例中,上述实施例一中的步骤S110之后还包括:
步骤S140:根据所述电性能参数确定充电电流值小于第四电流阈值且大于第五电流阈值时,开启所述电池中的至少下述功能:充电过流保护功能、充电过温保护功能、充电欠温保护功能、充电过压保护功能和充电短路保护功能。
在一个实施例中,所述第四电流阈值为8安培,所述第五电流阈值为50毫安培。根据各种测试数据表明,飞机在充电状态下,充电电流值一般会控制在8安培以下,否则电池就会易发热,造成短路甚至爆炸、燃烧等事故。可以理解,在其他实施例中,第四电流阈值还可以为其他值,比如7.9安培、 7.8安培或8.1安培等,这里不作严格限定。另外,这里设置第五电流阈值主要是为了防止误判的情况发现,因为有时在充电的过程中也有可能因一些意外的情况出现一些反向电流,但这个电流值一般不会大于50毫安培。
可以理解,在其他实施例中,当确定充电电流值小于第四电流阈值且大于第五电流阈值时,也可以只开启电池中其中一部分保护功能,如充电短路保护功能、过充电保护功能和充电过流保护功能。
下面结合一个具体的可选实施例进行说明,如图6所示,首先在电池初始化后会判断电池充放电状态,本实施例需要确定电池的三种状态:为处于飞行状态的无人飞行器供电、为没有飞行的无人飞行器供电、充电。区分电池是充电还是放主要依赖于电流的方向,同时相应的采样电路会采集电池的电性能参数,所述电性能参数包括电池的充电电流值和放电电流值。
(1)如果检测到有充电电流,且确定充电电流大于50毫安培且小于8安培就认为电池进入充电状态,此时电池中的充电过流保护功能、充电过温保护功能、充电欠温保护功能、充电过压保护功能和充电短路保护功能都会被开启并起作用,确保电池在充电过程中有相应的安全保护,即实时检测是否有电池的充电安全事件发生当其中任何一个安全事件发生后,电池就关闭其主回路充电MOS开关管,使之不能再继续充电,直至安全事件去除才可恢复正常,同时当发生安全事件时电池会根据不同的安全状态做出相应的告警指示,如声音提示,灯光提示等。
(2)如果检测到有放电电流,且确定放电电流大于50毫安培且小于2安培时,就会认为电池在为没有飞行的无人飞行器供电,此时电池相应的保护功能都会被开启,即实时检测是否有电池的放电安全事件发生,一旦发生放电过流、放电过温、放电欠温、过放电电压小于3.2伏特且过放电时间大于5秒、放电短路等其中任何一个安全事件,电池就关闭主回路放电MOS开关管,使之不能再继续放电,直至安全事件去除才可恢复正常,同时当发生安全事件时电池会根据不同的安全状态做出相应的告警指示,如声音提示,灯光提示等。
(3)如果检测到有放电,且确定放电电流大于或等于2安培时且飞机有通信存在,就会认为电池在为处于飞行状态的无人飞行器供电,故放电的安 全保护策略开启屏蔽模式,屏蔽掉放电过流、放电过温、放电欠温这些不是特别重要的保护功能,仅保留过放电保护功能和放电短路保护功能,即仅检测是否有放电短路或过放电电压两种放电的安全事故发生,当出现放电短路或过放电电压降低到2.3伏特且放电时间大于30秒的安全事件时,电池就关闭主回路放电MOS开关管,使之不能再继续放电。
这里设置过放电电压2.3伏特和时间30秒这两个节点值,主要由于电池电压在3伏特左右的时候电量就几乎接近于零,而过放电电压由于调整的很低而且关断的延时时间又特别长,所以在2.3伏特时关断放电电流的时候也几乎等同于屏蔽掉了过放电保护功能。此外短路保护的保护值在电芯安全范围内也需要设置尽量大,比如10倍的正常放电电流。以上这些措施可以最大限度的减少飞行时电池安全事件的发生进而避免因电池的保护功能开启的原因炸机。
飞行的时候之所以还保留过放电保护功能,是因为当飞机降到地面的时候,电池的放电电流可能大于2安培而且还有通信存在,电池还处于飞行模式中,如果没有过放电保护功能,再加上用户拔电池不及时,就会导致电池电量全部耗尽,而当电池电压低于1伏以下的时候电芯内部化学材料就存在不可逆的反应,导致容量衰减甚至电池鼓包等。
实施例五:
请参照图7,为本发明中提供的一种无人飞行器电池安全保护装置的实施例。所述无人飞行器电池安全保护装置包括:电性能参数采集模块610、处理模块620。
其中,电性能参数采集模块610用于采集电池的电性能参数,所述电性能参数包括电池的充电电流值和放电电流值。处理模块620用于在根据所述电性能参数确定所述放电电流值大于或等于第一电流阈值时,仅保留所述电池的放电短路保护功能和/或过放电保护功能。
进一步地,在一个实施例中,处理模块620还用于确定所述电池与无人飞行器之间有通信。
进一步地,在一个实施例中,处理模块620还用于根据所述电性能参数确定所述放电电流值小于第二电流阈值且大于第三电流阈值时,开启所述电 池中的至少下述功能:放电短路保护功能、过放电保护功能、放电过温保护功能、放电欠温保护功能和放电过流保护功能;其中,所述第二电流阈值小于或等于所述第一电流阈值。
进一步地,在一个实施例中,处理模块620还用于确定所述电池的放电电压低于预设的电压阈值且持续时间大于预设时间时,断开所述电池的输出线路。
在一个实施例中,所述电压阈值为3.2伏特,所述预设的时间为5秒。
在一个实施例中,所述电压阈值为2.3伏特,所述预设的时间为30秒。
在一个实施例中,所述处理模块还用于根据所述电性能参数确定充电电流值小于第四电流阈值且大于第五电流阈值时,开启所述电池中的至少下述功能:充电过流保护功能、充电过温保护功能、充电欠温保护功能、充电过压保护功能和充电短路保护功能。
应当说明的是,上述方法实施例与装置实施例基于相同的发明构思实现,方法实施例所能够具备的技术效果以及技术特征均可以由装置实施例中相应的功能模块执行或者实现,为陈述简便,在此不作赘述。
实施例六:
图8是本发明实施例提供的一种无人飞行器的结构示意图。该无人飞行器可以执行如上述方法实施例提供的无人飞行器电池安全保护方法。如图8所示,该无人飞行器70包括一个或多个处理器701以及存储器702。其中,图8中以一个处理器701为例。上述无人飞行器还可以包括告警指示装置703。当然,也可以根据实际情况需要,添加或者减省其它合适的装置模块。
处理器701、存储器702、告警指示装置703可以通过总线或者其他方式连接,图8中以通过总线连接为例。
存储器702作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本发明实施例中的无人飞行器电池安全保护方法对应的程序指令或模块,例如,附图7所示的电性能参数采集模块610、处理模块620,而该无人飞行器中的告警指示装置703可以是语音播放装置或灯光指示装置等,这里不作严格限制。处理器701通过运行存储在存储器702中的非易失性软件程序、指令以及模块,从而执行 服务器的各种功能应用以及数据处理,即实现上述方法实施例的无人飞行器电池安全保护方法。
存储器702可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储电量计计算的一些历史数据等。此外,存储器702可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器702可选包括相对于处理器701远程设置的存储器,上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本领域技术人员应该还可以进一步意识到,结合本文中所公开的实施例描述的示例性的电机控制方法的各个步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。
本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。所述的计算机软件可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体或随机存储记忆体等。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (20)

  1. 一种无人飞行器电池安全保护方法,其特征在于,包括:
    采集电池的电性能参数,所述电性能参数包括电池的充电电流值和放电电流值;
    根据所述电性能参数确定所述放电电流值大于或等于第一电流阈值时,仅保留所述电池的放电短路保护功能和/或过放电保护功能。
  2. 根据权利要求1所述的方法,其特征在于,所述仅保留所述电池的放电短路保护功能和/或过放电保护功能之前,还包括:
    确定所述电池与无人飞行器之间有通信。
  3. 根据权利要求1或2所述的方法,其特征在于,所述电池为处于飞行状态的无人飞行器供电。
  4. 根据权利要求1或2所述的方法,其特征在于,还包括:
    根据所述电性能参数确定所述放电电流值小于第二电流阈值且大于第三电流阈值时,开启所述电池中的至少下述功能:
    放电短路保护功能、过放电保护功能、放电过温保护功能、放电欠温保护功能和放电过流保护功能;
    其中,所述第二电流阈值小于或等于所述第一电流阈值。
  5. 根据权利要求4所述的方法,其特征在于,所述放电电流值小于所述第二电流阈值且大于所述第三电流阈值时,所述电池为没有飞行的无人飞行器供电。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,还包括:
    确定所述电池的放电电压低于预设的电压阈值且持续时间大于预设时间时,断开所述电池的输出线路。
  7. 根据权利要求6所述的方法,其特征在于,所述电压阈值为3.2伏特,所述预设的时间为5秒。
  8. 根据权利要求6所述的方法,其特征在于,所述电压阈值为2.3伏特,所述预设的时间为30秒。
  9. 根据权利要求1所述的方法,其特征在于,还包括:
    根据所述电性能参数确定充电电流值小于第四电流阈值且大于第五电流阈值时,开启所述电池中的至少下述功能:
    充电过流保护功能、充电过温保护功能、充电欠温保护功能、充电过压保护功能和充电短路保护功能。
  10. 根据权利要求4所述的方法,其特征在于,所述第一电流阈值为2安培,所述第二电流阈值为2安培,所述第三电流阈值为50毫安培。
  11. 一种无人飞行器电池安全保护装置,其特征在于,包括:
    电性能参数采集模块,用于采集电池的电性能参数,所述电性能参数包括电池的充电电流值和放电电流值;
    处理模块,用于在根据所述电性能参数确定所述放电电流值大于或等于第一电流阈值时,仅保留所述电池的放电短路保护功能和/或过放电保护功能。
  12. 根据权利要求11所述的装置,其特征在于,所述处理模块在仅保留所述电池的放电短路保护功能和/或过放电保护功能之前,还用于:
    确定所述电池与无人飞行器之间有通信。
  13. 根据权利要求11或12所述的装置,其特征在于,所述电池为处于飞行状态的无人飞行器供电。
  14. 根据权利要求11或12所述的装置,其特征在于,所述处理模块还用于:
    根据所述电性能参数确定所述放电电流值小于第二电流阈值且大于第三电流阈值时,开启所述电池中的至少下述功能:
    放电短路保护功能、过放电保护功能、放电过温保护功能、放电欠温保护功能和放电过流保护功能;
    其中,所述第二电流阈值小于或等于所述第一电流阈值。
  15. 根据权利要求14所述的装置,其特征在于,所述放电电流值小于所述第二电流阈值且大于所述第三电流阈值时,所述电池为没有飞行的无人飞行器供电。
  16. 根据权利要求11~15任一项所述的装置,其特征在于,所述处理模块还用于:
    确定所述电池的放电电压低于预设的电压阈值且持续时间大于预设时间时,断开所述电池的输出线路。
  17. 根据权利要求16所述的装置,其特征在于,所述电压阈值为3.2伏特,所述预设的时间为5秒。
  18. 根据权利要求16所述的装置,其特征在于,所述电压阈值为2.3伏特,所述预设的时间为30秒。
  19. 根据权利要求11所述的装置,其特征在于,所述处理模块还用于:
    根据所述电性能参数确定充电电流值小于第四电流阈值且大于第五电流阈值时,开启所述电池中的至少下述功能:
    充电过流保护功能、充电过温保护功能、充电欠温保护功能、充电过压保护功能和充电短路保护功能。
  20. 一种无人飞行器,其特征在于,包括存储器和处理器,所述存储器存储有程序,所述程序在被所述处理器读取执行时,实现如权利要求1至10任一所述的无人飞行器电池安全保护方法。
PCT/CN2018/115448 2018-03-29 2018-11-14 无人飞行器电池安全保护方法及其装置 WO2019184386A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810270381.3A CN108535657B (zh) 2018-03-29 2018-03-29 无人飞行器电池安全保护方法及其装置
CN201810270381.3 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019184386A1 true WO2019184386A1 (zh) 2019-10-03

Family

ID=63482372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115448 WO2019184386A1 (zh) 2018-03-29 2018-11-14 无人飞行器电池安全保护方法及其装置

Country Status (2)

Country Link
CN (1) CN108535657B (zh)
WO (1) WO2019184386A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535657B (zh) * 2018-03-29 2021-12-28 深圳市道通智能航空技术股份有限公司 无人飞行器电池安全保护方法及其装置
CN111313491A (zh) * 2019-11-12 2020-06-19 珠海格力电器股份有限公司 储能系统的控制方法及装置、电源控制电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105871004A (zh) * 2016-04-15 2016-08-17 智恒科技股份有限公司 功率型电池放电保护系统及其保护方法
CN105914812A (zh) * 2016-04-22 2016-08-31 广东容祺智能科技有限公司 一种无人机电池智能管理系统
CN107039951A (zh) * 2017-03-17 2017-08-11 南京中感微电子有限公司 电池保护电路及锂电池
CN107240948A (zh) * 2017-08-07 2017-10-10 东莞博力威新能源有限公司 便携式储能电池充放电控制方法及系统
JP2018021837A (ja) * 2016-08-04 2018-02-08 プライムアースEvエナジー株式会社 二次電池の劣化判定装置、二次電池の劣化判定方法、及び二次電池の制御装置
CN108535657A (zh) * 2018-03-29 2018-09-14 深圳市道通智能航空技术有限公司 无人飞行器电池安全保护方法及其装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201113411Y (zh) * 2007-09-21 2008-09-10 深圳市比克电池有限公司 电池保护装置
JP5537521B2 (ja) * 2011-09-20 2014-07-02 株式会社日立製作所 リチウムイオン二次電池制御システムおよび組電池制御システム
CN107885225B (zh) * 2014-07-16 2022-04-15 深圳市大疆创新科技有限公司 电动无人机及其智能电量保护方法
CN107074347B (zh) * 2016-02-29 2019-03-08 深圳市大疆创新科技有限公司 飞行控制方法、系统和无人飞行器
WO2017206064A1 (zh) * 2016-05-31 2017-12-07 深圳市大疆创新科技有限公司 电池的控制方法及系统、智能电池、可移动平台

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105871004A (zh) * 2016-04-15 2016-08-17 智恒科技股份有限公司 功率型电池放电保护系统及其保护方法
CN105914812A (zh) * 2016-04-22 2016-08-31 广东容祺智能科技有限公司 一种无人机电池智能管理系统
JP2018021837A (ja) * 2016-08-04 2018-02-08 プライムアースEvエナジー株式会社 二次電池の劣化判定装置、二次電池の劣化判定方法、及び二次電池の制御装置
CN107039951A (zh) * 2017-03-17 2017-08-11 南京中感微电子有限公司 电池保护电路及锂电池
CN107240948A (zh) * 2017-08-07 2017-10-10 东莞博力威新能源有限公司 便携式储能电池充放电控制方法及系统
CN108535657A (zh) * 2018-03-29 2018-09-14 深圳市道通智能航空技术有限公司 无人飞行器电池安全保护方法及其装置

Also Published As

Publication number Publication date
CN108535657B (zh) 2021-12-28
CN108535657A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
EP2994989B1 (en) Pre-charging and voltage supply system for a dc-ac inverter
CN106585396B (zh) 冗余主动监控电动汽车充电的充电机控制方法
WO2021142597A1 (zh) 电池控制方法、设备及存储介质
CN106740567A (zh) 车辆用电池的过放电防止装置及其方法
KR102390394B1 (ko) 메인 배터리와 서브 배터리를 제어하기 위한 장치 및 방법
JP2020533932A (ja) バッテリー管理装置、バッテリー管理方法及び該バッテリー管理装置を含むエネルギー貯蔵システム
EP2919346B1 (en) Device and method for managing battery, including malfunction prevention algorithm
CN110622383B (zh) 电池控制方法、电池控制系统、无人机及电池
WO2020007328A1 (zh) 无人飞行器电池安全处理方法及其装置
WO2020124521A1 (zh) 对锂电池进行充电的方法及相关装置
CN108832686B (zh) 充电回路及充电回路检测方法
WO2019192183A1 (zh) 确定电池状态的方法和装置、芯片、电池及飞行器
KR20130084875A (ko) 릴레이 제어신호 독립 모니터링 장치 및 방법
WO2019184386A1 (zh) 无人飞行器电池安全保护方法及其装置
WO2021083149A1 (zh) 充电方法和充电系统
CN206451787U (zh) 一种可强制应急点火的汽车启动电池
CN109167108A (zh) 电池管理系统内的分级功率限制保护方法
WO2023050264A1 (zh) 电路控制方法、电池及其控制器和管理系统、用电装置
US20220239127A1 (en) Method for pre-charging power conversion device and power conversion device
WO2017191818A1 (ja) 電源装置
WO2021142598A1 (zh) 电池保护方法、系统、可移动平台、电池及存储介质
WO2021142595A1 (zh) 充电控制方法、充电器、充电系统及存储介质
CN116250160A (zh) 充电的方法和功率转换设备
CN112477694A (zh) 车辆充电控制方法、装置及电路、车辆和计算机设备
US11973364B2 (en) Circuit control method, battery and its controller and management system, and electrical apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912636

Country of ref document: EP

Kind code of ref document: A1